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ABSTRACT 

Farmers are looking for appropriate tools and methods for assessing and interpreting the health 

status of their soils; however, for Saskatchewan there is no standardized and prairie-based soil 

health test available. As such, I focused on developing a soil health testing protocol for arable 

cropping systems in Saskatchewan by building off of the Comprehensive Assessment of Soil 

Health (CASH) framework developed in the USA. In Sept and Oct 2018, soil samples (0-15, 15-

30, and 30-60 cm depths) were collected from 55 arable fields across Saskatchewan—along with 

a couple native prairie samples. Various soil chemical, physical, and biological attributes were 

measured (23 attributes in total). Based on the data distribution for each attribute, I developed 

scoring functions. The results from multivariate analyses were used to determine the weighting 

factors needed to integrate the individual scores from each soil attribute into a single Saskatchewan 

Soil Health Score (SSHS). Soil C and N indices (soil organic C, active C, total N, and soil protein) 

and total P produced the highest weighting factors. I also tested if there were linkages between the 

soil health scores and crop productivity by assessing the cereal yield trends for the past 10 yrs from 

the same rural municipalities where the soil samples were collected. A positive relationship 

between soil health and yields was most apparent during dry years; thus, I recommend further 

research to explore this linkage at a finer scale. Overall, this research forms the foundation of a 

promising tool for Saskatchewan producers who are interested in tracking soil health and using the 

results to inform management practices. 
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1 INTRODUCTION 

Soil degradation limits agricultural productivity, resulting in economic losses and contributing to 

food insecurity. On the Canadian Prairies, one of the historic drivers of soil degradation was wind 

erosion, exacerbated by periods of drought and frequent tillage operations which exposed the soil 

to loss and resulted in the Dust Bowl of the 1930s. Since then, soil conservation practices have 

been adopted in this region to protect the soil and increase agricultural productivity—with (70%) 

of the cultivated Canadian prairies under no-till management (Clearwater et al. 2016), and only 

5% summer-fallowed (Clearwater et al. 2016). In Saskatchewan, the risk of soil erosion is now 

considered very low (Clearwater et al. 2016). This history clearly demonstrates how improved soil 

management can minimize the risk of soil degradation. However, there are new concerns on the 

horizon which are largely brought about by climate change and the intensification of agricultural 

production. Moving forward, we must continue to identify the soil constraints and work towards 

supporting the continued functioning of agroecosystems.   

 

Soil health is defined as “the capacity of soil to function as a vital living system, within the 

ecosystem and land-use boundaries, to sustain plant and animal productivity, maintain or enhance 

water and air quality, and promote plant and animal health” (Doran and Zeiss, 2000). This 

description considers soil as an ecosystem. By fulfilling complex functions, soil contributes to 

ecosystem services and highlights the linkages between soil health and human health. As such, 

monitoring and tracking the soil health status over time will aid in identifying soil constraints, and 

in adapting management practices for sustained soil functioning. To do this, however, robust soil 

health testes are needed in the toolbox.  

 

Farmers and scientists are looking for an appropriate tool to interpret their soil's health status, so 

the assessment must be comprehensive. No single measurement can quantify soil health, but 

holistic measures of soil health are challenging because one must integrate biological, chemical, 

and physical properties, processes and interactions (Karlen et al., 1997). Ideally, a set of 

comprehensive soil indicators should also be conceptually related to soil function and ecosystem 

processes, practical to sample and measure, responsive to changes in management, and comparable 

to a baseline for a meaningful interpretation (Bunemann et al., 2018).  
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Currently, various soil health tests are in widespread use in many countries, including the USA 

(Andrews et al., 2002), China (Li et al., 2013; Chen et al., 2013, Zhou et al., 2020, Bi et al., 2013), 

Turkey (Karaca et al., 2021), UK (Cooper et al., 2020), India (Purakayastha et al., 2018) etc. One 

on the most comprehensive soil health tests was developed in the USA at Cornell University. Their 

Comprehensive Assessment of Soil Health (CASH) provides standardized information about the 

soil's physical and biological constraints, covering approximately 20 soil attributes that include the 

biological, physical, and chemical properties (Moebius-Clune et al., 2016). Each attribute is 

scored, and the overall score reflects the ‘soil health status’ as an unweighted average of all 

individual indicator’s scores. Farmers and researchers are using CASH to estimate their soil health 

status and improve the management decision. Research showed that CASH was sensitive to 

various management practices in New York State (Idowu et al., 2009). The CASH provides a 

useful framework for integrating all the soil attribute into a visualized soil health score. However, 

the CASH is not always suitable for regions where the soil is different from those used to develop 

the scoring system used by CASH (i.e., soils outside the northeast region of the USA). For 

example, when used in locations outside the region of development, the CASH lacked consistent 

responses across the southeast region of the USA (Roper et al. 2017). Climate and parent material 

are the major factors that affect the soil formation and using the soil test developed from other 

regions may lose its meaning when applied to other regions. Numerous researchers recommend 

developing and using a regionally adapted soil health test to gain the most meaningful 

interpretation of soil health and functioning (Congreves et al. 2015; Roper et al. 2017; Forst et al. 

2019; Chu et al. 2019). Since soil is a living ecosystem with its characteristics, a fixed measuring 

system may not be useful everywhere; rather, a regional soil health test may be most meaningful 

to farmers.  

 

On the Canadian prairies—an agriculturally important region of Canada—there is no standardized 

prairie-based soil health test available. Our objective is to develop a soil health testing protocol, 

tailored to Saskatchewan soils—one that integrates biological, physical, and chemical indicators; 

transforms soil attribute values into meaningful scores, and uses a relevant weighting system to 

calculate the overall soil health score. 
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2 OBJECTIVES AND HYPOTHESES  

 

The objective of this project is to identify the soil properties that best characterize soil health in 

the semi-arid prairie, explore the inter-link between attributes, and develop Saskatchewan Soil 

Health Test tailored to Saskatchewan’s semi-arid climate and major soil zones. I hypothesized that 

the carbon and nitrogen indices are the most important components in determining soil health 

status. 
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3 LITERATURE REVIEW 

 

Maintaining and building soil health is an essential component of long-term sustainable 

agriculture. Soil health can be defined as the capacity of a soil to function, which reflects sustained 

biological productivity, environmental quality, and plant health (Karlen et al., 1997; Doran and 

Zeiss, 2000). Important indicators of soil health often reflecting changes to soil structure, 

infiltration, plant available water, soil acidity, salinity, plant nutrients, organic matter, microbial 

biomass, and microbial diversity (Allen et al., 2011). A healthy soil will produce high crop yields 

under favorable weather conditions, and also have a strong capacity to withstand extreme weather 

events and reduce nutrient loss. Therefore, soil health is crucial for increasing the adaptability and 

resiliency of agroecosystems to climate change. Research must focus on methods of 

maintaining/improving soil health and provide appropriate protocols for interpreting soil health 

status.  

 

No single measurement can quantify soil health; rather it must be inferred by using a framework 

for integrating many soil attributes (Carter et al., 1997). Holistic measurements of soil health are 

complex because one must integrate biological, chemical, and physical properties, processes and 

interactions (Karlen et al., 1997). Cornell University developed their Comprehensive Assessment 

Soil Health (CASH) in New York, USA to provide farmers with a tool to assess their soil health 

status. It integrates measurements of numerous soil attributes (approximately 20), including 

aggregate stability, organic matter, active C, nutrient levels, texture, etc. (Gugino et al., 2009; 

Moebius-Clune et al., 2016). Using CASH, individual soil attributes are scored (0–100%), the 

higher the better, providing an easily interpretable metric for characterizing overall soil health. 

 

However, the simple un-weighted average approach of CASH can result in a biased soil health 

score due to extreme values from individual soil attributes. Consequently, improvements to the 

way in which the overall soil health score is calculated are required for a more meaningful 

representation of overall soil health (Van Eerd et al., 2014; Congreves et al., 2015). Furthermore, 

CASH was developed from soils in northeastern USA which are typically not as rich and fertile as 

the Chernozemic soils that we have in Saskatchewan. Consequently, Saskatchewan farmers who 

use the CASH test get exaggerated CASH scores that are not meaningful when deciding on 
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management practices. The Soil Health Institute recommends that different regions develop their 

own scoring functions based on local soils, for a regionally representative soil health score. This 

is because, to be useful, soil health indicators must be clearly interpreted and ideally expressed 

relative to reference values. Reference values for soil attributes could be derived from an 

undisturbed soil or a soil with superior primary productivity and environmental performance. As 

a framework for soil health scoring, soil health indicators at any given site can be compared to 

either a reference soil (i.e., native prairie), or to the statistical distribution frequency of the given 

indicator.  

3.1 Agriculture challenges  

Achieving global food security is one of the most significant challenges in the 21st century. The 

challenge directly puts pressure on agriculture and the environment, necessitating the production 

of more food from the land available and leading to agricultural intensification. About 95% of 

food—directly and indirectly—comes from soil (Bot and Benites, 2018), and the impact of 

agricultural intensification on soil will, in turn, impact food production. Although agricultural 

intensification necessary, the productivity of soil is limited. Soil disturbance by tillage operations 

and traffic, and the application of fertilizers and herbicides will influence soil organic matter 

dynamics and potentially lead to soil degradation (Acosta-Martínez et al., 2010; Massah and 

Azadegan, 2016). Once degraded, soil can take decades to recover (Kim et al., 2018; Gao et al., 

2019); soil health must be maintained or improved to sustain food production over the long term, 

and is considered a top priority for the future of agriculture.  

 

Besides the pressure of food production, climate change also brings challenges to agriculture and 

soil. Climate change is expected to bring periods of drought and floods, warming, and more 

extreme weather events, which will affect plant growth and nutrient cycling. Increasing 

temperatures may either increase or decrease crop yield, depending on the crop type and region.  

Modelling research in Canada suggested that a warmer climate will increase the crop yield of 

spring wheat, winter wheat, and corn but increase soil N2O emissions when the potential extreme 

event was not accounted in the model analysis (Smith et al., 2013). In contrast, American research 

found warming scenarios predict to cause crop yield declines for soybean, corn, and cotton 

(Schlenker and Roberts, 2009). Higher atmospheric CO2 concentrations may increase crop yields 
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by a greater water use efficiency through increasing photosynthetic rate as well as decreasing 

stomatal conductance (Parvin et al., 2019). Climate change is expected to not only change crop 

yields but also alter soil nutrient cycling. For example, the capacity for nitrogen fixation during 

later growth stages is expected to decline due to the combined effect of CO2 and drought (Parvin 

et al. 2019) which will impact soil nutrient availability. Also, atmospheric CO2 levels are known 

to impact the stoichiometry of C3 plants, thereby influencing the quality of residues that are 

returned to the soil, for example, research showed that artificial CO2 enrichment increased C3 

plants foliar C:N and C:P ratios by 22% and 38%, respectively (Sardans et al., 2012). Increased 

temperatures can influence the quality and chemical composition of plant tissues, i.e., when grown 

at a higher temperature spring barley had increased levels of some amino acids, but reduced levels 

of total non-structural carbohydrates, starch, fructose and aluminum (Högy et al., 2013). Further, 

the quality and nutrient composition of grain is affected by warmer temperatures and altered 

precipitation patterns. Although the overall effect of climate change on crop production is 

uncertain and hard to predict (creating difficulty in management planning), it is clear that climate 

change affects the primary productivity and internal nutrient composition of plants in by various 

mechanisms (temperature, CO2, soil nutrient cycling, etc.).  

 

Saskatchewan cropping systems are predominantly rainfed (rather than irrigated) relying on 

sufficient precipitation for crop production, so soil water storage and supply is a critical component 

of crop production. Scientists project climate change will lead to periods of drought or intensive 

rainfall for many regions (Jentsch et al., 2007). With rising temperature and higher evaporation 

rates, the risk of water deficiency increases. Based on current models and patterns, Canadian 

climate is projected to become warmer and warmer and increase the severity of extreme weathers 

such as drought and wildfire risk, and Saskatchewan expected to have less precipitation in winter 

(Bush and Lemmen, 2019). Drought is one of the major constraints for agriculture. The shortage 

of soil moisture will seriously restrict plant growth and crop yield. To adapt to increased 

temperature and drought, plants often accelerate growth to reach reproduction, as was observed 

for wheat and the shortened period of grain filling and seed reproduction (Altenbach, 2012). As 

such, the risk of yield loss is expected to increase in the future. For the world’s four major crops, 

is it highly probable that exceptional drought will reduce yields: by over 70% for soybean and 

maize, by 68% for wheat, and by 64% for rice (Leng and Hall, 2019). Other researchers found that 



 

7 

drought conditions reduced wheat root biomass, shoot biomass, plant biomass and grain yield by 

4%, 20%, 11%, 28%, respectively; although root has plasticity to adapt the drought, not all root 

system response same since the plasticity of the root system is limited by genes (Ehdaie et al., 

2012). Besides, extreme weather, such as intensive rainfall, also negatively impacts crop 

production. The soil moisture not only directly affects plant growth during the growing season, it 

also influences the nutrient availability and soil microbial community composition during plant 

establishment and growth. Arbuscular-mycorrhiza symbiosis is one plant strategy to optimize 

nutrition and promote plant growth, but high soil moisture after intensive rainfall can profoundly 

influence the arbuscular-mycorrhizal colonization, and therefore influence the capacity for plant 

nutrient acquisition via mycorrhizal fungi (Cavagnaro, 2016). Overall, periods of decreased or 

increased soil water caused by climate change will dramatically affect crop growth.   

 

With the rapidly changing climate and the food demand, humans must develop sustainable 

agriculture practices that not only boost crop yield but that are also highly adaptable and resilient. 

Soil is the foundation of agriculture; thus, supporting the soil’s capacity to function is foundational 

to increasing agriculture's capacity and the functioning of ecosystem services. Healthy soil has 

numerous benefits, including regulating water infiltration and retention, supporting nutrient 

cycling, microorganism activity, biodiversity, and provisioning food. Maintaining or improving 

the capacity of soil to function goes hand-in-hand with supporting the capacity and resiliency of 

agriculture production. 

3.2 The importance of soil in agriculture and soil health 

Humans have a long history of growing crops and raising livestock, and these farming activities 

are inextricably linked to the soil. Soil is a unique layer of Earth's surface comprised of mineral, 

organic matter, microorganisms, liquid, and gases. It is a dynamic and diverse ecosystem that 

supports a wide range of flora and fauna across the Earth. The soil ecosystem provides food, fuel 

and fibre, clean air and water, shelter, habitat and more. This provisioning demonstrates the 

valuable and critical role that soil serves for all humans.   

 

Soil organic matter is an essential component of soil health as it supplies nutrients, energy and 

carbon (C). Soil contains about two-thirds of the total C in the terrestrial ecosystem, and the amount 
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of C in the soil exceeds the amount of C in plants and the atmosphere (Amundson, 2001; 

Scharlemann et al., 2014). Greenhouse gases (GHG) contribute to global warming, and agriculture 

accounts for 20% of global GHG emissions—one of the most significant contributors to global 

GHG emissions (Lokupitiya and Paustian, 2006). Carbon dioxide is naturally produced and 

emitted from soil and plants, during microbial and plant respiration, decomposition of organic 

matter, and acids' reaction with the carbonates. In turn, CO2 in the atmosphere is taken by plants 

through photosynthesis, and it is also absorbed by water. The C cycle has been influenced by 

urbanization and industrialization—anthropogenic activities such as fossil fuel combustion and 

land-use change. Agriculture soil could be a net sink or source for C, depending on the 

management practices and their relative effect on C input. Utilizing the capacity of soil to store C 

could be an efficient method to mitigate the greenhouse effect. No-till, organic amendments, 

conservation reserves, crop rotation, and improved fertilizer use are practices that tend to increase 

C storage in the soil (Liang et al., 2020; Nunes et al., 2020). Minasny et al. (2017) concluded that 

total national GHG emissions were reduced by 2% due to decreasing summer fallow and 

increasing the no-till acreage on the prairies in 2013. Having continuous living cover helps to sink 

atmospheric CO2 into the soil, increase the C sequestration, promote microbial activity through the 

active nutrient exchange, and prevent soil erosion or runoff caused by the extreme weather (Lal, 

2015). Thus, agriculture has potential to store atmospheric CO2 in the soil, via appropriate soil 

management.  

 

Soil degradation may limit agricultural productivity, resulting in economic losses. Historically, 

wind erosion and soil erosion were major threats to prairie farming due to improper management 

and intensive cropping. With the increasing awareness and adoption of soil conservation practices, 

the risk of soil erosion has significant decreased across the county since 1981, and the majority of 

Saskatchewan land is now in the very low-risk class (Clearwater et al., 2016). This improvement 

is predominantly due to the adoption of no-till practices and by reducing summer fallow. In 

Saskatchewan, the proportion of farmland under no-till was only 10% in 1991, but it has since 

expanded—reaching 70% in 2011 (Clearwater et al. 2016). Also as of 2011, only 5% of farmland 

is summer-fallowed (Clearwater et al. 2016). These changes demonstrate how improved soil 

management can minimize or even remove the risk of soil degradation. Moving forward, it is 
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crucial to identify other soil constraints and continue to apply practices that support the functioning 

of agroecosystems.   

 

The future of agriculture is intertwined with the future of soil resources. Soil is a complex 

ecosystem in which living microorganisms and plant roots combine with mineral particles and 

organic matter to form a dynamic structure regulating water, air, and nutrients. Fulfilling its 

ecosystem service and capacity is key to a successful agronomic practice, and future agriculture 

should place value in supporting soil health. Today, the terms "soil health" and "soil quality" are 

considered synonymous and can be used interchangeably. In 1987, the definition of soil quality 

provided by Soil Science Society of America was “Inherent attributes of soils that are inferred 

from soil characteristics or indirect observations” (Cited in Doran and Parkin, 1994). Although the 

definition of soil quality emphasised the inherent characteristics of soil, soil quality had started 

involved the biological properties in 1990s (Gregorich et al., 1994; Doran and Parkin, 1994). Soil 

quality was used to describe the inherent properties and agronomic usefulness of soil, but it is 

synonymous with soil health in agriculture perspective was used to emphasize the ecological 

system functioning, as well as the inherent soil properties (Magdoff, 2001). Today, both terms are 

used to describe the role of soil in supporting both agronomic and ecological functions. The most 

common definition of soil health is "the continued capacity of the soil to function as a vital living 

ecosystem that sustains plants, animals and humans" (Natural Resources Conservation Services).  

 

Sustainable soil management should consider economic, environmental, and social perspectives. 

Thus, maintaining soil health is beneficial to farmers and also the environment and wider 

population. In evaluating soil health through an ecological perspective, various ecological 

principles are considered when developing sustainable agricultural practices. Soil management 

strategies aligned with sustainable farming include maximizing biodiversity, minimizing 

disturbance, maximizing soil cover, and maximizing living root (Stewart et al., 2018). Individual 

soil health strategies have multiple effects on the agroecosystem. For example, the cover crop 

grown in the fall will keep the soil covered with living vegetation, help maintain the activity of 

microorganisms, aid in cycling nutrients, prevent the nitrate leaching into the deeper depth, and 

provide weed suppression in Fall and Early spring (Lawley et al., 2012; O’Reilly et al., 2012; 

Ruark et al., 2018). The senesced plant residue from cover crops provides an excellent surface 
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cover that protects the soil from erosion or runoff, helps with moisture infiltration. The residues 

will also decompose, supplying nutrients to the soil and further contributing to nutrient cycling 

(Jahanzad et al., 2016). Jahanzad et al. (2017) demonstrated radish residue with fast decomposing 

rate provided sufficient N for early planting potato and improved the tuber yield and N use 

efficiency in Massachusetts. However, some studies stated radish had no significant N contribution 

to subsequent crop yield (Ruark et al., 2018), and also concerned that the cover crop may lower 

the available soil water for the subsequent cash crop when comparing with the Fall fallow (Khan 

and McVay, 2019). Although the improvement of the cover crop on the subsequent crop’s yield 

still be controversial, the benefit of cover crop in Fall is effective and consistent. The successful 

cover crop application should account for the site characteristics, planting data, and the matching 

capacity of subsequent crop. Thus, a sustainable soil program should be designed and monitored 

to facilitate the functioning of ecosystem services (Smith et al., 2016). Healthy soil will 

maintain/increase crop yield sand quality by supporting plant growth, but also improve water and 

nutrient retention, reduce the potential of soil degradation such as erosion, compaction, and 

crusting. Moreover, soil as an ecosystem has the resilience to buffer the outside pressure. 

Increasing soil biodiversity will increase the stability of the ecosystem’s productivity (Isbell et al., 

2015). Keeping the soil healthy will sustain the multifunctionality of soil. 

3.3 Soil health assessment and research  

In the 1990s, Doran and Parkin (1994) introduced the notion of soil health, and Acton and 

Gregorich (1995) framed the role of soil health in supporting agriculture. Acton and Gregorich 

described soil health as "the soil's fitness to support crop growth without becoming degraded or 

otherwise harming the environment." Scientists have since tried to assess the quality and health of 

soil, and the effect of management practices on soil and environment. The connection between soil 

health, plant health, and human health was acknowledged by Doran and Zeiss (2000), as they 

defined soil health as “the capacity of soil to function as a vital living system, within the ecosystem 

and land-use boundaries, to sustain plant and animal productivity, maintain or enhance water and 

air quality, and promote plant and animal health”. This description considers soil as an ecosystem, 

and by fulfilling complex soil functions, it contributes to ecosystem services and highlights the 

linkage between soil health and human health. In the 2010s, with climate change awareness and 

increasingly extreme weather events that lead to soil degradation, experts have emphasized soil's 
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continued capacity in the definition of soil health (Natural Resources Conservation Services). This 

updated description of soil health reflects the public’s increasing awareness and interest in soil 

health.   

 

The development of soil health tests aligns with the movement of defining soil health. The 

definition and quantification of soil health is complicated, and no single value or measurement can 

directly assess soil health. Traditional soil tests focused on fertility and measured the nutrient 

contents and soil pH to improve crop productivity. With the increasing awareness of soil health, 

researchers have integrated biochemical indicators to study the dynamic soil processes such as 

earthworm activity, N mineralization, microbial biomass, and C/N ratios (Doran and Zeiss, 2000; 

Andrews and Carroll, 2001). The ever-increasing number of indicators created more complexity 

and difficulty in conducting and interpreting a soil test. The cost of tests that have several different 

indicators also restricted widespread implementation of soil health tests. The minimum data set 

(MDS) approach was proposed to reduce the number of indicators that were analyzed on a given 

collection of samples, limited to those most sensitive to management change or most meaningful 

to farmers. The Haney Soil Health Test (HSHT) is an example of a MDS approach that involved 

expert-selected indicators (soil respiration, and water-extractable organic C and N) in measuring 

the soil health status (Haney et al., 2018). To narrow the list of soil health indicators for a MDS, 

research have employed multivariate analyses (such as principal component analysis, PCA) 

(Andrews and Carroll, 2001) and regression analyses (Li et al., 2013). Several researchers have 

use PCA to develop a MDS and to ascertain the weight of individual soil indicators (Andrews et 

al., 2002; Bi et al., 2013; Chen et al., 2013; Congreves et al., 2015; Purakayastha et al., 2019; Zhou 

et al., 2020; Karaca et al., 2021). Generally, the variable with the highest eigenvector on one PC 

is included in the minimum data set. For multi-indicator soil health tests, the importance of each 

individual indicator (their weight) have been derived from PCA (Andrews et al., 2002; Congreves 

et al., 2015). Alternatively, Pearson correlation and correlations-sum have been used to reduce the 

redundancy and number of variables (Andrews and Carroll, 2001; Chen et al., 2013; Li et al., 

2013). The cost of MDS-based soil health tests will decrease by reducing number of soil indicators, 

thus, improving the chances of user uptake. However, the MDS approach runs the risk of over-

expressing certain components of soil health (i.e., biological component) while neglecting soil 

chemical and physical components.  
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Currently, soil health tests are in widespread use in many countries, including the USA (Idowu et 

al., 2008; Moebius-Clune et al., 2016; Haney et al., 2018), China (Bi et al., 2013; Chen et al., 2013; 

Li et al., 2013; Zhou et al., 2020), Turkey (Karaca et al., 2021), UK (Cooper et al., 2020), India 

(Purakayastha et al., 2019) etc. Farmers and scientists are looking for an appropriate tool to 

interpret their soil's health status, so the assessment must be comprehensive. The Comprehensive 

Assessment of Soil Health (CASH) was developed to provide standardized information about the 

soil's physical and biological constraints, covering approximately 20 soil attributes that include the 

biological, physical, and chemical properties (Moebius-Clune et al., 2016). Each attribute is scored 

based on measurement, and the overall score reflects the ‘soil health status’ as an unweighted 

average of all individual indicator’s scores. Farmers and researchers are using CASH to estimate 

their soil health status and improve the management decision. Research showed that CASH was 

sensitive to various management practices in New York State (Idowu et al., 2009). 

 

The CASH provides a useful framework for integrating all the soil attribute into a visualized soil 

health score. However, the CASH is not applicable or suitable for other regions since the database 

was developed in New York and the Northeast region. For example, when used in locations outside 

the region of development, the CASH and HSHT lacked consistent responses (Roper et al., 2017). 

It was concluded that either test did not have the capacity for soil health determination among 

agronomic practices in the southeast region of USA (Roper et al., 2017). Moreover, the un-

weighted average system may over-simplify the soil health status and ignore the relationship 

among different soil attributes. In Ontario, the Ontario Soil Health Assessment (OSHA) was 

developed by accounting for the relationships among soil attributes, based off of the CASH 

approach (Congreves et al., 2015). Since soil is a living ecosystem with its characteristics, a fixed 

measuring system may not be useful everywhere; rather, a regional soil health test may be most 

meaningful to farmers.  

 

The advancement of the soil biology discipline in recent years has provided a wider selection of 

soil health indicators. Soil protein (or autoclaved citrate extractable protein) was found to be a 

sensitive soil N indicator, reflecting a functionally relevant organic N pool impacted by 

management (Hurisso et al., 2018). Further, phospholipid fatty acid analysis (PLFA) measuring 
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the bacteria, fungi and protozoa in soil provided a snapshot of microbial biomass and the 

community composition (Mann et al., 2019). Monitoring soil bacteria at the community-level has 

been used to determine the management effect on microbial community structure, as well as 

substrate utilization and diversity indices (Gałązka et al., 2017). Soil organic C storage is an 

essential aspect of land use and management planning, and active C is susceptible to disturbance 

(Weil et al., 2003). As such, active C, also called permanganate-oxidizable C, is the portion of C 

that is readily available for soil microbial community to utilize as food and energy source, 

reflecting the change of microbial activity with management practices.   

 

No single measurement can quantify soil health, but holistic measures of soil health are challenging 

because one must integrate biological, chemical, and physical properties, processes and 

interactions (Karlen et al., 1997). Ideally, a set of comprehensive soil indicators should also be 

conceptually related to soil function and ecosystem processes, practical to sample and measure, 

responsive to changes in management, and comparable to a baseline for a meaningful 

interpretation (Bünemann et al., 2018). Still, there is no standardized and prairie-based soil health 

test available. Climate and parent material are the major factors that affect the soil formation and 

using the soil test developed from other regions may lose its meaning when applied to other 

regions. Numerous researchers recommend developing and using a regionally adapted soil health 

test to gain the most meaningful interpretation of soil health and functioning (Roper et al., 2017; 

Congreves et al., 2015; Frost et al., 2019; Chu et al., 2019). 
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4 MATERIALS AND METHODS 

 

Soil samples from the 0-15, 15-30, and 30-60 cm depths were collected from 55 fields (26 sites) 

across Saskatchewan in Sept and Oct 2018 (Fig. 4-1). The sample from each site was a composite 

sample (5-7 individual samples) collected using a flat shovel. The selected sites represented 

various Agri-Arm sites, producer fields, and AAFC long-term sites. Native prairie samples were 

also collected for comparison. Soil samples were air dried and sieved (2 mm) prior to all analyses 

described below. 

 

 

Figure 4-1. Soil sampling locations across Saskatchewan. The points are created based on the 

GPS coordinates. The soil sampling map overlay with Saskatchewan soil zones, the map 

resource retrieved from https://open.canada.ca/data/en/dataset/ac6a1e51-9c70-43ab-889f-

106838410473. 

 

 

https://open.canada.ca/data/en/dataset/ac6a1e51-9c70-43ab-889f-106838410473
https://open.canada.ca/data/en/dataset/ac6a1e51-9c70-43ab-889f-106838410473
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4.1 Soil chemical attributes  

Soil pH and EC 

Soil pH and EC were determined by 1:2 soil water slurry, where 10 g of soil was mixed with 20 

mL of deionized water and analyzed using a pH meter (Fisher Scientific™, AE 150) and EC meter 

(Hanna Instrument, HI763100).  

 

Soil nutrient and carbon concentrations  

Total concentrations of soil phosphate, potassium, sodium, magnesium, calcium, manganese, iron, 

copper, zinc, boron, and sulfur were measured by the Natural Resources Analytical laboratory 

(Edmonton, AB). Briefly, 0.7 g of soil were digested by HNO3 at 185°C for 10 min, and dissolved 

metals were analyzed by Inductively Coupled Plasma-Optical Emission Spectroscopy (Thermo 

iCAP 6000 series).  

 

Soil nitrate (NO3
-) and ammonium (NH4

+) were extracted using 25 mL 2.0 M potassium chloride 

from 5 g of soil, shaken for 30 min at 160 rpm and filtered by Whatman No. 42 filter papers 

(Maynard et al., 2007). The filtered extracts were stored at -20 C until analysis, whereupon the 

extracts were thawed to room temperature and sub-samples (~1 mL) were analyzed for NO3
- and 

NH4
+ concentrations using air segmented, continuous flow colorimetric method with a SEAL AA3 

HR chemistry analyzer (SEAL analytical Kitchener Ontario).   

 

To determine soil organic C, soil sub-samples were ball-ground for 3 min to achieve a powdery 

texture, and 0.8 g of soil was placed in a nickel boat liner inside a ceramic combustion boat. Boats 

were placed on top of a heater, with a temperature lower than 70°C. Approximate 1 mL of 

deionized water was added to each boat to moisten the sample. Samples were pre-treated to remove 

carbonates, following the method of Skjemstad and Baldock (2007); briefly, 6% sulfurous acid 

was added to each boat until no effervescence was observed, at which point an additional 1 mL of 

6% sulfurous acid was added to confirm complete carbonate removal. Thereafter, samples were 

dried in an oven at 60°C for 48 hours. The carbonate-free samples were analyzed for organic C 

(%) using a C632 LECO Carbon Analyzer at 1440 °C.  
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Total C and N was determined by dry combustion (Rutherford et al., 2007; Skjemstad and Baldock, 

2007). Sub-samples of ball-ground soil (1.00 g) were placed in a nickel liner inside of a ceramic 

combustion boat, and analyzed for total C and N by a TruMac CNS analyzer (LECO) at 1350 °C.  

 

Potentially mineralizable N 

The determination of potentially mineralizable N is followed the anaerobic incubation method 

from Curtin and Campbell (2007). Sub-sample soil (5.00 g) was incubated with 10 mL distilled 

water and place in an incubator with 37 C for 7 days. Then, NH4
+ was extracted with 15 mL of 

potassium chloride (3.33 M) and shaken for 30 min at 120 rpm. The extracts were filtered by 

Whatman No. 42 filter papers and stored at -20 C until analysis. The amount of potentially 

mineralizable N is determined by subtracting pre-incubation (initial) ammonium N from that 

determined at the end of the incubation.   

4.2 Soil physical attributes 

Soil texture 

Soil texture was determined by using the hydrometer method (Kroetsch and Wang, 2007). Briefly, 

25.0 g soil was soaked overnight with 50 mL of 0.082 M sodium hexametaphosphate solution and 

200 mL of deionized water. In the morning, the solution was mixed by hand to complete the 

dispersion. Buoyancy readings of were recorded after mixing, at: 40 sec and 6:52 hrs.  

 

Field capacity 

Field capacity (FC) was determined using a modified long column method (Reynolds and Topp, 

2007). Soil samples (5 g) were packed in a column with 5.5 ± 0.3 cm height and 0.17 cm diameter 

and wetted to saturation by placing the column in a beaker filled with water (the water level in 

breaker was equal to soil surface in the column). Once saturated, the soil-filled column was placed 

on a fine sand bed, and allowed to drain by gravity for 24 hrs until drainage stopped, reflecting 

FC. At this point, the weight of the soil and water inside the column was determined by recording 

the moist weight and dry weight of the soil inside the column (after oven drying at 105 °C for 24 

hrs). The FC was expressed as percent by weight.   
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Wet aggregate stability 

Wet aggregate stability (WAS) was measured by using a Wet Sieving Apparatus (Eijkelkamp Soil 

and Water), operating under the principle that unstable aggregates break down easier and faster 

than stable aggregates in water. Briefly, 4 g of soil was placed on a sieve, enclosed inside a 

container filled with distilled water. The apparatus moved up and down for 3 min, and the unstable 

aggregates were collected in the enclosed container. The sieve with remaining aggregates was 

place on a new clean water-filled container. The material remaining inside the sieve were 

considered stable aggregates, disrupted by Ultra Sonic Probe (Branson Sonifier 250), collected, 

oven-dried overnight at 120 °C. The proportion of water stable aggregate was determined using 

the dry-weights of the stable and unstable aggregates (Angers et al., 2007). 

4.3 Soil biological attributes  

Soil protein  

Soil protein was extracted and quantified according to the Bicinchoninic acid (BCA) assay, as 

recommended by Wu et al. (under review). Briefly, 1 g of soil was extracted with 8 mL 20 mM 

sodium citrate (pH=7), shaken at 120 rpm for 5 min, autoclaved at 121°C and 15 psi for 30 min, 

cooled to room temperature, and thereafter centrifuged at 10,000 x g for 5 min. Subsequently, 25 

µL of the supernatant was pipetted into microplate wells (96-well flat-bottomed microplate), and 

200 µL of the BCA working reagent was added. After a 30 min incubation in the dark at 37°C and 

(followed by 15 min cooling period), an absorbance reading was recorded at 562 nm using a 

microplate spectrophotometer (Bio Tek, Epoch™ 2). Soil extraction and analytical replication was 

conducted in triplicate and duplicate for each soil sample, respectively.   

 

Active carbon  

Active C was measured using the permanganate oxidization approach (Weil et al., 2003). Soil sub-

samples (2.5 g) was mixed with 18 mL deionized water and 2 mL 0.2 M potassium permanganate 

(KMnO4) solution. The mixture was shaken for 2 min at 120 rpm, and left to settle for 8 min. The 

supernatant was collected, and a 0.5 mL aliquot was diluted with 49.5 mL of deionized water. The 

amount of active C was calculated after the solution was analyzed by a spectrophotometer at 550 

nm. 
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Soil respiration and nitrous oxide production  

A modified “burst” test was conducted to determine soil respiration (CO2) and nitrous oxide (N2O) 

production. Plastic petri dishes with 53 mm of diameter and 13 mm of height, were filled with dry 

soil samples, and moisture was adjusted to 75% water filled pore space by adding deionized water, 

the amount of which was calculated from the targeted gravimetric moisture.  The petri dish with 

moist soil was immediately placed in a 1 L mason jar and sealed. The sealed soil sample was 

incubated at 22 ± 1 ° in the lab for 24 hr, upon which a 20 mL of gas sample was collected and 

analyzed for CO2 and N2O by gas chromatography (Rochette and Bertrand, 2007).  

4.4 Data analysis and development of scoring functions  

Data were analyzed using SAS (SAS Institute, Inc., university edition, Cary, NC). PROC MEANS 

was used for descriptive statistics, PROC UNIVARIATE for testing normality, and PROC CORR 

for evaluating the correlation of soil health score and scoring models. Data was visualized using 

R studio (R core Team, 2019) and CoPlot (Version 6.45).  

 

4.4.1 Transformations  

 

A Shapiro-Wilk test was conducted in SAS to determine if the data was normally distributed for 

each soil attribute. There were several cases where the data was not normally distributed; yet, 

achieving a normal distribution for each soil attribute was a prerequisite for computing the soil 

health scores. A log transformation resulted in normality for all cases, except for pH and sand 

which were subjected to a square root transformation to achieve normality (Table A-1). The data 

of Fe from 30-60 cm depth failed to reach normality via any transformation (be it log, ln, square 

root, etc.); thus, Fe in 30-60 cm depth were not included in the soil health scoring. Outliers were 

removed if detected by the interquartile range (IQR) where the value out of the range from 

(Quartiles 1 – 1.5*IQR) to (Quartile 3 + 1.5*IQR). 
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4.4.2 Scoring functions for individual soil attributes  

 

Three different types of soil scoring functions were used: i) more is better, ii) optimum is best, and 

iii) less is better. Each soil attribute was assigned to a scoring function type, based on previous 

literature as well as author consensus (Table 4-1).   

 

Table 4-1. Different scoring functions as assigned to each soil attribute.   

Indicator Attribute  Scoring function 

Chemical Soil organic C (SOC) and total C More is better 

 Soil total N More is better 

 Inorganic N (nitrate and ammonium) Optimum is best 

 Total phosphorous, potassium, sulfur, calcium, sodium, 

magnesium, manganese, iron, zinc,  

Optimum is best  

 pH  Optimum is best  

 Electrical conductivity (EC) Less is better  

   

Biological Active carbon  More is better 

 Soil respiration (CO2) More is better 

 Soil nitrous oxide (N2O) Less is better 

 Potentially mineralizable nitrogen (PMN) More is better 

 Soil extractable protein  More is better 

   

Physical Texture (sand, silt, clay) Optimum is best  

 Wet aggregate stability More is better 

 Field capacity Optimum is best 

 

Standardized scoring functions were developed to express the score for each soil attribute on a 

scale of 0 to 100 (Fig. 4-2). The mean, standard deviation, and Z-scores from the normal 

distribution of each soil attribute were used to develop these scoring functions, following the logic: 

for any normally distributed dataset, Z-values range from -3 to 3, and a Z-value of 0 corresponds 

to the observed mean. Therefore,  
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i) for the more is better shape, the health scores are positively related to the Z-scores; 

the score is highest when Z-value is 3, and lowest when Z-value is -3. 

ii) for the less is better shape, the health scores are negatively related to the Z-scores; 

the score is highest when Z-value is -3, and lowest when Z-value is 3.  

iii) for the optimum is best shape, the health scores are positively related to the Z-scores 

between the Z-values of -3 to 0, and thereafter negatively related to the Z-scores 

between Z-values of 0 and 3. As such, the health score is highest when Z-value is 

0, and lowest when the Z-value is -3 or 3. 

 

 

Figure 4-2. Graphical depiction of the development of the Saskatchewan Soil Health Score.    
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Once the scores were computed for each soil attribute, predictive models were also developed 

based on the relationship between the soil attribute measurement and score. To do this, several 

non-linear regressions were tested to determine the best-fit between the measurement and scores, 

including a second order polynomial regression with and without intercepts, power regression, 

inverse power regression, square root regression, Hoerl’s model, logarithmic regression, and a first 

order polynomial regression. The R square (R2) and root mean square error (RMSE) were used to 

select the best-fit regression, with one additional criterion: the model must not have an inflection 

point that underestimated scores at the high-end of the scale, which would have erroneously 

predicted the top score (Tables A-2 and A-3).  

 

4.4.3 Overall soil health scoring  

 

The individual soil health scores were combined into a single overall soil health score using a 

weighted average approach. Weighting factors were developed by analyzing the patterns in our 

large dataset, via principal component analysis (PCA). The PCA was conducted using 

“FactoMineR” package from R studio; data were grouped by soil depth. Soil attributes which 

explained more variation in the dataset were assigned greater weights, using principal component 

(PC) eigenvalues, eigenvectors, and the percentage of variance explained. This information was 

used to develop the weighting factors (w) or each attribute, and treated each depth increment 

separately (Eq. 1): 

 

 Weighting factor (w) = ∑ (ek × pk)k
1         (Eq. 1) 

 

where the e is the eigenvector of the soil attribute on each PC (k); and where pk is the proportion 

of explained variance. All PCs were considered up until the cumulative percent variance reached 

over 80% and pk reached over 1. Negative weighting factors were set to zero. The overall soil 

health score was computed according to Eq. 2, separately for each depth increment: 

 

Saskatchewan Soil Health Score (SSHS) =
∑ (sk×wk)k

1

∑ (wk)k
1

     (Eq. 2) 
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where s represents the soil health score (0-100) for each individual soil attribute; w is 

corresponding weighting factor. Then, the score for the three depth increments were averaged for 

a single, overall Saskatchewan Soil Health Score (SSHS). The SSHS was normalized from 0 to 

100, and the higher SSHS expresses a better soil health status.  

 

To determine whether or not the SSHS produces higher or lower estimates of soil health than the 

CASH approach, the individual and overall SSHS scores were compared to those from the CASH.  

 

4.4.4 Relationship between soil health score and crop yields 

 

Regional yield data for wheat and barley crops collected from the Saskatchewan AGR RM yield 

database (http://applications.saskatchewan.ca/agrrmyields) for each of the last 10-yrs from 2009 

to 2019, and we also computed the 5-year and 10-year average yields. The yields derived from the 

rural municipalities were matched to the same rural municipalities where the soil samples were 

collected, and a correlation test was conducted.  

 

  

http://applications.saskatchewan.ca/agrrmyields
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5 RESULTS 

5.1 Sites representative of Saskatchewan agriculture  

The sampling sites were representative of Saskatchewan agriculture as most sites were previously 

cropped with wheat (n = 15) or canola (n =21); whereas a few sites had barley (n= 1), chickpea (n 

= 1), lentil (n =3), field pea (n =1), soybean (n =2), potato (n = 1), and green manure (n=2) (Fig. 

5-1). 

 

 

Figure 5-1. The number of sites that were producing each crop type during the year when soil 

samples were collected (2018). 

5.2 Data distributions  
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Soil EC and pH distributions were unimodal regardless of depth, with EC as highly right-skewed 

and pH as highly left-skewed (Fig. 4A). Soil EC averaged 0.33, 0.31, 0.39 mS cm-1 in the 0-15, 

15-30, and 30-60 cm depth, respectively; soil pH averaged 7.24, 7.54, 7.93 in the same depth 

increments, respectively. Soil EC medians did not dramatically differ by soil zone, whereas pH 

medians were generally higher for the brown soil zone and lower for the gray zone (Fig. 5-2).  

 

Soil TC, SOC, and TN distributions were near normal with some extreme values (Fig. 5-2). For 

all three attributes, the values decreased with increasing soil depth (Fig. 5-2). Soil TC averaged 

26.44, 19.28, 18.21g kg-1, for the 0-15, 15-30, 30-60 cm depths, respectively; whereas for the same 

respective depth increments, SOC averaged 24.16, 15.52, 12.20 g kg-1 and TN averaged 2.32, 1.48, 

1.00 g kg-1. Some extremely high SOC values were observed, such as 71.28 g kg-1 from the gray 

soil. For TC, SOC, and TN the difference between medians among soil zones decreased with soil 

depth (Fig. 5-2). The gray and black soil zones had higher medians in the top 0-15 cm depth, while 

the gray soil zone had the lowest medians in the 30-60 cm depth. The interquartile range of the 

gray soil zone was wider than other soil zones for the top 0-15 cm, but sharply reduced with depth 

(Fig. 5-2). 

 

The shape of NO3
- and NH4

+ distributions were unimodal and slightly right-skewed. For NO3
-, the 

0-15 and 15-30 cm depths resulted in flatter distributions than the deeper 30-60cm data (Fig. 5-2). 

Soil NO3
- generally decreased with depth, averaging 12.33, 9.31, 4.78 ug g-1 in 0-15, 15-30, and 

30-60cm, respectively (Fig. 5-2). Soil NH4
+, on the other hand, showed little variation by soil 

depth, averaging 4.39, 3.61, 3.77 ug g-1 in the 0-15, 15-30, and 30-60 cm, respectively (Fig. 5-2). 

Noticeably, the gray soil has the lowest NO3
- values, while the dark brown soil zone had the widest 

variation. Soil NH4
+ medians remained fairly consistent among soil zones (Fig. 5-2).  

 

Soil Na, P, and Mn were near normally distributed, with some outliers (Fig. 5-3). Soil Na averaged 

90.19, 87.97, 135.63 mg kg-1, for the 0-15, 15-30, 30-60 cm depths, respectively; whereas for the 

same respective depth increments, P averaged 532.35, 434.16, 419.41mg kg-1 and Mn averaged 

482.86, 431.86, 408.58 mg kg-1. Some extremely high Na were observed, such as 850.21 mg kg-1 

in the surface soil from black soil zone and 838.06 mg kg-1 in soil depth 30-60cm from brown soil 
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zone. The highest Na and P values existed in surface soil, while the highest Mn was in the deeper 

30-6 0cm.  

 

Soil Ca, S, and Mg distributions were mostly unimodal and right-skewed regardless of depth. For 

these three nutrients, the 0-15 cm depth had narrower distributions than the deeper 15-30 and 30-

60 cm depths (Fig. 5-3). Soil Ca averaged 10218, 15878, 24799 mg kg-1 from the soil in 0-15, 15-

30, 30-60 cm depth, respectively, whereas for the same respective depth increments, S averaged 

574.08, 645.35, 900.73 mg kg-1 and Mg averaged 5398.80, 6607.83, 8510.87 mg kg-1. The black 

soil had highest median of soil Ca, S and Mg regardless of depth. 

 

Soil Zn, Fe, and K distributions were bimodal with two distinct peaks (Fig. 5-3). Soil Zn and K 

generally decreased with depth, which averaged 67.40, 63.16, 59.74 mg kg-1 of Zn and 3423.23, 

2972.79, 2584.71 mg kg-1 of K in 0-15, 15-30, 30-60cm depth. Conversely, soil Fe generally 

increased with depth, averaging 17161, 17736, 17770 mg kg-1 in the same respective depth 

increments. No obvious differences were observed between soil zones by depth.    
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Figure 5-2. The distribution for common soil chemical attributes, presented using density plots. 

The y-axis is the probability density (kernel estimation) per unit on the x-axis. Box-plots show 

the interquartile range (solid bar), median (the line inside bars), minimum and the maximum 

excluding outliers (the extreme line), and outliers (dots) for each soil zone. 
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Figure 5-3.The distribution of several soil nutrients as chemical attributes (other than those 

shown in Figure 5-2, presented using density plots. The y-axis is the probability density (kernel 

estimation) per unit on the x-axis. Box-plots show the interquartile range (solid bar), median (the 

line inside bars), minimum and the maximum excluding outliers (the extreme line), and outliers 

(dots) for each soil zone.  
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Physical attributes 

In our database, the percentage of sand in the soil ranged widely from 1.1% to 81% with a bi-

modal distribution—a form that was shared by clay, only to a lesser degree due to the clustering 

around ~20% and 60% (Fig. 5-4. The silt percentage, on the other hand, showed a unimodal 

distribution centered around ~40% and was more right skewed with depth (Fig. 5-4). For sand and 

clay there was a fair amount of overlap in the interquartile range among the soil zones tested, but 

the soil zones tended to differentiate by silt (Fig. 5-4).   

 

The WAS distribution was unimodal and slightly left-skewed for the 0-15 and 15-30 cm depths, 

but more uniform for the 30-60 cm depth (Fig. 5-4). The WAS generally decreased with soil depth, 

averaging 53%, 48%, 44% in 0-15, 15-30, 30-60cm, respectively. For WAS, the dark brown soil 

and black zone showed wider distributions than the brown or gray soil zones (Fig. 5-4).  Soil FC 

showed a bi-modal distribution at ~40% to 60% with similarities among the soil zones, and little 

change in distribution with soil depth (Fig. 5-4). Soil FC was nearly consistent among depths, and 

averaged 46, 44, 43% in 0-15, 15-30, 30-60cm.  
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Figure 5-4. The distribution of soil physical attributes presented using density plots. The y-axis 

is the probability density (kernel estimation) per unit on the x-axis. Box-plots show the 

interquartile range (solid bar), median (the line inside bars), minimum and the maximum 

excluding outliers (the extreme line), and outliers (dots) for each soil zone. 
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Biological attributes 

The data distribution for soil active C, CO2 production, and protein were similar to each other, 

with unimodal distributions and similar patterns across soil zones (Fig. 5-5).  Nitrous oxide 

production, on the other hand, showed a highly right-skewed unimodal distribution with few 

differences between soil zones (Fig. 5-5).  

 

Soil protein levels in the 0-15 cm soil ranged from 1 to 17 mg g-1, with a unimodal distribution 

that is normal and a mean of 6.9 mg g-1 (Fig. 5-5). The gray soil zone produced a median protein 

level that was exceptionally higher than the other soil zones in 0-15 cm depth (Fig. 5-5).   
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Figure 5-5. The distribution of soil biological indictors in the 0-15 cm depths, presented using 

density plots. The y-axis is the probability density (kernel estimation) per unit on the x-axis. 

Box-plots show the interquartile range (solid bar), median (the line inside bars), minimum and 

the maximum excluding outliers (the extreme line), and outliers (dots) for each soil zone. 
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5.3 Scoring functions for individual soil attributes   

Where the raw data were not normality distributed, transformations ensured normality (Table A-

1). The soil health scores following the more is better, less is better, and optimum is best scoring 

functions are shown in relation to the individual soil attribute measurements—along with the 

predictive models of best fit (Figs. 5-6, 5-7, 5-8, respectively; Tables A-2, A-3, respectively).  The 

formula and threshold limits for each model are also presented herein (Table A-4).  
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Figure 5-6. The soil health scores for indicators following a “more is better” function (0-15, 15-

30, 30-60 cm depth). The coloured symbol indicates the observed soil health score, and the 

coloured line represents the modelled score. 
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Figure 5-7. The soil health scores for indicators following a “less is better” function (0-15, 15-

30, 30-60 cm depth). The coloured symbol indicates the observed soil health score, and the 

coloured line represents the modelled score. 
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Figure 5-8. The soil health scores for indicators following a “optimum is best” function (0-15 cm, 

15-30, 30-60 cm depth). The coloured symbol indicates the observed soil health score, and the 

coloured line represents the modelled score. 
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5.4 Towards an overall soil health score  

5.4.1 Principal component analysis 

The first seven PCs accounted for over 80% of the total variation in the raw data set from 0-15 cm 

depth, whereas the first five PCs reached this same criterion for the deeper depths (15-30 cm and 

30-60 cm) (Table 5-1, Table 5-2, Table 5-3).  

 

For the 0-15 cm soil depth, the PC1 accounted for 30% of the total variation which was 

predominantly explained by six different soil attributes (i.e., attributes with high positive 

eigenvectors), including: TC, SOC, TN, WAS, FC, and Zn. The PC2 represented 21% of the total 

variance and the following attributes had relatively high positive eigenvectors: protein, SOC, 

active C. The PC3 contributed 11% towards the total variation, with Ca, S, pH, and Mg showing 

high eigenvectors. The remaining PCs each contributed < 10% of the total variance. Generally, it 

is observed that different PCs are predominantly explained by indicator type. For example, in the 

top 15 cm of soil PC1 appears to be explained by soil chemical and physical attributes, whereas 

PC2 more so by soil biological attributes. Considering all relevant PCs for the 0-15 cm depth, the 

attributes with the greatest weight (and therefore the most influence on the soil health score) 

include P, TC, active C, SOC, TN, and N2O as the top six (Table 5-1).  

 

For the deeper soil depths of 15-30 and 30-60 cm, the first PC accounted for 39% and 35% of the 

total variance, respectively. Major drivers for this first dimension were clay, Fe, Zn, K, and FC. 

The PC2 accounted for 201% of total variance, predominantly explained by S, Ca, Total C, Mg, 

and pH. The PC3 explained 11% of the total variance, attributed to TN, SOC, and P. Overall, both 

soil chemical and physical attributes appeared equally important in these depths (note: biological 

attributes were not measured in these depths).  Taking all relevant PCs for the 15-30 cm depth into 

account, the attributes that have the most influence on the soil health score are: TC, SOC, FC, P, 

TN, and WAS (Table 5-2). For the 30-60 cm depth SOC, FC, Mn, TN, Zn, and TC have the greatest 

influence (Table 5-3).   
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Table 5-1. Summary of the principal component analysis (PCA) and the resulting eigenvectors 

for each soil attribute from 0 to 15 cm depth. The eigenvectors and the proportion of explained 

variance (pk) were used to compute the weighting factor (w) for the overall soil health score. 

Indicator type Attribute PC1 PC2 PC3 PC4 PC5 PC6 PC7 w 

Chemical  SOC 0.27 0.25 0.08 -0.11 -0.09 -0.1 -0.07 0.14 
 

Total C 0.27 0.21 0.18 -0.17 -0.09 -0.03 -0.02 0.15 
 

Total N 0.29 0.22 0.02 -0.1 -0.02 -0.09 -0.09 0.14 
 

NO3
--N -0.02 0.11 0.13 0.38 0.44 0.11 0.21 0.12 

 
NH4

+-N 0.13 0.06 -0.06 0.3 0.51 -0.06 -0.1 0.11 
 

P 0.16 0.2 0.13 0.07 0.22 0.34 -0.12 0.16 
 

K 0.23 -0.27 -0.15 0.04 0.08 0.03 -0.12 0 
 

S 0.17 0.01 0.47 -0.1 -0.01 -0.16 0.13 0.12 
 

Ca 0.03 -0.15 0.49 -0.08 -0.04 0.12 0.18 0.05 
 

Na 0.21 0.05 -0.02 -0.35 0.19 0.28 0.21 0.09 
 

Mg 0.13 -0.31 0.29 -0.03 -0.02 0.12 0.05 0.02 
 

Mn 0.13 -0.09 -0.11 0.32 -0.19 0.44 0.13 0.05 
 

Fe 0.24 -0.27 -0.17 0 0.02 -0.01 -0.06 0 
 

Zn 0.27 -0.16 -0.13 -0.04 0.14 -0.19 -0.08 0.04 
 

pH 0 -0.18 0.35 0.2 -0.15 0.09 -0.01 0.02 
 

EC 0.16 -0.04 0.22 0.23 0.26 -0.44 0 0.1 
          
Biological Active C 0.23 0.27 0.04 0.06 -0.14 -0.05 0 0.15 
 

CO2 0.14 0.18 -0.05 0.38 -0.27 0.09 -0.19 0.09 
 

N2O 0.21 0.17 -0.11 -0.11 0.23 0.34 0.12 0.13 
 

PMN 0.11 0.15 0.08 0.37 -0.24 -0.07 -0.24 0.08 
 

Protein 0.17 0.3 -0.11 -0.17 -0.07 -0.04 0.02 0.1 
          
Physical Sand -0.25 0.23 0.17 -0.06 0.04 0.12 -0.27 0 
 

Silt 0.07 0.11 -0.17 0.2 -0.17 -0.2 0.76 0.06 
 

Clay 0.22 -0.31 -0.08 -0.05 0.05 -0.02 -0.14 0 
 

WAS 0.26 -0.14 0.02 0.08 -0.2 0.27 0.01 0.07 
 

FC 0.27 -0.14 -0.1 -0.03 -0.11 -0.19 -0.04 0.03 
          
Eigenvalue 

 
7.88 5.36 3 1.87 1.7 1.18 1 

 

% variation 
 

30.32 20.6 11.54 7.2 6.54 4.55 3.84 
 

Cumulative % variation 30.32 50.92 62.47 69.66 76.2 80.75 84.59 
 

 pk 
 

0.36 0.24 0.14 0.09 0.08 0.05 0.05   
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Table 5-2. Summary of the principal component analysis (PCA) and the resulting eigenvectors 

for each soil attribute from 15 to 30 cm depth. The eigenvectors and the proportion of explained 

variance (pk) were used to compute the weighting factor (w) for the overall soil health score. 

Indicator type Attribute PC1 PC2 PC3 PC4 PC5 w 

Chemical  SOC 0.19 0.12 0.47 -0.06 -0.2 0.17 
 

Total C 0.16 0.35 0.26 -0.08 -0.19 0.18 
 

Total N 0.22 -0.04 0.47 -0.07 -0.18 0.14 
 

NO3
--N -0.09 0.22 0.19 0.4 -0.06 0.06 

 
NH4

+-N 0.21 -0.07 0.02 0.43 0.02 0.12 
 

P 0.03 0.25 0.38 -0.12 0.31 0.14 
 

K 0.31 -0.09 -0.06 -0.08 -0.05 0.11 
 

S 0.05 0.46 -0.07 0.09 0 0.13 
 

Ca 0.03 0.45 -0.18 -0.01 0.02 0.1 
 

Na 0.19 0.03 -0.24 0.37 0.04 0.09 
 

Mg 0.17 0.34 -0.24 -0.19 0.06 0.12 
 

Mn 0.28 -0.09 0.02 0 0.01 0.11 
 

Fe 0.32 -0.14 -0.12 -0.05 -0.06 0.09 
 

Zn 0.32 -0.15 -0.02 -0.04 -0.02 0.1 
 

pH 0.09 0.33 -0.15 -0.05 0.41 0.12 
 

EC 0.13 0.09 0.02 0.6 -0.18 0.12 
        

Physical Sand -0.31 0.11 0.03 -0.04 -0.26 0 
 

Silt -0.03 -0.16 0.26 0.21 0.67 0.05 
 

Clay 0.32 -0.02 -0.18 -0.08 -0.13 0.11 
 

WAS 0.3 0.02 -0.05 -0.05 0.03 0.14 
 

FC 0.29 -0.02 0.08 -0.14 0.22 0.15 
        

Eigenvalue 8.14 4.15 2.39 1.35 1.14 
 

% variation 38.76 19.77 11.36 6.42 5.45 
 

Cumulative % variation 38.76 58.53 69.89 76.31 81.76 
 

 pk 
 

0.47 0.24 0.14 0.08 0.07   
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Table 5-3. Summary of the principal component analysis (PCA) and the resulting eigenvectors 

for each soil attribute from 30 to 60 cm depth. The eigenvectors and the proportion of explained 

variance (pk) were used to compute the weighting factor (w) for the overall soil health score. 

Indicator type Attribute PC1 PC2 PC3 PC4 PC5 w 

Chemical  SOC 0.09 0.3 0.35 -0.04 0.21 0.17 
 

Total C 0.03 0.42 0.15 -0.07 0.05 0.14 
 

Total N 0.22 -0.05 0.39 0.11 0.18 0.16 
 

NO3
--N -0.12 0.09 0.23 0.09 0.62 0.05 

 
NH4

+-N 0.22 0.01 0.02 0.07 0.24 0.12 
 

P -0.08 0.27 0.28 0.21 -0.22 0.08 
 

K 0.34 0 0 -0.09 -0.05 0.13 
 

S -0.04 0.4 -0.24 0.14 0.09 0.08 
 

Ca -0.05 0.43 -0.12 -0.1 0 0.07 
 

Na 0.13 0.03 -0.44 0.34 0.11 0.05 
 

Mg 0.04 0.43 -0.11 -0.18 -0.08 0.09 
 

Mn 0.25 -0.01 0.21 0.15 0.2 0.16 
 

Fe 0.35 -0.06 -0.06 -0.09 -0.05 0.12 
 

Zn 0.35 -0.04 0.04 0.05 -0.12 0.14 
 

pH 0 0.33 -0.03 0.18 -0.29 0.08 
 

EC 0.07 0.02 -0.37 0.49 0.32 0.06 
        

Physical Sand -0.34 -0.03 -0.03 -0.09 0.17 0 
 

Silt -0.05 -0.06 0.27 0.54 -0.29 0.03 
 

Clay 0.34 0.06 -0.12 -0.19 0 0.13 
 

WAS 0.29 0.01 -0.09 -0.25 0.13 0.1 
 

FC 0.31 0.05 0.07 0.2 -0.15 0.16 
        

Eigenvalue 7.37 4.49 2.22 1.67 1.24 
 

% variation 35.12 21.39 10.57 7.95 5.93 
 

Cumulative % variation 35.12 56.51 67.08 75.03 80.96 
 

 pk 0.43 0.26 0.13 0.1 0.07 
 

 

 



 

 

 

40 

5.4.2 The Saskatchewan soil health score  

The SSHS averaged 56.97% in the 0-15 cm depth and was lower compared to the 15-30 and 30-

60 cm depths, which had average scores of 63.88 and 64.33%, respectively (Fig. 5-9). With scores 

ranging from 26 to 88% (Fig. 5-9) and a CV of 20%, the top 15 cm soil also had more variation 

than the deeper depths (with CVs of 15% and 13%, respectively).  

 

The overall SSHS for the 0-60 cm ranged from 41.24 to 77.05%—the highest score belonging to 

the native prairie soil. No significant difference of overall SSHS across soil zones, and median of 

overall SSHS were 60.17, 65.68, 62.92, 61.02% in Gray, Black, Dark Brown, and Brown soil zone, 

respectively.   

 

 

Figure 5-9. The Saskatchewan soil health score A) by soil depth increment, B) for the full 0-60 

cm, and C) by soil zone (0-60 cm depth). Boxplots with the same letters are not significantly 

different (P > 0.05) according to Tukey’s multiple means comparison. 

5.4.3 Saskatchewan Soil Health Score as compared to the Comprehensive Soil Health 

Assessment  

Based on the individual scores, the CASH and SSHS produced similar scores for soil protein and 

active C; discernable differences for WAS, SOC, and PMN; and very dissimilar scores for soil pH 

(Fig. 5-10). The CASH overestimated the scores relative to the SSHS for WAS, and also for PMN 

a a 

b 

a 
a a 

a 

A) B) C) 
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and TC (for above-average soils only). For SOC and TN, the divergence between the two 

approaches is due to how the CASH system adjusts for soil texture. For soil pH, the discrepancy 

between the two approaches is due to the different ‘optimal’ ranges used CASH vs the SSHS—

the former approach using a more narrow ‘optimal’ pH range than the SSHS, resulting in many of 

our Saskatchewan soil samples being assigned a 0 or 100 when using the CASH framework.  

 

Overall, the CASH framework underestimated the soil health status of “below-average to average” 

Saskatchewan soils, but also had a propensity to overestimate the soil health status of “above-

average” SK soils (Fig. 5-10). 
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Figure 5-10. Comparison of the Comprehensive Assessment of Soil Health (CASH) and the 

Saskatchewan Soil Health Score (SSHS). The 1:1 line is presented in addition to the data points 

that represent the scores from both approaches. 

5.4.4 Linking the Saskatchewan Soil Health Score to crop yields  

For the most part, cereal crop yields were not well correlated to the SSHS; however, there were 

two cases in the past 10 years—2009 and 2015—where a positive correlation was detected at p < 

0.05 (Table 5-2). In both 2009 and 2015, not only were crop yields on the lower end, but 

precipitation tended to be low as well— especially during the early part of the growing season 

(Table 5-2). At p values of < 0.1 or p < 0.15, the SSHS was positively correlated to 5- or 10-yr 

average yields (Table 5-2).  
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Table 5-4. The correlation between the Saskatchewan Soil Health Score (SSHS) and average 

cereal crop yields obtained from rural municipalities from 2009 to 2019. Significant correlations 

are indicated at p < 0.05 (*), p < 0.1 (†) and p < 0.15 (‡). Cereal crop yield and precipitation data 

are included for each year. 

 Correlation between cereal 

crop yield and soil health 

(Pearson’s coefficient) 

 Crop yields, Mg 

ha-1 (min, median, 

max) 

Average precipitation, 

mm 

(annual, Apr-June)  

Year SSHS  

(0-15 cm) 

SSHS  

(0-60 cm) 

   

2009 0.64* 0.63*  1.7, 2.4, 3.0 389.6, 108.6 

2010 0.09 0.13  2.1, 2.3, 2.7 550.3, 242.0 

2011 -0.28 -0.08  2.0, 2.7, 3.3 409.7, 162.7 

2012 0.22 0.21  1.8, 2.4, 3.5 446.6, 207.8 

2013 0.24 0.26  2.6, 3.6, 3.8 372.8, 139.9 

2014 0.37 0.34  2.1, 2.7, 3.2  443.9, 205.4 

2015 0.47† 0.65*  2.0, 2.6, 3.2 373.7, 69.0 

2016 0.34 0.29  2.3, 3.3, 4.0 478.6, 144.8 

2017 0.28 0.21  2.4, 2.9, 3.9 310.0, 108.5 

2018 0.43‡ 0.32  1.7, 2.8, 3.9 319.0, 104.7 

5-yr (2014-2018) 0.47† 0.44‡  2.4, 2.7, 3.4 385.2, 126.5 

10-yr (2009-2018) 0.41‡ 0.41‡  2.2, 2.8, 3.1 409.5, 149.3 

 

5.5 Case study example  

As case studies, the SSHS was applied to three sites of contrasting agricultural management (Table 

5-3). Table 5-3 shows the measured value for each soil attribute, as well as the corresponding soil 

health score for each attribute. The overall SSHS at the bottom of Table 5-3 shows the final 

weighted score from the 26 different attributes. Soil from native prairie grassland resulted in the 

greatest number of the attributes considered as optimal status, and produced an overall score of 

76% SSHS (Table 5-3). Farm 1 was in the Black soil zone, and it had an overall score of 70% 

SSHS. This site was managed such that arable crops were grown rotation with a cover crop mixture 

(Table 5-3). Farm 2, on the other hand, had a much lower score, 48% SSHS (Table 5-3). Although 

this farm was also in the Black soil zone, it was under intensive potato production.   
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Table 5-5. Example application of the Saskatchewan Soil Health Test soil health test to three 

case-study sites (0-15 cm): native prairie grassland (Brown soil zone), Farm 1 (arable crops 

rotated with summer cover crops from the Black soil zone) and Farm 2 (intensive potato 

production in the Black soil zone). Red highlighted cells represent poor scores, whereas green 

highlighted cells represent optimal scores. 

  Native prairie Farm 1 Farm 2 

  

Measured 

value Score 

Measured 

value Score 

Measured 

value Score 

Physical  

WSA (%) 59.14 61 66.55 76 52.85 49 

FC (%) 48.35 84 45.17 98 37.56 54 

Sand (%) 43.07 82 47.40 74 42.88 82 

Silt (%) 44.72 75 33.46 84 34.34 87 

Clay (%) 12.21 64 19.14 88 22.78 97 

Chemical  

pH 7.51 99 7.58 97 7.79 82 

EC (mS cm-1) 0.22 55 0.79 0 0.77 0 

TN(g kg-1) 2.98 92 2.75 79 1.71 29 

TC (g kg-1) 33.41 87 36.12 98 33.02 86 

SOC (g kg-1) 31.70 90 31.44 89 23.50 54 

N03
- - N (µg g-1) 3.55 70 15.58 67 37.33 30 

NH4
 + - N (µg g-1) 4.14 95 3.24 81 4.22 93 

P (mg kg-1) 540.26 82 591.73 64 563.63 74 

K (mg kg-1) 3051.76 99 2232.88 77 1899.51 65 

S (mg kg-1) 511.16 96 1058.46 0 1264.26 0 

Na (mg kg-1) 39.24 59 52.97 80 107.44 39 

Fe (mg kg-1) 13186.74 79 12170.22 71 11561.89 66 

Mg (mg kg-1) 3891.75 88 5305.88 92 10073.71 50 

Ca(mg kg-1) 5805.82 94 17250.97 50 41359.53 5 

Mn(mg kg-1) 418.13 86 541.99 79 478.09 97 

Zn(mg kg-1) 55.48 80 41.99 58 45.20 63 

Biological  

CO2 (µg g-1 24-hr-1) 11.85 100 7.92 100 3.06 16 

N2O (ng g-1 24-hr-1) 0.24 55 0.29 47 0.15 75 

Protein (mg g-1) 9.18 88 6.13 49 4.77 30 

Active C (mg kg-1) 789.98 80 763.20 76 512.10 41 

PMN-N (µg g-1)  14.47 43 56.03 100 9.31 24 

        

 

SSHS (SK Soil 

Health Score)  76  70  48 
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6 DISCUSSION 

6.1 Carbon and nitrogen are key regulators of soil health 

Of all the attributes measured, soil protein, active C, total N and C, and SOC explained the greatest 

amount of variance in the dataset; resulted in greater individual weights for computing the overall 

score (Table 5-1; Fig. A-3). Unsurprisingly, these C- and N-based attributes were also highly 

correlated to each other (R2 of 0.68 to 0.97). Both C and N are key constituents of soil organic 

matter, which is critical for the functioning of several ecosystem services such as nutrient supply 

and cycling, water supply and cycling, climate regulation, and supporting plant growth (Lal, 2014, 

2016). By having C- and N-based attributes highly weighted in the SSHS framework, the scoring 

system demonstrates an encouraging linkage to soil ecosystem functioning.  

 

Saskatchewan soils hold great potential for C sequestration and storage (McConkey et al., 2003); 

however, changes in soil organic matter or total C may only be detected in the long-term (5-10-yrs 

or more) (Simonsson et al., 2014). The conundrum is that soil organic matter is a crucial metric 

for soil health, but it is a difficult metric to interpret changes in soil health in the short-term. The 

labile carbon indictors are included to work as the early detector of management practice (Luo et 

al., 2015; Bongiorno et al., 2019; Miller et al., 2019). By representing both the labile (active C and 

soil protein) and more stable measures of soil organic matter (total C and N, SOC), the SSHS 

framework might offer a more useful metric to detect early changes, rather than relying on soil 

organic matter measures alone.   

 

Total P concentration was highly weighted in the soil health measurement based on the principal 

component analysis. More than 50% of total P is typically organic P in agricultural soil (Nash et 

al., 2014), and the correlation analysis found total P was positively correlated to total N, active C, 

and SOC. Thus, improving soil organic matter goes hand-in-hand with soil P. Rather than available 

P, total P was more stable as an annual mean for monitor the phosphorus level in soil; for example, 

phosphorus was greatly influenced by soil pH, more phosphorus tended to fix by calcium since the 

mean of pH in Saskatchewan is 7.3. Total P may be viewed as a broad indicator of soil P levels 

for soil health, while available P can be viewed as focusing more on soil fertility.  
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Some soil health components can be manageable whereas others are more inherent to soil 

formation. Interestingly, two clusters are observed when evaluating the PCA results, and one was 

dominated by C and N indices, and another consisted of mainly physical indicators plus some 

nutrients (Fig. A-6). Thus, it is possible that the PCA results point towards the two distinct 

components of soil health: a manageable component, and an inherent component. The manageable 

component is of greater importance when planning agronomic practices aimed at improving soil 

health, but the inherent component is nonetheless important to consider.  Although inherent soil 

physical attributes like sand, silt, and clay are not changeable with agronomic management, 

management practices can be designed based on inherent characteristics to maximize efficiency 

and profitability (i.e., best strategies to improve soil health on a clayey soil will be different than 

those on a sandy soil).  

 

Different soil zones in Saskatchewan inherently have differences in soil attributes, largely due to 

differences in soil formation. Although variation in individual soil attributes by soil zone was 

observed (i.e., see differences in soil organic C by soil zone, Fig. 5-2), there was no significant 

difference among soil zones when comparing the overall soil health scores across zones (Fig. 5-

9). On one hand, further research is recommended to refine the scoring functions by soil zones due 

to the differences in individual soil attributes among soil zones (and perhaps different soil zones 

would have different weighting systems); on the other hand, because the overall soil health score 

did not dramatically differ by zone, it appears to be a suitable foundation for a provincial soil health 

test for arable cropping systems.  

6.2 Consideration of soil depths beyond 0-15 cm  

The SSHS framework not only includes the 0-15 cm depth, but also the 15-30 and 30-60 cm depths. 

Rather than applying the same weighting factors for the 0-15 cm depth to the subsurface depths, 

the SSHS considers each depth increment independently (i.e., weighting factors are different for 

each depth increment, as shown in Table 5-1, Figs. A-4, A-5, respectively). If a score for 

subsurface soil is computed using the same weighting factors as the 0-15 cm depth, the result 

would mislead users by implying that the subsurface soils “are not as healthy”—when in fact, 

subsurface functions are simply different than those of surface soil. The surface soil is arguably 
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the most weathered and impacted by agricultural management after the conversion from native 

grassland to arable cropland; thus, seems logical that the surface soil health score is more variable 

and numerically lower than the subsurface soils (Fig. 5-9A). This result implies that there is more 

room for improvement in the surface soil layer than deeper depths, and that management practices 

aimed at ameliorating the surface conditions such as no-till and crop residue retention might go a 

long way towards improving soil health overall (Kinoshita et al., 2017). Future work should 

consider incorporating biological indices for the subsurface soil, along with the physical and 

chemical indicators.   

 

Clearly, management practices not only influence surface soil attributes but also subsurface soil 

by influencing the availability and accessibility of soil moisture and nutrients. Efforts to improve 

subsurface soil for crop production are usually aimed at reducing soil compaction. Subsurface 

compaction restricts root growth and limits water and nutrients uptake by the plant—leading to 

reduced crop yields (Vrindts et al., 2005; Obour et al., 2018). Reducing compaction is difficult to 

achieve in the short-term (Wahlström et al., 2021), but effective practices include: deep tillage, 

crop residue retention, rotating crops with deep rooted plant such as radish (Kinoshita et al., 2017; 

Getahun et al., 2018; Wahlström et al., 2021). In some cases, yield increases have been linked to 

subsoil improvement (Getahun et al., 2018). Soil health testing for subsurface soils might be useful 

for tracking such changes, but future research is needed.  

 

Globally, soil is the largest C pool—and more than 50% of this C is stored beyond 0-15 cm depth 

(Rumpel and Kögel-Knabner, 2011). From our PCA analysis, total C and SOC produced high 

weighting factors even in the subsurface soil. Carbon effects soil aggregation, water retention, and 

microbial activity. In the long-term, root-derived C and N are incorporated into aggregates during 

decomposition, which contribute to the formation of stable organic matter (Sanaullah et al., 2011).  

 

6.3 How the Saskatchewan Soil Health Test compares to others? 

For meaningful interpretation of soil health and functioning, regional soil health tests are 

recommended (Frost et al., 2019). Herein, scoring functions and weighting systems were tailored 
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to Saskatchewan soils—and this soil health test is a distribution-type of test. There are pros and 

cons when using a distribution-type of soil health test. For example, an advantage of applying the 

distribution-type of scoring system to the region it was developed from is that the scoring functions 

and overall scores are representative of the area, hence meaningful for the region. But on the 

downside, a distribution-type of scoring function might produce a rather narrow range of scores, 

since the data are required to fit a normal distribution theory. Measured values that are out of the 

range are directly assigned as 100 or 0 based on this type of scoring function. As such, a rather 

narrow range of soil health scores might make it difficult to achieve a stellar score (i.e., even the 

native grassland soil results were in the mid 70s, not 90% or higher).  

 

Compared to the fixed algorithm method developed by Andrews et al (2004), each scoring curve 

consisted of fixed-number parameters and site-specific parameters with changing numbers as site 

characteristics such as soil type and climate. An additive approach is the most common and 

simplest method to integrate each attribute to an overall score, as used by the Comprehensive 

Assessment of Soil Health (Moebius-Clune et al., 2016) and Soil Management Assessment 

Framework (Andrews et al., 2004). However, assigning equal weight to each attribute may 

oversimplify the complex relationship between soil attributes and service in the ecosystem. Other 

methods integrate several attributes via a weighted average approach. The Haney test (Haney et 

al., 2018) functions similar to an index by summing several attributes, but only consisted of three 

soil attributes. Principal component analyses are often used to inform the relative contribution 

different attributes should contribute to an overall score (Andrews and Carroll, 2001; Bi et al., 

2013; Purakayastha et al., 2019; Karaca et al., 2021). This approach involves measuring many 

different soil attributes, prior to integrating them into a single score. If only a small number of 

indicators are included in a soil health test, the capacity to detect the soil health conditions from 

different practices may be limited (Chu et al., 2019).   

 

The Saskatchewan Soil Health Test may not only help to inform management decisions on-farm, 

but also provide supplementary information when assessing soil capability for agricultural use. For 

example, Soil Capability information systems already exist and these indicate the soil’s capacity 

for agriculture use—classified based on climate, soil type, and landscape characteristics (Shields 

et al., 1968). Agricultural capacity classification is also a useful tool to gain the general information 
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of a land and its inherent properties, resulting from fixed factors, mainly recognized as soil forming 

factors like: climate, topography, and parent material. Crop production could be designed and 

developed to minimize adverse impacts of some limitations found in Soil Capability classes, but 

the soil status would still be changeable over time and require routine soil tests. The Saskatchewan 

Soil Health test reflects soil health status of the current usage, and the result of test may change 

over time due to the effect of management practices on soil health status.  

 

No scoring approach is without limitations. It is acknowledged that the SSHS does not consider 

soil borne disease, nor are there any direct measurements of plant germination and growth—factors 

that we recommend considering in future efforts to improve soil health scoring. Further, many of 

the nutrient attributes considered in the SSHS are total concentration rather than available nutrient 

concentration. On one hand, assessing available nutrient concentrations might be more suitable 

from the perspective of crop production—but on the other hand, total nutrient concentrations 

provide a more stable metric that is linked to the potential nutrient supply for crops (only less 

fluctuation due to environmental conditions and timing of soil sampling). Regardless, the SSHS 

methodology and scoring system presented herein provides a regional adaptation for a soil health 

score for one of Canada’s most important agricultural regions. Tracking the soil health score over 

time, together with crop metrics, will provide the information needed to inform and adjust 

management plans aimed at improving soil health and functioning. Extension tools should be 

developed to transform farmers’ routine soil test data into a soil health score, informed by our 

scoring approach.  

 

 

6.4 The link between soil health and crop productivity might be most apparent 

during suboptimal conditions  

Crop yield is one of the most crucial considerations for farmers when deciding on management 

practices. However, quantitatively linking soil health to crop yield has been an elusive goal 

(Garland et al 2021). Soil health scoring is aimed at capturing the capacity of soil to function; 

however, supporting crop growth is just one of several functions provided by soil—this likely 
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contributes to the difficulty in determining an authoritative linkage between soil health scores and 

crop yields. Despite the challenges, researchers have found relationships between soil health 

indicators and crop yields, for example, higher soil biological activity corresponded to greater corn 

yields in United States (Wade et al., 2020). Furthermore, corn and soybean yield were positively 

associated with soil active C, protein, respiration and Mn in the United States; van Es and Karlen 

(2019) concluded the labile organic matter—C and N-based indices—is central for linking soil 

health and crop productivity. Likewise, our SSHS framework prioritizes soil C and N-based 

attributes and showed promise for linking soil health to crop yield (Table 5-2).  Although this is in 

agreement with others (Lal, 2016; Garcia et al., 2018), certain regions may show tighter 

relationships between crop yields and organic matter than others (Wood et al., 2018). For example, 

a global meta-analysis found crop yield positively correlated with SOC when SOC was less than 

2%, but the relationship was less clear when SOC was above 2% (Oldfield et al., 2019). Climate 

and environment play a major role in driving this relationship. The positive relationship between 

yields and SOC is more apparent in arid regions, but less consistent in semi-arid and humid regions 

(Sun et al., 2020). Saskatchewan is a semi-arid region, and this may help explain why the soil 

health scores were positively correlated to crop yields during years with low precipitation only 

(Table 5-2). It is possible that soil health offers some resiliency for crop production during 

suboptimal growing conditions. Further research is recommended to link soil health scores to crop 

yields at a finer-scale (i.e., field-scale), improving upon the regional-scale portrait of crop yield 

linkages to soil health as presented herein. This would offer more precise information about how 

different management practices influence soil health scores across Saskatchewan.  

 

6.5 Soil management for improved soil health 

In general, the soil from Farmer 1’s field produced a relatively high soil health score in the entire 

regional soil database (Table 5-3). This is likely due to the type of agricultural management that 

Farmer 1 had practiced: including a summer polyculture cover crop in the rotation with arable 

crops such as canola and wheat. Further, Farmer 1 also periodically rotates livestock on the field 

to graze the cover crop. Most of Farmer 1’s soil attributes were optimal, with generally high 

organic carbon, aggregate stability, and active microbial activity. Although the soil EC was in high 
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range relative to regional soils, the value had not reached a level that would be considered saline 

but would require careful consideration in the future. Soil S concentrations was relatively high 

compared to other soils in the region, so the fertilization plan for future crops must take the initial 

S pool into account. The future fertilization plan should consider the initial S content and EC to 

avoid over-application and a trajectory towards saline conditions. Accordingly, soil in Farmer 1’s 

field was considered as an example of optimal health status, and indicates that the current practices 

are helping to maintain soil health.  

 

In contrast to Farm 1, soil health in Farmer 2’s field (under potato production) was in the medium 

to low range of the soil health database (Table 5-3). The physical attributes of Farmer 2’s sample 

were either optimal or normal, so the inherent soil properties were not the limiting factors for 

productivity. The constraining attributes appeared in the chemical and biological categories, 

including EC, TN, S, Ca, soil respiration, protein and PMN. The suboptimal nutrient cycling and 

soil biological activity indicated soil microbial community was under pressure and this may have 

restricted some key soil functions. As such, restoring the functioning of microbial process should 

be the first step to improve soil health at this site. Microbial activity is strongly affected by 

management practice such as tillage (Calderón et al., 2001; Hungria et al., 2009), so reducing soil 

disturbance would be recommended. However, this is not really an option at this site because the 

Famer is in the business of potato production. Potato production generally entails tillage to prepare 

the site and minimize weed pressure, and several soil hilling operations per year to maintain a good 

seedbed. Still, these practices are likely leading to the degradation of soil health. Cover cropping 

could be a better alternative to implementing reduced tillage as well as for improving nutrient 

retention. Research has shown cover cropping effectively suppresses weed emergence in the 

growing season and provides abundant N for cash crops (Reberg-Horton et al., 2012). White 

mustard, vetch, and Persian clover are effective for weed suppression in Poland (Kołodziejczyk et 

al., 2017), and rapeseed and ryegrass effectively reduced weed biomass to less than 1% of the total 

biomass of crop over in potato field in Italy (Campiglia et al., 2009). Not only weed management 

but cover cropping also contains many benefits such as erosion prevention, organic matter 

accumulation, and soil compaction alleviation etc. (Williams and Weil, 2004; Campiglia et al., 

2009; Basche et al., 2016; Jahanzad et al., 2016). I recommended the future agronomic research 
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should be aimed at improving soil health and functionality to increase the sustainability of 

intensively produced crops.  

 

Healthy soil produces healthy food, and several soil management practices could help farmers to 

increase soil health. The strategies of building soil health include conservation tillage, compaction 

reduction, crop and animal diversity, cover cropping, compost and amendments, and continuous 

living plants (Fig. 6-1). Carbon and N are central in soil health indices, and the strategies 

mentioned above are targeted at maximizing carbon gain and minimizing carbon loss.  
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Figure. 6-1. Infographic for strategies to build soil health. Created by Athena Wu, based on Van 

Eerd et al. In Press.    

 

Maximizing carbon gain is important because soil carbon is central for soil health. Improving soil 

carbon storage is beneficial for nutrient storage, water retention, soil aggregation, C sequestration, 

and crop productivity. Also, sequestering C into the soil is a practical and effective approach 

against changing climate. Continuous living plant and cover cropping actively are strategies that 

expand either time or space of living root system in soil and create favourable habitat for microbial 

communities, then carbon released through plant residue and dead root decomposition. Beside 
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contributing to the carbon sequestration, continuous living cover could improve porosity and field 

capacity, especially in drier climate and sandy soil (Basche and DeLonge, 2017). Moisture is an 

important factor that limits crop production in Saskatchewan, so improving soil water property 

could increase the resiliency of agroecosystem under changing climate. The living plant’s root 

system also stabilizes soil from erosion and stimulates soil aggregate formation to build a better 

soil structure, further reduce C loss by amour soil surface. Also, integrating animals into the 

cropping system could increase aboveground biodiversity and food web composition, benefiting 

to the farm and the environment (Lemaire et al., 2014). Manure is a fresh and nutrient-rich source 

for increasing organic matter and nutrients input, and farmers should be careful to avoid 

eutrophication when applying manure.  

 

Minimizing carbon loss is important because soil disturbance like tillage and random field traffic 

can degrades soil carbon by accelerating decomposition (CO2 loss) and erosion. Saskatchewan 

farmers have widely accepted no-till practice to avoid soil erosion and increase productivity, but 

the complete transfer to no-till can be challenging for certain farming systems. For example, some 

organic production has limited choices for weed control, so tillage is sometimes necessary to 

implement for weed removal (Wiltshire et al., 2003; Cioni and Maines, 2010). Conservation tillage 

may be an alternative to minimize the adverse effect of tillage on soil health for farmers who have 

to till the soil. Conservative tillage had more significant SOC accumulation than traditional tillage 

(López-Garrido et al., 2011). Other strategies to reduce compaction, growing forage radish, could 

effectively alleviate soil compaction by accessing soil below the compaction layer through roots 

that create a channel for the following crop to access nutrients and water (Wahlström et al., 2021). 

Also, soil functioning is heavily limited in compacted soil, contributing to soil runoff and erosion, 

nutrient depletion, and drought. Strategies like controlled traffic pathways are necessary to 

minimize soil compaction (Kingwell and Fuchsbichler, 2011). Minimizing carbon loss is avoids 

not only unnecessary mechanical activity but also reduces the input cost of farming. 

 

Implementing practices aimed at improving soil health may require time to see the result, but a 

healthy soil will benefit both farmers and our environment. There is no fixed management to 

improve soil health, site-specific characteristic could be accounted in the management plan.  

Strategies could be mixed and combine as a “Soil health cocktail”. Research has demonstrated that 
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the more soil health practices implemented, the healthier the soil (Van Eerd et al., In Press). Soil 

is fundamental for food production, thus guarding soil health is a long-term sustainable 

development for food security.  
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7 CONCLUSIONS 

Maintaining and improving soil health are central to mitigating the adverse impacts of changing 

climate on agricultural production, and soil health tests are valuable tools to measure and track soil 

health over time. Soil health tests can provide the scientific information needed to inform 

management decisions. The CASH framework provides a roadmap and standardized approach to 

access soil health status by integrating soil biological, physical, and chemical attributes, but it has 

not been tailored to Saskatchewan soils—until now. Herein, I present a soil health testing protocol 

and scoring functions for arable cropping systems in Saskatchewan (the SSHS). My testing 

protocol and scoring functions provide the foundation for developing extension tools that are 

capable of transforming farmers’ routine soil test data into a soil health score. As an example, a 

grower-friendly online tool which outputs the SSHS from lab results would be valuable to 

producers and industry, and I recommend that such a tool be created as the next step. My results 

indicate C and N-indices primarily drive soil health differences, and therefore indicate that 

management decisions aimed at improving C and N sequestration will also improve soil health 

scores. Total P was significantly correlated to C and N-indices, and it provide addition information 

as an indicator of soil health status as related to P cycling. It is possible that healthier soils may 

help to safeguard crop yields during sub-optimally dry growing seasons, but further research is 

recommended to explore this linkage more closely.  
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9 APPENDICES 

9.1 Fine-tuning the methodology for measuring soil protein 

This manuscript is submitted to the Canadian Journal of Soil Science as a short communication.  

9.1.1 Introduction 

The soil organic N pool is increasingly recognized as a critical indicator of soil health, and it is 

currently included as a component of soil health testing (Moebius-Clune et al., 2016). Soil protein 

represents a large fraction of the soil organic N pool and contributes to quality and quantity of soil 

organic matter. Thus, it is crucial that the method and procedural details for soil protein extraction 

and quantification are optimized for precision, accuracy, and reproducibility.  

The Bradford method for measuring protein in solution was first applied to soil extracts with the 

intent of quantifying glomalin by Wright & Upadhyaya (1998), and later found to extract a rather 

large range of soil proteins, not just glomalin (Gillespie et al., 2010; Hurisso et al., 2018). Today, 

despite its widespread use for the quantification of autoclaved‐citrate extractable soil protein (ACE 

protein), the Bradford method can be challenging to work with. It often produces inconsistent 

results (Whiffen et al., 2007) and co-extracted compounds—which vary by soil—can interfere 

with the results (Moragues-Saitua et al., 2019). The Bicinchoninic acid (BCA) method has been 

suggested as a better option for soil protein quantification (Reyna and Wall, 2014), but different 

sources report different procedural protocols (Fisher Scientific, n.d.; Hurisso et al., 2018; Moebius-

Clune et al., 2016; Redmile-Gordon et al., 2013) and it is unclear which procedural details should 

be followed. Our objectives were to compare the BCA and Bradford methods to determine which 

is more reliable and fine-tune the procedural details for standardization.   

 

9.1.2 Materials and Methods 

9.1.2.1 Soil protein extraction  

Soils (n = 5) representing a range of textures and organic matter contents were obtained from four 

soil zones in Saskatchewan (i.e., the Brown, Dark Brown, Black, and Gray zones). The soils were 

characterized as (i) a Brown Chernozem  (clay texture, pH 6.2, 16.12 g kg-1 organic C, and 1.58 g 

kg-1 total N); (ii) a Dark Brown Chernozem (DB1: sandy loam texture, pH 8.0, 12.67 g kg-1 organic 
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C, and 1.31 g kg-1 total N; (iii) a Dark Brown Chernozem (DB2: loam texture, pH of 7.8, 14.79 g 

kg-1 of organic C, and 1.52 N g kg-1 total N); (iv) a Black Chernozem (loam texture, pH 5.9, 21.62 

g kg-1 organic C, and 1.31 N g kg-1 of total N); and (v) a Dark Gray Chernozem (clay loam texture, 

pH 7.5, 71.28 g kg-1 organic C, and 6.10 g kg-1 total N). Composite soil samples were collected to 

a depth of 15 cm after harvest (Sept–Oct 2018) using a 2.5-cm (i.d.) auger. Soils were air-dried 

and sieved through a 2-mm mesh screen.  

The standard ACE protein extraction followed the protocol originally developed by Wright & 

Upadhyaya (1996). Briefly, 1.0 g samples of air-dried soil were weighed into 50-mL Falcon tubes 

to which 8 mL of 20 mM sodium citrate (pH = 7) was added and the tubes capped and shaken at 

120 rpm for 5 min. The caps were then loosened and the suspensions autoclaved at 121°C and 15 

psi for 30 min then cooled to room temperature and centrifuged at 5,000  g for 15 min. A sub-

sample of the supernatant was then transferred into a microplate well and analysed immediately 

(although the samples could be stored at 4C overnight). Centrifugation speeds up to 10,000  g 

have been reported, thus we also examined the effect of a faster/shorter centrifugation step (i.e., 

10,000  g for 5 min).  

 

9.1.2.2 Standard preparation and method comparison  

A model protein, bovine serum albumin (BSA), was used as the standard—purchased as ready-to-

use solutions (Thermo Fisher cat:23208) having BSA concentrations of 0, 125, 250, 500, 750, 

1000, 1500, 2000 µg mL-1. Calibration curves (absorbance vs. BSA concentration) were prepared 

following standard protocols for the Bradford (Wright and Upadhyaya, 1996) and BCA (Hurisso 

et al., 2018) microplate analyses.  

In general, the Bradford method involved transferring an aliquot (5–25 L) of the BSA standard 

into a well in the microplate, diluting the BSA solution with phosphate buffered saline (PBS) to a 

volume of 200 µL, adding 50 µL Coomassie Brilliant Blue G-250 dye to each well, incubating the 

microplate at room temperature for 5 min, and measuring the absorbance at 590 nm using a 

microplate spectrophotometer (Bio Tek, Epoch™ 2). Given the range of procedures reported in 

the literature, we tested five different ratios (v/v) of BSA to PBS (i.e., 1:3, 1:5, 1:13, 1:20, and 

1:40). All reagents were supplied with the Bio Rad Protein Assay kit (Bio Rad Laboratories). 



 

 

 

70 

The BCA method was performed using a Pierce™ BCA Protein Assay kit (Thermo Fisher 

Scientific Inc.). In general, the BCA method involved transferring an aliquot (10 L) of the BSA 

standard into a well in the microplate, adding 200 µL of the working reagent (WR: a 50:1 v/v 

mixture of Reagent A and Reagent B) and mixing by shaking for 30 s on a plate shaker, incubating 

the plate at 37C for 30 min, and cooling the plate to room temperature before measuring the 

absorbance at 562 nm using the microplate spectrophotometer. Reagents A (a mixture of sodium 

carbonate, sodium bicarbonate, bicinchoninic acid and sodium tartrate in 0.1M sodium hydroxide) 

and Reagent B (4% cupric sulfate) were supplied with the BCA protein assay kit. In addition to 

the standard procedure described above, the protocol was modified to evaluate a BSA:WR ratio of 

25:200 (v/v) and a different set of incubation conditions (i.e., 60C for 60 min). 

Variations of the two methods were evaluated to determine how the calibrations were affected by 

operational conditions. Calibration curves were obtained by plotting absorbance vs. BSA 

concentration and curve-fitting the data using first- and second-order polynomial regression in 

SAS v. 9.4. Based on the results of the method comparison, the most reliable method was selected 

and used to quantify the extractable protein in the reference soils.  

 

9.1.3 Results 

9.1.3.1 Method selection  

Calibration curves for the Bradford and BCA methods are presented in Figure A-1. The Bradford 

method was restricted to a narrow range of protein concentrations (i.e., up to ca. 30–50 µg ml-1) 

and was sensitive to sample dilution (Fig. A-1A). Moreover, the absorbance readings for the 

Bradford test were very sensitive to the time allowed for color development (data not shown), 

which contributed an additional source of “between run” (i.e., analytical) variability.   

The BCA method was much less sensitive to dilution, yielding calibration curves that spanned a 

much wider range of BSA concentrations (Fig. A-1B). Post-extraction incubation conditions, on 

the other hand, had a significant effect on calibration. That is, increasing the temperature and time 

of the incubation from 37°C for 30 min to 60°C for 60 min resulted in stronger color development 

(i.e., an increase in absorbance) and an increase in the sensitivity of the response (i.e., the slope of 

the curve)—though the calibration curve itself was best described using a second-order polynomial 

(Fig. A-1B). Based on these results, ACE protein assays were conducted using the BCA method.   
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9.1.3.2 Soil protein measurement and variability as influenced by procedural factors  

Whereas the BCA calibration curves were unaffected by dilution, ACE protein concentrations in 

the reference soils showed a significant dilution effect (Fig. A-2A). In lowering the dilution of the 

soil extract from 1:20 to 1:8, the ACE protein result was less controlled by incubation temperature 

and time (Fig. A-2A, note the slope closer to 1) and less variable (Fig A-2B, note the lower CVs). 

At the same time, changing centrifuge conditions during the protein extraction procedure had no 

significant effect on ACE protein concentration (p=0.691) (Fig. A-2A) nor did the time allotted 

for color development (p=0.918; data not shown). 
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Figure A-1. Standard protein (bovine serum albumin, BSA) calibration curves obtained using 

the Bradford method (A) and the Bicinchoninic acid (BCA) method (B). For the Bradford 

method, different dilution ratios (v/v) of standard to PBS (S:PBS) were tested. For the BCA 

method, different incubation temperatures and times (T/T), and dilution ratios (D; 

standard:working reagent, v/v) were tested. Measurements are indicated by markers, and 

significant regressions are indicated by lines. ***, p<0.001.  

   

0 20 40 60 80

0.250

0.500

0.750

1.000

BSA concentration ( g mL-1)

A
b

s
o

rb
a

n
c
e

S:PBS ratio: 25:175 10:200 5:200

A

R2 = 0.9465***

R2 = 0.9675***

0 80 160 240 320 400

0.250

0.500

0.750

1.000

BSA concentration ( g mL-1)

A
b

s
o

rb
a

n
c
e

50:150 15:200

0 50 100 150 200 250
0.000

1.000

2.000

3.000

4.000

BSA concentration ( g mL-1)

A
b

s
o

rb
a

n
c
e

T/T/D: 37/30/1:20 37/30/1:8 60/60/1:20 60/60/1:8

R2 = 0.9879***

R2 = 0.9927***

B



 

 

 

73 

 

 

 

 

Figure A-2. (A) Extractable protein concentrations of five soils determined using different 

incubation conditions of 37°C / 30 min vs. 60°C / 60 min; different centrifuge conditions 

(centrifuge speed, CS; centrifuge time, CT) of 5000  g for 15 min and 10000  g for 5 min; and 

dilution ratios (D) of 1:20; 10:200 µL and 1:8; 25:200 µL. The dashed line represents a 1:1 

relationship. (B) Coefficients of variation (CV) for the analytical and soil replicates for each 

centrifuge condition and dilution ratio, grouped by incubation temperature/time. Different 

colours represent the different dilution ratios; different patterns represent the different centrifuge 

conditions. The horizontal dashed line set at 5% CV to show the criteria of procedure selection. 

Soil replicates was protein measurement from duplicate soil extractions.  

 

9.1.4 Discussion 

In our study, the BCA method produced stronger calibration curves than the Bradford method, 

thereby enabling soil ACE protein to be quantified more precisely and reproducibly. It is 

recommended that researchers follow the BCA method instead of the Bradford method to measure 

soil protein. Our results align with those from others studies where the BCA method was more 

precise (Reyna and Wall, 2014) and more accurate (Redmile-Gordon et al., 2013) compared to the 

Bradford method. There are three reasons for why the Bradford method can produce inconsistent 

results—one being the difficulty attaining a strong and significant calibration curve as it is 
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sensitive to the dilution ratio used; the second being that the spectrophotometer reading must be 

immediately collected (within 10 min) otherwise there is an accumulation of precipitate in the 

sample that interferes with the accuracy of the reading (Redmile-Gordon et al., 2013). Thirdly, the 

Bradford method is susceptible to confounding artefacts, where the color development is 

influenced by the polyphenol concentration i.e., phenolic compounds are co-extracted with protein 

during the soil extraction process (Gillespie et al., 2010).  

In using the BCA method on soil samples, our results showed robust measures of ACE protein 

regardless of post-extraction differences in centrifuge condition or absorbance reading time. These 

results suggest that minor differences in the procedure are unlikely to influence the resulting 

protein concentrations. However, the dilution ratio (i.e., soil extract supernatant:WR) did affect 

the ACE protein estimates in our study—depending on the incubation temperature and time. This 

is an interesting finding, because the calibration curve was not influenced by the dilution ratio 

(standard:WR). There is no real ‘end-point’ for the BCA reaction as the color continues to develop 

with time (only that it changes less rapidly after a certain point). The extraction process might be 

more prone to co-extracting other compounds from soil (interfering with color development) 

depending on the dilution and incubation conditions used. In our study, the 1:8 dilution and low 

temperature incubation produced more consistent results for the reference soils than the 1:20 

dilution. 

We included soil and analytical replicates when quantifying protein in the soil extracts and found 

the lowest CVs (≤ 5%) were generally associated with the 1:8 soil extract:WR dilution and the 

37°C/30 min incubation. Further, selecting these operational conditions for soil ACE protein 

analyses of 160 soil samples for a soil health survey in Saskatchewan yielded average CVs of  

3.5% for soil replicates and 5.8% for analytical replicates (unpublished). Coefficients of variation 

for the analytical replicates were somewhat greater than those reported by Hurisso et al. (2018), 

which suggests that some other factor (e.g., reproducibility of pipetting small volumes) was 

contributing to this variability. This just emphasises the need for researchers to examine the 

repeatability in their own labs, because variability is user and instrument dependent. Considering 

that soil protein measurements are included as a component of soil health testing, an inter-

laboratory comparison of soil protein analysis would be a worthwhile next step to further 

standardize the methodology and best practices.    
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9.1.5 Conclusion 

For quantifying soil ACE protein, the BCA method produced much more reliable calibration 

curves and should be used rather than the Bradford method. Using the BCA method, researchers 

should carefully consider the i) dilution ratio when mixing the soil extract supernatant with the 

working reagent and the ii) incubation temperature and time because both influence the protein 

estimate and the repeatability of the measurement. I recommend using a 1:8 dilution and an 

incubation at 37°C for 30 min. 
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9.2 Appendix Tables and Figures  

Table A-1. Shapiro-Wilk probability values indicating the distribution normality for each soil 

attribute. Where P values are < 0.05, a log or square root transformation was applied to improve 

normality.  

Attributes Dataset  Soil depth (cm) 
  

  0-15 15-30 30-60 

Wet aggregate stability (%) Original 
 

0.38 0.30 0.16 

Soil organic C (g kg-1) Original 
 

0.48 0.73 0.78 

Total C (g kg-1) Original 
 

0.73 0.08 0.14 

Total N (g kg-1) Original 
 

0.22 0.07 0.09 

Protein (mg g-1) Original 
 

0.15 0.73 0.96 

Active C (mg kg-1)  Original 
 

0.93 - -  

CO2 (µg g-1 24hr-1) Original 
 

0.53 -  -  

EC (mS cm-1) Original 
 

0.00 0.01 0.58 
 

Log transformation 0.16 0.43 
 

N2O (ng g-1 24hr-1) Original 
 

0.00 -  -  
 

Log transformation 0.20 
  

pH Original 
 

0.00 0.00 0.00 
 

Square root  
 

0.05 0.04 0.08 

Sand (%) Original 
 

0.06 0.04 0.00 
 

Square root 
  

0.45 
 

Silt (%) Original 
 

0.82 0.69 0.22 

Clay (%) Original 
 

0.00 0.00 0.00 
 

Log transformation 0.06 0.14 0.02 

NO3
-1-N (µg g-1) Original 

 
0.00 0.00 0.00 

 
Log transformation 0.22 0.04 0.73 

NH4
+-N (µg g-1) Original 

 
0.70 0.24 0.50 

PMN (µg g-1) Original  0.01 - - 

 Log transformation  0.38 - - 

Field capacity (%) Original 
 

0.49 0.66 0.18 

Na (mg kg-1) Original 
 

0.15 0.04 0.04 
 

Log transformation 
 

0.58 0.56 

P (mg kg-1) Original 
 

0.43 0.58 0.73 

Mn (mg kg-1) Original 
 

0.90 0.27 0.14 

Ca (mg kg-1) Original 
 

0.00 0.00 0.00 
 

Log transformation 0.67 0.08 0.05 

S (mg kg-1) Original 
 

0.33 0.00 0.00 
 

Log transformation 
 

0.84 0.07 
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Mg (mg kg-1) Original 
 

0.00 0.00 0.00 
 

Log transformation 0.29 0.28 0.26 

Zn (mg kg-1) Original 
 

0.45 0.04 0.01 
 

Log transformation 
 

0.33 0.03 

Fe (mg kg-1) Original 
 

0.01 0.02 0.00 
 

Log transformation 0.07 0.11 0.00 

K (mg kg-1) Original 
 

0.00 0.00 0.00 

  Log transformation 0.11 0.14 0.05 

- , data not available because only the surface-most depth increment was analyzed 
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Table A-2. Model selection for predicting soil health scores from soil attribute measurements according to the “more is better” function.  For 

all models, x is the observed soil score and y is the modelled soil health score. Models are selected based on R2 and root mean square error 

(RMSE), indicated in bold. 

  Model 

Soil 

depth 

(cm) 

Attributes 
 

Polynomial 

with 

intercept 

(order =2) 

polynomial 

without 

intercept 

(order =2) 

polynomial 

(order=1) 

Power Inverse 

power 

Square 

root  

Hoerl's  Logarithmic 

0-15 Wet aggregate stability (%) R2 0.96 0.95 - 0.86 0.98 0.92 0.97 0.85 
 

RMSE 5.59 6.60 - 10.72 3.80 8.33 4.76 11.29 

Soil Organic C (g kg -1) R2 0.96 0.94 0.96 0.89 - 0.93 0.95 0.85 
 

RMSE 5.68 7.45 5.69 9.95 - 7.64 6.27 11.36 

Total C (g kg -1) R2 0.97 0.93 0.97 0.87 - 0.96 1.00 0.92 
 

RMSE 5.34 7.82 5.41 11.06 - 6.24 1.56 8.50 

Total N (g kg -1) R2 0.95 0.94 - 0.88 - 0.89 - 0.77 
 

RMSE 6.26 7.42 - 10.24 - 9.55 - 14.21 

Protein (mg g-1) R2 0.95 0.91 0.95 0.85 - 0.92 0.95 0.81 
 

RMSE 6.60 8.99 6.82 11.19 - 8.34 6.83 12.67 

CO2 (mg g-1 24hr-1) R2 0.97 0.92 0.96 0.86 0.98 0.96 0.99 0.92 
 

RMSE 5.04 8.31 5.58 11.02 4.18 5.80 3.02 8.05 

Active C (mg kg -1)  R2 0.97 0.95 0.97 0.92 - 0.94 0.97 0.86 
 

RMSE 5.05 6.77 5.05 8.52 - 7.20 5.16 11.29 

 Potential mineralizable N 

(ug g-1)  

R2 - 0.94 0.76 0.71 0.96 0.94 0.96 0.91 

  RMSE - 6.87 14.01 15.37 5.61 7.15 5.97 8.81 
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15-30 Wet aggregate stability (%) R2 0.98 0.96 0.97 0.87 0.97 0.94 1.00 0.90 
 

RMSE 4.47 5.47 5.09 10.32 4.87 6.97 0.97 9.36 

Soil Organic C (g kg -1) R2 0.97 0.93 0.97 0.88 0.99 0.95 0.98 0.90 
 

RMSE 5.49 8.01 5.60 10.56 3.71 6.74 4.50 9.76 

Total C (g kg -1) R2 0.98 0.91 0.94 0.83 0.98 0.96 0.99 0.95 
 

RMSE 4.43 9.08 6.99 12.34 4.01 5.58 2.71 6.77 

Total N (g kg -1) R2 0.98 0.95 0.98 0.92 0.99 0.97 0.98 0.92 
 

RMSE 4.65 7.20 4.82 8.61 3.15 5.78 4.14 8.76 

Protein (mg g -1) R2 0.97 0.94 0.97 0.88 0.98 0.95 0.99 0.91 
 

RMSE 5.10 7.34 5.13 10.16 3.80 6.33 2.32 9.13 

30-60 Wet aggregate stability (%) R2 0.98 0.98 0.97 0.98 - 0.90 0.94 0.73 
 

RMSE 4.24 4.69 4.83 4.26 - 9.38 7.41 15.64 

Soil Organic C (g kg -1) R2 0.98 0.94 0.97 0.90 0.99 0.96 0.99 0.91 
 

RMSE 4.75 7.12 4.83 9.43 3.30 5.98 3.09 8.87 

Total C (g kg -1) R2 0.98 0.95 0.97 0.93 - 0.97 0.98 0.91 
 

RMSE 4.19 6.49 5.18 8.05 - 5.35 4.05 8.79 

Total N (g kg -1) R2 0.98 0.91 0.95 0.85 0.98 0.97 0.99 0.95 
 

RMSE 4.23 8.61 6.88 11.37 3.79 5.43 2.70 6.78 

Protein (mg g -1) R2 0.96 0.94 0.96 0.92 0.92 0.92 0.93 0.81 
 

RMSE 5.56 6.98 5.56 8.39 8.56 8.17 7.55 12.74 
            

Average R2 
0.97 0.94 * 0.89 * 0.94 * 0.88 

  
RMSE 5.10 7.31 * 9.78 * 6.94 * 10.23 

-, the curve created by particular model doesn’t follow the scoring type; *, the model is not applicable for all selected attributes.  

The model with bolding values is the selected model for the attributes in table.  Polynomial with intercept (order =2), y=a+bx+cx2. Polynomial without intercept (order =2), y=ax+bx2. Polynomial with intercept 

(order =1), y=a+bx. Power, y=axb. Inverse power, y=a*e(b/x). Square root, y=a+b*√x . Hoerl’s, y=a*xb*e(C*x) . Logarithmic, y=a+b*In(x). 
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Table A-3. Model selection for predicting soil health scores for each soil attribute of “less is better” type in the 0-15, 15-30, and 30-60 cm 

depth, based on R2 and root mean square error (RMSE). For all models, x is the observed soil health score and y is the modelled soil health 

score. Bolded R2 and RMSE values indicate the selected model. 

   Modal 

Soil 

depth 

(cm) 

Attributes 
 

Polynomial 

with 

intercept 

(order =2) 

Polynomial 

without 

intercept 

(order =2) 

Polynomial 

(order=1) 

Power Inverse 

power 

Square 

root  

Hoerl's  Logarithmic 

0-15 EC (mS cm -1) R2 - - - - - 0.97 - 0.99 
  

RMSE - - - - - 5.30 - 3.75 
 

N2O (ng g-1 

24hr-1) 

R2 - - - - - 0.95 - 0.95 

  
RMSE - - - - - 6.48 - 6.77 

15-30 EC (mS cm -1) R2 - - 0.89 0.72 0.51 0.95 - - 
  

RMSE - - 9.59 15.41 20.39 6.24 - - 

30-60 EC (mS cm -1) R2 - - 0.97 - - 0.96 - 0.90 
  

RMSE - - 5.21 - - 5.98 - 9.32 
           
Averag

e 

 R2 * * 0.93 * * 0.96 * 0.95 

  
RMSE * * 7.51 * * 5.62 * 6.38 

-, the curve created by particular model doesn’t follow the scoring type;  

*, the model is not applicable for all selected attributes.  

Polynomial (order=1), y=a+bx. Polynomial with intercept (order =2), y=a+bx+cx2. Polynomial with intercept (order =2), y=ax+bx2. Power, y=axb. Inverse power, y=a*e(b/x). Square root, 

y=a+b*√x . Hoerl’s, y=a*xb*e(C*x). Logarithmic, y=a+b*In(x); 
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Table A-4. The formulas and threshold limits that correspond to the models presented in Figures 5-2 to 5-5 (x is measured value, and y is 

corresponded score. 

 0-15 cm depth 15-30 cm depth 30-60 cm depth 

Attribute Equation  

Upper 

threshol

d 

Lower 

threshold 
Equation  

Upper 

threshol

d 

Lower 

threshol

d 

Equation  

Upper 

threshol

d 

Lower 

threshol

d 

More is better 

Wet 

aggregate 

stability (%) 

y=-30.752+1.077*x 

+0.008*x2 
84.16 16.69 

y=-

36.408+1.130*x+ 

0.011*x2 

73.53 21.58 y=-9.442+1.071*x +0.006*x2 79.94 2.12 

Soil organic 

C (g kg-1) 

y=-42.350+3.967*x 

+0.006*x2 
3.85 0.54 

y=-

46.456+6.950*x-

0.035*x2 

27.06 4.11 y=-38.912+8.107*x -0.042*x2 20.74 3.69 

Total C (g 

kg-1) 

y=-62.579+5.014*x-

0.016*x2 
4.19 0.89 

y=-

46.464+6.388*x-

0.064*x2 

42.41 6.24 y=-25.786+4.864*x -0.036*x2 39.04 4.04 

Total N (g 

kg-1) 

y=-34.953+30.982*x 

+3.820*x2 
0.34 0.04 

y=-

44.239+72.271*x-

4.622*x2 

2.48 0.39 y=-84.735+138.353*√x 2.20 0.32 

Protein (mg 

g-1) 

y=-44.708+16.897*x -

0.272*x2 
12.31 1.11 

y=-

47.697+27.304*x-

0.363*x2 

6.33 1.16 
y=-23.544 

+32.625*x+0.110*x2 
4.14 0.36 

Active C 

(mg kg-1)  
y=-30.213+0.139*x 1026.02 108.67       

CO2 (g g-1 

24hr-1) 

y=-56.012 +25.727*x -

0.751*x2 
8.79 1.57       
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Potential 

mineralizabl

e N (g g-1) 

y=-54.072+25.5811√𝑥         

Less is better 

          

EC (mS cm -

1) 
y=178.487-261.560*√x 0.53 0.10 

y=172.103-

256.986*√x 
0.55 0.07 y=182.305-273.560*√x 0.47 0.06 

N2O (ng g-1 

24hr-1) 
y=148.330-188.642*√x 0.74 0.04       

Optimum is best 

pH y=(
3-|

√10x-5815.680)
3855.037

|

3
)*100 8.45 5.15 

y=

(
3-|

√10x-7380.540)

4133.261
|

3
)*100 

8.48 5.94 y=(
3-|

√10x-11095.846)
4452.383

|

3
)*100 8.82 6.49 

Sand (%) y=(
3-|

x-33.507)
17.774

|

3
)*100  80.59 4.06 y=(

3-|√x-5.180)
1.670

|

3
)*100   75.18 1.09 

y=

(
3-|

log10(|log10x/100|)+0.261)

0.238
|

3
)*100 

70.30 4.37 

Silt (%) y=(
3-|

x-37.820)
9.040

|

3
)*100  58.86 14.45 y=(

3-|
x-37.918)

10.122
|

3
)*100  62.79 18.29 y=(

3-|
x-34.954)

10.244
|

3
)*100 60.72 16.27 

Clay (%) y=(
3-|

log10x-1.378)

0.271
|

3
)*100 66.25 4.96 y=(

3-|
log10x-1.445)

0.250
|

3
)*100 71.60 4.98 

y=

(
3-|

log10(|log10x/100|)-0.165)

0.074
|

3
)*100 

72.76 10.03 

NO3
--N (g 

g-1) 

y= (
3−|

𝑙𝑜𝑔10x−0.856)

0.342
|

3
) ∗

100 

25.11 1.19 
y= (

3−|
𝑙𝑜𝑔10x−0.660)

0.461
|

3
) ∗

100 

22.89 0.28 y=(
3−|

𝑙𝑜𝑔10x−0.311)

0.632
|

3
) ∗ 100 28.36 0.04 

NH4
+-N (g 

g-1) 
y=(

3−|
x−3.943)

1.233
|

3
) ∗ 100 7.08 1.56 y=(

3−|
x−3.490)

0.974
|

3
) ∗ 100 5.54 1.71 y=(

3−|
x−3.632)

1.328
|

3
) ∗ 100 6.93 1.31 

Field 

capacity (%) 
y=(

3−|
x−45.603)

5.880
|

3
) ∗ 100 61.12 29.99 y=(

3−|
x−44.157)

5.531
|

3
) ∗ 100 56.84 30.85 y=(

3−|
x−43.173)

5.459
|

3
) ∗ 100 53.51 32.94 
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Na (mg kg-1) y=(
3−|

x−66.472)

22.268
|

3
) ∗ 100 113.29 29.16 

y= (
3−|

𝑙𝑜𝑔10x−1.864)

0.168
|

3
) ∗

100 

152.52 28.82 y=(
3−|

𝑙𝑜𝑔10x−1.979)

0.204
|

3
) ∗ 100 245.63 32.20 

Ca (mg kg-1) 
y= (

3−|
𝑙𝑜𝑔10x−3.816)

0.282
|

3
) ∗

100 

24698.4

6 

1615.4

9 

y= (
3−|

𝑙𝑜𝑔10x−3.991)

0.432
|

3
) ∗

100 

78616.0

6 
1842.94 y=(

3−|
𝑙𝑜𝑔10x−4.216)

0.425
|

3
) ∗ 100 

81258.6

3 
2099.80 

P (mg kg-1) y=(
3−|

x−489.637)
94.889

|

3
) ∗ 100 747.99 315.01 y=(

3−|
x−434.159)

105.232
|

3
) ∗ 100 706.88 232.08 y=(

3−|
x−408.124)

82.978
|

3
) ∗ 100 592.75 230.86 

S (mg kg-1) y=(
3−|

x−490.313)

174.303
|

3
) ∗ 100 892.06 178.02 

y= (
3−|

𝑙𝑜𝑔10x−2.713)

0.296
|

3
) ∗

100 

2043.56 100.63 y=(
3−|

𝑙𝑜𝑔10x−2.840)

0.337
|

3
) ∗ 100 2471.25 105.64 

Mg (mg kg-

1) 

y= (
3−|

𝑙𝑜𝑔10x−3.669)

0.221
|

3
) ∗

100 

11970.1

7 

1526.7

0 

y= (
3−|

𝑙𝑜𝑔10x−3.751)

0.248
|

3
) ∗

100 

18870.9

2 
1535.62 y=(

3−|
𝑙𝑜𝑔10x−3.865)

0.244
|

3
) ∗ 100 

20371.5

8 
1970.63 

Zn (mg kg-1) y=(
3−|

x−67.397)
20.225

|

3
) ∗ 100 108.65 26.35 

y= (
3−|

𝑙𝑜𝑔10x−1.779)

0.137
|

3
) ∗

100 

109.31 29.26 y=(
3−|

𝑙𝑜𝑔10x−1.751)

0.151
|

3
) ∗ 100 100.57 28.72 

Fe (mg kg-1) 
y= (

3−|
𝑙𝑜𝑔10x−4.211)

0.146
|

3
) ∗

100 

28111.6

0 

7152.0

7 

y= (
3−|

𝑙𝑜𝑔10x−4.227)

0.138
|

3
) ∗

100 

28392.4

5 
7879.71 * 

27860.7

9 

10050.8

5 

K (mg kg-1) 𝑦 = (
3 − |

𝑙𝑜𝑔10x − 3.490)
0.202 |

3
)

∗ 100 

6593.32 866.90 
y= (

3−|
𝑙𝑜𝑔10x−3.426)

0.204
|

3
) ∗

100 

6213.33 991.55 y=(
3−|

𝑙𝑜𝑔10x−3.370)

0.194
|

3
) ∗ 100 4724.46 763.12 

Mn (mg kg-

1) 
y=(

3−|
x−468.261)

115.276
|

3
) ∗ 100 791.37 183.10 y=(

3−|
x−431.861)

126.577
|

3
) ∗ 100 728.37 195.35 y=(

3−|
x−390.575)

104.663
|

3
) ∗ 100 960.86 223.63 

*, The data of Fe from 30-60 cm depth failed to reach normality via any transformation (be it log, ln, square root, etc.); thus, Fe in 30-60 cm 

depth were not included in the soil health scoring. 
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Figure A-3. The correlation of variables in first two principal components computed from principal 

component analysis. Positive correlated variables point to the same side of the plot. Negative correlated 

variables point to opposite sides of the graph. The color the variables by its contribution. 
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Figure A-4. The weighting factor of each soil attributes in Saskatchewan Soil Health Testing Protocol 

for soil from 0-15 cm depth.  
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Figure A-5. The weighting factor of each soil attributes in Saskatchewan Soil Health Testing Protocol 

for soil from 15-30 and 30-60 cm depth, respectively. 
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Figure A-6. The correlation network of soil attributes in Saskatchewan Soil Health Testing Protocol for 

soil from 0-15 cm depth.  
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