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Mechanisms of gene transfer mediated by lipoplexes
associated with targeting ligands or pH-sensitive
peptides
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Association of a targeting ligand such as transferrin, or an transferrin receptors. These observations were reinforced
endosome disrupting peptide such as GALA, with cationic by results obtained from competitive inhibition studies
liposome–DNA complexes (‘lipoplexes’) results in a sig- either by preincubating the cells with an excess of free
nificant enhancement of transfection of several cell types ligand or with various ‘receptor-blocking’ lipoplexes. Trans-
(Simões S et al, Gene Therapy 1998; 5: 955–964). fection of cells in the presence of drugs that interfere with
Although these strategies can overcome some of the bar- the endocytotic pathway provided additional insights into
riers to gene delivery by lipoplexes, the mechanisms by the mechanisms of gene delivery by transferrin- or GALA-
which they actually enhance tranfection is not known. In lipoplexes. Our results indicate that transferrin-lipoplexes
studies designed to establish the targeting specificity of deliver transgenes by endocytosis primarily via a non-
transferrin, we found that apo-transferrin enhances trans- receptor-mediated mechanism, and that acidification of the
fection to the same extent as transferrin, indicating that endosomes is partially involved in this process.
internalization of the lipoplexes is mostly independent of
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Introduction
Non-viral gene delivery systems appear to be very prom-
ising systems for gene therapy since they obviate some
of the safety limitations associated with viral vectors.
Among such systems, cationic liposomes, first proposed
by Felgner et al,1 have been used extensively in vitro and
in vivo.2–7 Although a large amount of effort has been put
into the development of these vectors, namely through
the synthesis and evaluation of different lipid compo-
sitions,8 as well as of new plasmids with more efficient
promoters,7 the results are still unsatisfactory. The hetero-
geneity of the complexes formed with the plasmid DNA,
the lack of knowledge on the mechanisms by which these
systems mediate gene delivery,9,10 toxicity under certain
conditions,11,12 sensitivity to the presence of serum1,13,14

and especially the lack of target cell specificity and the
low levels of gene expression in vitro and in vivo com-
pared with viral vectors raise some doubts regarding
their potential as gene delivery systems in clinical appli-
cations.

In a previous article, we reported two different
approaches for successfully enhancing transfection
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mediated by cationic liposomes composed of 1,2-
dioleoyl-3-(trimethylammonium) propane (DOTAP) and
dioleoylphosphatidylethanol amine (DOPE).15 The first
approach was based on the promotion of cellular intern-
alization of the cationic liposome–DNA complexes
(‘lipoplexes’)16 through receptor-mediated endocytosis.
For that purpose iron-saturated human transferrin was
associated with the lipoplexes at different (+/−) charge
ratios. Transferrin is a useful ligand that binds to a cell-
surface receptor expressed by most proliferating cells
with particularly high expression on erythroblasts and
tumor cells.17

The uptake of ferric transferrin (Tf) by cell-membrane
receptors (TfR) and its intracellular cycle have been well
established.18,19 Complexes of diferric or monoferric Tf
with the TfR are internalized via specialized regions of
the cell plasma membrane known as coated pits through
the endocytotic pathway. When the endosome lumen is
acidified (pH 5.0–5.5) the iron ions are released from
transferrin and move to their destination within the cell.
Following removal of iron from Tf, the TfR with bound
apotransferrin recycles to the cell surface, where the apo-
Tf is released in response to the neutral pH of the extra-
cellular medium, leaving the TfR free to bind additional
ferric Tf molecules. Thus, the high affinity of ferric trans-
ferrin for the receptors at neutral pH in contrast to the
high affinity of apotransferrin for the receptors at acidic
pH appears to be essential for this cycle. Targeting to
cellular transferrin receptors has been tried successfully
before by linking the ligand to polycation conjugates20,21

or by associating the protein with cationic liposomes.22
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endosome-disrupting agents to the lipoplexes with the
purpose of facilitating the cytoplasmic release of DNA
from endosomes, thus preventing its lysosomal degra-
dation and therefore enhancing transfection. Two differ-
ent synthetic pH-sensitive peptides, ‘GALA’23,24 and the
influenza virus hemagglutinin HA2 N-terminal peptide,25

both low pH-activated membrane-active peptides, were
used for that purpose.15

The ternary complexes resulting from the association
of transferrin or fusigenic peptides with lipoplexes were
significantly more efficient in mediating gene transfer
than plain lipoplexes. This effect was observed in a var-
iety of cell types, including epithelial and lymphoid cell
lines, as well as in human blood monocyte-derived
macrophages, and was particularly pronounced when the
complexes presented a net negative charge.15,26,27 Further-
more, the enhancement of gene delivery by transferrin or
GALA was not affected significantly by the presence of
serum and did not result in significant cytotoxicity.

Although based on rational strategies, the actual mech-
anisms by which these agents promote gene delivery
when associated with lipoplexes remain to be elucidated.
We therefore examined the different processes by which
transgene expression is facilitated by the presence of a
targeting ligand or a fusigenic peptide. By performing
targeting specificity studies, we showed that transferrin
promotes internalization of the lipoplexes, most likely
via a non-specific process. These observations were
reinforced by results obtained from competitive inhi-
bition studies, either by preincubating the cells with an
excess of free ligand or with various ‘receptor-blocking’
complexes. Transfection of cells in the presence of differ-
ent drugs that interfere with the endocytotic pathway
also provided insight into how ternary complexes enter
cells and mediate gene delivery. Based on our obser-
vations and on recent findings, we discuss the potential
mechanisms involved in the internalization of the ternary
complexes, the dissociation of DNA from the complexes
and its delivery into the cytoplasm.

Results

Targeting specificity studies
To demonstrate whether the internalization of Tf-lipo-
plexes was mediated by specific interaction with Tf recep-
tors, we tested the effect of associating apo-Tf (which
should have very low affinity for TfR at physiological
pH) with DOTAP:DOPE DNA complexes on the levels
of luciferase expression, using the same experimental
conditions described for transferrin.

Figure 1a shows the levels of transfection obtained
with COS-7 cells when complexes containing different
lipid/DNA (+/−) charge ratios, prepared in the presence
or absence of ferric Tf or apo-Tf, were incubated with
the cells for 4 h at 37°C. As previously reported,15 the
association of ferric Tf resulted in a significant enhance-
ment of transfection as compared with controls, ie plain
lipoplexes prepared in the absence of Tf. Although this
effect was observed for all the lipid/DNA (+/−) charge
ratios tested, the highest levels of luciferase expression
were achieved with ternary complexes with the 1/1
lipid/DNA charge ratio for both COS-7 and HeLa cells
(Figure 1a and b).

Figure 1 Targeting specificity studies. Levels of transfection activity
when complexes containing different lipid/DNA (+/−) charge ratios, pre-
pared in the presence or absence of ferric transferrin or apotransferrin,
were incubated with (a) COS-7 cells or with (b) HeLa cells. Cells were
rinsed twice with serum-free medium and then covered with 0.3 ml of
DME-HG before lipoplexes were added. The liposomes were complexed,
in the absence or presence of 32 µg of transferrin or of 32 µg of apo-
transferrin, with 1 µg of pCMVluc at the indicated theoretical lipid/DNA
charge ratios, as described in detail in Materials and methods. After an
incubation for 4 h, the medium was replaced with DME-HG containing
10% FBS and the cells were further incubated for 48 h. The level of gene
expression was evaluated as described in Materials and methods. The data
are expressed as nanograms of luciferase per milligram of total cell protein
(mean ± standard deviation obtained from triplicate wells), and are
representative of three independent experiments.

The results obtained with Tf and apo-Tf were strikingly
similar (Figure 1). Although apo-Tf has a much lower
affinity for its cell receptors at physiological pH than Tf,
the association of this protein to the lipoplexes also
resulted in a significant enhancement of the levels of gene
expression for all the different lipid/DNA (+/−) charge
ratios. As observed for transferrin, the condition leading
to the highest levels of transfection was the 1/1
lipid/DNA charge ratio. This common capacity to
enhance transfection of ferric- and apotransferrin was
also demonstrated with HeLa cells, where only the best
condition (1/1 lipid/DNA) was tested (Figure 1b). This
enhancing effect of apo-Tf was not affected by the pres-
ence of serum (10%) during transfection (data not
shown). It should be noted that the ability of apotransfer-
rin-containing lipoplexes to enhance transfection cannot
be attributed to the saturation of this protein due to
sequestration of free iron from the cell culture medium,
since no significant differences in the levels of transfec-
tion were observed when these complexes were incu-
bated with cells in the presence of desferrioxamine (a
chelating agent for free iron) (data not shown).



Gene delivery by transferrin-lipoplexes
S Simões et al

1800 Competitive inhibition by various lipoplexes
In view of the unexpected results presented in the pre-
vious section regarding the specificity of transferrin to
promote receptor-mediated endocytosis of the lipoplexes,
we explored whether cellular receptors for Tf-lipoplexes
could be blocked by competitive inhibitors.

Effect of excess free transferrin: Figure 2 illustrates the
effect of pre-incubating COS-7 cells with 8 mg of free Tf
(approximately 250 times the amount of protein that is
associated with the lipid/DNA complexes) on the levels
of luciferase gene expression. The cells were incubated
with free Tf dissolved in 0.3 ml of cell culture medium
for 30 min at 37°C before the addition of the control com-
plexes (plain lipoplexes of DOTAP:DOPE/DNA) or the
ternary complexes of Tf-DOTAP:DOPE/DNA. Surpris-
ingly, the presence of this large excess of free Tf in the
medium of transfection seemed to have no significant
effect on the levels of transfection mediated by either
plain lipoplexes or ternary complexes (both at a 1/1 (+/−)
charge ratio). The relative levels of transfection obtained
among the different lipid/DNA charge ratios was also
maintained (data not shown).

Effect of lipoplexes with different physico-chemical
properties: It is possible that Tf associated with lipoplexes
may interact differently with the cell membrane com-
pared with free Tf. For example, it may bind to different,
or possibly multiple, receptors or sites on the cell mem-
brane. To examine this possibility we pre-incubated cells
with different ‘blocking’ complexes (lipoplexes with the
same lipid composition but containing the non-luciferase
expressing plasmid, pCMV.SPORT-β-gal) before the
addition of the ‘active’ ternary complexes (lipoplexes
containing the luciferase plasmid, pCMVluc). In previous
studies we had measured the zeta potential (ζ) of differ-
ent (+/−) charge ratios and the effect of the association
of Tf or pH-sensitive peptides (eg GALA) on the overall
charge of these lipoplexes.15,26 We had found that, for

Figure 2 Competitive inhibition studies. Effect of the incubation with the
cells for 30 min of an excess of free transferrin before the addition of the
plain or ternary lipoplexes at an optimized charge ratio (1/1 lipid/DNA)
on the levels of transfection. COS-7 cells were pre-incubated with 8 mg
transferrin (ie 250 × more protein than that associated with the lipoplexes).
After an incubation for 1 h with the complexes, the medium containing
an excess of transferrin was replaced with DME-HG enriched with 10%
FBS and the cells were further incubated for 48 h. The level of gene
expression was evaluated as described in Materials and methods. The data
are expressed as nanograms of luciferase per milligram of total cell protein
(mean ± standard deviation obtained from triplicate wells), and are
representative of three independent experiments.

some of the lipid/DNA charge ratios used, the associ-
ation of transferrin or the GALA peptide led to the forma-
tion of net negatively charged complexes, which turned
out to be more effective in mediating gene transfer than
neutral or positively charged complexes.

In one group of experiments, 1/1 (+/−) Tf-lipoplexes
(ζ = −38.6 ± 5.2 mV) and 1/1 (+/−) GALA-lipoplexes (ζ =
, −35.3 ± 3.6 mV) were preincubated with Hela cells for
1 h at 37°C before the medium was replaced with DME-
HG and new complexes of the same composition and
charge (but carrying the luciferase plasmid) were added
and incubated for another hour. Transfection was evalu-
ated 48 h later as described in Materials and methods
(Figure 3a). Thus, we tested how the presence of nega-
tively charged complexes would affect internalization of
complexes of either the same or different composition,
but exhibiting the same overall charge. In another group
of experiments the ‘blocking’ complexes were the same
as described above, but the ‘active’ complexes consisted
of 2/1 (+/−) plain lipoplexes (ζ = 42.8 ± 0.5 mV), 2/1
(+/−) Tf-associated complexes (ζ = 25 ± 2 mV) and 2/1

Figure 3 Competitive inhibition studies. Effect of the incubation with
HeLa cells for 1 h at 37°C of ‘blocking’ complexes (containing a non-
luciferase expressing plasmid, pCMV.SPORT-β-gal) composed of trans-
ferrin- or GALA-lipoplexes at a 1/1 charge ratio (both net negatively
charged). The medium was then replaced before the addition of (a) ‘active’
complexes (complexes carrying the luciferase plasmid, pCMVluc) of the
same composition and charge ratio; or (b) complexes of the same compo-
sition but prepared at a 2/1 lipid/DNA charge ratio. Cells were further
incubated for another hour at 37°C. Transfection experiments were perfor-
med as described in Materials and methods. The data, expressed as nanog-
rams of luciferase per milligram of total cell protein, indicate the mean ±
standard deviation obtained from triplicate wells, and are representative
of two independent experiments.
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(Figure 3b). In this case, the effect of the negative charge
and composition of the complexes on the entry of posi-
tively charged complexes with the same or different
composition were thus evaluated.

As demonstrated in Figure 3a, no significant effect on
gene expression was noted when neutral (plain lipo-
plexes 1/1) or net negatively charged ‘active’ complexes
at a 1/1 lipid/DNA charge ratio (containing either Tf or
GALA) were added, following the incubation of the cells
with the net negatively charged ‘blocking’ complexes
containing Tf. A slight potentiation of transfection was
noted for all three types of complexes when the preincu-
bation was carried out with the 1/1 (+/−) GALA-
associated blocking complexes.

Similar results were achieved when either plain, Tf-
associated (both positively charged) or GALA-associated
complexes (negatively charged) at a 2/1 lipid/DNA
charge ratio were added to the cells (Figure 3b). Again,
the most significant change observed was the enhance-
ment of the levels of gene expression observed when
transfection was mediated by 2/1 GALA-associated com-
plexes upon the pre-incubation of the cells with the 1/1
GALA complexes.

These results indicate that the different complexes,
independently of their composition and charge, do not
interfere with each other in any specific process of intern-
alization or in their ability to mediate gene transfer. How-
ever, when GALA-associated ‘blocking’ complexes were
pre-incubated with the cells, an enhancement of transfec-
tion was observed, independently of the composition and
to some extent, of the overall charge of the ‘active’ com-
plexes. In agreement with the data presented above, it
appears that entry of such complexes into the cytoplasm
is mediated by a process independent of specific
receptors.

Effects of inhibitors of the endocytotic pathway
To define the mechanisms involved in the internalization
and intracellular fate of the various lipoplexes further,
HeLa cells were pre-treated before transfection with
chemical agents that interfere with various aspects of the
endocytotic pathway: (1) A mixture of antimycin A, NaF
and NaN3, which, by restricting metabolic activity of the
cell, results in a strong inhibition of both receptor- and
non-receptor-mediated endocytosis;28–29 (2) cytochalasin
B, a drug that is known to disrupt the microfilament net-
work by inhibiting actin polymerization, thereby block-
ing phagocytosis and pinocytosis, but not receptor-
mediated endocytosis;30–33 (3) bafilomycin A1, a specific
inhibitor of the vacuolar ATPase proton pump present in
the intracellular membrane compartments, thus pre-
venting the acidification of the endocytotic pathway.34–36

Results presented in Figure 4a–c illustrate the effect of
such drugs on the transfection activity of HeLa cells
mediated by plain lipoplexes, and by ternary complexes
containing either Tf or GALA. For all the cases, 1/1 and
2/1 (+/−) lipid/DNA charge ratios were used. Although
varying with the type of drugs used and the composition
and charge of the complexes tested, an inhibitory effect
on transfection was evident for essentially all the con-
ditions. In order to clarify this effect better and to facili-
tate the interpretation of the data, taking into account the
physico-chemical features of the complexes, the percent-
age of inhibition of transfection activity was calculated as

Figure 4 Effect of different drugs on transfection. HeLa cells were incu-
bated for 30 min at 37°C, in the absence of serum, with either a mixture
of antimycin A (1 µg/ml), NaF (10 mm) and NaN3 (0.1%), or with cyto-
chalasin B (25 µg/ml) or even with bafilomycin A1 (125 nm). Cells were
further incubated for 1 h at 37°C with (a) plain lipoplexes, (b) trasferrin-
associated complexes and (c) GALA-associated complexes in the presence
of the various drugs and then washed once with serum-free medium.
Medium was then replaced with DME-HG containing 10% FBS, and the
cells were further incubated for 48 h before evaluation of transfection.The
data, expressed as nanograms of luciferase per milligram of total cell pro-
tein, indicate the mean ± standard deviation obtained from triplicate wells,
and are representative of two independent experiments.

compared with that obtained with cells transfected in the
absence of the drugs (Table 1). The following obser-
vations can be made from the data: (1) Transfection
mediated by plain lipoplexes at a 1/1 (+/−) lipid/DNA
charge ratio was strongly inhibited by the inhibitors of
endocytosis (98% inhibition), this effect being less pro-
nounced (62% inhibition) for the same type of complexes
prepared at a 2/1 charge ratio. Moreover, inhibition of
non-coated pit-mediated endocytosis by cytochalasin B
did not lead to any noticeable effect on transfection
activity of HeLa cells mediated by both of these com-
plexes. On the other hand, the increase of endosomal pH
due to the presence of bafilomycin A1 resulted in a sig-
nificant inhibition of transfection when neutral
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Table 1 Inhibitory effect of different drugs (% of inhibition compared with controls) on transfection activity of Hela cells mediated by
DOTAP/DOPE/DNA derived complexes

Drugs Lipid/DNA Overall Size of the Antimycin A Cytochalasin Bafilomycin
Formulation charge ratio charge of the complexes NaF NaN3 B A1

complexes (nm)

Plain lipoplexes (1/1) neutral 900 98 no effect 58
(2/1) + 400 62 no effect no effect

Transferrin-associated complexes (1/1) − 600 92 48 51
(2/1) + 600 92 67 78

GALA-associated complexes (1/1) − − 79 66 48
(2/1) − 550 78 49 41

HeLa cells were pre-treated with chemical agents interfering with the endocytosis process before starting transfection, as described in
detail in Materials and methods. Percentage of inhibition of transfection activity was estimated considering the mean values of luciferase
expression observed for the different lipoplexes in the presence of the drugs, compared with mean values achieved with untreated
cells. The overall charge and the size measurements of the complexes were evaluated by a Coulter DELSA 440 instrument.

complexes were used (about 60%) while no effect was
observed for the 2/1 complexes. (2) The inhibitors
strongly inhibited transfection by the transferrin-lipo-
plexes at both charge ratios. Cytochalasin B exhibited a
clear inhibitory effect on transfection mediated by these
complexes, the extent of inhibition being higher than 50%
for the 2/1 (+/−) lipid/DNA complexes. Very similar
effects to those described for cytochalasin B were also
observed when bafilomycin A1 was used. (3) As expected,
luciferase gene transfer mediated by ternary complexes
composed of DOTAP:DOPE liposomes, DNA and the
fusigenic peptide GALA was also seriously reduced by
the drug mixture composed of antimycin A, NaF and
NaN3 independently of the charge ratio of the complexes.
Nevertheless, this effect was slightly less pronounced
(about 80% inhibition) than that observed for the other
types of complexes tested. Inhibition of phagocytosis and
pinocytosis by cytochalasin B also resulted in a significant
decrease in the levels of transfection. The extent of
inhibition was similar for both charge ratios tested and
comparable to that observed with transferrin-lipoplexes.
Pretreatment of the cells with bafilomycin A1 reduced the
levels of transfection mediated by the GALA-lipoplexes.
Nevertheless, the level of inhibition observed was below
our expectations, especially considering the pH-
sensitivity attributed to the GALA peptide.

Cell viability
As can be observed in Figure 5, the viability of HeLa cells
was not affected upon transfection in the presence of the
different drugs. Therefore, the inhibitory effects on the
levels of gene expression observed under those con-
ditions cannot be attributed to any cytotoxic effect of
the drugs.

Discussion
In previous studies we have explored two different
approaches to enhance gene delivery mediated by lipo-
plexes in an attempt to circumvent the limitations asso-
ciated with the low levels of transfection usually achi-
eved by these systems compared with viral vectors: (1)
association of a targeting ligand (transferrin) to the com-
plexes to promote their internalization, presumably by
receptor-mediated endocytosis; and (2) association of a

Figure 5 Effect of the inhibitors of the endocytotic pathway on the
viability of HeLa cells. Cells in 48-well plates were exposed to either plain
(1/1) (+/−) lipoplexes or with lipoplexes associated with the GALA peptide
or transferrin under the experimental conditions described in the legend
to Figure 4. Cell viability was measured by the Alamar Blue assay follow-
ing 48 h of incubation and was expressed as the percentage of the
untreated control cells. Data represent the mean ± standard deviation
obtained from duplicate wells.

synthetic fusigenic peptide (GALA) to the complexes to
promote endosomal destabilization and release of the
genetic material into the cytoplasm. Nevertheless, the
actual mechanisms by which the resulting complexes
promoted gene transfer and enhance transfection were
not studied.

Our results raise serious doubts as to whether the Tf-
lipoplexes are internalized by specific receptor-mediated
endocytosis. The striking similarity between the levels of
enhancement obtained by complexation of apo-Tf (a
protein that does not have any affinity for the TfR at
physological pH) and Tf (Figure 1a and b) suggests that
internalization of these ternary complexes is being
mediated by a non-specific process.

This lack of specificity was confirmed by some of the
results obtained with competitive inhibition studies. The
absence of any inhibition of transfection mediated by Tf-
lipoplexes when TfRs were pre-saturated with an excess
of free Tf (Figure 2), supports the hypothesis that these
ternary complexes enter cells using a pathway that is
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results of other authors show some controversy. Gene
delivery mediated by Tf-coupled polyethyleneimine was
shown to be specific for TfR, utilizing competitive
inhibition experiments with free Tf.37 On the other hand,
the ability of Tf to potentiate transfection can be totally
abolished by the use of certain cationic liposomes.22

According to our results, it appears that the association of
Tf with cationic liposomes and DNA due to electrostatic
interactions, results in a loss of its targeting specificity,
although it mediates a highly significant enhancement of
transfection over plain lipoplexes. On the other hand, our
results also indicate that an excess of positive charge on
the ternary complexes results in a decrease of transfection
activity.15 It seems, therefore, that in a system composed
of cationic liposomes, ligand and DNA, the observed
effects can range from a lack of specificity to the total
absence of enhancement of transfection, depending on
the nature of the components and on the cationic
lipid/DNA (+/−) charge ratio.

These observations led us to investigate whether the
composition and the overall charge of the ternary com-
plexes would have any effect on their pathway of intern-
alization. Competitive inhibition studies showed that
internalization of the various ternary complexes is not
affected by the pre-addition of ‘blocking’ complexes,
independently of their composition and charge (Figure
3a and b). This observation reinforces the possibility that
the ternary complexes are internalized primarily by a
receptor-independent pathway.

Inhibition of endocytosis in HeLa cells essentially
abolished transfection activity by Tf-lipoplexes
(independently of their overall charge), as well as the
neutral plain lipolexes. Transfection by GALA-lipoplexes
was also inhibited by about 80%. These results indicate
that lipoplexes are internalized primarily via the endocy-
totic pathway, which is in agreement with observations
reported by other authors.9,10,31,38

Pre-treatment of cells with cytochalasin B has been
shown to result in inhibition of pinocytosis and phago-
cytosis but not of receptor-mediated endocytosis via
clathrin-coated pits.30,33 Since it is well known that intern-
alization of Tf receptors occurs through a clathrin-coated
process18,39 it was surprising to observe the significant
inhibitory effect of cytochalasin B on the levels of trans-
fection mediated by Tf-associated lipoplexes. According
to our data about 50% of the internalization for the ter-
nary complexes at the optimal charge ratio (1/1
lipid/DNA) was not mediated by the normal route of
endocytosis of transferrin. A possible explanation for
these unexpected results may be the large size and het-
erogeneity of the complexes. The relatively large size of
the ternary complexes (more than 500 nm) would hamper
endocytosis through coated vesicles, but the presence of
Tf could trigger their phagocytosis. In contrast, the
smaller complexes within the heterogeneous mixture
(,200 nm) would follow the usual route of internaliz-
ation of Tf through binding to its receptors on the cell
surface. The effect of cytochalasin B was even more
pronounced with the net positively charged 2/1 (+/−)
ternary complexes, most likely due to a decrease in the
targeting ligand specificity caused by the strong and
dominant electrostatic interactions between this type of
complex and the cell membrane.

This non-receptor-mediated internalization also seems

to play an important role in the case of GALA-lipoplexes,
since the inhibition of non-clathrin coated endocytosis
resulted in a substantial decrease in the levels of transfec-
tion. Since these complexes also exhibit a large size, it is
likely that the GALA peptide has the ability to trigger
phagocytosis, although to a lesser extent than transferrin.

Surprisingly, the inhibition of phagocytosis did not
affect transfection mediated by plain lipoplexes, indepen-
dently of their charge. Although these complexes are not
expected to bind to the cell surface via specific receptors,
it is possible that they enter the cells through a non-spe-
cific clathrin-mediated process, especially those with a
smaller size. Anionic liposomes are known to enter cells
via coated pits.40

As demonstrated by Zabner et al,9 escape of DNA from
endosomes and its dissociation from the complexes are
also crucial steps in the process of intracellular gene
delivery, besides the entry of the lipoplexes into cells. In
this context, the results obtained when cells were pre-
treated with bafilomycin A1 are of particular interest. The
significant inhibition of transfection observed when
GALA-lipoplexes were added to the cells in the presence
of this drug, is consistent with the low pH-dependent
membrane disruption activity of this peptide, presum-
ably by inducing pore formation.41–43

It should be noted that the size of the pores (5 to 10 Å)
caused by this peptide is too small to allow the escape
of DNA from endosomes. It appears therefore that the
enhancement of transfection promoted by GALA would
result from a combination of other mechanisms. We can
speculate that the structural changes of the peptide that
occur at low pH would promote the deaggregation of the
complexes. This would not only facilitate the dissociation
of DNA from the complexes but also result in a larger
exposure of the cationic lipids. This, in turn, together
with the pore opening promoted by the peptide, may
induce the flip-flop of the anionic lipids from the cyto-
plasmic leaflet of the endosomal membrane,10 thus lead-
ing to an extensive membrane destabilization. Moreover,
the fusigenic properties of the helper lipid under acidic
conditions and consequently, its contribution to the
escape of DNA from the endosomes should also be
considered.31,44–47

The significant inhibition by bafilomycin A1 of gene
expression by Tf-lipoplexes suggests that the acidification
of the endosome also plays an important role in intra-
cellular gene transfer mediated by these complexes. Simi-
lar to what was proposed for the role of GALA, it is poss-
ible that structural changes induced by protonation of
apo-Tf48,49 would also result in deaggregation of the lipo-
plexes, thus triggering the cascade of events described
above involving the cationic and helper lipids. In
addition, we can speculate that upon acidification, Tf
would acquire fusigenic properties that could also con-
tribute to the destabilization of the endosome, analogous
to membrane destabilization and fusion induced at low
pH by insulin, clathrin or various colicins.50–52 Thus,
besides its major role in triggering both receptor- and
non-receptor-mediated endocytosis, Tf may also be
involved in overcoming the endosomal membrane bar-
rier to gene transfer. This suggestion is in agreement with
the observation that the association of Tf with lipofectin
increased DNA entry by only two-fold, while transfection
activity was enhanced by a much larger factor.22

Figure 6 illustrates a model describing the main steps
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Figure 6 Schematic model describing the main steps involved in the intracellular uptake and delivery of DNA mediated by transferrin (Tf)-lipoplexes.
Due to electrostatic interactions, transferrin and DNA associate with cationic liposomes (DOTAP:DOPE) leading to the formation of negatively charged
ternary complexes (considering a 1/1 lipid/DNA (+/−) charge ratio) by a still unknown mechanism. Presumably complexes are internalized either by
receptor-mediated endocytosis via clathrin-coated pits or by phagocytosis via uncoated pits, depending on their size. Both of these endocytotic pathways
can be inhibited by pre-treatment of the cells with inhibitors of endocytosis (mixture of antimycin A, NaF, NaN3), whereas phagocytosis can be selectively
inhibited by cytochalasin B. Efficient delivery of DNA into the cytoplasm (from where it can reach the nucleus) seems to be dependent on the acidification
of the endosomal lumen, which can be partially inhibited by bafilomycin A1. We speculate that this acidification process triggers a cascade of synergistic
effects that would lead to dissociation of DNA from the ternary complexes and to destabilization of the endosomal membrane. Structural changes induced
by protonation of apotransferrin would promote deaggregation of the complex. It is also possible that, under these conditions, apotransferrin becomes
fusigenic, promoting destabilization of the endosomal membrane, therefore creating favorable conditions for flip-flop of anionic lipids from the cytoplasmic
leaflet of the endosomal membrane. Electrostatic interactions between the anionic lipids present in the inner leaflet of the endosomal membrane and
cationic lipids would not only promote deaggregation of the complexes but also facilitate DOPE to undergo a transition from a bilayer to an inverted
hexagonal phase, thus acquiring fusigenic properties. All these events would lead to dissociation of DNA from the complexes and to its escape into
the cytoplasm.

involved in the intracellular uptake and delivery of DNA
mediated by Tf-lipoplexes, as well as the effect of the dif-
ferent drugs on the endocytotic pathway followed by the
complexes. This hypothetical model was constructed tak-
ing into account the above described observations, the
recent findings in this field as well as other proposed
mechanistic models related to lipoplex–cell interac-
tions.9,10,20,31,32,45,47 According to this model, the presence
of Tf in the complexes promotes an enhancement of
transfection by two different mechanisms: (1) by trig-

gering internalization of the complexes through both
non-coated pit (presumably phagocytosis) and coated pit-
mediated endocytosis (after binding of the complexes to
non-specific receptors); and (2) by promoting intracyto-
plasmic gene delivery in a pH-dependent manner. Simi-
lar mechanisms can also be proposed for the role of the
GALA peptide in enhancing transfection mediated by
lipoplexes.

Elucidation of the exact mechanism and relative contri-
bution of endocytosis and fusion to transfection may aid
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delivery by cationic liposomes, especially for in vivo
applications where transfection efficiency is of para-
mount importance.

Materials and methods

Materials
The cationic lipid 1,2-dioleoyl-3-(trimethylammonium)
propane (DOTAP), and dioleoylphosphatidylethanolam-
ine (DOPE), were purchased from Avanti Polar Lipids
(Alabaster, AL, USA). Iron-saturated, heat-inactivated
human transferrin was obtained from Collaborative
Biomedical Products (via Becton Dickinson, Bedford,
MA, USA). The GALA peptide23,24 and the peptide
named HA-2, derived from the N-terminal sequence of
the influenza virus hemagglutinin subunit HA225 were
synthesized and purified by the UCSF Biomolecular
Resource Center. GALA is a 30 amino acid, pH-sensitive,
amphipathic peptide with the sequence WEAALAEA-
LAEALAEHLAEALAEALEALAA. The pCMVluc plas-
mid (VR-1216) was kindly provided by Dr P Felgner
(Vical, San Diego, CA, USA). The plasmid pCMV.SPORT-
β-gal was obtained from Gibco BRL Life Technologies
(Gaithersburg, MD, USA). Alamar Blue dye was pur-
chased from AccuMed (Westlake, OH, USA). Apo-
transferrin, bafilomycin A1, cytochalasin B, NaN3, NaF,
NaCl, 2-[N-morpholino] ethanesulfonic acid (MES) and
N-[2-hydroxyethyl] piperazine-N9-[2-ethanesulfonic acid]
(HEPES) were obtained from Sigma (St Louis, MO, USA).
Antimycin A was obtained from Calbiochem (La Jolla,
CA, USA).

Liposome preparation
Cationic liposomes composed of DOTAP:DOPE (1:1
weight ratio) were prepared by first drying a film of lipid
under argon and then in a vacuum oven at room tem-
perature, and hydrating the lipid film with 1 ml deion-
ized water at a final concentration of 5 mg/ml. The multi-
lamellar vesicles obtained were then sonicated briefly
under argon, extruded 21 times through polycarbonate
filters of 50 nm pore diameter using a Liposofast device
(Avestin, Toronto, Canada), diluted five times with
deionized water and filter-sterilized utilizing Millex 0.22
µm pore-diameter filters (Millipore, Keene, NH, USA).

Cells
HeLa cells (American Type Culture Collection, Rockville,
MD, USA) were maintained at 37°C, under 5% CO2, in
Dulbecco’s modified Eagles’s medium high glucose
(DME-HG) (Irvine Scientific, Santa Ana, CA, USA) sup-
plemented with 10% (v/v) heat-inactivated fetal bovine
serum (FBS) (Sigma, St Louis, MO, USA), penicillin (100
units/ml), streptomycin (100 µg/ml) and l-glutamine (4
mm). For transfection, 0.2 × 106 HeLa cells were seeded
in 1 ml of medium in 48-well culture plates and used at
80–90% confluence. COS-7 cells (UCSF Cell Culture
Facility, San Francisco, CA, USA) were maintained under
the same conditions described for HeLa cells. For trans-
fection 0.3 × 105 cells were seeded in 1 ml of medium in
48-well culture plates and used at 40–60% confluence.

Preparation of the ternary complexes
Complexes were prepared by sequentially mixing 100 µl
of a solution of 100 mm NaCl, 20 mm Hepes, pH 7.4, with

or without 32 µg iron-saturated human transferrin20 with
2.5, 5, 10 or 20 µl liposomes and incubated at room tem-
perature for 15 min. One hundred microliters of buffer
containing 1 µg of pCMVluc plasmid was then added
and gently mixed, and the mixture was further incubated
for 15 min at room temperature. Peptide complexes were
prepared in a similar manner except that 0.6 µg of GALA
was used.15

Transfection activity
Cells were rinsed twice with serum-free medium and
then covered with 0.3 ml of DME-HG before lipid/DNA
complexes were added. Lipid/DNA complexes were
added gently to cells in a volume of 0.2 ml per well. After
an incubation for 4 h (in 5% CO2 at 37°C) the medium
was replaced with DME-HG containing 10% FBS, and the
cells were further incubated for 48 h. The cells were then
washed twice with phosphate-buffered saline (PBS), and
100 µl of lysis buffer (Promega, Madison, WI, USA) were
added to each well. The level of gene expression in the
lysates was evaluated by measuring light production by
luciferase using a scintillation counter protocol
(Promega). The protein content of the lysates was meas-
ured by the Dc Protein Assay reagent (Bio-Rad, Hercules,
CA, USA) using bovine serum albumin as the standard.
The data were expressed as nanograms of luciferase
(based on a standard curve for luciferase activity), per
milligram of total cell protein.

Zeta potential and hydrodynamic size measurements
Zeta potential measurements of the different lipid/DNA
complexes, and ternary complexes with transferrin or
peptides, were performed using a Coulter DELSA 440
instrument (Coulter Electronics, Miami, FL, USA). The
DELSA 440 is a laser-based multiple angle particle
electrophoresis analyzer that measures the electrophor-
etic mobility and zeta potential distribution simul-
taneously with the hydrodynamic size of particles in sus-
pension. Samples of the prepared complexes were placed
in the measuring cell, whose position was adjusted to
cover a previously determined stationary layer, and an
electric current of 3.0 mA was applied. Measurements
were recorded and the zeta potential (ζ) was calculated
for each scattering angle (8.6°, 17.1°, 25.6° and 34.2°). Data
represent the mean ± standard deviation obtained for the
different angles of two measurements. The hydrodyn-
amic size of the complexes was evaluated in the absence
of any electric field.53–55

Targeting specificity studies
Parallel transfection experiments were performed using
a protein as similar as possible to transferrin but to which
the cell surface receptors for transferrin do not exhibit
affinity. For that purpose, ternary complexes were pre-
pared by associating 32 µg of apotransferrin (iron-
depleted transferrin) with the lipid–DNA complexes
at different lipid/DNA (+/−) charge ratios. Complexes
were added to COS-7 cells and transfection activity was
evaluated as described above.

Competitive inhibition studies
To elucidate the cellular mechanisms of gene delivery by
different lipoplexes, the following experiments were
designed: (1) An excess of free transferrin (8 mg/0.3 ml
of DME-HG medium) was added to COS-7 cells and
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nary complexes (cationic liposomes, pCMVluc plasmid,
transferrin) which were incubated with the cells for 1 h
always in the presence of an excess of transferrin. The
medium was then replaced with DME-HG containing
10% FBS, and the cells were further incubated for 48 h
before being harvested for luciferase activity measure-
ments. (2) Lipoplexes with or without transferrin or the
GALA peptide, and containing the plasmid
pCMV.SPORT.β-gal at different lipid/DNA charge ratios
were incubated with HeLa cells in serum-free medium
for 1 h at 37°C under the conditions described above. The
medium was then replaced before the addition of similar
complexes containing the luciferase plasmid (pCMVluc)
which were incubated with the cells for another hour.
Afterwards, the medium was replaced with DME-HG
containing 10% FBS, and the cells were further incubated
for 48 h before evaluation of transfection activity.

Effect of different drugs on transfection
Before the addition of lipoplexes, HeLa cells were incu-
bated for 30 min at 37°C, in the absence of serum, with
either (1) a mixture of antimycin A (1 µg/ml), NaF (10
mm) and NaN3 (0.1%) to inhibit endocytosis;28,29 (2) cyto-
chalasin B (25 µg/ml) to inhibit pinocytosis and phago-
cytosis;30–33 or (3) bafilomycin A1 (125 nm) to prevent
acidification of the endosomes.34–36 Cells were further
incubated for 1 h at 37°C with the different lipoplexes in
the presence of the various drugs and then washed once
with serum-free medium. The medium was then replaced
with DME-HG containing 10% FBS, and the cells were
further incubated for 48 h before evaluation of transfec-
tion. The viability of the cells transfected in the presence
of these agents was evaluated and compared to that of
untreated control cells.

Cell viability assay
Following transfection under the different experimental
conditions, cell viability was quantified by a modified
Alamar Blue assay.11 The assay measures the redox
capacity of cells due to the production of metabolites as a
result of cell growth and allows determination of viability
over the culture period without the detachment of adher-
ent cells. Briefly, 1 ml of 10% (v/v) Alamar Blue dye in
complete DME medium was added to each well 45 h fol-
lowing the initial transfection period (4 h). After 2.5–4 h
of incubation at 37°C, 200 µl of the supernatant were col-
lected from each well and transferred to 96-well plates.
The absorbance at 570 nm and 600 nm was measured
with a microplate reader (Molecular Devices, Menlo Park,
CA, USA). Cell viability (as a percentage of control cells)
was calculated according to the formula (A570− A600) of
treated cells × 100/(A570 − A600) of control cells.
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