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Abstract

This thesis work attempts to improve the quality of surface-level pollutant concentrations

retrieved from satellite-borne optical instruments. In the first part of the present work, an

analysis is performed to determine potential benefits of implementing a different radiative

transfer model than the one planned for retrieving Canadian tropospheric ozone concentra-

tions with future measurements from the Tropospheric Emissions: Monitoring of Pollution

(TEMPO) optical instrument, planned to be launched in 2022 into geostationary orbit to

measure tropospheric pollutants over the majority of North America. The plane-parallel

Earth-atmosphere geometry assumption for multiple-scattered electromagnetic radiation in

the planned radiative transfer model for the TEMPO ozone retrieval algorithm has minimal

effect for heritage instruments that look at angles close to straight down and measure at local

times where the Sun is far above the horizon. However, it is demonstrated in the present

work for simulated TEMPO measurements over the Canadian Oil Sands that the retrieval

error for a radiative transfer model with a plane-parallel geometry can reach approximately

15% at 13:00 local time, 25% in March or September near local sunrise, 50% in June near

local sunrise, and 80% in December near local sunrise, while a radiative transfer model with

a spherical geometry results in error up to an order of magnitude smaller in each case. Fur-

ther work is required to assess the effects of the geometry assumptions on different orders of

scattering and of measurement noise. In the second part of the present work, a novel method

of estimating tropospheric NO2 pollution using non-coincident limb- and nadir-viewing in-

strument measurements is further assessed with a reanalysis using new datasets produced

by the Ozone Monitoring Instrument (OMI), the Optical Spectrograph and Infrared Imager

System (OSIRIS), and a photochemical box model, and an analysis using OSIRIS and the

TROPOspheric Monitoring Instrument (TROPOMI). A bias is demonstrated in the current

publicly available OSIRIS NO2 density profile data, leading to the development of an up-

dated dataset that is shown to agree with a previously validated dataset within retrieval

error bounds above the tropopause. The OSIRIS-OMI reanalysis demonstrates biases of up

to 0.5 × 1015 molecules/cm2 due to the different photochemical box model input parame-
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ters and up to 0.2× 1015 molecules/cm2 due to the use of the latest OMI NO2 dataset. The

OSIRIS-TROPOMI analysis demonstrates a positive average bias of approximately 0.5×1015

molecules/cm2 in the limb-nadir matching with TROPOMI relative to that with OMI due

to TROPOMI-OMI tropospheric and stratospheric NO2 column density biases. Error range

estimates of photochemical box model input parameters and of different versions of OMI

datasets, further analysis of local and yearly dependencies of OSIRIS-OMI limb-nadir match-

ing biases, and further studies on latitudinal and seasonal dependencies of TROPOMI-OMI

dataset biases are recommended for future work.
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1 Introduction

The present thesis has two separate goals that are linked through the objective of attempting

to improve the quality of surface-level pollutant concentrations retrieved from the measure-

ments of optical instruments in operation onboard satellite platforms. The first goal is to

investigate the difference in ozone retrieval error, for retrieved tropospheric ozone concentra-

tions over Canada using simulated measurements from the Tropospheric Emissions: Moni-

toring of Pollution (TEMPO) instrument, associated with the implementation of a radiative

transfer model with a more realistic geometry compared to using the one planned to be im-

plemented by the National Aeronautics and Space Administration (NASA). The second goal

is to further assess the feasibility of using the relatively novel method of combining limb- and

nadir-viewing remote sensing satellite-borne instruments with non-coincident measurements

to derive tropospheric nitrogen dioxide (NO2) concentrations.

The intention of the first goal is to quantify potential benefits of implementing a radiative

transfer model with a spherical geometry for all orders of scattering to retrieve ozone profiles

over Canada with future TEMPO measurements compared to implementing the planned Vec-

tor LInearized Discrete Ordinates Radiative Transfer (VLIDORT) model, which assumes a

plane-parallel Earth-atmosphere geometry for multiple-scattered electromagnetic radiation.

This goal is addressed in the thesis by comparing, between the use of a radiative transfer

model with a spherical geometry for all orders of scattering and the use of a radiative transfer

model with a plane-parallel geometry for all orders of scattering, the error in retrieved tro-

pospheric ozone concentrations over Canada using simulated TEMPO measurements. The

second goal is addressed in this thesis by: i) reanalyzing the results of Adams et al. (2016)

with newer datasets produced by the Optical Spectrograph and Infrared Imager System

(OSIRIS), the Ozone Monitoring Instrument (OMI), and the photochemical box model of
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Prather and Jaffe (1990), and ii) analyzing results for the non-coincident limb-nadir matching

of OSIRIS and the European Space Agency (ESA) TROPOspheric Monitoring Instrument

(TROPOMI), the successor of OMI.

The past century has seen a rapid increase in the rate of anthropogenic emissions of pollution

due to rising industrialization and economic development. Consequently, frequent global

measurements of the troposphere, which extends from the ground to an altitude between 6

and 20 km and is characterized by a temperature that increases with altitude, is important

for the monitoring of air pollution. Ground-based measurement exist, but measurements

from remote sensing instruments onboard satellites have the advantage of global coverage for

each instrument and have been used since the 1960’s, with the quantity of these instruments

growing at an increasing rate. Most satellites for the purpose of atmospheric remote sensing

are in polar orbits, providing near-global coverage with any given region being measured once

daily. Some recent generations of atmospheric remote sensing satellites, however, are being

put in geostationary orbits, which does not permit global coverage but allows for any given

region to be measured at an hourly resolution. This provides finer analyses of the temporal

variations of species in the lower atmosphere, which is particularly beneficial for pollutants

that result largely from quickly varying anthropogenic emissions.

The TEMPO instrument of NASA, planned to be launched in 2022, is one such instrument

designed to measure the atmosphere from a geostationary orbit. TEMPO will provide tro-

pospheric pollution measurements over the majority of North America, from Mexico City

to the Canadian Oil Sands and from the Pacific Ocean to the Atlantic Ocean. The ozone

retrieval algorithm, which extracts tropospheric ozone concentrations from TEMPO mea-

surements, is based on those of two heritage instruments, the Ozone Monitoring Instrument

(OMI) and the Global Ozone Monitoring Experiment (GOME), and is planned to use the

VLIDORT radiative transfer model to simulate the instrument measurements for different

atmospheres. The VLIDORT model assumes a spherical Earth-atmosphere geometry for

the single-scattered electromagnetic radiation of simulated measurements. To reduce the

computational complexity, a simpler, less realistic plane-parallel Earth-atmosphere geometry

is assumed in VLIDORT for the multiple-scattered electromagnetic radiation of simulated
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measurements. This assumption for multiple-scattered electromagnetic radiation has an in-

significant effect on the tropospheric ozone retrievals of the heritage instruments which have

viewing zenith angles (VZAs) that are low, corresponding to the instrument pointing nearly

straight down, and solar zenith angles (SZAs) that are low, corresponding to the Sun being

high above the horizon. For most of the regions measured by TEMPO, the geometric as-

sumption has a low impact on the tropospheric ozone retrievals. However, for measurements

over Canada, and especially close to local sunrise or sunset, there is potential for the geomet-

ric assumption to significantly affect the accuracy of the derived ozone concentrations. This

provides an opportunity for Canada to investigate the potential reductions in retrieval error

due to the use of an algorithm with less geometric assumptions for Canadian air pollution

monitoring.

Although species such as ozone and NO2 pose threats to the health of life on Earth when in

the troposphere, they do not pose an immediate threat when in the stratosphere, and in some

cases are beneficial for living organisms. For example, stratospheric ozone shields the surface

of the Earth from a significant portion of harmful ultraviolet (UV) radiation from outer space,

whereas tropospheric ozone near the ground can cause severe respiratory problems. A major

challenge in measuring the harmful tropospheric pollution with satellite-borne instruments

is that species such as ozone and NO2 exist primarily in the stratosphere, which extends

from the top of the troposphere to an altitude around 50 km and is characterized by tem-

perature that increases with altitude. Satellite-borne remote sensing instruments, typically

at altitudes above 400 km, must look through the large stratospheric species concentrations

to measure the tropospheric concentrations useful for air quality monitoring. They must

therefore separate out the stratospheric part from the measurements.

The measurement of tropospheric ozone vertical number density profiles is possible by taking

advantage of the optical properties of ozone. Its degree of electromagnetic radiation ab-

sorption varies substantially with wavelength, resulting in sunlight of different wavelengths

penetrating the atmosphere over a large range of altitudes. This in turn enables the measure-

ment of ozone concentrations at different altitudes by measuring a range of wavelengths of

electromagnetic radiation. NO2, on the other hand, has a degree of electromagnetic radiation
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absorption that does not vary as much with wavelength, making it difficult to use this method.

The measurement of tropospheric NO2 therefore typically makes use of additional assump-

tions, such as low longitudinal concentration variations, global chemical transport models,

cloud data to make measurements over cloudy regions, and calibrations using measurements

over regions with low tropospheric pollution levels such as the Pacific Ocean.

A relatively novel troposphere-stratosphere separation method (Adams et al., 2016) demon-

strates the feasibility of estimating the tropospheric NO2 column density by taking the

stratospheric column density measured by a limb-viewing remote sensing instrument and

subtracting it from the combined troposphere-stratosphere column density measured by a

nadir-viewing instrument, with the two instruments having non-coincident measurements.

The limb- and nadir-viewing instrument measurements are matched in local time and posi-

tion by taking advantage of the lower variations of NO2 in the stratosphere and the daily

global coverage of the two instruments. A photochemical box model, which models the photo-

chemical diurnal variations in the concentrations of atmospheric species such as NO2, is used

to extrapolate the limb-measurement-derived stratospheric NO2 concentrations in local solar

time to match the local times of the nadir-viewing instrument measurements. The strato-

spheric NO2 concentrations measured by the limb-viewing instrument over a period of time

are interpolated and smoothed to match the geographic locations of the nadir-viewing instru-

ment measurements. An assessment of this method with different datasets and instruments

would provide further understanding of the value in using the method.

Chapter 2 comprises relevant background information, including atmospheric remote sensing

fundamentals, details of the SASKTRAN radiative transfer model and the Optimal Estima-

tion algorithm used for the TEMPO ozone retrievals, and a description of the non-coincident

limb-nadir matching algorithm. Chapter 3 details the development and validation of both

the heritage-instrument-based and the simulated-TEMPO-based ozone retrieval algorithms.

Chapter 4 consists of comparisons between OSIRIS NO2 profile data that lead to the devel-

opment of an updated OSIRIS NO2 profile retrieval algorithm, the reanalysis of tropospheric

NO2 density columns resulting from OSIRIS-OMI limb-nadir matching, and the analysis of

tropospheric NO2 density columns resulting from OSIRIS-TROPOMI limb-nadir matching.
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Chapter 5 concludes the results of this thesis and outlines the recommendations for future

work.
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2 Background

2.1 Atmospheric Remote Sensing

A common method to determine the atmospheric concentration of a given species is to use

satellite optical spectrometer measurements and a radiative transfer model (see Section 2.2).

Remotely measuring the atmosphere with a satellite instrument has the advantage of pro-

viding long-term records with near-global coverage. The radiative transfer model is used

to simulate measurements of the satellite instrument in a realistic, simulated atmosphere

to determine the most plausible atmospheric state given the instrument measurements and

any other a priori information. The radiative transfer model therefore requires models of

the optical spectrometer and of the atmosphere. The process of determining atmospheric

species concentrations with this method is often referred to as a retrieval algorithm. The re-

trieval algorithm typically involves iteratively varying parameters, such as the concentration

of individual atmospheric species, in the radiative transfer model until some predefined set

of constraints is satisfied. As a crude example, the concentration of ozone in the radiative

transfer model could be varied until the radiance measurement simulated by the model best

matches the instrument radiance measurement. The data at each step of the algorithm is

often referred to by a processing level. For example, the instrument measurement data is

level 1 and the retrieved species concentrations are level 2.

2.1.1 Atmosphere

The atmospheric vertical column above any point on the surface of the Earth is organized

into layers separated by altitudes for which the lapse rate, defined as the negative derivative

of temperature with respect to altitude, is zero. The altitudes separating the different atmo-
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spheric layers vary with the time of year and with the latitude and longitude of the surface of

the Earth at the bottom of the atmospheric column (Wallace & Hobbs, 2006). The two low-

est layers, the troposphere and the stratosphere, contain the largest concentrations of species

and are relevant to the present work. The troposphere, extending from the ground to the

tropopause at an altitude between 6 and 20 km, is heated primarily by the Earth, resulting

in the temperature decreasing with altitude. The tropopause altitude is dependent on factors

such as latitude and time of the year. The stratosphere, extending from the tropopause to

the stratopause at an altitude near 50 km (Wallace & Hobbs, 2006), is heated primarily by

the absorption of UV radiation from the Sun, resulting in the temperature increasing with

altitude.

2.1.2 Instrument Geometries

Atmospheric remote sensing satellites are principally in low-Earth orbit (LEO) at altitudes

between 400 and 800 km (Riebeek, 2009). Remote sensing satellites in LEO are often in a Sun-

synchronous orbit, meaning they measure over regions at a local time that is approximately

constant for each half of the orbit. Some recent remote sensing satellites are being put into

geostationary orbits, meaning their orbital period matches the period of rotation of the Earth.

Satellites at geostationary orbit are at an altitude of approximately 35 786 km directly above

the equator. The advantage of remote sensing from a geostationary orbit is an increased

frequency of measurements over any region in the field of regard, where the field of regard is

defined as the union of all possible instantaneous fields of view of the instrument. The plane

containing the orbital path of a satellite is referred to as the orbital plane. The ground track

of a satellite is defined as the track on the surface of the Earth that is directly below the

instrument as it passes over.

Two types of satellite instrument viewing geometries relevant to the present work are the

nadir and limb geometries. The nadir-viewing geometry for a LEO and for a geostationary

orbit, and the limb-viewing geometry for a LEO, are illustrated in Fig. 2.1. The nadir-viewing

geometry is where the instrument is pointed towards the surface of the Earth, and allows for

column densities reaching down to the ground to be measured at relatively high longitudinal
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and latitudinal resolutions. The limb-viewing geometry is where the instrument is pointed

across the limb of the atmosphere, and allows stratospheric and upper tropospheric vertical

density profiles to be measured at relatively high altitude resolutions.

Figure 2.1. Common remote sensing instrument viewing geometries for low-Earth

orbits (LEOs) and geostationary orbits. The lines in each case show the edges of the

range of viewing angles. The orbit altitudes and viewing angles are exaggerated for

illustrative purposes.

When a nadir-viewing instrument measures the electromagnetic radiation that originates

from the Sun and is scattered and reflected along various paths through the atmosphere

before reaching the instrument sensor, the column density along the effective path of electro-

magnetic radiation is called the slant column density (SCD). The more useful vertical column

density (VCD) is the column density along a straight path of electromagnetic radiation that

is perpendicular to the surface of the Earth directly below it. This path need not reach all

the way down to the surface of the Earth or up to the top of the atmosphere. For example, a

stratospheric VCD extends from the tropopause to the stratopause. An SCD is converted to

a VCD using an air mass factor (AMF) which is defined by the ratio AMF = SCD / VCD,

and is pre-calculated for various scenarios using radiative transfer modeling (see Section 2.2).

The AMFs are dependent on factors such as the instrument viewing geometry, the relative

orientation of the Sun, the vertical density profile of the species to be measured, the albedo

at different points on the surface of the Earth, and the amount of clouds and aerosols (Platt
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& Stutz, 2008).

Fig. 2.2 illustrates the primary parameters for nadir- and limb-viewing geometries. Note

that due to the size of the Sun, the lines of solar radiation propagation can be assumed to

be parallel to each other anywhere they reach the atmosphere of the Earth. The VZA of a

nadir-viewing instrument is defined as the angle between the instrument line of sight (LOS)

and the local zenith at the LOS-ground intersection. For example, a VZA of 0◦ corresponds

to the instrument pointing straight down towards the Earth and a VZA of 90◦ corresponds to

the instrument looking at the horizon, that is, with the LOS intersecting the Earth parallel

to the surface. In three dimensions, the VZA and the LOS-ground intersection point restrict

the possible LOSs to a cone, with the tip of the cone at the LOS-ground intersection. The

viewing azimuth angle (VAA) (not shown in Fig. 2.2) further restricts the LOS to a single

value. A common convention for the VAA is for 0◦ to correspond to the instrument looking

from local north, with the VAA increasing as the LOS is rotated counter-clockwise about the

local zenith when viewed from above. For example, a SAA of 90◦ would correspond to the

instrument looking from local west.

Figure 2.2. Instrument viewing geometry parameters: viewing zenith angle (VZA),

solar zenith angle (SZA), solar scattering angle (SSA), tangent point (TP), and tangent

point altitude (z) for nadir- and limb-viewing instrument geometries.

The SZA of a nadir-viewing instrument measurement is defined as the angle between the

local zenith at the LOS-ground intersection and the line of solar radiation propagation that
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intersects the LOS-ground intersection. For example, a SZA of 0◦ corresponds to the Sun

being directly overhead the LOS-ground intersection and a SZA of 90◦ corresponds to the

Sun being at the horizon when viewed from the LOS-ground intersection. Similar to the

VAA, the solar azimuth angle (SAA) (not shown in Fig. 2.2) restricts the direction of the

Sun in three dimensions to a single value, typically with a SAA of 0◦ corresponding to a Sun

direction towards local north, a SAA of 90◦ corresponding to a Sun direction towards local

west, and so on.

For the limb-viewing geometry, the tangent point is defined as the point along the instrument

LOS where the LOS is parallel to the surface of the Earth directly below. The latitude and

longitude of the point on the Earth directly below the tangent point are called the tangent-

point latitude and longitude, respectively. The distance from the surface of the Earth to the

tangent point is called the tangent-point altitude. The SZA of a limb-viewing instrument

measurement is defined as the angle between the local zenith at the tangent point and the line

of solar radiation propagation that intersects the tangent point. Similar to a nadir-viewing

instrument, the SAA is normally defined such that 0◦ corresponds to a Sun direction towards

local north, 90◦ corresponds to a Sun direction towards local west, and so on. The solar

scattering angle (SSA) is defined as the angle between the instrument LOS and the lines of

input solar radiation propagation that intersect the LOS.

2.1.3 Instrument Sensors

Three parameters of optical spectrometers relevant to the discussion herein are the spectral

resolution, the spectral sampling rate, and the spectral point spread function. The spectral

resolution and sampling rate describe the ability of the instrument to differentiate between

different wavelengths of electromagnetic radiation. The spectral resolution is typically defined

in terms of the full-width half-maximum of the sensitivity peak for a given wavelength pixel

of the sensor, while the spectral sampling rate is defined by the distance between sensitivity

peaks of consecutive wavelength pixels. The spectral point spread function describes the

impulse response of the imaging system, that is, its response to a point source.
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2.2 Radiative Transfer

Radiative transfer is the study of how energy is transferred through a medium in the form of

electromagnetic radiation, which is quantized as photons. For the remainder of the discussion

herein, the term “light” is taken as synonymous to “electromagnetic radiation” and therefore

does not specifically refer to visible light. In the field of atmosphere science, radiative transfer

involves taking into account the scattering, absorption, and emission of light off atmospheric

species, as well as the reflection of light off the ground. Various software packages (e.g.,

Bourassa et al., 2008; Spurr, 2006; Spurr et al., 2001) have been developed to numerically

approximate the transfer of light from the Sun, through the atmosphere, and into different

types of optical instruments.

2.2.1 Radiometric Quantities

A useful quantity for radiative transfer with the application of remote sensing is spectral

radiance. Consider Fig. 2.3, which depicts the geometry for light of wavelength λ at the

point r, propagating within a solid angle dΩ of the direction Ω̂ through an area dA, with the

propagation direction, Ω̂, being an angle θ from the normal, n̂, of the area dA. The spectral

radiance is defined as the amount of energy, dE, per wavelength range dλ, time interval

dt, solid angle range dΩ, and projected area cos θ dA, at wavelength λ, transferred from the

point r in the direction Ω̂. This is given by

I(r, Ω̂, λ) =
dE(r, Ω̂, λ)

dλ cos θ dA dΩ dt
, (2.1)

where the projected area, cos θ dA, is the area dA projected onto the propagation direction Ω̂.

Although the units for spectral radiance are W sr−1 m−3 based on the International System

of Units (SI), it is convenient for the application of remote sensing instruments to express the

spectral radiance in terms of photons s−1 sr−1 cm−2 nm−1, which can be easily understood

from the definition in Eq. (2.1). The term “spectral radiance” is often shortened in literature

to “radiance”, with the wavelength dependence being implicit.
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Figure 2.3. Geometry for defining radiance.

Because the spectral radiance of light is constant as it travels through a vacuum, any change

in spectral radiance as the light travels through a medium gives information about the species

in the medium. Thus, if light is travelling through a medium, and the input spectral radiance

(e.g., from solar radiation) and output spectral radiance (e.g., measured by the instrument)

are known, then the change between the two and knowledge of the optical properties of

the species present in the medium can be used to determine the relative proportions of the

species.

A related term to spectral radiance is the spectral flux density or spectral irradiance, which

can be defined as the integral of the spectral radiance projected onto the normal, n̂, of surface

dA, with the integral being over all solid angles of the hemisphere on one side of area dA. It

is given by

F (r, n̂, λ) =

∫
2π

I(r, Ω̂′, λ) cos (θ′) dΩ′ =
dE

dλ dA dt
, (2.2)

where θ′ is the angle between the direction Ω̂′ and the normal, n̂, of the surface dA.

For convenience in the remainder of the discussion herein, the dependence of spectral radiance

and flux density on r, Ω̂, and λ are considered implicit if the arguments are omitted.

2.2.2 Scattering and Absorption

The scattering of light is the process by which photons interact with other particles resulting

in a change in trajectory of the photons. As photons propagate in a straight line in a vacuum,
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their trajectory can only change through scattering or absorption and re-emission. Scattering

is elastic if the photon energy is conserved or inelastic if there is a transfer of energy between

the photon and the particle on which it is incident.

The absorption of light is the process where a photon transfers its energy to a particle on

which the photon is incident. The energy transferred results in a change of the quantum

mechanical state of the target particle. For example, ozone (O3) in the stratosphere is

dissociated into O2 and O after absorbing UV radiation. This has the effect of shielding the

Earth from a large portion of harmful solar UV radiation.

Fraunhofer absorption lines are lines in the solar spectrum where light is absorbed by the

different chemicals in the photosphere of the Sun. The Ring effect, discovered by Grainger

and Ring (1962), is the phenomenon where the relative depths of the Fraunhoffer absorption

lines are greater in direct sunlight than in light that has been scattered by the atmosphere

of the Earth (Vountas et al., 1998). The Ring Effect is not entirely understood, but it is

believed to be primarily due to rotational Raman scattering, which is inelastic scattering

where the shift in frequency is related to the rotational properties of O2 and N2 molecules

(Chance & Spurr, 1997; Joiner & Vasilkov, 2006).

2.2.3 Reflection

A Lambertian surface is a surface where the radiance is reflected or emitted from the surface

isotropically. In this case, the spectral flux density reflected at r, Fr(r, n̂), is defined using

Eq. (2.2) in terms of the isotropically reflected radiance, Ir(r), at the point r as

Fr(r, n̂) =

∫
2π

Ir(r) cos (θ′) dΩ′

= Ir(r)

∫ 2π

0

∫ π/2

0

cos (θ′) sin (θ′) dθ′ dφ′

= πIr(r).

(2.3)

The albedo of a surface is a value between 0 and 1 that defines how well a surface can reflect

spectral flux density. It is given by

a(r) =
Fr(r, n̂)

Fi(r,−n̂)
, (2.4)
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where Fi(r,−n̂) is the incident spectral flux density at r. Combining Eqs. (2.3) and (2.4),

the radiance reflected off a Lambertian surface in the direction Ω̂ can be expressed as

Ir(r, Ω̂) =
a(r)

π
Fi(r,−n̂). (2.5)

2.2.4 Beer-Lambert Law

Consider light travelling in a direction defined by the unit vector Ω̂ from a point r to a

reference point r0, with the vectors defined in Cartesian coordinates. The position along the

path of light is often parametrized in terms of the path coordinate s for a given reference

point r0 and propagation direction Ω̂. This is given by the equation

r(s; r0, Ω̂) = r0 + Ω̂s. (2.6)

The reference point r0 is often chosen to be at the position of the observer. In this formulation,

the observer measures light coming from the negative s direction. For convenience in the

remainder of the discussion herein, the position r(s; r0, Ω̂) is abbreviated as r(s), with implicit

dependencies on reference point r0 and propagation direction Ω̂. Furthermore, any quantity

with argument s is implicitly dependent on position r(s) ≡ r(s; r0, Ω̂) as per Eq. (2.6). For

example, the radiance at point r is denoted by I(s) ≡ I(r(s)) ≡ I(r(s; r0, Ω̂)).

Consider radiance I travelling in the direction Ω̂, with wavelength λ, incident on a volume

V of N particles, each with an effective area α. Assume that the particles are sufficiently

spread out such that when viewed from any direction, none of the effective areas of the N

particles overlap with each other. After travelling a distance of ds, the decrease in radiance

is

dI = −IN
V
α ds. (2.7)

The so-called effective area α of the particles is analogous to a quantity called their cross

section, which is directly related to the probability of a photon interacting with the particles

and is in units of m2. The cross section is dependent on the type of particles and on the

wavelength of incident photons. The scattering cross section and absorption cross section

are cross sections corresponding specifically to the interaction between the photons and the

particles due to scattering or absorption, respectively.
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Consider the same scenario but with the existence of different types of particles or species,

with species i having scattering cross section σscatt,i(λ), absorption cross section σabs,i(λ), and

number density ni(r) at position r. The scattering and absorption extinctions are defined by

adding up the effects of all the species together. This is given by

kscatt(s, λ) =
∑
i

ni(s)σscatt,i(λ) and

kabs(s, λ) =
∑
i

ni(s)σabs,i(λ),
(2.8)

where kscatt and kabs are the scattering and absorption extinctions, respectively. The total

extinction is the sum of scattering and absorption extinctions: k = kscatt + kabs.

Based on Eq. (2.7), the decrease in radiance over an infinitesimal distance ds at position r

with various species and particles can be expressed as

dI(s) = −I(s)k(s) ds, (2.9)

where k(s) and I(s) are implicitly dependent on wavelength λ.

The optical depth is a non-negative, unitless quantity that describes the amount of attenu-

ation of light along a path. The optical depth for light travelling from point r(s0) to point

r(s1), with s0 ≤ s1, is given by

τ(s0, s1, Ω̂) =

∫ s1

s0

k(r0 + sΩ̂) ds. (2.10)

Integrating Eq. (2.9) from point r(s0) to point r(s1) and substituting Eq. (2.10) results in

the Beer-Lambert Law,

I(s1) = I(s0)e−τ(s0,s1,Ω̂), (2.11)

which describes the attenuation of radiance through a medium.

2.2.5 Radiative Transfer Equation

To account for light sources along the path, Eq. (2.9) is re-expressed as

dI(s)

ds
= −I(s)k(s) + J(s), (2.12)
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where J(s) is the source term or volume emission rate, in units of photons s−1 sr−1 cm−3

nm−1, and is implicitly dependent on Ω̂ and λ. Light sources include elastic scattering,

inelastic scattering, and thermal emissions. The following discussion only considers the elastic

scattering as it is the dominant source contribution for UV, visible, and infrared light, which

are relevant to the discussion herein. In this case, the volume emission rate at r(s) towards

Ω̂ is defined as

J(s, Ω̂) = kscatt(s)

∫
4π

I(s, Ω̂′)p̄(s, Ω̂′, Ω̂) dΩ̂′, (2.13)

where the integral is over all solid angles and p̄(s, Ω̂′, Ω̂) is the effective phase function. The

effective phase function is calculated as a weighted sum of phase functions for all species,

where each phase function is the probability of the photons being scattered by the species at

r(s), from direction Ω̂′ to Ω̂, per unit solid angle.

Let the optical depth from point r(s) to the reference point be denoted by τs ≡ τ(s, 0, Ω̂).

From Eq. (2.10), the differential form of the relationship between τs and s is given by

dτs = −k(s) ds. (2.14)

The negative sign makes sense as an increase in s results in a decrease in the path length,

∆s = 0− s, and therefore a decrease in the optical depth. Transforming Eq. (2.12) from the

path coordinate s to the optical depth τs using Eq. (2.14) results in

dI(τs)

dτs
= I(τs)−

J(τs)

k(τs)
. (2.15)

Substituting this into the identity

d

dτs

[
I(τs)e

−τs
]

=

[
dI(τs)

dτs
− I(τs)

]
e−τs , (2.16)

and integrating from τs = τs′ to τs = τ0 = 0 gives

I(0)− I(τs′)e
−τs′ = −

∫ 0

τs′

J(τs)

k(τs)
e−τs dτs. (2.17)

Transforming back to the path coordinate s using Eq. (2.14) results in

I(0) =

∫ 0

s′
J(s)e−τ(s,0,Ω̂) ds+ I(s′)e−τ(s′,0,Ω̂). (2.18)
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2.2.6 Successive Orders of Scattering

Consider an instrument at the reference point, r0, looking in direction −Ω̂, with the LOS

ending at r(send). If the instrument is looking towards the Earth, then r(send) is the point

where the LOS intersects the surface of the Earth. If the instrument is looking through the

limb of the atmosphere, then r(send) is the point where the LOS intersects the effective top

of the atmosphere (ETA), where the ETA is the highest altitude defined in the radiative

transfer model. It is assumed that number densities are sufficiently small above the ETA

such that the spectral flux density anywhere above the ETA is effectively equal to the solar

spectral flux density, Fsun(Ω̂sun), in the direction of the solar radiation, Ω̂sun. For this reason,

the radiance at the end of the LOS going in direction Ω̂ is denoted by Iend(Ω̂). If the LOS

intersects the ETA, Iend(Ω̂) is 0. If the LOS intersects the surface of the Earth, Iend(Ω̂) is

defined in terms of the reflection of attenuated solar spectral flux density off the surface of

the Earth into the direction Ω̂.

Eq. (2.18) can be solved with the successive orders of scattering method (Hansen & Travis,

1974; van de Hulst, 1948), which involves separating the equation into each order of scattering

such that Ii is the radiance that has been scattered i times and Ji is the volume emission rate

resulting from Ii. In this formulation, each order of scattering is dependent on the previous

order. The base case is the zero-scatter term, or the direct solar radiation term, which is

restricted to the direction of the solar radiation, Ω̂sun. The zero-scatter term is defined as

I0(s, Ω̂) = Fsun(Ω̂sun)e−τsun(s)δ(Ω̂− Ω̂sun), (2.19)

where τsun(s) ≡ τ(ssun, s, Ω̂sun) is the optical depth from the Sun (point r(ssun)) to the point

r(s), Ω̂sun is the direction of the solar radiation, Fsun(Ω̂sun) is the spectral flux density going

in direction Ω̂sun from the Sun, and δ(Ω̂) is a three-dimensional delta function. The delta

function is defined such that

∫
Ω

f(Ω̂′)δ(Ω̂′ − Ω̂0) dΩ′ =

f(Ω̂0) Ω̂0 ∈ Ω

0 Ω̂0 /∈ Ω

, (2.20)

where the integral is over a solid angle space Ω and f(Ω̂) is an arbitrary function of Ω̂. In
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practice, τsun(s) in Eq. (2.19) is calculated as the optical depth from the ETA to the point

r(s) in the direction Ω̂sun.

For a LOS going from the observer at point r0 in the direction −Ω̂ to the point r(send), the

radiance at r0 coming from the direction −Ω̂ for orders of scattering i ≥ 1 is given by

Ii(r0, Ω̂) =

∫ 0

send

Ji(s, Ω̂)e−τ(s,0,Ω̂) ds+ Iend
i (Ω̂)e−τ(send,0,Ω̂), (2.21a)

Ji(s, Ω̂) =

∫
4π

Ii−1(s, Ω̂′)p̄(s, Ω̂′, Ω̂) dΩ′, (2.21b)

Iend
i (Ω̂) =


a
π

∫
2π
Ii−1(send, Ω̂

′) cos θ′ dΩ′ LOS intersects Earth surface

0 LOS intersects ETA

, (2.21c)

where θ′ is the angle between Ω̂′ and the local normal of the surface of the Earth at the point

r(send).

For example, in the case that the LOS intersects the surface of the Earth, the the single-

scattered flux density at r(s) and the single-scattered spectral radiance at r(send) can be

calculated using Eqs. (2.19), (2.21b) and (2.21c) as

J1(s, Ω̂) = Fsun(Ω̂sun)e−τsun(s)p̄(s, Ω̂sun, Ω̂) and

Iend
1 (Ω̂) =

a

π
Fsun(Ω̂sun)e−τsun(send) cos (θsza),

(2.22)

where θsza is the local solar zenith angle at the point r(send), i.e., the angle between −Ω̂sun and

the normal of the surface of the Earth at point r(send). The zero-scatter term in Eq. (2.19) is

not calculated in practice. Instead, the single-scatter terms in Eq. (2.22) are calculated first,

followed by the resultant single-scatter radiance term using Eq. (2.21a). The higher-order-

scatter terms are then iteratively calculated using Eq. (2.21).

2.2.7 SASKTRAN

SASKTRAN (Bourassa et al., 2008) is a radiative transfer modelling package developed and

maintained by the Atmospheric Research Group of the University of Saskatchewan. The

three SASKTRAN engines relevant to the present work are the discrete ordinates (DO), high

resolution (HR), and high resolution single-scatter approximation (HRSSApprox) engines.
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The DO and HR engines are on opposite extremes; the DO engine uses a purely plane-

parallel Earth-atmosphere geometry while the HR engine uses a purely spherical Earth-

atmosphere geometry (Zawada et al., 2015). Compared to the DO engine, the HR engine

compromises computational speed for accuracy. The HRSSApprox engine is the same as the

HR engine except that, after calculating the single-scatter contribution to a measurement for

all user-defined wavelengths, the multiple-scatter contributions are calculated exactly only for

a subset of the wavelengths. The multiple-scatter contribution for the remaining wavelengths

are calculated by interpolating the results of the subset of wavelengths. This greatly reduces

the computational complexity, and therefore the computation time, without significantly

reducing the accuracy of the results as the multiple-scattered light has a significantly smaller

contribution to the total light measured by an observer.

2.2.8 Example Simulated Radiances

The effects of the viewing geometry and the SASKTRAN engine on the simulated Sun-

normalized radiances are shown in Sections 2.2.8.1 and 2.2.8.2, respectively. The Sun-

normalized radiances are defined by dividing the simulated measured radiances by solar

radiances, effectively cancelling any features that result purely from the Sun. For all the

following examples in Sections 2.2.8.1 and 2.2.8.2, the surface albedo is set to 0.5, the ETA

is defined as 80 km, the MSIS-90 model (Hedin, 1991) is used for the pressure, temperature,

and number density of the air, the NO2 vertical density profiles are taken from a climatolog-

ical dataset by Prather and Jaffe (1990), the ozone vertical density profiles are taken from

a climatological dataset by McPeters et al. (1997), and the ozone and NO2 cross sections

used in the radiative transfer model are taken from experimentally determined values (Brion

et al., 1998; Brion et al., 1993; Daumont et al., 1992; Malicet et al., 1995; Vandaele et al.,

1998).

2.2.8.1 Limb versus Nadir

Fig. 2.4 shows some sample Sun-normalized radiances simulated with the SASKTRAN HR

engine for limb- and nadir-viewing geometries. Note that the solar-viewing azimuth angle

difference is the difference between the SAA and the VAA. Radiances are shown for a set of
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SZAs, with a solar-viewing azimuth angle difference of 0◦ in Fig. 2.4(a) and 90◦ in Fig. 2.4(b).

The shape of the simulated radiances can be explained by the absorption cross section of

ozone, the dominant absorber in the region being observed. A typical ozone absorption cross

section is shown in Fig. 2.5. For both viewing geometries, the shape of the measured radiance

curves can be seen to mirror the shape of the ozone cross section. This makes sense as a higher

absorption cross section results in more photons being absorbed by ozone and therefore less

radiance reaching the measuring instrument. For any given viewing and solar geometry, the

amount of absorption indicates the amount of ozone. Thus, these absorption features allow

for the ozone concentrations to be determined from the instrument measurements.

The simulated measured radiances for both viewing geometries are similar to each other from

300 to 350 nm. However, there is significantly more measured radiance at longer wavelengths

for the nadir-viewing geometry due to the increased effect of reflection for the nadir geometry

and the lower optical depths of the longer wavelengths. The lower optical depths of the

longer wavelengths allows a larger proportion of the photons to reach the ground and reflect

up towards the nadir-viewing instrument. Due to the larger influence of reflection on the

nadir-viewing measurements, there is more measured radiance for the nadir geometry as the

SZA is decreased, that is, as the Sun gets higher.
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(a) 0◦ solar-viewing azimuth angle differ-
ence.

(b) 90◦ solar-viewing azimuth angle differ-
ence.

Figure 2.4. Effect of the instrument viewing geometry on the Sun-normalized mea-
sured radiances simulated in the SASKTRAN HR engine for wavelengths relevant to
the remote sensing instruments discussed herein, for an instrument at an altitude of 650
km, and for a set of solar zenith angles (SZAs). For the nadir geometry, the instrument
is pointed towards 44◦N-150◦W with a viewing zenith angle of approximately 1◦. For
the limb geometry, the tangent-point is 20 km above 44◦N-150◦W.

Figure 2.5. Typical ozone absorption cross sections over wavelengths relevant to the

remote sensing instruments discussed herein. Cross sections are taken from experimen-

tally determined data (Brion et al., 1998; Brion et al., 1993; Daumont et al., 1992;

Malicet et al., 1995) for the temperature at an altitude of 20 km above 0◦N-0◦E on 21

March 2008 in the MSIS-90 model (Hedin, 1991).
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2.2.8.2 Engine Comparison

Fig. 2.6 shows the effect of the SASKTRAN engine (DO versus HR) on the simulated Sun-

normalized radiances for an instrument in geostationary orbit above 0◦N-100◦W, pointing

towards the Canadian Oil Sands (57◦N-112◦), one hour past local sunrise for four different

days of the year 2022. Similar to Fig. 2.4, the Sun-normalized radiances of Fig. 2.6 generally

mirror the ozone cross section (Fig. 2.5) due to the large relative effect of the ozone absorp-

tion. Fig. 2.6 shows that for high VZAs and SZAs, the DO engine tends to underestimate

the measured radiances relative to the HR engine. This effect is much smaller for the UV

wavelengths below 320 nm, largely due to the significant ozone absorption, and therefore the

lower amount of radiance reaching the instrument, in this wavelength range. One of the goals

of the present work is to determine if, for cases of high VZAs, differences in the radiative

transfer engine of the retrieval algorithm result in significant differences in the retrieval of

tropospheric ozone.
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Figure 2.6. Comparison of the effect of using either the HR or DO SASKTRAN engine

on the Sun-normalized measured radiances simulated for an instrument in geostationary

orbit above 0◦N-100◦W, pointing towards the Canadian Oil Sands (57◦N-112◦W), one

hour past local sunrise on the 21st day of four different months in 2022. The solar zenith

angle (SZA) corresponding to each measurement scenario is shown.

2.3 Atmospheric Ozone and Nitrogen Dioxide

2.3.1 Ozone and Nitrogen Oxide Pollution

Ozone (O3) and the two most important nitrogen oxides (NOx ), nitric oxide (NO) and nitro-

gen dioxide (NO2), are toxic chemicals that are constituents of air pollution in the troposphere

with both natural and anthropogenic sources (Mayer, 1999). Measurements of these species

in the troposphere are thus crucial for creating air quality forecasts. Tropospheric NOx and

ozone concentrations have been shown to have increased since pre-industrial times and so

the monitoring of them is important for policy makers (Ehhalt et al., 2001).
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Tropospheric NOx is generated as a by-product of high-temperature combustion (Boningari

& Smirniotis, 2016), through nitrogen cycling in soils (Williams et al., 1987), and through

chemical reactions in the atmosphere (Greenblatt & Ravishankara, 1990). Sources of NO2

from high-temperature combustion includes natural causes, such as the interaction of light-

ning with air, and anthropogenic causes, such as through the burning of fossil fuels and

biomasses. These anthropogenic sources are of increased importance as it has been shown

that emissions due the burning of fossil fuels and biomasses have increased by a factor of

three to six since pre-industrial times (Jaeglé et al., 2005). Sources of tropospheric ozone

include stratosphere-troposphere exchange and photochemical reactions, of which NOx is a

common reactant (Lelieveld & Dentener, 2000).

Studies have shown that exposure to either ozone or NOx by humans is harmful, with recom-

mended safe concentrations exceeded regularly in large cities (Boningari & Smirniotis, 2016;

Chaloulakou et al., 2008; Last et al., 1994). Another negative impact of NOx is the creation

of acid rain (Boningari & Smirniotis, 2016). Studies have shown negative effects of ozone on

vegetation, which could cause issues for future global food security (Musselman & Massman,

1998; Tai et al., 2014).

2.3.2 Diurnal Variations of Nitrogen Oxides

The atmospheric concentrations of NO and NO2 are most strongly governed by the chemical

reactions

NO2 + hv −−→ NO + O, (2.23a)

NO + O3 −−→ NO2 + O2, (2.23b)

O + O2 + M −−→ O3 + M, and (2.23c)

NO + ClO −−→ NO2 + Cl, (2.23d)

where M is some non-interacting molecule (Chameides, 1978; Jaeglé et al., 1994). As

Eq. (2.23a) requires solar radiation, there are natural diurnal (daily) variations in strato-

spheric NO and NO2. Typical diurnal variations for NO and NO2 near an altitude of 19 km,

adapted from Wennberg et al. (1994), are shown in Fig. 2.7. Various models, such as that
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by Prather and Jaffe (1990), are used to approximate the diurnal variations of atmospheric

species such as NO and NO2. These models require information such as the background

pressure and temperature vertical profiles, the albedo, long-lived tracers (N2O, H2O, CH4),

and the NOy , Cly , and Bry families (Adams et al., 2016).

Due to timescales on the order of minutes to seconds for the reactions in Eqs. (2.23a),

(2.23b) and (2.23d), the concentrations of NO and NO2 reach a steady state in daytime or

nighttime. Consequently, the concentration of either NO or NO2 gives information about the

concentration of the other. Only NO2 is included in the remainder of the discussion herein

as it is relevant to the remote sensing instruments used in the present work.

Figure 2.7. Empirically-derived diurnal dependencies of NO and NO2 volumetric

concentrations (in parts per billion) near an altitude of 19 km, adapted from Wennberg

et al. (1994). The diurnal dependencies are verified by Wennberg et al. (1994) using

chemiluminescence and laser-diode absorption instrument measurements on 12 May

1993.

25



2.3.3 Remote Sensing of Tropospheric Ozone and Nitrogen

Dioxide

The measurement of air pollution in the troposphere using optical instruments on satellites

allows for the analysis of long-term trends with coverage over the majority of the globe.

Nadir-viewing instruments are used for these measurements as they are able to probe down

to the ground, allowing for the measurement of the entire troposphere. Combining instrument

measurements with information about the optical properties of the pollutants allows for the

concentrations of the pollutants to be estimated.

Both ozone and NO2 primarily absorb light, with the degree of absorption given by their

respective absorption cross sections. Typical absorption cross sections for ozone and NO2

are shown in Fig. 2.8 over wavelength ranges relevant to the satellite optical instruments

discussed herein. Combining cross section data with optical measurements and radiative

transfer modelling allows for the concentrations of the species in question to be estimated.

Ozone was first measured remotely in 1921 using the ozone spectral information between 290

to 315 nm (Fabry & Buisson, 1921). The Backscatter UltraViolet instrument on Nimbus IV

(Heath et al., 1973) was the first to measure ozone from space, and the number of instruments

remotely measuring atmospheric ozone has been growing at an increasing rate since then.

NO2 was first measured remotely in 1973 by taking advantage of the prominent spectral

features between near 430 and 450 nm (Brewer et al., 1973) and has since been measured by

other satellite instruments using these spectral features (e.g., Boersma et al., 2007; Richter

and Burrows, 2002; Sioris et al., 2004; Valks et al., 2011).

Standard ozone and NO2 vertical density profiles in the troposphere and stratosphere for

various latitudes and months are shown in Fig. 2.9. As atmospheric remote sensing satellites

operate at altitudes above 400 km, the instruments must look through the stratosphere to

see the troposphere. Thus, as ozone and NO2 have peaks in the stratosphere (see Fig. 2.9),

a troposphere-stratosphere separation method is necessary to remove the stratospheric com-

ponent of the measurements to get the tropospheric concentration needed for air pollution

monitoring.
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(a) Ozone. (b) NO2.

Figure 2.8. Typical ozone and NO2 absorption cross sections over wavelengths relevant

to the remote sensing instruments discussed herein. Cross sections are taken from

experimentally determined data (Brion et al., 1998; Brion et al., 1993; Daumont et al.,

1992; Malicet et al., 1995; Vandaele et al., 1998) for the temperature at an altitude of

20 km above 0◦N-0◦E on 21 March 2008 in the MSIS-90 model (Hedin, 1991).

(a) Ozone. (b) NO2.

Figure 2.9. Ozone and NO2 vertical density profiles taken from respective climato-

logical datasets by Prather and Jaffe (1990) and McPeters et al. (1997). Each profile

shown is the average of profiles from ten uniformly separated days of the given month.

Each NO2 profile is taken at 13:00 local time.
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A commonly used ozone troposphere-stratosphere separation method first described by Singer

and Wentworth (1957) involves measuring the back-scattered UV light with a nadir-viewing

instrument at a fixed altitude above 40 km, e.g., on a satellite. Consider solar radiation of

wavelength λ0, with λ0 being between 270 and 370 nm. Because scattering and absorption

processes are random, the λ0 light measured by a satellite instrument will have resulted from

λ0 light that has penetrated a range of atmospheric depths before being scattered into the

instrument sensor. Define I(z, λ0) as the measured radiance resulting from λ0 light that has

penetrated the atmosphere down to altitudes of z or higher before being scattered into the

satellite instrument sensor. The radiance measured by the instrument resulting from λ0 light

that has penetrated down to any altitudes from the ground to just below the satellite is

therefore I(0, λ0). The effective altitude, zeff , for λ0 light can be defined such that the ratio

I(zeff ,λ0)
I(0,λ0)

is equal to some pre-defined threshold.

For example, as the ozone absorption cross section decreases with increasing wavelength

from 270 to 370 nm (see Fig. 2.8), longer-wavelength light in this wavelength range is able

to penetrate deeper in the atmosphere. This results in the effective altitude decreasing for

increasing wavelength in this wavelength range. Given experimentally determined ozone ab-

sorption cross sections as functions of wavelength, the sensitivity of measurements to the

ozone concentration at different altitudes can be resolved by making measurements over a

range of wavelengths. Over a range of 280 to 300 nm for example, the ozone absorption

cross section has sufficient variation to result in the effective altitude varying from approx-

imately 13 to 48 km, depending on the specific viewing geometry (Singer & Wentworth,

1957). Thus, measurements around this wavelength range allows for the stratospheric and

upper tropospheric ozone vertical density profiles to be estimated.

In contrast to ozone, the NO2 absorption cross sections do not vary as much with wavelength

(see Fig. 2.8), resulting in a low range of effective altitudes. As such, the NO2 troposphere-

stratosphere separation method requires additional assumptions. Common assumptions in-

clude the low longitude-dependent variations in stratospheric NO2 column densities, insignif-

icant tropospheric column densities over the middle of the Pacific Ocean or other unpolluted

areas (Bucsela et al., 2013a; Bucsela et al., 2006; Leue et al., 2001; Richter & Burrows,
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2002), the use of cloud data to determine stratospheric densities from cloudy measurements

(Belmonte Rivas et al., 2015; Choi et al., 2014), and the use of global chemical transport

models to fill in missing information (Boersma et al., 2007; Martin et al., 2002). An overview

of these methods is given in Hilboll et al. (2013). The information from these additional

assumptions is not sufficient to determine NO2 density profiles at fine altitude resolutions,

but does allow for separate tropospheric and stratospheric VCDs to be determined.

2.4 Relevant Instruments and Retrieval Algorithms

2.4.1 OMI

OMI is a nadir-viewing spectrometer onboard the NASA Aura satellite that has been op-

erational since its launch in July 2004 (S. Bates, 2021; Levelt et al., 2006). It is in a

sun-synchronous LEO with an ascending node near 13:45 local time. OMI measures over

wavelengths from 270 to 500 nm with a spectral resolution less than 1 nm. Fig. 2.10 shows

the viewing geometry of OMI. The instrument has a so-called push-broom scanning pattern,

where it makes simultaneous measurements over a 2600-km swath that is perpendicular to

the orbital ground track. The length of each swath consists of 60 ground pixels, each having

an across-track width of 13 km and an along-track width of 12 or 24 km, depending on the

mode of operation, near the center of the swath. ozone vertical density profiles are retrieved

with measurements in the wavelength range of 270 to 310 nm (Liu et al., 2010), and NO2

column densities are retrieved using OMI measurements in the wavelength range of 405 to

465 nm (Bucsela et al., 2013b).

The OMI ozone retrieval algorithm (Liu et al., 2010), which uses optimal estimation (see

Section 2.5), retrieves not just the ozone profile but also some additional parameters to

increase the number of degrees of freedom and improve the retrieval. The additional fit

parameters include those for surface albedo, cloud fraction, scaling factors for the Ring effect,

radiance/irradiance wavelength shifts, wavelength shifts between radiance and ozone cross

sections, and scaling factors for the mean fitting residuals derived from one orbit of retrievals

using all the other parameters (Liu et al., 2010).

29



Figure 2.10. OMI viewing geometry, adapted from Bucsela et al. (2016). Relative

lengths are exaggerated for illustrative purposes.

The ozone retrieval algorithm uses the VLIDORT modelling for the calculation of the transfer

of light originating from the Sun through the atmosphere to the remote sensing instrument

(Spurr, 2006). VLIDORT models the attenuation of the input solar radiation and the single

scatter contribution with a spherical atmosphere, but models the higher-order scattering

with a plane-parallel atmosphere. A spherical atmosphere for the solar attenuation and

single scattering minimizes errors resulting from the relatively large viewing zenith angle

towards either end of the OMI push-broom field of view.

The OMI NO2 Standard Product (OMI-SP), processed by NASA, performs troposphere-

stratosphere separation as follows (Bucsela et al., 2013b; Bucsela et al., 2016). As the

stratosphere contains the vast majority of NO2 over most of the Earth, modeled NO2 tropo-

spheric column densities from the Global Modeling Initiative (GMI) are used for the tropo-

spheric densities over regions with low pollution expected, such as the Pacific Ocean. These

low-pollution regions are defined as having GMI tropospheric column densities below some

pre-determined threshold. In these regions, the stratospheric component is calculated by

subtracting the modeled tropospheric contribution from the OMI-measured total column

density. In other regions that have sufficient cloud fractions to effectively obscure the tropo-

sphere, the stratospheric column densities are extracted from the OMI measurements using a
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priori cloud data. Regions are masked if the modeled tropospheric contribution is above the

pre-defined threshold or there is a low cloud fraction. The stratospheric column density over

a masked region is calculated using an algorithm that interpolates and smooths the strato-

spheric column densities from nearby unmasked regions. The tropospheric column density

over a masked region is then calculated by subtracting the stratospheric column density from

the measured total column density over the region.

Assumptions of the OMI-SP troposphere-stratosphere separation algorithm includes the in-

dependence between stratospheric and tropospheric column densities, the low latitudinal and

longitudinal variations in stratospheric column densities, and the accuracy of the GMI mod-

els. OMI-SP NO2 versions 2 and 4 are the two OMI NO2 data products discussed herein. The

main difference between the two versions is that the version 4 data product has a modified

spectral fitting step that greatly reduces a positive bias in the SCDs of the version 2 data

product, as well as improved cloud and surface treatments (Krotkov et al., 2017; Lamsal

et al., 2021; Marchenko et al., 2015).

2.4.2 TROPOMI

TROPOMI is a nadir-viewing spectrometer of ESA onboard the Sentinel-5 Precursor that

has been operational since its launch in October 2017 (van Geffen et al., 2020; Lorente et al.,

2021; Veefkind et al., 2012). It is in a sun-synchronous LEO with an ascending node at ap-

proximately 13:30 local time. The goal of TROPOMI is to continue the data records of OMI

and the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIA-

MACHY) instrument (Burrows et al., 1995), both of which are heritage to the TROPOMI

design. It has an improved spatial resolution of 7.2 km compared to OMI with a spatial

resolution as low as 12 km (van Geffen et al., 2020). NO2 is retrieved using TROPOMI mea-

surements in the UV and visible band (270–500 nm). NO2 data resulting from the version

1.3.0 processor is used in the present work.

The troposphere-stratosphere separation of NO2 is done using data assimilation (van Geffen et

al., 2019). This involves regularly updating a chemical transport model of the atmosphere so

that the simulated stratospheric NO2 SCDs best match those of the TROPOMI measurements
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over areas with insignificant tropospheric NO2 levels.

Some research has found a negative bias of 20% to 30% in TROPOMI tropospheric VCDs

relative to those of OMI for measurements from February to June 2018 (C. Wang et al., 2020)

while other research has found a positive bias of approximately 5% in the geometric column

densities, which are an approximation of the total column densities, in July 2018 (van Geffen

et al., 2020). Nonetheless, the significantly higher resolution of TROPOMI measurements

provides a large advantage over the predecessor instrument OMI.

2.4.3 OSIRIS

OSIRIS is a limb-viewing spectrograph onboard the Odin satellite that has been operational

since its launch in February 2001 (Broman et al., 2021; Llewellyn et al., 2004). It is in

a sun-synchronous LEO with an ascending node near 18:00 local time. OSIRIS measures

wavelengths from 280 to 800 nm with a resolution of approximately 1 nm. NO2 vertical

density profiles extending from as low as 5 km to as high as 60 km, depending on the

retrieval algorithm, are retrieved using OSIRIS measurements in the wavelength range of 435

to 451 nm (Haley et al., 2004). This wavelength range is used as it is where NO2 is the

dominant absorber.

OSIRIS NO2 version 3 (Haley & Brohede, 2007), 6 (Sioris et al., 2017), and 7 (Dubé et al.,

2021) are the three data products discussed herein. Compared to the previous public-released

version 3 data product, version 6 uses a more accurate successive-orders-of-scattering version

of SASKTRAN, a Multiplicative Algebraic Reconstruction Technique inversion (Degenstein

et al., 2009), and a wider spectral fitting window. This results in a higher signal-to-noise ratio

and a deeper penetration of the atmosphere compared to version 3 (Sioris et al., 2017). The

version 7 data product is the newest version (Dubé et al., 2021) and is expected to replace the

current publicly-released version 6 data product. Compared to version 6, the fitting of the

OSIRIS spectral point spread function is done with solar Fraunhofer lines instead of pre-flight

calibrated values. Additionally, the cloud and aerosol discrimination is improved, allowing

for more profiles to be retrieved down to the lower stratosphere and upper troposphere. The

version 7 data product is shown to better agree with the validated version 3 data product
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compared to the version 6 data product, as discussed in Section 4.3.1. The version 3, version

6, and version 7 NO2 profiles are retrieved over altitudes 10–46 km with a 2-km resolution,

10.5–39.5 km with a 1-km resolution, and 5.5–59.5 km with a 1-km resolution, respectively.

2.4.4 GOME

GOME was a nadir-viewing spectrometer onboard the Second European Remote Sensing

Satellite (ERS-2) of ESA, and was operational from its launch in April 1995 to 2012 (Burrows

et al., 1999; Chehade et al., 2014). It was in a sun-synchronous LEO with a descending node

at approximately 10:30 local time.

Ozone vertical density profiles for altitudes from 0 to 80 km, at a resolution of 1 km, are

retrieved using GOME measurements in the wavelength range of 290 to 355 nm (Hoogen et al.,

1999). The GOME ozone retrieval algorithm, which uses optimal estimation (see Section 2.5),

retrieves not just the ozone profile but also some additional parameters to increase the number

of degrees of freedom and improve the retrieval. The additional parameters include scaling

factors for the surface albedo, the aerosol number density profile, the NO2 number density

profile, and the pressure profile, and a shift parameter for the temperature profile.

The ozone retrieval algorithm uses GOMETRAN (Rozanov et al., 1997) for the modelling of

the transfer of light originating from the Sun through the atmosphere to the remote sensing

instrument. Similar to VLIDORT used for the OMI retrievals, GOMETRAN attenuates

the input solar radiation through a spherical atmosphere. However, all scattering processes,

including the single scattering, are modelled with a plane-parallel atmosphere. The error

associated with using a plane-parallel atmosphere is considered sufficiently small as the typical

maximum GOME viewing angle is smaller than that of OMI.

2.4.5 TEMPO

TEMPO will be among the first instruments to measure atmospheric composition from a

geostationary orbit when it is launched in 2022, and the first to do so over North America

(Hou et al., 2020; Zoogman et al., 2017). TEMPO will be positioned directly above the
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Equator near 100◦W, with a field of regard extending from Mexico City to the Canadian oil

sands and from the Atlantic to the Pacific. The field of regard, adapted from Zoogman et al.

(2017), is shown in Fig. 2.11. The TEMPO spectrometer measures in the UV and visible

light wavelength ranges to retrieve ozone, NO2, and other species related to tropospheric

pollution. As the field of regard covers a significant portion of the population of Canada,

TEMPO provides an opportunity to improve Canadian air quality forecasts. Challenges in

retrieving tropospheric species such as ozone at the high latitudes of Canada include the

large solar angles, the greater abundance and variability of stratospheric absorbers, and the

greater variability and uncertainties of surface albedos (Zoogman et al., 2017).

Figure 2.11. The TEMPO field of regard, with boundary data extracted from Zoog-

man et al. (2017).

The ozone profile retrieval algorithm uses wavelength ranges 290–345 nm (UV) and 540–650

nm (visible). The addition of wavelengths in the visible range improves the retrieval in the

lower troposphere, but increases the sensitivity of measurements to surface reflectance due

to the low ozone absorption, or low optical depth, in this wavelength range. The retrieval

algorithms for LEO instruments GOME and OMI have been adapted and baselined for

simulated TEMPO measurements (Hoogen et al., 1999; Liu et al., 2010; Liu et al., 2020).

Following the OMI retrieval algorithm, the adapted TEMPO retrieval algorithm performs

radiative transfer modelling using VLIDORT, which models the attenuation of the input solar

radiation and the single scatter contribution with a spherical atmosphere and spherical Earth,

but models the higher-order scattering with a plane-parallel Earth-atmosphere geometry

(Spurr, 2006). The potential errors in the retrievals due to ignoring the curvature of the
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atmosphere and Earth for the higher-order scattering is expected to be more significant for

larger viewing zenith angles, e.g., when TEMPO is looking towards Canada. This presents

an opportunity for Canada to implement an alternative radiative transfer model to improve

ozone retrievals over the Canadian portion of the TEMPO field of regard.

2.4.6 MLS

The Microwave Limb Sounder (MLS) is a limb-viewing spectrometer onboard the NASA

Aura satellite that has been operational since its launch in July 2004 (W. Wang et al., 2021;

Waters et al., 2006). Similar to the OMI instrument on Aura, it is in a sun-synchronous

LEO with an ascending node at 13:45 local time. MLS measures in the direction ahead

of the satellite, within the orbital plane, with tangent altitudes ranging from 10 to 50 km.

MLS measures microwave radiation in broad spectral bands centered near 118, 190, 240, and

640 GHz, and 2.5 THz. Ozone profiles extending from the upper troposphere to the mid-

mesosphere are retrieved using MLS measurements in any one of the bands centered near

190, 240, or 640 GHz. The band centered near 240 GHz is primarily used for the retrieval

of ozone profiles as the spectral region has strong ozone lines and the upper tropospheric

absorption is sufficiently small to allow measurements of upper tropospheric ozone.

2.5 Optimal Estimation

Optimal estimation is a commonly used retrieval algorithm based on Bayesian statistics

(Rodgers, 2000). The algorithm is designed to retrieve an atmospheric state vector (x) at

some region of the atmosphere, using a measurement vector (y) measured at said region and

an associated measurement covariance matrix (Sy). The atmospheric state vector generally

consists of number densities of the species vertical profile to be retrieved, but can also include

other parameters, sometimes called fit parameters, to give more flexibility in the retrieval

to determine the desired species profile. The measurement vector typically contains Sun-

normalized radiances measured by an instrument, and the measurement covariance matrix

is defined by the measurement noise and by the dependence of one measurement vector

element to another. However, the measurement vector elements are commonly assumed to
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be independent of one another, resulting in a diagonal measurement covariance matrix.

Retrievals are fundamentally under-determined as the measurements do not contain enough

information to fully determine the atmospheric state. To this end, optimal estimation reg-

ularizes the problem by using an a priori (best-estimate) atmospheric state, xa, with an

associated covariance matrix, Sa, based on the error in the a priori state. A forward model

F(x), defined using a radiative transfer model, is used to calculate a simulated instrument

measurement vector given an atmospheric state x.

2.5.1 Derivation

Optimal estimation uses the maximum a posteriori method where the a posteriori distribu-

tion, defined as

P (x|y) =
P (y|x)P (x)

P (y)
, (2.24)

is maximized with respect to x. The probability distribution of the measurement vector y

given an atmospheric state x, P (y|x), is defined by assuming an expected value F(x) and a

covariance matrix Sy. The a priori probability distribution of the atmospheric state x, P (x),

is defined by assuming an expected value xa and a covariance matrix Sa. Mathematically,

the covariance matrices are defined by

Sy = E [{F(x)− y} {F(x)− y}ᵀ] and

Sa = E [(x− xa) (x− xa)ᵀ] ,
(2.25)

where E[z] is the expected value of z. In practice, these matrices are typically defined by

simply using assumed errors and correlations in the measurement elements and in the a priori

atmospheric state parameters.

To make the least number of assumptions about the distributions, P (y|x) and P (x) are

taken as normal distributions as each is defined only by an expected value and a covariance

matrix. Furthermore, normal distributions are commonly successful at approximating real-

world events. Given the form of a multivariate normal distribution, the aforementioned
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probability distributions are given by

P (y|x) ∝ exp

{
−1

2
[y − F(x)]ᵀSy

−1[y − F(x)]

}
and

P (x) ∝ exp

[
−1

2
(x− xa)ᵀSa

−1(x− xa)

]
.

(2.26)

Note from Eq. (2.24) that the denominator, P (y), of the a posteriori distribution, P (x|y),

is independent on x. Thus, maximizing P (x|y) with respect to x in the optimal estimation

method can be re-expressed as minimizing

−2 ln [P (x|y)] = −2 ln [P (y|x)] + (−2) ln [P (x)] + c0

= [y − F(x)]ᵀSy
−1[y − F(x)] + (x− xa)ᵀSa

−1(x− xa) + c,
(2.27)

where c0 and c are independent on x and Eq. (2.26) was used to define ln [P (y|x)] and

ln [P (x)]. Without c, the right-hand side of Eq. (2.27) is often referred to as the cost function,

χ2(x) = [y − F(x)]ᵀSy
−1[y − F(x)] + (x− xa)ᵀSa

−1(x− xa). (2.28)

It is clear that minimizing Eq. (2.27) is equivalent to minimizing the cost function χ2(x),

and this is accomplished by solving for the zero of the multivariate derivative of Eq. (2.27).

This results in

0 = g(x) ≡ −∇x ln [P (x|y)] = −KᵀSy
−1 [y − F(x)] + Sa

−1(x− xa), (2.29)

where K = K(x) ≡ ∇xF(x) is the Jacobian matrix of the forward model. The Jacobian

matrix element at row r and column c can be calculated using a perturbation of the state as

Kr,c =
Fr(x + δxcec)− Fr(x)

δxc
, (2.30)

where Fr(x) is element r of the forward model vector F(x), δxc is the change in the atmo-

spheric state vector at element c, and ec is the cth unit atmospheric state vector such that

x + δxcec is the same as x except that the value at element c is replaced with xc + δxc. The

rows of the Jacobian matrix are referred to as weighting functions, and hence the Jacobian

matrix is sometimes referred to in literature as the weighting function matrix.

Using Newton’s method to solve Eq. (2.29) results in the iterative equation

xi+1 = xi − [∇xg(xi)]
−1 g(xi), (2.31)
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where

∇xg(x) = KᵀSy
−1K + Sa

−1 − [∇xK
ᵀ] Sy

−1 [y − F(x)] , (2.32)

and ∇xK
ᵀ is the second derivative of the forward model. ∇xK

ᵀ can be thought of as a

three-dimensional matrix where the element at indices (i, j, k) is given by

(∇xK
ᵀ)i,j,k =

∂Kk,j(x)

∂xi
=
∂2Fk(x)

∂xi∂xj
. (2.33)

In most retrieval problems, the second derivative of the forward model is negligibly small.

Ignoring this term results in the Gauss-Newton method, in which case Eq. (2.31) is approxi-

mated as

xi+1 = xi +
(
Ki

ᵀSy
−1Ki + Sa

−1
)−1 [

Ki
ᵀSy

−1 (y − F(xi))− Sa
−1 (xi − xa)

]
, (2.34)

where Ki ≡ K(xi). The initial state, x0, is generally taken as the a priori state xa and the

state once the algorithm stops or converges is denoted by x̂.

2.5.2 Averaging Kernel Matrix

An important descriptor of the behaviour of the retrieval is the averaging kernel matrix, A.

For example, if the atmospheric state vector (x) describes an ozone profile, then each row of

A, called an averaging kernel, describes how sensitive a given altitude of the retrieved ozone

profile (x̂) is to each altitude of the actual ozone profile (xtrue). The element of A at row r

and column c is given by

Ar,c =
∂x̂r

∂xtrue,c
, (2.35)

where x̂r is element r of the retrieved state vector x̂ and xtrue,c is element c of the true state

vector xtrue. Instead of using perturbations, A can instead be calculated algebraically as

A =
(
KᵀSy

−1K + Sa
−1
)−1

KᵀSy
−1K, (2.36)

where the Jacobian K is taken at the final iteration, after sufficient convergence. The averag-

ing kernel matrix also quantifies the bias in the retrieval due to using an a priori atmospheric

state. Instead of retrieving xtrue, the algorithm retrieves

xa + A (xtrue − xa) . (2.37)
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Thus, the retrieved profile approaches xtrue as A approaches an identity matrix, that is, as

the sensitivity for a given altitude of the retrieved profile peaks increasingly closer to said

altitude. From Eq. (2.36), this occurs as the magnitude of the determinant of Sa increases or

as the magnitude of the determinant of Sy decreases. As all covariance matrices are positive

semi-definite and therefore have non-negative determinants, this can be accomplished by

scaling Sa by a factor greater than 1 or by scaling Sy by a factor less than 1. In either case,

this is equivalent to assuming an increased error in the a priori state relative to that of the

measurement, causing the retrieved state to be affected less by the a priori state and more

by the measurement vector. However, as the measurement vector does not contain enough

information to fully determine the profile, scaling up Sa or scaling down Sy too much can

worsen the results or cause strange behaviour due to over-fitting. As such, the relative scaling

can be varied with trial-and-error to determine a value that gives reasonable results.

2.5.3 Levenberg-Marquardt Method and Convergence Criteria

Similar to the Newton method, the Gauss-Newton method discussed above can be shown to

converge quadratically. The method works better when the state is near the solution, but

can be slow due to repeated overshooting when far from the solution. A common way to fix

this is with the Levenberg-Marquardt (LM) Method. For this method, Eq. (2.34) is replaced

with

xi+1 = xi +
(
Ki

ᵀSy
−1Ki + Sa

−1 + δD
)−1 [

Ki
ᵀSy

−1 (y − F(xi))− Sa
−1 (xi − xa)

]
, (2.38)

where D is a diagonal matrix with the same shape as Sa, and δ is referred to as the LM

damping factor. The matrix D can be an identity matrix, but it is often chosen to be

D = diag(Ki
ᵀSy

−1Ki), where diag(C) is the same as C except that the off-diagonal terms

are set to zero. Note that Eq. (2.38) simplifies to the Gauss-Newton method for δ = 0. As δ

approaches infinity, it simplifies to the gradient descent method,

xi+1 = xi + δ−1
[
Ki

ᵀSy
−1 (y − F(xi))− Sa

−1 (xi − xa)
]

= xi −
1

2δ
∇xχ

2(x).
(2.39)

The initial value for δ is chosen arbitrarily, and then it is allowed to vary each iteration

depending on the change in the cost function χ2. If χ2 is higher at the next iteration, the
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state is not updated and δ is increased, moving closer to the gradient descent method. If χ2

is lower at the next iteration, the state is updated and δ is decreased, moving closer to the

Gauss-Newton method. Generally, δ is increased or decreased each iteration by a constant

factor that can be chosen by experimenting with different values.

For a convergence criteria, it is common to use the percent difference in the cost function χ2

between the current iteration and the next. In other words, convergence is assumed if χ2(xi)

is sufficiently close to χ2(xi+1), where χ2(x) is calculated using Eq. (2.28). However, if using

the LM method and δ is large, then from Eq. (2.39) it is clear that ||xi+1−xi|| would be small,

resulting in a small change in χ2 between iterations. To prevent a premature convergence due

to a potentially large δ, χ2(xi+1) is instead calculated as χ2(xGN,i+1), where xGN,i+1 is the

next-iteration state calculated with the Gauss-Newton method (or LM method with δ = 0),

that is, with Eq. (2.34). If χ2(xi) is sufficiently close to χ2(xGN,i+1), the state is considered

to have converged and the algorithm is stopped. Otherwise, the algorithm continues and the

next atmospheric state is calculated again, this time with the LM method (Eq. (2.38)) to get

xi+1. The criteria defining “sufficiently close” can be chosen arbitrarily or by trial and error.

Note that updating the atmospheric state with Eq. (2.38) and calculating the cost function

with Eq. (2.28) requires running the forward model to calculate F(xi) once for each atmo-

spheric state xi. However, calculating the cost function (Eq. (2.28)) for the Gauss-Newton-

calculated atmospheric state, xGN,i+1, to check the convergence criteria requires running the

forward model an additional time each iteration. To avoid the additional, computationally

expensive forward model run each iteration, the forward model is linearized about xi such

that the forward model vector for the state xGN,i+1 is approximated as

F(xGN,i+1) ≈ F(xi) + Ki · (xGN,i+1 − xi) (2.40)

in the calculation of χ2(xGN,i+1) when checking the convergence criteria.

2.6 Non-Coincident Limb-Nadir Matching

Limb-nadir matching is a troposphere-stratosphere separation method to derive tropospheric

column densities using both nadir and limb measurements. It involves combining limb mea-
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surements, which provide stratospheric column densities, with the nadir measurements, which

provide the total column densities extending over both the troposphere and stratosphere.

Assuming the limb and nadir measurements are sufficiently close in location and local so-

lar time, the limb-measurement-derived stratospheric column densities can be subtracted

from the nadir-measurement-derived total column densities to estimate the corresponding

tropospheric column densities. Compared to conventional methods, the limb-nadir matching

method has the advantage of using highly-validated limb-viewing instrument measurements

instead of relying on global chemical transport models or additional assumptions about the

distribution of atmospheric species. The limb-nadir matching method has been successfully

done with the SCIAMACHY instrument, which makes both limb and nadir measurements

nearly simultaneously, with the two measurements geographically close to each other (Beirle

et al., 2010; Hilboll et al., 2013). The drawback to this method is that very few instruments

make both limb and nadir measurements.

A recent paper attempts to solve this drawback by demonstrating the feasibility of performing

the limb-nadir matching to derive tropospheric NO2 column densities using non-coincident

measurements from limb- and nadir-viewing instruments on separate satellites (Adams et

al., 2016). Specifically, the paper describes the results of using the method with nadir-

viewing OMI and limb-viewing OSIRIS NO2 measurements. This so-called non-coincident

limb-nadir matching method involves i) using a photochemical box model to shift the limb-

measurement-derived stratospheric column densities in local solar time in order to match the

local times of the nadir-measurement-derived total column densities, and ii) interpolating

and smoothing the limb-measurement-derived stratospheric column densities from a period

of time in geographic coordinates to match the coordinates of the nadir-measurement-derived

total column densities. The non-coincident limb-nadir matching method is more practical

than the coincident method due to the fact that there are sufficiently many limb- and nadir-

viewing instruments in operation to result in many large overlapping periods of operation

between limb-nadir instrument pairs. Future assessments of this method, particularly with

different instruments and datasets, would provide a better understanding of the value in the

method.
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For this method, Adams et al. (2016) uses the version 2 OMI-SP and the version 3 OSIRIS

NO2 data products. SCD-dependent factors determined by Marchenko et al. (2015) are used

to correct the well-known OMI NO2 version 2 SCD positive bias. For the OSIRIS data, only

the descending node measurements are used. This is to avoid the systematic bias between the

descending and ascending nodes due to NO2 diurnal variations resulting from different local

solar times between the two nodes. Furthermore, only OSIRIS measurements with SZAs

less than 88◦ are used in order to minimize the so-called diurnal effect or photochemical

enhancement (Hendrick et al., 2006; McLinden et al., 2006) which is not currently accounted

for in the OSIRIS NO2 retrieval algorithm. This effect is strongest when the Sun is close

to the horizon (i.e., SZA near 90◦) and is due to the large range in local SZAs along the

instrument LOS and the large diurnal variation of species such as NO2. The non-coincident

limb-nadir matching algorithm by Adams et al. (2016) is described in the following five steps.

First, OSIRIS vertical density profiles are extrapolated to each local solar hour (0-23) of each

day so that they can eventually be interpolated to the local times of OMI measurements

for corresponding days. As NO2 is photochemically active and has strong diurnal variations

(Mayer, 1999), especially during dusk and dawn when OSIRIS measurements are taken, a

photochemical box model by Prather and Jaffe (1990), referred to in the present work as

PRATMO, is used to extrapolate OSIRIS profile number densities over local solar time. This

is done using the equation

nOSIRIS(z, tnew,Θ, d) = nOSIRIS(z, tOSIRIS,Θ, d) · nmodel(z, tnew,Θ, d)

nmodel(z, tOSIRIS,Θ, d)
, (2.41)

where z is the altitude along the vertical profile, tOSIRIS is the local solar time of the OSIRIS

measurement, tnew is the local solar time to which the profiles are being extrapolated, Θ is

the latitude, and d is the date of the measurement. This method has been successfully used

to validate NO2 profiles (Brohede et al., 2007) and merge data products (Brohede et al.,

2008).

Second, OSIRIS NO2 stratospheric VCDs are calculated for each local solar hour of each day

by numerically integrating the profiles over altitude from the tropopause to the effective top

of the stratosphere (ETS). The ETS is defined as the highest altitude of the version 6 OSIRIS
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NO2 data product: 39.5 km. It is assumed that the contribution to the VCDs from number

densities above this altitude is negligibly small.

If a profile extends to or below the tropopause, it is interpolated to and cut off at the

tropopause before integration. If a profile does not extend down to the tropopause, the VCD

is extrapolated to the tropopause using PRATMO with the equation

Vstrat = V OSIRIS
part ·

(
V model

strat

V model
part

)
, (2.42)

where Vstrat is the resulting extrapolated stratospheric VCD, V OSIRIS
part and V model

part are the

OSIRIS and PRATMO VCDs resulting from integration over available OSIRIS altitudes,

and V model
strat is the PRATMO VCD extending from the tropopause to the ETS.

Third, for each day of OMI VCD data, OSIRIS stratospheric VCDs from this day, the

previous day, and the following day, are interpolated over latitude and longitude to create

one 1◦-by-1◦ gridded map per local solar hour. This three-day averaging window of OSIRIS

data is chosen by Adams et al. (2016) as a favorable balance between spatial coverage and

resolution of features. For each 1◦-by-1◦ grid cell of each local solar hour of each day, weights

are calculated for all OSIRIS VCDs of the corresponding local solar hour and three-day

window. For the grid cell at latitude Θ and longitude Φ, the weight of the ith OSIRIS VCD

is given by

wi(Θ,Φ) = exp

(
−

[
(Θ−Θi)

2

2σΘ

+
(Φ− Φi)

2

2σΦ

])
, (2.43)

where Θi and Φi are the OSIRIS VCD measurement tangent point latitude and longitude,

respectively, and σΘ and σΦ are the standard deviations in the Gaussian weighting for latitude

and longitude, respectively. Based on the OSIRIS measurement spatial coverage, σΘ and σΦ

are taken as 6◦ and 10◦, respectively. If the sum of all weights for a given grid cell of a given

hour and day is less than 1, the grid cell is left empty. Otherwise, the weights in Eq. (2.43)

are normalized such that
∑

iwi(Θ,Φ) = 1, and the grid cell value is calculated as the mean of

the OSIRIS VCDs, weighted by the normalized weights. This process is repeated to produce

one stratospheric VCD map for each local solar hour of each day.

Fourth, the OSIRIS gridded stratospheric VCD maps for each local solar hour and day are

interpolated to the local time and coordinates of each OMI measurement with which to be
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matched. Note that each OMI measurement is used to calculate one tropospheric VCD and

one stratospheric VCD in the OMI level 2 data.

Finally, for each OMI measurement, the corresponding OMI-minus-OSIRIS (OmO) tropo-

spheric NO2 VCD, V OmO
trop , is calculated as

V OmO
trop = V OMI

trop + (V OMI
strat − V OSIRIS

strat ) · AOMI
strat/A

OMI
trop , (2.44)

where V OMI
trop and V OMI

strat are the tropospheric and stratospheric VCDs corresponding to the

OMI measurement, V OSIRIS
strat is the matched OSIRIS stratospheric VCD, and AOMI

trop and AOMI
strat

are the tropospheric and stratospheric AMFs corresponding to the OMI measurement.
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3 Analysis of Canadian Ozone Retrievals for

Simulated TEMPO Measurements

3.1 Introduction

The goal of the present chapter is to investigate the difference in ozone retrieval error, for

simulated TEMPO measurements over Canada, due to the use of a radiative transfer model

with a spherical geometry for all orders of scattering compared to the use of the planned

VLIDORT model with a plane-parallel geometry for multiple-scattered light. The intention

of this goal is to quantify potential benefits of implementing a radiative transfer model with

a spherical geometry for all orders of scattering to retrieve ozone profiles over Canada with

future TEMPO measurements compared to implementing the planned VLIDORT model.

This goal is addressed by comparing the error in retrieved ozone profiles over Canada resulting

from the use of the SASKTRAN DO engine, with a plane-parallel geometry for all orders of

scattering, to the error resulting from the use of the SASKTRAN HR engine, with a spherical

geometry for all orders of scattering. To this end, GOME- and OMI-based algorithms are first

developed and compared to published results to validate the algorithms. The algorithms are

then adapted for simulated TEMPO measurements and a statistical analysis is performed

to determine expected errors associated with using a plane-parallel geometry instead of a

spherical geometry.

The methodology of developing and validating the retrieval algorithms, and of performing

the statistical analysis for the TEMPO-based retrieval algorithm, is detailed in Section 3.2.

The corresponding results and discussion is found in Section 3.3. Finally, the work is con-

cluded and future investigations towards the analysis of the best radiative transfer model
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implementation for future TEMPO ozone retrievals over Canada is outlined in Section 3.4.

3.2 Methodology

The radiative transfer model, including the atmospheric model and the instrument opti-

cal spectrometer model, of the present work is implemented with the SASKTRAN software

(Bourassa et al., 2008). The three SASKTRAN engines used for the present work are the

discrete ordinates (DO), high resolution (HR), and high resolution single-scatter approxi-

mation (HRSSApprox) engines, all discussed in Section 2.2.7. The DO engine uses a purely

plane-parallel Earth-atmosphere geometry while the HR engine uses a purely spherical Earth-

atmosphere geometry (Zawada et al., 2015). The HRSSApprox engine is adapted from the

HR engine to reduce the computational speed without significantly compromising the ac-

curacy. Comparisons of results between the DO and HR engines are used in the present

work to quantify the error in assuming a plane-parallel geometry versus a spherical geom-

etry. The DO engine differs from VLIDORT, the planned radiative transfer model of the

retrieval algorithm of the future TEMPO ozone retrievals, in that the DO engine uses a

plane-parallel Earth-atmosphere geometry for all orders of scattering while VLIDORT uses

a spherical Earth-atmosphere geometry up until the single-scatter radiance contribution and

a plane-parallel geometry for all higher orders of scattering (Spurr, 2006). Nonetheless, the

DO engine provides the closest comparison to VLIDORT that is available for the present

work.

3.2.1 Atmospheric Model

The atmospheric model is set up in SASKTRAN with the atmosphere defined to consist

of 80 1-km wide spherical shells, with edges at altitudes from 0 to 80 km, similar to the

GOME retrievals (Hoogen et al., 1999). Number densities above an altitude of 80 km are

sufficiently low that they have an insignificant effect on the radiative transfer. The model

incorporates the SASKTRAN dry-air Rayleigh scattering model, which has been validated

with the results of D. R. Bates (1984). The MSIS-90 model (Hedin, 1991) is used for the

pressure, temperature, and number density of the air. The NO2 vertical density profiles are
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taken from a climatological dataset by Prather and Jaffe (1990). The ozone and NO2 cross

sections used in the model are taken from experimentally-determined values (Brion et al.,

1998; Brion et al., 1993; Daumont et al., 1992; Malicet et al., 1995; Vandaele et al., 1998).

The NO2 and ozone cross sections are convolved down to the wavelength resolution of each

instrument using the published full-width half maximum of the respective instrument.

An assumption in the atmospheric model is that the ozone vertical density profile that is

varied in the retrieval algorithm is defined to be independent on latitude and longitude. This

is a reasonable assumption as only the atmospheric region local to the intersection between

the instrument LOS and the ground should have a significant effect on the measurement.

Furthermore, even at the highest VZA of the present analyses (TEMPO measuring towards

the Canadian Oil Sands), the difference in latitude between the LOS intersection with the

ground and the LOS intersection with the effective top of the atmosphere (altitude of 80 km)

is found to be at most 1.5◦ (see Appendix A). It is expected that the ozone profile does not

vary significantly over such a small latitude difference, and so the aforementioned assumption

about the ozone profile in the atmospheric model is reasonable.

3.2.2 Measurements and Instrument Models

The measurement vectors for the retrieval algorithm of the present work are simulated in

SASKTRAN and do not account for instrument noise. The lack of instrument noise allows for

easy analysis of the effect of each individual factor on the retrievals as there is less difference

between the measurements and the forward model of the retrieval. The measurements are

simulated by defining true values for the atmosphere, the Sun geometry, the position and

orientation of the instrument, and the model of the instrument spectrometer, all using the

SASKTRAN framework. This is unlike a real retrieval where the true values cannot be known

exactly due to uncertainties.

In an ideal world with infinite computer resources, the instrument models for both the for-

ward model of the retrieval and the simulated measurements would be perfect models of the

instrument. Due to limited computer resources however, some assumptions must be made

in the models. For simplicity, the instrument models for both the forward model and the
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simulated measurements are assumed to have rectangular pixels. Because the cross sections

are convolved down to the same wavelength resolution of each instrument, a delta function is

used for the line shape. The simulated measurements are always calculated with the SASK-

TRAN HR engine as it has the most realistic geometry, whereas the forward model of the

retrieval can be defined to use any of the DO, HR, or HRSSApprox engine.

3.2.3 Retrieval Parameters

The initial atmospheric state of each retrieval is taken as the a priori (best estimate) at-

mospheric state, and the Levenberg-Marquardt (LM) Method (see Section 2.5.3) is used to

iteratively update the state. The state at iteration i, xi, is considered to have converged if the

cost function (Eq. (2.28)) at this state, xi, is within 0.001% of χ2(xGN,i+1), where xGN,i+1 is

the state at the next iteration calculated using the Gauss-Newton method (Eq. (2.34)), and

χ2(xGN,i+1) is calculated with the forward model linearized about the state xi (Eq. (2.40))

to reduce the number of runs of the computationally expensive forward model by a factor

of two. Nonetheless, a maximum of ten iterations is specified for the retrieval algorithm.

The value of ten is chosen as a compromise between ensuring all retrieval cases converge

sufficiently and limiting the time required to run the retrievals.

The standard deviation in each a priori atmospheric state parameter is defined as the corre-

sponding a priori atmospheric state parameter multiplied by a common standard deviation

factor. Based on other retrieval algorithms (Hoogen et al., 1999; Liu et al., 2005), the a

priori atmospheric state covariance matrix is defined using a correlation length rc and the

standard deviations, σa,k, of the a priori atmospheric state. Similar to Hoogen et al. (1999),

a correlation length of 5 km is used. For the case of an atmospheric state with only ozone

profile number densities, the a priori covariance matrix element at row i and column j is

calculated as

(Sa)ij = σa,iσa,j exp (−|zi − zj|/rc), (3.1)

where σa,k is the standard deviation of the a priori profile number density at altitude zk. In

the case of an atmospheric state vector with fit parameters in addition to the profile number

densities, the a priori covariance matrix is defined by: i) using Eq. (3.1) to calculate a smaller
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a priori covariance matrix that only has the profile density elements, ii) inverting the resulting

matrix, iii) padding on zeros at the rows and columns corresponding to the atmospheric state

vector indices of the fit parameters, and iv) setting the diagonal elements of the zero-padded

rows and columns as the inverse of the standard deviation of the corresponding fit parameter.

This limits the effect of the a priori values of the additional parameters on the retrieval.

In other words, the a priori values of the additional parameters will have minimal effect

on changes in the atmospheric state throughout the algorithm. Moreover, the additional

parameters will have maximum freedom to change at each iteration of the algorithm.

Following the retrieval algorithms of GOME (Hoogen et al., 1999) and OMI (Liu et al., 2005),

the measurement covariance matrix (Sy) for each retrieval of the present work is assumed

to be a diagonal matrix. In other words, it is assumed that measurements over different

wavelengths are not correlated. Moreover, for each measurement covariance matrix, the

diagonal elements are given the same value as each other as it is assumed that there is no

significant difference in error between radiance measurements at different wavelengths. As

the simulated measurements do not have measurement noise, all measurement covariance

matrices are arbitrarily taken as identity matrices. As the cost function (Eq. (2.28)),

χ2(x) = [y − F(x)]ᵀSy
−1[y − F(x)] + (x− xa)ᵀSa

−1(x− xa), (3.2)

is to be minimized in the optimal estimation method (see Section 2.5), the choice of the

value 1 for all diagonal elements of Sy does not affect the retrieval negatively; the important

agent of the retrieval behaviour is the ratio between the a priori and measurement covariance

matrix determinants. This ratio specifies the relative importance of the a priori atmospheric

state compared to the measurement. For the present work, the relative importance of the a

priori atmospheric state compared to the measurement is defined by scaling the a priori state

covariance matrix by a factor. Due to the use of an a priori standard deviation factor and

of Eq. (3.1) for the a priori covariance matrix, this is mathematically equivalent to scaling

the a priori standard deviation factor. Thus, for the remainder of the discussion herein, the

scaling of the a priori covariance matrix is defined by the a priori standard deviation factor.
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3.2.4 GOME-Based Retrievals

In terms of fit parameters, the GOME ozone profile retrieval algorithm incorporates a shift

parameter for the temperature profile and scaling factors for the aerosol number density

profile, the NO2 number density profile, the pressure profile, and the surface albedo (Hoogen

et al., 1999). The GOME-based retrievals of the present work include only scaling factors

for the surface albedo and the pressure profile as fit parameters. The scaling factors are

taken to be relative to the true state. In other words, the true state has scaling factors of

1.0. For convenience in the SASKTRAN framework, the pressure profile is defined by setting

the air number density profile. Scaling the air number density profile results in scaling

both the pressure and the temperature profile, but scaling the temperature profile is not

expected to significantly affect the results. The main purpose of including scaling factors for

the albedo and air number density profile in the retrievals is to more easily compare to the

published GOME retrieval results. In reality, compared to when the GOME retrieval was

first developed, the ability to get reasonable a priori estimates of these quantities has greatly

improved.

Similar to Hoogen et al. (1999), radiances for wavelengths between 290 and 355 nm are used

for the GOME-based ozone retrieval of the present work. The spectral information for the

GOME instrument model is taken from the 1B (290–314 nm) and 2B (314–355 nm) bands

of GOME level 1 data, with spectral resolutions of 0.2 and 0.17 nm, respectively (Burrows

et al., 1999). Data for the instrument position and look direction are also extracted from the

GOME level 1 data.

The true ozone profiles used for the simulated GOME measurements are taken from retrieved

OSIRIS ozone profiles and the a priori ozone profiles are taken from a climatological dataset

by McPeters et al. (1997), both at the same time and geographic location of the GOME level

1 measurement data used to define the geometry of the simulated measurements. The true

air profiles are taken from the MSIS-90 climatological model (Hedin, 1991) and the a priori

air number density profiles are calculated by multiplying the corresponding true air profile

by an arbitrary scaling factor close to 1.0, as a realistic a priori estimate for the air profile
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is typically relatively close to the true value. Various values for the true surface albedo are

tested, each being relatively close to the corresponding true values (i.e., scaling factors close

to 1.0), given present day abilities to estimate the surface albedo.

3.2.4.1 Validation

A validation of the GOME-based retrieval algorithm is done by performing the retrieval for

a scenario from Hoogen et al. (1999), and comparing the results to those of Hoogen et al.

(1999). The chosen scenario is a typical northern midlatitude winter scenario with a SZA of

70◦ and a surface albedo of 0.8. To specify a SZA of 70◦ in SASKTRAN while also ensuring

a realistic GOME retrieval scenario, GOME level 1 data, which includes the SZA for each

measurement, is used. First, GOME level 1 data for a measurement in the winter of 1999

between 40◦N and 50◦N with a SZA close to 70◦ is chosen. Next, the modified Julian date

(MJD), instrument position, and instrument look direction are taken from the GOME level 1

data for this measurement. Finally, the position and direction of the instrument, and the time

of the measurement, are used in SASKTRAN to calculate the relative location of the Sun.

The calculated Sun position is found to give a SZA at the geographic measurement location

that is within 1◦ of the SZA in the GOME level 1 data. For example, for a sample GOME

measurement on 1 January 1999, the SZA at the center of the ground pixel is 70.0◦. The

Sun and local zenith directions at the measurement location, calculated with SASKTRAN

using the GOME level 1 measurement MJD, instrument position, and instrument direction,

are found to correspond to a SZA of 69.9◦.

3.2.5 OMI-Based Retrievals

The OMI ozone profile retrieval algorithm includes the following fit parameters: surface

albedo, cloud fraction, scaling factors for the Ring effect, radiance/irradiance wavelength

shifts, wavelength shifts between radiance and ozone cross sections, and scaling factors for

the mean fitting residuals derived from one orbit of retrievals using all the other parameters

(Liu et al., 2010). For simplicity, the OMI-based retrieval algorithm developed in the present

work is chosen to not include any fit parameters. This allows for an easier analysis of the

effect of other parameters as there is less difference between the simulated OMI measurements
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and the forward model of the retrieval.

Following Liu et al. (2010), radiances for wavelengths between 270 and 310 nm are used

for the OMI-based ozone retrieval of the present work. The GOME spectral information is

modified for OMI based on the OMI spectral resolution of 0.5 nm (Levelt et al., 2006). Given

the true GOME spectral sampling interval and resolution of approximately 0.1 nm and 0.2

nm, respectively, and the OMI spectral resolution of 0.5 nm (Levelt et al., 2006), the OMI

spectral sampling interval is taken to be 0.2 nm.

The a priori ozone profiles of the algorithm are taken from the climatological dataset by

McPeters et al. (1997), while the true ozone profiles used to simulate the OMI measurements

are taken as ozone profiles retrieved from Microwave Limb Sounder (MLS) measurements.

As the MLS ozone profiles do not reach down to the ground, they are extrapolated using

ozone profiles from the climatological dataset by McPeters et al. (1997). This is done for

each MLS profile by i) taking an ozone profile from the climatological dataset by McPeters

et al. (1997) that is at the same time and coordinates as the given MLS profile, ii) scaling

this climatological profile so that the number density of both the climatological profile and

the MLS profile are the same at the lowest MLS profile altitude, and iii) appending the

climatological profile to the MLS profile below the lowest MLS profile altitude.

3.2.5.1 Validation

A validation of the OMI-based retrieval algorithm is done by comparing retrieved ozone

profiles to the true ozone profiles used to simulate the measurements, for the full sunlit portion

of a simulated Aura satellite orbit. The spatial-temporal data for the Aura satellite orbit is

derived from retrieved MLS ozone profile data. Because both the MLS and OMI instruments

are on the Aura satellite, the geographic and time information from MLS measurements

can be used to determine corresponding information for OMI. As the MLS instrument looks

within the Aura satellite orbital plane in the direction of the satellite propagation, MLS

measurement data is used to retrieve profiles that are at geographic locations on the Aura

ground track in front of the Aura satellite. This means that at any moment when MLS is

making a measurement to be used to retrieve an ozone profile, there is some finite amount
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of time before Aura passes over the geographic location of said ozone profile. As OMI

measures nearly straight down, realistic spatial-temporal data for OMI measurements can be

determined by taking the geographic coordinates of a retrieved MLS profile, and adding some

time offset to the corresponding MLS measurement time to get the time that OMI measures

over the given geographic coordinates. This time offset is found to be approximately 6.9

minutes (See Appendix B).

To get the spatial-temporal OMI measurement data for the sunlit portion of an orbit, re-

trieved MLS ozone profile data for a single day is first taken, and the SZA at the time and

geographic location of each profile is calculated. OMI and MLS measurements are made

when there is sunlight on the measurement geographic location, which corresponds to times

when the SZA at the measurement geographic location is less than 90◦. Filtering the data to

keep measurements with SZAs less than 90◦ results in the data being split into separate time

periods, each being the sunlit portion of one Aura orbit. The sunlit portion from an orbit on

31 March 2012 is arbitrarily chosen for the OMI-based retrieval algorithm validation.

3.2.6 TEMPO-Based Retrievals

For simplicity, the TEMPO-based retrieval algorithm of the present work is based on that

of GOME, which is one of the two heritage retrieval algorithms of TEMPO. The planned

TEMPO retrieval algorithm uses VLIDORT for the radiative transfer modelling, which mod-

els the attenuation of the input solar radiation and the single-scatter contribution to the

modeled instrument measurement with a spherical geometry while the higher-order scatter-

ing is modelled in a plane-parallel geometry (Spurr, 2006). A comparison of results using the

SASKTRAN DO engine to the results using the SASKTRAN HR engine over Canada are

used to help quantify the error in assuming a plane-parallel geometry for the forward model.

Following Zoogman et al. (2017), radiances over wavelength ranges 290 to 345 nm and 540 to

650 nm are used for the TEMPO-based ozone retrieval of the present work. For the TEMPO

instrument model, the spectral resolution and spectral sampling interval for all wavelengths

are taken as 0.57 nm and 0.2 nm, respectively, based on published TEMPO design work

(Zoogman et al., 2017).
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Similar to the OMI-based retrievals, the TEMPO-based retrievals vary only the ozone profile

number densities and do not include additional fit parameters. The true ozone profiles used

in the simulation of TEMPO measurements are taken from MLS retrieved ozone profiles

and the a priori ozone profiles are taken as the mean of MLS profiles that are in the same

month, and are within 2.5◦ latitude and longitude of the MLS retrieved ozone profile. This

method of getting a priori profiles is more realistic as a priori profiles used in retrievals

are typically taken from climatological datasets that are created by averaging a large set of

retrieved profiles. The MLS profiles are extrapolated to the ground using ozone profiles from

the climatological dataset by McPeters et al. (1997) in the same manner as that described

for the OMI-based retrievals (see Section 3.2.5).

3.2.6.1 Statistical Analysis

A statistical analysis comparing the performance of the plane-parallel and spherical radiative

transfer model engines with the TEMPO-based retrieval algorithm is done to investigate the

effect of assuming a plane-parallel geometry on realistic TEMPO retrieval scenarios. The

comparison is done for 48 cases: four months (March, June, September, and December),

three albedos (0, 0.5, and 1), two geographic measurement locations (Los Angeles and the

Canadian Oil Sands), and two local solar times (one hour past sunrise and 13:00). For each

month and geographic measurement location, a set of ten true profiles are used to simulate

ten TEMPO measurements. Each set of ten profiles are chosen randomly from the set of

MLS retrieved profiles in the same month, and within 2.5◦ latitude and longitude of the

geographic measurement location.

The purpose of using the two geographic measurement locations and the two local solar times

is to show how the error in ignoring the curvature of the Earth and atmosphere depends on

either the instrument VZA or the SZA, respectively. The two local solar times and two

geographic measurement locations are each chosen to provide significant ranges of VZAs and

SZAs. The reason for this being to accentuate any SZA- or VZA-dependencies in the results.

Furthermore, the 13:00 local time is chosen as it is close to the local time of measurements

from OMI (13:45), the instrument with a retrieval algorithm on which the TEMPO retrieval
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algorithm is strongly based. The choice of the Canadian Oil Sands for one of the locations

is to explore the retrieval results over a region in Canada requiring a large TEMPO VZA,

and especially for a region with significant pollution emissions. The four different months

and three different surface albedos allow the analysis to account for a wide range of possible

conditions for TEMPO retrievals. For example, the four months encompass the two yearly

equinoxes and the two yearly solstices, which correspond to both the extreme and median

annual solar geometries. The three surface albedos cover the median case and the two extreme

cases.

3.2.6.2 HRSSApprox Engine

As the SASKTRAN HR engine is significantly more computationally intensive than the

DO engine due to the more complex geometry, the simpler spherical-geometry HRSSApprox

engine is used for the TEMPO statistical analysis. The HRSSApprox engine is used for the

forward model in the retrievals, but the HR engine is still used for the simulated TEMPO

measurements to prevent loss of the fidelity of the simulated measurements. To achieve a

maximal decrease in computation time in addition to a minimal decrease in accuracy, the

wavelength subset for the HRSSApprox engine multiple-scatter contribution is chosen by

including more wavelengths where the ozone absorption cross section varies the most with

respect to wavelength. Fig. 3.1 shows the wavelengths used to calculate the multiple-scatter

contribution exactly in the HRSSApprox engine, overlaid on a typical ozone absorption cross

section. The chosen wavelength subset is taken as wavelengths from 290 to 305 nm in steps

of 0.6 nm, 305 to 345 nm in steps of 0.3 nm, and 540 to 650 nm in steps of 2.4 nm. This

results in a fourth as many wavelengths in the subset compared to the full set of wavelengths

used for the simulated measurements, which use a spectral sampling interval of 0.2 nm for

the entire wavelength range.

To ensure the accuracy is not compromised with the chosen multiple-scatter wavelength

subset, results with the HRSSApprox engine for a sample of cases are compared to results with

the HR engine for the same set of cases. Sun-normalized radiances for the two engines, and

their percent difference, for an example case is shown in Fig. 3.2, with the radiances simulated
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using a TEMPO instrument model. The Sun-normalized radiances are defined by dividing the

simulated measured radiances by solar radiances, effectively cancelling any features that result

purely from the Sun. In the SASKTRAN framework, the TEMPO instrument is positioned

at an altitude of 35 786 km above the coordinates 0◦N-100◦, measuring towards the Canadian

Oil Sands (57◦N-112◦W), with the background atmosphere and Sun set for one hour past

local sunrise on 21 March 2022, and with the ozone profile set using MLS retrieval results

on 21 March 2017 at 56.1◦N-112.8◦W. The percent difference for this case (Fig. 3.2(b)) is at

most approximately 1% in magnitude, demonstrating the insignificant decrease in accuracy

when using the HRSSApprox engine with the aforementioned wavelength subset compared

to using the HR engine.

Figure 3.1. Subset of TEMPO wavelengths (vertical orange lines) used to calculate

the multiple-scatter contribution exactly in the HRSSApprox engine, overlaid on the

ozone cross section taken from experimentally-determined data (Brion et al., 1998;

Brion et al., 1993; Daumont et al., 1992; Malicet et al., 1995) for the temperature at

an altitude of 20 km above 0◦N-0◦E on 21 March 2008 in the MSIS-90 model (Hedin,

1991).
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(a) Actual.

(b) Percent difference.

Figure 3.2. Comparison of Sun-normalized radiances between the HRSSApprox and

HR engines, simulated for the TEMPO instrument positioned at an altitude of 35 786

km above 0◦N-100◦W, pointing towards 57◦N-112◦W. The background and Sun are set

for one hour past local sunrise on 21 March 2022, and the ozone profile is set using

MLS retrieval results on 21 March 2017 at 56.1◦N-112.8◦W.
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3.2.6.3 Example Retrieval

The ozone profiles at each iteration of the retrieval algorithm for an example TEMPO case

are shown in Fig. 3.3. The corresponding simulated measured radiances from the forward

model of the retrieval are shown in Figs. 3.4 and 3.5. The example case is for TEMPO

measuring towards 57◦N-112◦W (the Canadian Oil Sands) on 21 March 2022, with the true

ozone profile taken from an MLS-retrieved profile on 22 March 2017 and with a surface albedo

of 0.5. These results demonstrate how the ozone profile and forward model radiances vary

as the retrieval algorithm progresses from the initial iteration (a priori atmospheric state) to

the final iteration (retrieved atmospheric state). In Fig. 3.3, the true ozone profile (xtrue) is

denoted by the dotted blue line while the true ozone profile adjusted by the averaging kernel

matrix (xa + A[xtrue − xa]) is denoted by a dashed green line.

As expected, the ozone profile in Fig. 3.3 approaches the averaging-kernel-adjusted true

profile (xa +A[xtrue−xa]). Note that for certain altitudes (e.g., between 12 and 16 km), the

number densities of the averaging-kernel-adjusted true ozone profile are in between those of

the true and a priori ozone profiles, but for other altitude ranges (e.g., between 19 and 22 km)

the number densities of the averaging-kernel-adjusted true profile are either smaller than, or

larger than, those of both the true and a priori profiles. This can be explained by the fact that

the measurements do not have enough information to fully determine the atmospheric state.

For example, the forward model radiances in Figs. 3.4 and 3.5 clearly approach those for the

true atmospheric state. This implies that good agreement between the measured radiances

and the forward model radiances at the final iteration can be achieved with the retrieval

algorithm, but good agreement between the retrieved and true ozone profiles cannot always

be achieved because of the limit in the information contained in the measured radiances.
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Figure 3.3. Ozone profiles for an example retrieval with a simulated TEMPO mea-

surement over the Canadian Oil Sands (57◦N-112◦W) on 21 March 2022, with the true

ozone profile taken from an MLS-retrieved profile on 22 March 2017. The surface albedo

is 0.5. The dotted blue line denotes the true ozone profile (xtrue) used for the simu-

lated TEMPO measurement and the dashed green line denotes the true ozone profile

adjusted by the averaging kernel matrix (xa + A[xtrue − xa]).
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Figure 3.4. Forward model UV radiance measurements for the same example TEMPO

retrieval scenario as that used for the results of Fig. 3.3. The top plot shows the log

of the Sun-normalized radiances and the bottom plot shows the difference in the log of

the Sun-normalized radiances relative to that for the true atmospheric state.
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Figure 3.5. Forward model visible light radiance measurements for the same example

TEMPO retrieval scenario as that used for the results of Fig. 3.3. The top plot shows

the log of the Sun-normalized radiances and the bottom plot shows the difference in

the log of the Sun-normalized radiances relative to that for the true atmospheric state.
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3.3 Results and Discussion

3.3.1 GOME-Based Retrievals

Fig. 3.6 compares the weighting functions (described in Section 2.5.1) resulting from the

GOME-based retrieval algorithm of the present work to those of Hoogen et al. (1999) for a

typical northern midlatitude winter scenario with a SZA of 70◦ and a surface albedo of 0.8.

Each weighting function describes the dependence of the retrieved ozone profile on a given

wavelength of measured radiance. The peak of a weighting function therefore corresponds to

the altitude of the retrieved ozone profile that is most sensitive to the wavelength of measured

radiance for which the weighting function is defined.

It can be seen from Fig. 3.6 that the altitude of the weighting function peak decreases with

increasing wavelength. This can be understood by noting that the ozone cross section in

Fig. 2.8 decreases with increasing wavelength from 290 to 355 nm. This means that light

with a longer wavelength in this range is able to penetrate deeper in the atmosphere and

therefore allow the retrieval to determine the ozone concentration lower in the atmosphere.

The spread of the weighting functions from the present work (Fig. 3.6(a)) closely match that

of Hoogen et al. (1999) (Fig. 3.6(b)). Compared to the results of Hoogen et al. (1999), the

magnitudes of the weighting functions in the present work differ by at most 6% between

290 and 305 nm and are at most 57% lower between 315 and 355 nm. As the weighting

functions are calculated by the radiative transfer model, these results imply a good match in

the radiative transfer model, as well as in the atmospheric state and the model input settings.
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(a) Results of the present work for 1 Jan. 1999 at 55◦N. The

a priori air density profile factor and albedo are 0.95 and 0.5,

respectively.

(b) Plot reproduced from Fig. 1(a) of Hoogen et al. (1999); a

typical northern midlatitude winter scenario.

Figure 3.6. Comparison of the GOME-based ozone retrieval algorithm weighting

functions from the present work to those of Hoogen et al. (1999), for a typical northern

midlatitude winter scenario, solar zenith angle of 70◦, and surface albedo 0.8.
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Fig. 3.7 and Fig. 3.8 show the effect of varying the standard deviation of the a priori atmo-

spheric state on the GOME-based retrievals for the same scenario as in Fig. 3.6. Fig. 3.7

shows the effect on the averaging kernels and Fig. 3.8 shows the effect on the retrieved ozone

profiles. Note that the standard deviation of the a priori atmospheric state affects the re-

trieval through the a priori covariance matrix (Sa), defined in Eq. (3.1). Each averaging

kernel describes how sensitive the retrieved ozone profile is to the true ozone profile density

at an altitude denoted by “nominal” in the legend of Fig. 3.7. The term “nominal” is used

as the averaging kernel peak is expected to be near this altitude. The actual altitude of the

peak of each averaging kernel is denoted by “true” in the legend of Fig. 3.7. For example,

the yellow averaging kernel line in Fig. 3.7(c) shows that the true profile number density

at 45.5 km has the strongest effect on the retrieved profile at 42.5 km, the peak of the av-

eraging kernel. The dotted blue lines in Fig. 3.8 show the true ozone profile, xtrue, while

the dashed green line shows the true ozone profile adjusted by the averaging kernel matrix,

xa + A(xtrue − xa).

In Fig. 3.7, the altitude of the peak of each averaging kernel approaches the respective nominal

value as the standard deviation factor increases. This can be explained by noting that the

averaging kernel matrix is defined in Eq. (2.36) as

A =
(
KᵀSy

−1K + Sa
−1
)−1

KᵀSy
−1K. (3.3)

From Eq. (3.3), scaling the a priori covariance matrix (Eq. (3.1))), equivalent to scaling the a

priori standard deviation factor, causes the averaging kernel matrix to approach an identity

matrix, and hence the altitude of the peak of each averaging kernel to approach the respective

nominal value. The averaging kernels can also be seen to closely match those in Fig. 3 of

Hoogen et al. (1999), implying a good replication of the retrieval algorithm. In Fig. 3.8, the

number density at the peak of the retrieved ozone profile increases and approaches that of

the true profile up until the a priori standard deviation factor is approximately ten, at which

point the number density of the retrieved profile peak lowers again and the retrieved profile

gets further from the true profile in the altitude range 10–20 km. This can be understood to

be the point where the limit has been reached in the amount of information extracted from

the simulated measurement to determine the profile in this altitude range. This region (10
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to 20 km in altitude) is the most difficult to retrieve as it is near or below the ozone peak,

resulting in significantly less UV light being able to penetrate down to these altitudes and

then get scattered and reflected up to the instrument to be measured.

(a) std factor = 1. (b) std factor = 2.5.

(c) std factor = 10. (d) std factor = 25.

Figure 3.7. Effect of varying the a priori standard deviation (std) factor (ratio of the

standard deviation to the mean for the a priori number density) on the GOME-based

ozone retrieval averaging kernels for the same scenario as Fig. 3.6. The nominal altitude

is the altitude of the true ozone profile on which the retrieved profile is dependent. The

true altitude is the altitude of the peak of the averaging kernel.

65



(a) std factor = 1. (b) std factor = 2.5.

(c) std factor = 10. (d) std factor = 25.

Figure 3.8. Effect of varying the a priori standard deviation (std) factor (ratio of the

standard deviation to the mean for the a priori number density) on the GOME-based

ozone retrieval, for the same cases as Fig. 3.7. The dotted blue line is the true ozone

profile (xtrue) used for the simulated instrument measurement and the dashed green

line is the true ozone profile adjusted by the averaging kernel matrix (xa+A[xtrue−xa]).

3.3.2 OMI-Based Retrievals

For the OMI-based retrieval algorithm of the present work, Fig. 3.9 shows the percent error

of retrieved ozone profiles relative to the true profiles for a full terminator-to-terminator path
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of the Aura satellite, simulated for 31 March 2012, where a terminator is the line separating

the dark and sunlit portions of the Earth. As expected, the average absolute difference

between the retrieved and true profiles (top row of plots in Fig. 3.9) is lower for the larger

a priori standard deviation factor. Comparing the retrieved profiles to the true profiles

adjusted by the averaging kernel matrix (xa + A[xtrue − xa]) in the bottom row of plots in

Fig. 3.9, the lower a priori standard deviation factor shows a lower average deviation below

20 km and above 50 km. This implies that it is more difficult for the profile in the retrieval

to approach the averaging-kernel-adjusted true profile as the a priori standard deviation

increases. Furthermore, from the number of sign changes in the relative difference between

the retrieved and the averaging-kernel-adjusted true profiles (bottom row of Fig. 3.9), the

retrieval is somewhat more sporadic for a higher a priori standard deviation.

Overall, the magnitude of the relative difference between the retrieved and true profiles is

below roughly 25% for an a priori standard deviation factor of 10. The results of the OMI-

based retrievals in the present section and of the GOME-based retrievals in Section 3.3.1 are

sufficiently satisfactory to warrant the application of similar methods to a TEMPO-based

algorithm in the following section.
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Figure 3.9. Percent error of OMI-based retrieval number densities ([nretrieved −

ntrue]/ntrue) for a path from one terminator (at 78◦S) to the other (at 81◦N) of an

Aura satellite orbit on 31 March 2012. The top row of plots compares to the true pro-

files (xtrue) and the bottom row of plots compares to the true profiles adjusted by the

averaging kernel matrix (xa + A[xtrue − xa]). The a priori profile standard deviation

is 1.5 times the a priori profile in the first column of plots and 10 times the a priori

profile in the second column of plots.

3.3.3 TEMPO-Based Retrievals

Fig. 3.10 shows the a priori ozone profiles and the mean and standard deviation (shaded

region) of the set of ten true ozone profiles, used for each month and geographic location

of the TEMPO-based retrieval statistical analysis. Figs. 3.11 and 3.12 show the mean and
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standard deviation of the retrieved profiles for each case, while Figs. 3.13 and 3.14 show the

mean and standard deviation of the difference between the retrieved and the true profile for

each case. Figs. 3.11 and 3.13 correspond to 13:00 local solar time and Figs. 3.12 and 3.14

correspond to one hour past local sunrise. In each case, the a priori standard deviation factor

is taken as 4.0. That is, the standard deviation of the a priori ozone number density profile

is taken as 4.0 times the a priori ozone number density profile. This in turn affects the a

priori covariance matrix of the retrieval according to Eq. (3.1). The value of 4.0 is chosen

based on trial-and-error on a subset of cases to ensure reasonable behaviour of the retrievals,

similar to the analysis of the effect of the a priori standard deviation factor on the averaging

kernels and retrieved profiles in Figs. 3.7 and 3.8 for the GOME-based retrievals.

(a) Los Angeles, 34◦N-118◦W.

Figure 3.10. TEMPO-based retrievals: a priori ozone profiles and the mean and
standard deviation (shaded region) of the true ozone profiles for the statistical analysis.

Comparing corresponding plots between Fig. 3.11 and Fig. 3.12 indicates that the lower Sun

position, or higher SZA, tends to raise the altitude of the DO-engine retrieved profile peak and

decrease the magnitude of the profile peak, with the largest effect being over the Canadian

Oil Sands in June and December. This effect can alternatively be viewed as the retrieved

profiles performing as well or better above the ozone peak but worse near or below the peak.
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The fact that this effect is not seen in the results for the HRSSApprox engine indicates that

the HRSSApprox engine may be preferred over the DO engine for high SZAs in June and

December when measuring over the Canadian Oil Sands. For example, the retrieved profiles

for the DO engine over the Canadian Oil Sands in December have at most approximately four

times more absolute retrieval error when measured one hour past local sunrise (Fig. 3.14(b))

compared to being measured at 13:00 local time (Fig. 3.13(b)). The effect, even for the DO

engine, is not significant when measuring with a lower VZA (i.e., over Los Angeles).

For the retrieved profile results in both Fig. 3.11 and Fig. 3.12, there is more error for the

DO engine compared with the HRSSApprox engine when the instrument is looking over the

Canadian Oil Sands (higher VZA) than there is when looking over Los Angeles. For example,

the absolute difference in retrieval error between the DO and HRSSApprox engines is at most

approximately six times larger for the Canadian Oil Sands (Fig. 3.14(b)) compared to that

for Los Angeles (Fig. 3.14(a)) one hour past local sunrise, or at most approximately two

times larger for the Canadian Oil Sands (Fig. 3.13(b)) compared to that for Los Angeles

(Fig. 3.13(a)) at 13:00 local time.

The two aforementioned dependencies of the retrievals (on SZA and VZA) can be explained

by the fact that larger SZAs and VZAs result in larger differences between the two engines

in terms of the paths of modeled photons through the atmosphere from the Sun to the in-

strument. In other words, accounting for the curvature of the Earth and the atmosphere is

more important for highly oblique SZAs and VZAs. In contrast to GOME and OMI mea-

surements, highly oblique SZAs and VZAs are regularly present for TEMPO measurements.

For example, these occur for TEMPO when measuring over Canada or measuring near local

sunrise or sunset.

The insignificant errors for measurements of Los Angeles at either local solar time demon-

strates that the radiative transfer model for the future TEMPO ozone retrievals may have

been chosen because, despite geometry assumptions, it has an insignificant effect on the re-

trievals over the majority of the field of regard. This highlights the possible benefits for

Canada in using a more realistic geometry for TEMPO ozone retrievals over Canada.
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(a) Los Angeles, 34◦N-118◦W.

(b) Canadian Oil Sands, 57◦N-112◦W.

Figure 3.11. TEMPO-based retrievals: Mean and standard deviation (shaded region)

of the retrieved ozone profile at 13:00 local time.
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(a) Los Angeles, 34◦N-118◦W.

(b) Canadian Oil Sands, 57◦N-112◦W.

Figure 3.12. TEMPO-based retrievals: Mean and standard deviation (shaded region)

of the retrieved ozone profile at one hour past local sunrise.
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(a) Los Angeles, 34◦N-118◦W.

(b) Canadian Oil Sands, 57◦N-112◦W.

Figure 3.13. TEMPO-based retrievals: Mean and standard deviation (shaded region)

of the error in the retrieved ozone profile at 13:00 local time.
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(a) Los Angeles, 34◦N-118◦W.

(b) Canadian Oil Sands, 57◦N-112◦W.

Figure 3.14. TEMPO-based retrievals: Mean and standard deviation (shaded region)

of the error in the retrieved ozone profile at one hour past local sunrise.
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3.4 Conclusion

A TEMPO-based tropospheric ozone retrieval algorithm, based on validated GOME- and

OMI-based retrieval algorithms (Sections 3.3.1 and 3.3.2), is used to investigate the potential

reductions in ozone retrieval error due to the use of a radiative transfer model with a more

realistic Earth-atmosphere geometry for tropospheric ozone retrievals over Canada using

simulated TEMPO measurements. Overall, there is more error in the retrieved profiles at

altitudes at or below the ozone peak. This can be explained by the fact that only a relatively

small fraction of solar radiation can reach down below the ozone peak and be reflected and

refracted up to the instrument to give information about the profile. It is shown that,

when measuring tropospheric ozone over the Canadian Oil Sands one hour past local sunrise

(Fig. 3.14(b)), the retrieval error near the ozone profile peak for the DO engine can reach

approximately 80% in December, 50% in June, and 25% in September or March, while the

corresponding error for the HRSSApprox engine is an order of magnitude smaller. For a local

time of 13:00, the Canadian Oil Sands retrieval error (Fig. 3.13(b)) near the ozone profile

peak for the DO engine can reach as much as approximately 15%, while the HRSSApprox

engine retrieval error is roughly the same as the HRSSApprox engine retrieval error over the

Canadian Oil Sands one hour past local sunrise (Fig. 3.14(b)).

In general, there is larger retrieval error over the Canadian Oil Sands compared to over

Los Angeles, especially near sunrise. Compared to its predecessors GOME and OMI, the

TEMPO instrument regularly encounters these conditions of high SZAs and VZAs, and in

particular when retrieving profiles over Canada. For these reasons, it is recommended to

use a radiative transfer engine that assumes a curved atmosphere-Earth geometry, such as

the SASKTRAN HR engine, to take advantage of TEMPO measurements for the purpose of

monitoring tropospheric ozone pollution over Canada.

Nonetheless, future work is required to determine the effects of measurement noise on the

retrievals and to analyze the relative importance of atmosphere-Earth geometry assumptions

on different orders of light scattering. This would allow for a more realistic analysis of the

difference in retrieval error between the planned VLIDORT-based retrieval algorithm and a
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retrieval algorithm with a radiative transfer model model like the SASKTRAN HR engine,

and therefore a better understanding of the most suitable choice of a radiative transfer model

for future Canadian tropospheric ozone retrievals with TEMPO measurements. If possible,

results with a radiative transfer model like the SASKTRAN HR engine could be compared

to results with the actual VLIDORT software for the most thorough assessment.
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4 Assessment of Non-Coincident Limb-Nadir Matching

for Measuring Tropospheric Nitrogen Dioxide

4.1 Introduction

The goal of the work in the present chapter is to further assess the relatively novel method

by Adams et al. (2016), described in Section 2.6, of estimating tropospheric NO2 column

densities by matching the stratospheric NO2 column densities measured by a limb-viewing

instrument to the combined troposphere-stratosphere NO2 column densities measured by

a nadir-viewing instrument and then subtracting the stratospheric column densities from

the combined troposphere-stratosphere column densities. The advantage of this method of

estimating tropospheric concentrations from the nadir-viewing instrument measurements is

that, unlike conventional methods that rely on modelling and on assumptions about the

atmosphere, this method takes advantage of highly-validated limb-viewing remote sensing

instrument measurements. Thus, if this method is proven to be effective then it is arguably

more accurate than conventional methods.

The objective of assessing the non-coincident limb-nadir matching method of estimating

tropospheric NO2 densities is pursued by reanalyzing the OSIRIS-OMI results of Adams

et al. (2016) with newer OSIRIS, OMI, and photochemical box model datasets, and by

analyzing OSIRIS-TROPOMI results. The methodology for this is detailed in Section 4.2.

The process of undertaking this goal has led to the OSIRIS NO2 profile retrieval algorithm

being updated, resulting in a better match with the heritage, validated OSIRIS version 3

NO2 profile data. The results leading to the development of the updated OSIRIS NO2

retrieval algorithm, results of the OSIRIS-OMI limb-nadir matching reanalysis, and results
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of the OSIRIS-TROPOMI limb-nadir matching analysis are covered in Section 4.3, with their

meaning and significance explored in Section 4.4. Finally, Section 4.5 concludes the work and

outlines the future research that would help further the goal of assessing the non-coincident

limb-nadir matching technique.

4.2 Methodology

A non-coincident limb-nadir matching algorithm based on that by Adams et al. (2016) is

developed for the present work in Python. The code is written to accommodate OMI-SP

version 4 or TROPOMI version 1.3 NO2 VCD data and OSIRIS version 3, 6, or 7 NO2

vertical density profile data. Although the OMI-SP NO2 version 2 data is no longer publicly

available, the code also accommodates the use of a sample of the bias-corrected version 2 data

for 3-5 March 2008 that was used by Adams et al. (2016) and is provided by Dr. Adams for

the present analysis. This allows for the analysis of differences due to the data versions. Both

the reanalysis with newer NO2 data products and the analysis with OSIRIS-TROPOMI limb-

nadir matching serve to better understand the potential value in the non-coincident limb-

nadir matching method for estimating tropospheric NO2 pollution densities. Furthermore,

the coverage overlap between the three instruments, OSIRIS, OMI, and TROPOMI, as well

as the difference in ascending node local times of only approximately 15 minutes between

OMI and TROPOMI, allows for the OSIRIS-OMI and OSIRIS-TROPOMI matching results

to be compared to each other.

Similar to the work by Adams et al. (2016), only OSIRIS data from the descending node is

used. This is to avoid a systematic bias between the ascending and descending nodes due

to NO2 diurnal variations resulting from the two nodes being measured at different local

solar times. Furthermore, OSIRIS data is only used for SZAs less than 88◦ to minimize the

diurnal effect, also known as photochemical enhancement (Hendrick et al., 2006; McLinden

et al., 2006). The tropopause altitudes used to define the bottom of the stratospheric profiles

are calculated using the lapse rates from the National Centres for Environmental Prediction

reanalysis data (Kalnay et al., 1996).
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Data resulting from the photochemical box model (Prather & Jaffe, 1990) used by Adams et

al. (2016) is used in the present work to extrapolate the OSIRIS NO2 density profiles in time

and altitude. The photochemical box model dataset used by Adams et al. (2016) and the one

used in the present work, which differ in the model input parameters, are referred to in the

discussion herein as PRATMO+ and PRATMO++, respectively. The input parameters used

in the photochemical box model to produce PRATMO+ are no longer available. The overall

dependence of the results on the photochemical box model is reduced by only calculating the

OSIRIS gridded NO2 VCD maps, and therefore the final OMI-minus-OSIRIS (OmO) and

TROPOMI-minus-OSIRIS (TROPOmO) tropospheric VCDs, between 70◦S and 70◦N. The

reason for this is that the average tropopause height decreases closer to the poles, resulting in

a higher fraction of OSIRIS profiles requiring altitude extrapolation down to the tropopause

and therefore an overall larger dependence on the photochemical box model.

A sample of OmO NO2 data for 3-5 March 2008, provided by the first author of Adams et al.

(2016), is used to verify the algorithm of the present work and to analyze differences due

to different photochemical box model input parameters and different OMI-SP data versions.

Following the work by Adams et al. (2016) and the SCIAMACHY limb-nadir matching by

Hilboll et al. (2013), the resulting tropospheric NO2 VCDs in the present work are validated

by analyzing their values over the Pacific Ocean where little to no tropospheric pollution

is expected. Other regions are not used in the validation as they are more dependent on

anthropogenic emissions, resulting in more variation and uncertainties.

4.3 Results

4.3.1 OSIRIS NO2 Data Version Comparison

In the process of producing gridded stratospheric NO2 VCD maps with the publicly released

version 6 OSIRIS NO2 data, a bias between the version 6 data product and version 3 data

product used by Adams et al. (2016) was discovered. Fig. 4.1 shows the absolute and percent

differences between the version 6 and version 3 stratospheric NO2 profiles over the year 2008.

The average over the year is taken for each profile altitude and each 5◦ latitude bin between
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70◦S and 70◦N. Fig. 4.1(a) shows a nearly-constant systematic bias of approximately 1× 108

molecules/cm3 between the two data products that is not latitude-dependent. Fig. 4.1(b)

shows that the version 6 stratospheric profiles are on average roughly 20% lower than the

version 3 profiles, with the percent difference reaching upwards of 67% near the top and

bottom of the profiles. Note that the profiles are only shown up to 40 km as the number

densities are significantly lower above 40 km, resulting in little contribution to the final VCDs.

(a) Actual difference. (b) Percent difference.

Figure 4.1. Mean difference between version 6 and version 3 OSIRIS stratospheric

NO2 density profiles in 2008 for 5◦ latitude bins between 70◦S and 70◦N. Grey indicates

regions that are below the tropopause year-round.

Due to the higher amount of validation for the version 3 data product (Adams et al., 2012;

Brohede et al., 2008; Haley & Brohede, 2007), it is assumed that the bias between ver-

sion 3 and version 6 is primarily due to a systematic bias in the version 6 data product.

Consequently, work was done by the Atmospheric Research Group at the University of

Saskatchewan to determine improvements in the retrieval algorithm and to see if this could

reduce the bias. This work resulted in a version 7 data product retrieval algorithm, which

differs from that of the version 6 data product mainly in the OSIRIS spectral point spread

function fitting and the cloud-aerosol discrimination. Specifically, the spectral point spread

function fitting is done with solar Fraunhofer lines instead of pre-flight calibrated values and

an improvement in the detection of cloudy scenes allows for more profiles to be retrieved
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down to the lower stratosphere and upper troposphere. Fig. 4.2 shows a comparison between

version 7 and version 3 profiles, along with the version 7 retrieved profile error (Fig. 4.2(c)),

in 2008 for 5◦ latitude bins between 70◦S and 70◦N.

(a) Actual difference. (b) Percent difference.

(c) Version 7 profile error.

Figure 4.2. Mean difference between version 7 and version 3 OSIRIS stratospheric

NO2 density profiles, and mean version 7 retrieved profile error, in 2008 for 5◦ latitude

bins between 70◦S and 70◦N. The colour mapping in (a) and (c) is the same as in

Fig. 4.1(a) and the colour mapping of (b) is the same as in Fig. 4.1(b). Grey indicates

regions that are below the tropopause year-round.

Figs. 4.2(a) and 4.2(b) indicate that the version 7 NO2 profiles have virtually no bias above

the mean tropopause altitude compared to the version 3 profiles. From Fig. 4.2(b), ver-
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sion 7 profiles are on average approximately 10% higher than the version 3 profiles in the

stratosphere. Between 19 and 40 km, the average percent difference is 1%. The version 7

and version 3 OSIRIS NO2 profiles appear to agree with each other as their mean difference

(Fig. 4.2(a)) is smaller than or equal to the mean version 7 NO2 retrieval error (Fig. 4.2(c)).

4.3.2 OSIRIS Gridded Stratospheric NO2 VCD Maps

In the non-coincident limb-nadir matching method, OSIRIS NO2 profiles are scaled in local

solar time using Eq. (2.41), integrated over altitudes to get stratospheric VCDs, and summed

with the weights in Eq. (2.43) to get stratospheric gridded maps. For the present work, this

is done for OSIRIS version 6 and 7 NO2 profiles. Fig. 4.3 compares the OSIRIS gridded

NO2 stratospheric VCD maps of the present work, for both version 6 (Fig. 4.3(a)) and 7

(Fig. 4.3(b)) OSIRIS profiles, to those of Adams et al. (2016) that use version 3 OSIRIS

profiles (Fig. 4.3(c)). In each case, maps are shown for 4 March 2008 and 21 June 2008, and

for 07:00 and 13:00 local time. The version 6 and 7 maps of the present work use PRATMO++

while the version 3 maps of Adams et al. (2016) use PRATMO+. Note that the version 6

OSIRIS data has a more strict filtering of measurements in the retrieval, resulting in the

lower coverage that can be seen in Fig. 4.3(a).

Comparing each of the four OSIRIS version 6 maps of Fig. 4.3(a) to each corresponding

version 3 map in Fig. 4.3(c) demonstrates a nearly constant bias of roughly −0.5 × 1015

molecules/cm2 in the version 6 maps compared to the version 3 maps, without a clear latitude

dependence. For example, the region in the tropics (23◦S-23◦N) of each map in Fig. 4.3(a) can

be seen to be lower than the region in the tropics of each corresponding map in Fig. 4.3(c).
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(a) OSIRIS NO2 v6 (present work). (b) OSIRIS NO2 v7 (present work).

(c) OSIRIS NO2 v3, reprinted from Adams et al. (2016).

Figure 4.3. Comparison of 2008 gridded OSIRIS stratospheric NO2 VCD maps be-

tween (a) version 6 (present work), (b) version 7 (present work), and (c) version 3

(Adams et al., 2016) OSIRIS profile data. In each case, maps are shown for 4 March

and 21 June 2008 (columns of maps for each subfigure) at local solar time 07:00 and

13:00 (rows of maps for each subfigure). The white or grey circles in each map show

the tangent-point coordinates of OSIRIS measurements used to construct the map.
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Comparing each of the four OSIRIS version 7 maps of Fig. 4.3(b) to each corresponding ver-

sion 3 map in Fig. 4.3(c) shows that the 4 March 2008 maps are up to 0.5×1015 molecules/cm2

lower for version 7 compared to version 3 (e.g., see the regions below 45◦S) and the 21 June

2008 maps are up to 0.5×1015 molecules/cm2 higher for version 7 compared to version 3 (e.g.,

see the regions around and above 45◦N), with the largest discrepancies in the northern and

southern midlatitudes. Nonetheless, there is an overall lower average discrepancy between

version 7 and version 3 maps compared to that between version 6 and version 3 maps.

Figs. 4.4 and 4.5 show the difference and percent difference, respectively, in OSIRIS gridded

stratospheric NO2 VCD maps on 4 March 2008 due to either the algorithm version, the

OSIRIS NO2 version, or the photochemical box model input parameters. This makes use of

the sample data provided by the first author of Adams et al. (2016). The grey circles show

the tangent-point latitude and longitude for each OSIRIS measurement used in producing

the map. Grey indicates regions where there are insufficient nearby OSIRIS measurements

to define these grid points of the map. See Section 2.6 for details about the definition of each

grid point value.

The top rows of Figs. 4.4 and 4.5 compare maps using the algorithm of the present work

to maps using the algorithm of Adams et al. (2016), with OSIRIS NO2 version 3 and the

PRATMO+ sample data provided by Adams et al. (2016) used in both cases. This validates

the algorithm of the present work. The middle rows of Figs. 4.4 and 4.5 compare maps using

OSIRIS NO2 version 7 (present work) to maps using OSIRIS NO2 version 3 (Adams et al.,

2016), with PRATMO++ and the present algorithm used in both cases. This increases the

confidence in the OSIRIS NO2 version 7 data in reference to the highly-validated version

3 data. The bottom rows of Figs. 4.4 and 4.5 compare maps using PRATMO++ (present

work) to maps using PRATMO+ (Adams et al., 2016), with OSIRIS NO2 version 7 and the

present algorithm used in both cases. The bottom row of Fig. 4.5 shows that the use of

PRATMO++ can cause the maps to be upwards of 30% lower than those resulting from the

use of PRATMO+.
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Figure 4.4. Difference in OSIRIS gridded stratospheric NO2 VCD maps on 4 March

2008 at 07:00 (first column) and 13:00 (second column) local time due to the algorithm

version (top row), OSIRIS NO2 version (middle row), and PRATMO photochemical box

model dataset (bottom row). The algorithms from the present work and from Adams

et al. (2016) are denoted by “algo. 2019” and “algo. 2016”, respectively. The grey

circles show the tangent-point latitude and longitude for each OSIRIS measurement

used in producing the map. Grey indicates regions where there are insufficient nearby

OSIRIS measurements to define these grid points of the map.
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Figure 4.5. Percent difference in OSIRIS gridded stratospheric NO2 VCD maps on

4 March 2008 at 07:00 (first column) and 13:00 (second column) local time due to

the algorithm version (top row), OSIRIS NO2 version (middle row), and PRATMO

photochemical box model dataset (bottom row). The algorithms from the present

work and from Adams et al. (2016) are denoted by “algo. 2019” and “algo. 2016”,

respectively. The grey circles show the tangent-point latitude and longitude for each

OSIRIS measurement used in producing the map. Grey indicates regions where there

are insufficient nearby OSIRIS measurements to define these grid points of the map.
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4.3.3 OSIRIS-OMI Limb-Nadir Matching Reanalysis

Fig. 4.6 compares mean stratospheric VCDs, in the year 2008 for 10◦ latitude bins from 60◦S

to 60◦N, resulting from OSIRIS version 3 and 7 data, and from OMI version 2 and 4 data.

The OMI-SP version 2 data is adapted from Adams et al. (2016) where a known SCD bias

is corrected using the correction factors of Marchenko et al. (2015). Overall, the OSIRIS

version 7 VCDs are only slightly higher than the version 3 VCDs, with the difference being

at most less than 0.1× 1015 molecules/cm2. Compared to the bias-corrected version 2 OMI-

SP stratospheric VCDs, the OMI-SP version 4 stratospheric VCDs used in the present work

are larger by approximately 0.1 × 1015 to 0.2 × 1015 molecules/cm2 between latitude bins

centered at 45◦S and 45◦N, with the difference increasing as the bin center approaches 0◦.

Figure 4.6. 2008 mean stratospheric NO2 vertical column densities (VCDs) in 10◦

latitude bins for measurements where OMI tropospheric VCDs are less than 0.5× 1015

molecules/cm2. The OMI-SP version 2 data is adapted from Adams et al. (2016), where

correction factors of Marchenko et al. (2015) are used to account for the positive bias

in the version 2 slant column densities.

Fig. 4.7 shows the monthly mean difference between OSIRIS version 7 and OMI-SP version

4 stratospheric VCDs from January 2005 to February 2020 in 10◦ latitude bins from 70◦S

to 70◦N. The breaks in the time series are due to limited OSIRIS measurement coverage in

either hemisphere in their respective winter. The OSIRIS stratospheric VCDs are smaller on
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average than those of OMI for latitude bin centers from approximately 45◦S to 45◦N. The

average difference reaches upwards of 0.2 × 1015 molecules/cm3 near the equator. This is

consistent with the 2008 mean stratospheric VCD results in Fig. 4.6.

Figure 4.7. Monthly mean and standard deviation (shaded areas) of OSIRIS version

7 minus OMI-SP version 4 stratospheric NO2 VCDs for 10◦ latitude bins. Starting at

the 65◦S-centered bin, each plot line of the following latitude bin is offset by 1 × 1015

molecules/cm2 from the previous plot line. The offsets are shown as dashed black lines.

Fig. 4.8 shows the 2008 mean OmO and OmO-minus-OMI tropospheric VCD maps for

OSIRIS version 7 and OMI-SP version 4 NO2 data. Note from Eq. (2.44) that the difference

between the OmO and OMI tropospheric VCD maps is given by

V OmO
trop − V OMI

trop = (V OMI
strat − V OSIRIS

strat ) · AOMI
strat/A

OMI
trop , (4.1)
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and is therefore only dependent on the stratospheric OMI and OSIRIS VCDs, and the strato-

spheric and tropospheric OMI AMFs. Given Eq. (4.1), the 2008 mean OmO-OMI tropo-

spheric VCD difference in Fig. 4.8(c) is consistent with the monthly mean OSIRIS-OMI

stratospheric VCD difference in Fig. 4.7. From Fig. 4.8(c), the OmO map is up to approxi-

mately 0.5× 1015 molecules/cm2 larger than that in Fig. 11 of Adams et al. (2016) between

about 50◦S and 60◦N.

(a) OmO, V OmO
trop .

(b) OMI, V OMI
trop .

(c) Actual difference, V OmO
trop − V OMI

trop .

Figure 4.8. Mean 2008 OmO, OMI, and OmO-minus-OMI tropospheric VCD maps

for a 1◦ × 1◦ latitude-longitude grid. OSIRIS version 7 and OMI-SP version 4 NO2

datasets are used.
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4.3.4 OMI-minus-OSIRIS Product Validation

Following the work of Adams et al. (2016) and the simulations of Hilboll et al. (2013), it is

assumed that tropospheric VCDs over the Pacific Ocean are less than 3×1014 molecules/cm2

in the tropics (23◦S to 23◦N) due to low emissions, with VCDs in the northern midlatitudes

(23◦N to 66◦N) reaching upwards of 7×1014 molecules/cm2. Fig. 4.9 shows the mean of OmO

tropospheric NO2 VCDs over the Pacific from 2005 to 2019 for each of the twelve months

and each 2◦ latitude bin between 70◦S and 70◦N. OSIRIS version 7 and OMI-SP version 4

data is used. White in the color map corresponds to the expected 3 × 1014 molecules/cm2

maximum in the tropics. Grey regions indicate a lack of measurements due to the limited

OSIRIS coverage in each hemisphere during their respective winter.

Figure 4.9. Mean OMI-minus-OSIRIS (OmO) tropospheric NO2 VCDs for 2◦ latitude

bins from 2005 to 2019. White corresponds to +3×1014 molecules/cm2. OSIRIS version

7 and OMI-SP version 4 data is used.

From Fig. 4.9, with the exception of a strip along the equator, the tropical OmO VCDs

are generally at or below the assumed maximum of 3 × 1015 molecules/cm2. Similar to
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the simulations in Hilboll et al. (2013), the OmO VCDs in the northern midlatitudes reach

upwards of approximately 7 × 1014 molecules/cm2, but are even higher towards the edge of

coverage. The OmO VCDs are significantly larger than expected between about 40◦S to 20◦S

in the period of April to July, around the edge of the OSIRIS coverage.

Fig. 4.10 compares, between OMI and OmO, the changes in tropospheric NO2 VCDs relative

to 2005 in the five regions analyzed in Fig. 3 of Krotkov et al. (2016), for OSIRIS version 7 and

OMI-SP version 4 data. The crosses in Fig. 4.10 denote de-seasonalized monthly VCDs while

the circles and error bars denote their yearly means and standard deviations, respectively.

The de-seasonalized monthly VCDs are obtained by first, for each month from January to

December, calculating the mean of all VCDs of the given month from the full 2005-2019

period. Next, the resulting mean monthly VCDs are subtracted from the corresponding

monthly mean of each individual year. Finally, to make the de-seasonalized monthly VCDs

be relative to the year 2005, the mean de-seasonalized monthly VCD for 2005 is subtracted

from all de-seasonalized monthly VCDs. To handle outliers, de-seasonalized monthly VCDs

from a given instrument are only included if there are at least 100 VCDs in the given month,

year, and geographic region of interest. The threshold of 100 is chosen as increasing to 150

results in almost no difference and increasing further to 200 results in the coverage suffering.

The trends in Fig. 4.10 follow closely to those in Fig. 3 of Krotkov et al. (2016). There is a

larger OmO-OMI discrepancy towards the end of the time series (years 2018 and 2019). It

should be noted that, due to the aging OSIRIS instrument, there are fewer measurements

towards the end of the time series, affecting the number of OmO data points. Fig. 4.10 shows

that over the Ohio River Valley and southwestern Pennsylvania, the OmO tropospheric VCDs

are approximately 1 × 1015 molecules/cm2 lower on average than those of OMI. This is the

only region out of the selected set that has a positive OmO bias relative to OMI in the last

couple of years; the other regions have a negative bias.
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Figure 4.10. Comparison between OmO and OMI changes in tropospheric NO2 VCDs

relative to 2005. The regions are the same as those used for Fig. 3 of Krotkov et al.

(2016); from top to bottom: Ohio River Valley and southwestern Pennsylvania (corners

38◦N-81.6◦W, 39◦N-83◦W, 40.6◦N-78◦W, 41.7◦N-79.2◦W), Maritsa Iztok power plants

in Bulgaria (bounded by 40.5-43.8◦N, 23.7-28.1◦E), North China Plain (bounded by 34-

38◦N, 112-118◦E), Chhattisgarh and Odisha (bounded by 21-25◦N, 81-85◦E), and the

Persian Gulf (corners 22.6◦N-54.1◦E, 25.6◦N-56.5◦E, 29.5◦N-46.9◦E, 30.6◦N-49.8◦E).

92



4.3.5 OSIRIS-TROPOMI Limb-Nadir Matching Analysis

Fig. 4.11 compares OmO and TROPOmO tropospheric maps for four different days spread

out over the year 2018, where there is measurement coverage overlap between OSIRIS, OMI,

and TROPOMI. The four days of 2018, March 3, May 18, October 19, and December 20,

are chosen as a balance between the amount of coverage overlap and the proximity to the

equinoxes and solstices. Proximity to the equinoxes and solstices is chosen to provide the

extreme and median yearly seasonal scenarios. The maps result from the use of OSIRIS

version 7, OMI-SP version 4, and TROPOMI version 1.3 NO2 data. There appears to be a

bias between corresponding TROPOmO and OmO maps, with the TROPOmO maps being

larger than the OmO maps and the bias being independent on geographic location. The

larger gaps in the OmO maps relative to the TROPOmO maps are due to increased gaps in

the data of the aging OMI instrument relative to the successor TROPOMI instrument.
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Figure 4.11. Comparison of TROPOmO (left column) and OmO (right column)

tropospheric VCD maps for 2018-10-19 (first row), 2018-12-20 (second row), 2019-03-

03 (third row), and 2019-05-18 (last row). The maps result from OSIRIS version 7,

OMI-SP version 4, and TROPOMI version 1.3 NO2 data.

4.3.6 TROPOMI-minus-OSIRIS Product Validation

Fig. 4.12 compares the OMI and TROPOMI results over the Pacific for the same four days

as the OmO and TROPOmO maps in Fig. 4.11. OSIRIS version 7, OMI-SP version 4, and
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TROPOMI version 1.3 NO2 data are used.

(a) Stratospheric VCDs. (b) Air mass factor ratios.

(c) Tropospheric VCDs from nadir instru-

ments.

(d) Tropospheric VCDs from limb-nadir

matching.

Figure 4.12. Mean and standard deviation (shaded regions) of OMI and TROPOMI

results over the Pacific (180◦W-150◦W) for 2018-10-19, 2018-12-20, 2019-03-03, and

2019-05-18. OSIRIS version 7, OMI-SP version 4, and TROPOMI version 1.3 NO2

data are used.

Fig. 4.12 shows a positive bias of both the tropospheric and stratospheric TROPOMI VCDs

relative to those of OMI. The TROPOmO tropospheric VCDs are on average roughly 0.5×

1015 molecules/cm2 higher than the OmO tropospheric VCDs, which appears to be consistent

with the bias between the OmO and TROPOmO tropospheric VCD maps of Fig. 4.11. The
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maximum difference is approximately 1.2× 1015 molecules/cm2 near 40◦N. The TROPOMI,

OMI, and OmO tropospheric VCDs in the Pacific are at or below both the expected 3× 1014

molecules/cm2 in the tropics and the 7 × 1014 molecules/cm2 in the northern midlatitudes.

The TROPOmO tropospheric VCDs in the Pacific, however, exceed the expected maximum

values, especially near 40◦N.

4.4 Discussion

4.4.1 OSIRIS Gridded StratosphericNO2 VCD Maps

The bias of −0.5 × 1015 molecules/cm2 in the OSIRIS version 6 stratospheric VCD maps

(Fig. 4.3(a)) relative to the OSIRIS version 3 VCD maps (Fig. 4.3(c)) can be mostly ex-

plained by the nearly-constant bias of approximately −1× 108 molecules/cm3 in the version

6 stratospheric density profiles compared to the version 3 profiles (Fig. 4.1), given that the

profiles are integrated over roughly 0.3 × 107 to 0.4 × 107 cm of altitude. This is consis-

tent with the fact that the bias is significantly reduced when using OSIRIS version 7 data

(Fig. 4.3(b)), which is closer to the version 3 data (Fig. 4.2). A secondary source of the bias

is the difference between the present work and the work by Adams et al. (2016) due to the

photochemical box model input parameters (bottom rows of Figs. 4.4 and 4.5). Future work,

detailed in Section 4.5.2, is recommended to determine the effect of the photochemical box

model input parameters on the NO2 density scaling.

4.4.2 OSIRIS-minus-OMI Tropospheric NO2 VCDs

The positive bias in the OmO tropospheric VCDs (Fig. 4.8) between 50◦S and 60◦N relative

to the results of Adams et al. (2016) can be principally explained by the positive bias of up

to 0.2 × 1015 molecules/cm2 in OMI stratospheric VCDs due to the OMI-SP data version

(Fig. 4.6) and negative bias of up to approximately 0.2× 1015 molecules/cm2 in the OSIRIS

stratospheric VCDs due to the photochemical box model input parameters (bottom row of

Fig. 4.4). Note from Eq. (2.44) that the OmO tropospheric VCD is defined as

V OmO
trop = V OMI

trop + (V OMI
strat − V OSIRIS

strat ) · AOMI
strat/A

OMI
trop . (4.2)
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Thus, the biases in the OMI and OSIRIS stratospheric VCDs (V OMI
strat and V OSIRIS

strat ) are mag-

nified by the OMI stratosphere-to-troposphere AMF ratio (AOMI
strat/A

OMI
trop ), which is generally

between 1 and 2 (e.g., see Fig. 4.12(b)). There is also a possibility of a discrepancy in the

OMI AMFs between the version 2 and 4 OMI-SP NO2 datasets, which should be investigated

as part of the future work.

In the validation of the OmO tropospheric VCDs over the Pacific Ocean (Fig. 4.9), the high

OmO VCDs near the edge of the coverage between about 40◦S and 20◦S in the period of April

to July could be explained by the diurnal effect caused by the high solar zenith angle for the

OSIRIS measurements (Hendrick et al., 2006; McLinden et al., 2006). Another possible source

is the effect of the scaling with the photochemical box model. There are significant diurnal

changes in the NO2 concentration near the solar terminator where the OSIRIS coverage ends.

It is possible that scaling the OSIRIS profiles with the photochemical box model data does

not properly account for these diurnal NO2 effects near the solar terminator, either due to

the photochemical box model itself or to the method of using it to scale the OSIRIS profiles.

As this has the largest effect for higher SZAs, the maximum SZA of 88◦ used to filter the

input OSIRIS NO2 data could be lowered to reduce the overall error.

From the select-region trend analysis of Fig. 4.10, the OmO and OMI tropospheric VCDs in

each select region agree with each other from 2005 to 2017, and with the results of Krotkov

et al. (2016), within error. The OmO-OMI discrepancy for 2018 and 2019 is at least partially

explained by the decrease in the number of OmO measurements due to the aging OSIRIS

instrument. From the expression for the OmO tropospheric VCDs (Eq. (4.2)), a discrep-

ancy between OMI and OmO tropospheric VCDs could be due to a discrepancy between

the OSIRIS and OMI stratospheric VCDs or to the OMI stratosphere-to-troposphere AMF

ratio. Note that for the regions used in the analysis, the corners range in latitude from

approximately 21◦N to 44◦N. From the monthly OMI and OSIRIS stratospheric NO2 VCD

analysis in Fig. 4.7, 2018 and 2019 around this latitude range generally shows larger OSIRIS

stratospheric VCDs relative to those of OMI, especially in 2019. This could help explain the

discrepancy in the last few years, but there are likely other differences such as those of the

OMI tropospheric and stratospheric AMFs due to the OMI-SP data version. This should be
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investigated in the future work.

The overall negative bias of the OmO VCD trends relative to those of OMI for the Ohio River

Valley and southwestern Pennsylvania in Fig. 4.10 is not clearly explained by the trends in

the OSIRIS and OMI stratospheric VCDs in Fig. 4.7. Future work should include more

analyses of the trends over different regions to determine if the aforementioned bias is an

anomaly or if it occurs in other regions and time periods and should be investigated further

to determine the cause.

4.4.3 TROPOMI-minus-OSIRIS Tropospheric NO2 VCDs

Roughly half of the OmO-TROPOmO tropospheric VCD bias in Fig. 4.11 appears to be due

to the OMI-TROPOMI tropospheric VCD bias (Fig. 4.12(c)). According to the OmO-OMI

tropospheric VCD difference in Eq. (4.1), the other half of the OmO-TROPOmO tropospheric

VCD bias results from the OMI-TROPOMI stratospheric VCD bias (Fig. 4.12(a)) multiplied

by the stratosphere-to-troposphere AMF ratio. As the stratosphere-to-troposphere AMF

ratio is generally greater than 1, the OMI-TROPOMI stratospheric VCD bias is smaller than

the tropospheric VCD bias but has a similar effect on the OmO-TROPOmO tropospheric

VCD bias. The fact that the TROPOmO tropospheric VCDs in the Pacific are not below the

expected 3×1014 molecules/cm2 in the tropics and 7×1014 molecules/cm2 in the midlatitudes

implies that the TROPOmO tropospheric VCDs have a positive bias.

The OMI-TROPOMI biases do not appear to be consistent with the previously discovered

negative bias of 20% to 30% in TROPOMI tropospheric VCDs relative to those of OMI

for measurements from February to June 2018 (C. Wang et al., 2020) or the positive bias

of approximately 5% in the geometric column densities, which are an approximation of the

total column densities, in July 2018 (van Geffen et al., 2020). An analysis into the scenarios

where there are differences in the OMI and TROPOMI datasets and into the causes of

these differences would provide a better understanding of the limitations in using different

instruments for the non-coincident limb-nadir matching method.
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4.5 Conclusion and Future Work

The present chapter assessed the method by Adams et al. (2016) of estimating tropospheric

NO2 column densities by matching the stratospheric NO2 column densities measured by a

limb-viewing instrument to the combined troposphere-stratosphere NO2 column densities

measured by a nadir-viewing instrument and then subtracting the stratospheric column den-

sities from the combined troposphere-stratosphere column densities. This method allows for

the tropospheric concentration estimates to be dependent on highly-validated limb-viewing

remote sensing instrument data instead of relying on chemical transport models or on as-

sumptions about the distribution of atmospheric species. The present work has led to the

development of a version 7 OSIRIS NO2 number density profile dataset that shows agree-

ment above the tropopause with the heritage, validated version 3 dataset within retrieval

error bounds. However, the remaining biases in the non-coincident limb-nadir matching re-

sults suggest that more work is required to conclude the effectiveness of the method. This is

discussed in more detail in Section 4.5.2.

4.5.1 Conclusion

The present chapter demonstrates agreement between the latest, version 7 OSIRIS NO2

profile number densities and the validated version 3 data within the version 7 retrieval error

bounds above the tropopause (Fig. 4.2). The bias in the version 7 profile number densities

relative to version 3 profile number densities is on average 10%, but drops to 1% when only

considering altitudes above 19 km. The version 7 data is expected to replace the current

version 6 data as the standard, publicly available OSIRIS NO2 product.

The non-coincident limb-nadir matching algorithm of the present work is validated against

that by Adams et al. (2016) by comparing OSIRIS gridded stratospheric NO2 VCD maps

using the present algorithm to a sample of data from 4 March 2008, provided by Dr. Adams.

This comparison shows less than 10% absolute bias in the OSIRIS gridded stratospheric NO2

VCD maps of the present work relative to those of Adams et al. (2016) (top rows of Figs. 4.4

and 4.5). The algorithm of the present work is then used to reanalyze the OmO product
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with newer OSIRIS, OMI, and photochemical box model data, and to analyze results with

data from OSIRIS and TROPOMI, the OMI-successor instrument.

The overall positive bias in the OmO maps of the present work (Fig. 4.8), with version

7 OSIRIS NO2 data, version 4 OMI-SP NO2 data, and PRATMO++, compared to those

of Adams et al. (2016), with version 3 OSIRIS NO2 data, version 2 OMI-SP NO2 data,

and PRATMO+, appear to be explained primarily by differences due to the photochemical

box model input parameters (bottom rows of Figs. 4.4 and 4.5) and to differences between

the version 4 and 2 OMI-SP NO2 data (Fig. 4.6). For example, it is shown that up to

approximately 0.5×1015 molecules/cm2 of bias could be due to the photochemical box model

parameters and up to roughly 0.2×1015 molecules/cm2 due to the difference in OMI-SP NO2

data version. Future work towards understanding these biases is detailed in Section 4.5.2.

It is shown that the OmO tropospheric VCDs over the Pacific Ocean are generally at or

below the expected maximum values (Fig. 4.9) and that there is agreement between OmO

and OMI tropospheric VCD trends in select regions (Fig. 4.10). This indicates overall agree-

ment between the OmO VCDs and their expected values. These results, along with the

convenience of taking advantage of separate, non-coincident limb- and nadir-viewing instru-

ments, demonstrates the potential benefit of the non-coincident limb-nadir matching method

in deriving tropospheric NO2 pollution concentrations. Nonetheless, future work, discussed

in Section 4.5.2, is recommended to better understand the constraints of the method.

Comparisons between OmO and TROPOmO results indicate that there may be a positive bias

in the TROPOMI tropospheric and stratospheric VCDs relative to the corresponding OMI

VCDs, with the bias independent of latitude. Existing TROPOMI-OMI comparisons (van

Geffen et al., 2020; C. Wang et al., 2020) could be supplemented with future investigations

into the temporal and spatial dependencies of the aforementioned VCD biases to uncover

the limitations in using different instruments for the non-coincident limb-nadir matching

technique.
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4.5.2 Future Work

Future work towards the reanalysis of OSIRIS-OMI limb-nadir matching should include sen-

sitivity studies to the photochemical box model input parameters and an analysis of the

differences due to the OMI-SP data version. For the sensitivity study to photochemical box

model input parameters, an error range for each input parameter would allow for an error

range in the photochemical box model NO2 number density to be determined, which in turn

would give an error range in the final OmO tropospheric VCDs. To simplify the sensitivity

study, the input parameters to be varied could be limited to those with the largest expected

error ranges. For the analysis of the effect of the OMI-SP data version, an expected worst-

case mean bias in the OmO tropospheric VCDs can be calculated by first estimating the

worst-case mean bias in the tropospheric NO2 VCDs, stratospheric NO2 VCDs, tropospheric

AMFs, and stratospheric AMFs due to using the OMI-SP version 4 dataset instead of the

version 2 dataset.

Additionally, further analysis in the trends of individual regions is recommended to better

understand yearly and spatial dependencies in the biases. Spatial dependency analyses would

help explain if the 1 × 1015 molecules/cm2 negative bias in the OmO tropospheric VCDs

relative to the OMI tropospheric VCDs found in the Ohio River Valley and southwestern

Pennsylvania is anomalous. Yearly dependency analyses over the years 2005 to present

would help explain the larger OmO-OMI tropospheric VCD discrepancy in 2018 and 2019

compared to the years 2005 to 2017.

Future work towards the understanding of the OMI-TROPOMI biases should include inves-

tigations into latitude- and seasonal-dependencies of the tropospheric VCDs, stratospheric

VCDs, tropospheric AMFs, and stratospheric AMFs. Moreover, the aforementioned analyses

of the yearly dependencies in OMI data would help determine the degree to which OMI biases

could be causing the OMI-TROPOMI biases.
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5 Conclusion

5.1 Conclusions

The first goal of this thesis is to investigate the difference in ozone retrieval error associated

with implementing a radiative transfer model with a more realistic geometry than the planned

VLIDORT model to retrieve tropospheric ozone pollution concentrations over Canada using

future measurements from the TEMPO instrument. The intention of this goal is to quantify

potential benefits of implementing a radiative transfer model with a spherical geometry for all

orders of scattering to retrieve ozone profiles over Canada with future TEMPO measurements

compared to implementing the planned VLIDORT model, which assumes a plane-parallel

Earth-atmosphere geometry for multiple-scattered light. This goal is addressed by comparing

simulated-TEMPO ozone retrieval results using the SASKTRAN HR engine, with a spherical

Earth-atmosphere geometry for all orders of scattering, to those using the SASKTRAN DO

engine, with a plane-parallel Earth-atmosphere geometry for all orders of scattering. The

second goal of this thesis is to assess the feasibility of using the non-coincident limb-nadir

matching method to estimate tropospheric NO2 densities (Adams et al., 2016) by reanalyzing

OSIRIS-OMI results with newer NO2 datasets and analyzing OSIRIS-TROPOMI results.

Addressing this second goal led to the additional result of an improved OSIRIS level 2 NO2

data product.

Towards the first goal, the comparisons herein show that the SASKTRAN DO engine (plane-

parallel geometry) gives lower ozone retrieval error than the SASKTRAN HR engine (spher-

ical geometry) for the high viewing zenith angles of Canadian measurements, especially for

the high solar zenith angles of measurements near local sunset or sunrise. For simulated

TEMPO measurements one hour past local sunrise, the ozone retrieval error for the DO en-
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gine over the Canadian Oil Sands is shown to be up to 80% in December, up to 50% in June,

and up to 25% in March or September. For simulated TEMPO measurements at 13:00 local

time, the ozone retrieval error for the DO engine over the Canadian Oil Sands is shown to

be up to 15%. In all cases, the ozone retrieval error for the HR engine is up to one order of

magnitude smaller than that of the DO engine. Although the VLIDORT model planned for

future TEMPO ozone retrievals assumes a spherical Earth-atmosphere geometry up to the

single-scattered light and a plane-parallel geometry for higher-order scattering, the present

results demonstrate the potential benefits of using a radiative transfer model with a more

realistic geometry for all orders of scattering instead of the planned VLIDORT model to

retrieve tropospheric ozone with future TEMPO measurements for the purpose of Canadian

air quality forecasting.

The work towards the second goal elucidated the application of non-coincident limb-nadir

matching to the monitoring of tropospheric pollutants, and there is further potential applica-

tion for this method given the quantity of limb- and nadir-viewing instruments in operation.

However, more work is needed to further assess the limitations of the method and analyze

possible constraints when applied to other instruments.

Comparisons between versions 3 and 6 OSIRIS NO2 profile data show a negative bias in

the version 6 data. Consequent modifications to the OSIRIS NO2 retrieval algorithm by

the Atmospheric Research Group at the University of Saskatchewan has resulted in a newer

version 7 data product which agrees with the highly-validated version 3 data within the

version 7 retrieval error bounds. The version 7 data product is expected to replace the

current publicly available version 6 data product.

The reanalysis of Adams et al. (2016) OSIRIS-OMI limb-nadir matching with the newer

version 7 OSIRIS NO2 data, the newer version 4 OMI-SP NO2 data, and the photochemi-

cal box model NO2 dataset with different input parameters shows a positive bias of up to

approximately 0.2 × 1015 molecules/cm2 in the version 4 OMI-SP stratospheric NO2 VCDs

relative to those of version 2 and a negative bias of up to roughly 0.5×1015 molecules/cm2 in

the OSIRIS stratospheric NO2 VCDs due to the photochemical box model input parameters.
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The OMI-SP stratospheric VCD bias is largest closer to the equator.

The average positive bias of approximately 0.5 × 1015 molecules/cm2 in the TROPOmO

tropospheric VCDs relative to those of OmO is found to be caused by TROPOMI-OMI

tropospheric and stratospheric VCD biases. The tropospheric VCD bias is greater than the

stratospheric VCD bias, but the stratosphere-to-troposphere AMF ratio results in the two

having equal contributions to the TROPOmO-OmO tropospheric VCD bias.

5.2 Future Work

Future work towards the first goal includes analyses of the effects of the radiative transfer

model geometric assumptions on different orders of scattering. This would serve to better

understand the differences in future TEMPO ozone retrievals over Canada between using a

radiative transfer model like the SASKTRAN HR engine and using one like VLIDORT that is

planned to be used for the TEMPO retrievals. The present work also suggests the value in a

comparison of retrieval results between using a radiative transfer model like the SASKTRAN

HR engine and using the actual VLIDORT model. Furthermore, an investigation of the

effect of measurement noise on the simulated-TEMPO ozone retrievals would provide a more

thorough assessment of the best radiative transfer model for future TEMPO ozone pollution

retrievals over Canada.

Future work towards the second goal includes sensitivity studies to the variations due to

the photochemical box model input parameters, analyses of the biases between OMI-SP

data versions, further analyses in spatial and yearly dependencies of the OmO-OMI biases,

and studies into latitudinal and seasonal dependencies of the OMI-TROPOMI biases. Error

range estimates of the photochemical box model input parameters would provide a measure of

corresponding error ranges in both the photochemical box model NO2 densities and the final

tropospheric NO2 densities resulting from the non-coincident limb-nadir matching. Worst-

case mean bias estimates of the OMI tropospheric and stratospheric VCDs and AMFs due to

the OMI-SP data version would provide a projection of the worst-case mean bias in the final

tropospheric VCDs resulting from the non-coincident limb-nadir matching. The estimates of
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biases in the OmO and TROPOmO tropospheric VCDs resulting from photochemical box

model input parameters and the OMI-SP data version would help ascertain the limitations

of the non-coincident limb-nadir matching method.

Analyses of the spatial dependencies of OmO tropospheric VCDs would help explain the

anomalous 1× 1015 molecules/cm2 negative bias in the OmO tropospheric VCDs relative to

the OMI tropospheric VCDs found in the Ohio River Valley and southwestern Pennsylvania.

Investigations of the yearly dependencies of OmO tropospheric VCDs from 2005 to the present

would aid in understanding the larger discrepancy between OmO and OMI tropospheric

VCDs in 2018 and 2019 compared to the years 2005 to 2017. Finally, latitudinal and seasonal

dependencies in the bias between OMI and TROPOMI tropospheric and stratospheric VCDs

and AMFs would further explain the demonstrated OmO-TROPOmO biases and increase

the understanding of possible limitations in applying the non-coincident limb-nadir matching

technique with different instruments.
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Jaeglé, L., Steinberger, L., V. Martin, R., & Chance, K. (2005). Global partitioning of NOx
sources using satellite observations: Relative roles of fossil fuel combustion, biomass
burning and soil emissions. Faraday Discussions, 130 (0), 407–423. https://doi.org/
10.1039/B502128F

Joiner, J., & Vasilkov, A. P. (2006). First results from the OMI rotational Raman scattering
cloud pressure algorithm. IEEE Transactions on Geoscience and Remote Sensing,
44 (5), 1272–1282. https://doi.org/10.1109/TGRS.2005.861385

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., . . . Joseph,
D. (1996). The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of the American

109

https://doi.org/10.1029/2004JD004588
https://doi.org/10.1029/2004JD004588
https://doi.org/10.1007/BF00168069
https://doi.org/10.1007/BF00881076
https://doi.org/10.1029/90JA02125
https://doi.org/10.5194/acpd-5-7929-2005
https://doi.org/10.5194/acpd-5-7929-2005
https://doi.org/10.5194/amt-6-565-2013
https://doi.org/10.5194/amt-6-565-2013
https://doi.org/10.1029/1998JD100093
https://doi.org/10.1016/j.jqsrt.2020.107161
https://doi.org/10.1086/145005
https://doi.org/10.1029/94GL02717
https://doi.org/10.1029/94GL02717
https://doi.org/10.1039/B502128F
https://doi.org/10.1039/B502128F
https://doi.org/10.1109/TGRS.2005.861385


Meteorological Society, 77, 437–472. https : / / doi . org / 10 . 1175 / 1520 - 0477(1996 )
077〈0437:TNYRP〉2.0.CO;2

Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., Marchenko, S. V., Bucsela,
E. J., . . . Zara, M. (2017). The version 3 OMI NO2 standard product. Atmospheric
Measurement Techniques, 10 (9), 3133–3149. https://doi.org/10.5194/amt-10-3133-
2017

Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V.,
. . . Streets, D. G. (2016). Aura OMI observations of regional SO2 and NO2 pollution
changes from 2005 to 2015. Atmospheric Chemistry and Physics, 16 (7), 4605–4629.
https://doi.org/omi

Lamsal, L. N., Krotkov, N. A., Vasilkov, A., Marchenko, S., Qin, W., Yang, E.-S., . . . Buc-
sela, E. (2021). Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard
product version 4.0 with improved surface and cloud treatments. Atmospheric Mea-
surement Techniques, 14 (1), 455–479. https://doi.org/10.5194/amt-14-455-2021

Last, J. A., Sun, W. M., & Witschi, H. (1994). Ozone, NO, and NO2: Oxidant air pollutants
and more. Environmental Health Perspectives, 102 (suppl 10), 179–184. https://doi.
org/10.1289/ehp.94102s10179

Lelieveld, J., & Dentener, F. J. (2000). What controls tropospheric ozone? Journal of Geo-
physical Research: Atmospheres, 105 (D3), 3531–3551. https : / / doi . org / 10 . 1029 /
1999JD901011

Leue, C., Wenig, M., Wagner, T., Klimm, O., Platt, U., & Jähne, B. (2001). Quantitative
analysis of NO x emissions from Global Ozone Monitoring Experiment satellite image
sequences. Journal of Geophysical Research: Atmospheres, 106 (D6), 5493–5505. https:
//doi.org/10.1029/2000JD900572

Levelt, P. F., van den Oord, G. H. J., Dobber, M., Malkki, A., Visser, H., de Vries, J., . . .
Saari, H. (2006). The ozone monitoring instrument. IEEE Transactions on Geoscience
and Remote Sensing, 44 (5), 1093–1101. https://doi.org/10.1109/TGRS.2006.872333

Liu, X., Bhartia, P. K., Chance, K., Spurr, R. J. D., & Kurosu, T. P. (2010). Ozone profile re-
trievals from the Ozone Monitoring Instrument. Atmospheric Chemistry and Physics,
10 (5), 2521–2537. https://doi.org/10.5194/acp-10-2521-2010

Liu, X., Chance, K., Sioris, C. E., Spurr, R. J. D., Kurosu, T. P., Martin, R. V., & Newchurch,
M. J. (2005). Ozone profile and tropospheric ozone retrievals from the Global Ozone
Monitoring Experiment: Algorithm description and validation. Journal of Geophysical
Research: Atmospheres, 110 (D20). https://doi.org/10.1029/2005JD006240

Liu, X., Chance, K., Abad, G. G., Houck, J., Bak, J., Chan Miller, C., . . . Suleiman, R. (2020).
TEMPO Algorithms (Science team presentation). Retrieved January 15, 2021, from
http://tempo.si.edu/presentations.html

Llewellyn, E. J., Lloyd, N. D., Degenstein, D. A., Gattinger, R. L., Petelina, S. V., Bourassa,
A. E., . . . Nordh, L. (2004). The OSIRIS instrument on the Odin spacecraft. Canadian
Journal of Physics, 82 (6), 411–422. https://doi.org/10.1139/p04-005

Lorente, A., Borsdorff, T., Butz, A., Hasekamp, O., aan de Brugh, J., Schneider, A., . . .
Landgraf, J. (2021). Methane retrieved from TROPOMI: Improvement of the data
product and validation of the first 2 years of measurements. Atmospheric Measurement
Techniques, 14 (1), 665–684. https://doi.org/10.5194/amt-14-665-2021

110

https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.5194/amt-10-3133-2017
https://doi.org/10.5194/amt-10-3133-2017
https://doi.org/omi
https://doi.org/10.5194/amt-14-455-2021
https://doi.org/10.1289/ehp.94102s10179
https://doi.org/10.1289/ehp.94102s10179
https://doi.org/10.1029/1999JD901011
https://doi.org/10.1029/1999JD901011
https://doi.org/10.1029/2000JD900572
https://doi.org/10.1029/2000JD900572
https://doi.org/10.1109/TGRS.2006.872333
https://doi.org/10.5194/acp-10-2521-2010
https://doi.org/10.1029/2005JD006240
http://tempo.si.edu/presentations.html
https://doi.org/10.1139/p04-005
https://doi.org/10.5194/amt-14-665-2021


Malicet, J., Daumont, D., Charbonnier, J., Parisse, C., Chakir, A., & Brion, J. (1995). Ozone
UV spectroscopy. II. Absorption cross-sections and temperature dependence. Journal
of Atmospheric Chemistry, 21 (3), 263–273. https://doi.org/10.1007/BF00696758

Marchenko, S., Krotkov, N. A., Lamsal, L. N., Celarier, E. A., Swartz, W. H., & Bucsela,
E. J. (2015). Revising the slant column density retrieval of nitrogen dioxide observed
by the Ozone Monitoring Instrument. Journal of Geophysical Research: Atmospheres,
120 (11), 5670–5692. https://doi.org/10.1002/2014JD022913

Martin, R. V., Chance, K., Jacob, D. J., Kurosu, T. P., Spurr, R. J. D., Bucsela, E. J., . . .
Koelemeijer, R. B. A. (2002). An improved retrieval of tropospheric nitrogen dioxide
from GOME. Journal of Geophysical Research: Atmospheres, 107 (D20), ACH 9-1-
ACH 9–21. https://doi.org/10.1029/2001JD001027

Mayer, H. (1999). Air pollution in cities. Atmospheric Environment, 33 (24), 4029–4037. https:
//doi.org/10.1016/S1352-2310(99)00144-2

McLinden, C. A., Haley, C. S., & Sioris, C. E. (2006). Diurnal effects in limb scatter obser-
vations. Journal of Geophysical Research: Atmospheres, 111 (D14). https://doi.org/
10.1029/2005JD006628

McPeters, R. D., Labow, G. J., & Johnson, B. J. (1997). A satellite-derived ozone climatology
for balloonsonde estimation of total column ozone. Journal of Geophysical Research:
Atmospheres, 102 (D7), 8875–8885. https://doi.org/10.1029/96JD02977

Musselman, R. C., & Massman, W. J. (1998). Ozone flux to vegetation and its relationship to
plant response and ambient air quality standards. Atmospheric Environment, 33 (1),
65–73. https://doi.org/10.1016/S1352-2310(98)00127-7

Peat, C. (n.d.). AURA - Orbit. Retrieved April 3, 2021, from https://www.heavens-above.
com/orbit.aspx?satid=28376&lat=0&lng=0&loc=Unspecified&alt=0&tz=CET&
cul=en

Platt, U., & Stutz, J. (2008). Scattered-light DOAS Measurements. In U. Platt & J. Stutz
(Eds.), Differential Optical Absorption Spectroscopy: Principles and Applications
(pp. 329–377). Springer. https://doi.org/10.1007/978-3-540-75776-4 9

Prather, M., & Jaffe, A. H. (1990). Global impact of the Antarctic ozone hole: Chemical
propagation. Journal of Geophysical Research, 95 (D4), 3473. https ://doi .org/10.
1029/JD095iD04p03473

Richter, A., & Burrows, J. P. (2002). Tropospheric NO2 from GOME measurements. Advances
in Space Research, 29 (11), 1673–1683. https://doi.org/10.1016/S0273-1177(02)00100-
X

Riebeek, H. (2009). Catalog of Earth Satellite Orbits. Retrieved August 14, 2020, from https:
//earthobservatory.nasa.gov/features/OrbitsCatalog

Rodgers, C. D. (2000). Inverse Methods for Atmospheric Sounding: Theory and Practice.
World Scientific.

Rozanov, V. V., Diebel, D., Spurr, R. J. D., & Burrows, J. P. (1997). GOMETRAN: A
radiative transfer model for the satellite project GOME, the plane-parallel version.
Journal of Geophysical Research: Atmospheres, 102 (D14), 16683–16695. https://doi.
org/10.1029/96JD01535

Singer, S. F., & Wentworth, R. C. (1957). A method for the determination of the vertical ozone
distribution from a satellite. Journal of Geophysical Research (1896-1977), 62 (2), 299–
308. https://doi.org/10.1029/JZ062i002p00299

111

https://doi.org/10.1007/BF00696758
https://doi.org/10.1002/2014JD022913
https://doi.org/10.1029/2001JD001027
https://doi.org/10.1016/S1352-2310(99)00144-2
https://doi.org/10.1016/S1352-2310(99)00144-2
https://doi.org/10.1029/2005JD006628
https://doi.org/10.1029/2005JD006628
https://doi.org/10.1029/96JD02977
https://doi.org/10.1016/S1352-2310(98)00127-7
https://www.heavens-above.com/orbit.aspx?satid=28376&lat=0&lng=0&loc=Unspecified&alt=0&tz=CET&cul=en
https://www.heavens-above.com/orbit.aspx?satid=28376&lat=0&lng=0&loc=Unspecified&alt=0&tz=CET&cul=en
https://www.heavens-above.com/orbit.aspx?satid=28376&lat=0&lng=0&loc=Unspecified&alt=0&tz=CET&cul=en
https://doi.org/10.1007/978-3-540-75776-4_9
https://doi.org/10.1029/JD095iD04p03473
https://doi.org/10.1029/JD095iD04p03473
https://doi.org/10.1016/S0273-1177(02)00100-X
https://doi.org/10.1016/S0273-1177(02)00100-X
https://earthobservatory.nasa.gov/features/OrbitsCatalog
https://earthobservatory.nasa.gov/features/OrbitsCatalog
https://doi.org/10.1029/96JD01535
https://doi.org/10.1029/96JD01535
https://doi.org/10.1029/JZ062i002p00299


Sioris, C. E., Kurosu, T. P., Martin, R. V., & Chance, K. (2004). Stratospheric and tropo-
spheric NO2 observed by SCIAMACHY: First results. Advances in Space Research,
34 (4), 780–785. https://doi.org/10.1016/j.asr.2003.08.066

Sioris, C. E., Rieger, L. A., Lloyd, N. D., Bourassa, A. E., Roth, C. Z., Degenstein, D. A., . . .
McLinden, C. A. (2017). Improved OSIRIS NO2 retrieval algorithm: Description and
validation. Atmospheric Measurement Techniques, 10, 1155–1168. https://doi.org/10.
5194/amt-10-1155-2017

Spurr, R. J. D. (2006). VLIDORT: A linearized pseudo-spherical vector discrete ordinate
radiative transfer code for forward model and retrieval studies in multilayer multi-
ple scattering media. Journal of Quantitative Spectroscopy and Radiative Transfer,
102 (2), 316–342. https://doi.org/10.1016/j.jqsrt.2006.05.005

Spurr, R. J. D., Kurosu, T., Chance, K., Oss, R., Stammes, P., Kelder, H., . . . Stamnes,
K. (2001). The Lidort Package: A Generic Forward-Model Radiative Transfer Tool
For The Simultaneous Generation Of Intensities And Weighting Functions For Atmo-
spheric Retrieval. European Space Agency, (Special Publication) ESA SP.

Tai, A. P. K., Martin, M. V., & Heald, C. L. (2014). Threat to future global food security
from climate change and ozone air pollution. Nature Climate Change, 4 (9), 817–821.
https://doi.org/10.1038/nclimate2317

Valks, P., Pinardi, G., Richter, A., Lambert, J.-C., Hao, N., Loyola, D., . . . Emmadi, S. (2011).
Operational total and tropospheric NO&lt;sub&gt;2&lt;/sub&gt; column retrieval for
GOME-2. Atmospheric Measurement Techniques, 4 (7), 1491–1514. https://doi.org/
10.5194/amt-4-1491-2011

Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally, S., . . . Coquart, B.
(1998). Measurements of the NO2 absorption cross-section from 42 000 cm-1 to 10 000
cm-1 (238–1000 nm) at 220 K and 294 K. Journal of Quantitative Spectroscopy and
Radiative Transfer, 59 (3), 171–184. https://doi.org/10.1016/S0022-4073(97)00168-4

Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J., Otter, G., . . . Levelt, P. F.
(2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global
observations of the atmospheric composition for climate, air quality and ozone layer
applications. Remote Sensing of Environment, 120, 70–83. https://doi.org/10.1016/j.
rse.2011.09.027

Vountas, M., Rozanov, V. V., & Burrows, J. P. (1998). RING EFFECT: IMPACT OF RO-
TATIONAL RAMAN SCATTERING ON RADIATIVE TRANSFER IN EARTH’S
ATMOSPHERE. Journal of Quantitative Spectroscopy and Radiative Transfer, 60 (6),
943–961. https://doi.org/10.1016/S0022-4073(97)00186-6

Wallace, J. M., & Hobbs, P. V. (2006). 1 - Introduction and Overview. In J. M. Wallace
& P. V. Hobbs (Eds.), Atmospheric Science (Second Edition) (pp. 1–23). Academic
Press. https://doi.org/10.1016/B978-0-12-732951-2.50006-5

Wang, C., Wang, T., Wang, P., & Rakitin, V. (2020). Comparison and Validation of
TROPOMI and OMI NO2 Observations over China. Atmosphere, 11 (6), 636. https:
//doi.org/10.3390/atmos11060636

Wang, W., Cheng, T., van der A, R. J., de Laat, J., & Williams, J. E. (2021). Verification of
the Atmospheric Infrared Sounder (AIRS) and the Microwave Limb Sounder (MLS)
ozone algorithms based on retrieved daytime and night-time ozone. Atmospheric Mea-
surement Techniques, 14 (2), 1673–1687. https://doi.org/10.5194/amt-14-1673-2021

112

https://doi.org/10.1016/j.asr.2003.08.066
https://doi.org/10.5194/amt-10-1155-2017
https://doi.org/10.5194/amt-10-1155-2017
https://doi.org/10.1016/j.jqsrt.2006.05.005
https://doi.org/10.1038/nclimate2317
https://doi.org/10.5194/amt-4-1491-2011
https://doi.org/10.5194/amt-4-1491-2011
https://doi.org/10.1016/S0022-4073(97)00168-4
https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.1016/S0022-4073(97)00186-6
https://doi.org/10.1016/B978-0-12-732951-2.50006-5
https://doi.org/10.3390/atmos11060636
https://doi.org/10.3390/atmos11060636
https://doi.org/10.5194/amt-14-1673-2021


Waters, J., Froidevaux, L., Harwood, R., Jarnot, R., Pickett, H., Read, W., . . . Walch, M.
(2006). The Earth observing system microwave limb sounder (EOS MLS) on the aura
Satellite. IEEE Transactions on Geoscience and Remote Sensing, 44 (5), 1075–1092.
https://doi.org/10.1109/TGRS.2006.873771

Wennberg, P. O., Cohen, R. C., Stimpfle, R. M., Koplow, J. P., Anderson, J. G., Salawitch,
R. J., . . . Wofsy, S. C. (1994). Removal of Stratospheric O3 by Radicals: In Situ
Measurements of OH, HO2, NO, NO2, ClO, and BrO. Science, 266 (5184), 398–404.
https://doi.org/10.1126/science.266.5184.398

Williams, E. J., Parrish, D. D., & Fehsenfeld, F. C. (1987). Determination of nitrogen oxide
emissions from soils: Results from a grassland site in Colorado, United States. Journal
of Geophysical Research: Atmospheres, 92 (D2), 2173–2179. https://doi.org/10.1029/
JD092iD02p02173

Zawada, D. J., Dueck, S. R., Rieger, L. A., Bourassa, A. E., Lloyd, N. D., & Degenstein,
D. A. (2015). High-resolution and Monte Carlo additions to the SASKTRAN radiative
transfer model. Atmospheric Measurement Techniques, 8 (6), 2609–2623. https://doi.
org/10.5194/amt-8-2609-2015

Zoogman, P., Liu, X., Suleiman, R. M., Pennington, W. F., Flittner, D. E., Al-Saadi, J. A.,
. . . Chance, K. (2017). Tropospheric emissions: Monitoring of pollution (TEMPO).
Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 17–39. https://doi.
org/10.1016/j.jqsrt.2016.05.008

113

https://doi.org/10.1109/TGRS.2006.873771
https://doi.org/10.1126/science.266.5184.398
https://doi.org/10.1029/JD092iD02p02173
https://doi.org/10.1029/JD092iD02p02173
https://doi.org/10.5194/amt-8-2609-2015
https://doi.org/10.5194/amt-8-2609-2015
https://doi.org/10.1016/j.jqsrt.2016.05.008
https://doi.org/10.1016/j.jqsrt.2016.05.008


Appendix A

Maximum Latitude Difference Between TEMPO Line of

Sight Intersections with Atmospheric Layers

Consider the TEMPO instrument, above the equator, pointed towards the Canadian Oil
Sands (57◦N). This is illustrated in Fig. A.1, with the Earth approximated as a sphere and
with certain lengths and angles exaggerated for demonstration purposes. The radius of the
spherical Earth is taken as the average Earth radius, R0 = 6 371 km, the distance from
TEMPO to the center of the Earth is taken as rsat = 42 157 km (R0 + 35 786 km), and
the latitude of the intersection between the TEMPO line of sight (LOS) and the ground is
taken as φ0 = 57◦. The latitude of the surface of the Earth directly below the intersection
between the TEMPO LOS and the 80-km-altitude atmospheric layer is denoted by φ80, the
angle between the TEMPO LOS and the line from the center of the Earth to the LOS-ground
intersection is denoted by β0, and the angle between the TEMPO LOS and the line from the
center of the Earth to the LOS-80-km-altitude intersection is denoted by β80.

Note that the highest latitude where the LOS of TEMPO intersects the surface of the Earth
tangentially is

φtan = arccos

(
R0

rsat

)
≈ 81.308◦. (A.1)

Thus, as φ80 < φ0 < 81.308◦, both β0 and β80 must be greater than 90◦.

The distance from TEMPO to the LOS-ground intersection, d0, is found using the cosine
law with the triangle formed between TEMPO, the center of the Earth, and the LOS-ground
intersection (Fig. A.1(a)). This is given by

d0 =
(
r2

sat +R2
0 − 2 · rsat ·R0 cosφ0

)0.5

≈ 39 054.34 km.
(A.2)

For the same triangle, the angle between the line from TEMPO to the center of the Earth
and the TEMPO LOS, αv, is found using the sine law as follows.

sinαv
R0

=
sinφ0

d0

αv = arcsin

(
R0

d0

sinφ0

)
≈ 7.864◦.

(A.3)

Consider the triangle formed between TEMPO, the center of the Earth, and the LOS inter-
section with 80-km altitude (Fig. A.1(b)). The angle between the LOS and the line from the
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(a) Ground intersection

(b) 80-km altitude intersection

Figure A.1. Geometry of TEMPO line of sight atmospheric intersections when mea-
suring towards the Canadian Oil Sands. Lengths and angles are not to scale.

center of the Earth to the LOS-80-km-altitude intersection, β80, is calculated using the sine
law as follows.

sinαv
R80

=
sin β80

rsat

β80 = 180◦ − arcsin

(
rsat

R80

sinαv

)
≈ 116.611◦,

(A.4)

where the arcsin() term is subtracted from 180◦ as arcsin(x) is defined with range (−90◦, 90◦]
and β80 > 90◦. Finally, the latitude below the LOS-80-km-altitude intersection point is

φ80 = 180◦ − αv − β80

≈ 55.526◦.
(A.5)

Thus, the difference in latitude between the two LOS intersections is approximately φ0−φ80 ≈
1.5◦.
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Appendix B

Time Offset Between MLS and OMI Measurements

Over the Same Geographic Location

Fig. B.1 depicts the geometry of MLS and OMI measurements at some time t0, as well as
the position of Aura after a time interval toffset, with lengths exaggerated for demonstration
purposes. The Earth is approximated as a sphere with a radius (rEarth) equal to the average
Earth radius. The Aura orbit is approximated as a perfectly circular orbit concentric with
the Earth, with an of altitude rsat. This assumption is reasonable as the perigee and apogee
only differ by around 3 km (Peat, n.d.). As OMI viewing zenith angles are generally low, it
is assumed that OMI is always measuring straight down towards the Earth.

Figure B.1. Depiction of Aura linear distance offset and angular offset between an
MLS tangent-point measurement at time t = t0 and the point at time t = t0+toffset where
OMI measures over the tangent-point latitude and longitude of said MLS measurement.
rEarth is the average radius of the Earth, zsat is the average altitude of the Aura satellite
above the mean Earth radius, and ztan is the tangent-point altitude at time t = t0.
Lengths and angles are not to scale.

At time t0, OMI is measuring straight down (green dashed line in Fig. B.1) and MLS is
measuring across the limb of the Earth in front of Aura (blue dashed line in Fig. B.1) with
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tangent-point altitude ztan. Over time interval toffset, Aura travels along an orbit arc length
of doffset (dashed purple line in Fig. B.1), or an orbital angular distance of θoffset. At this point
(time t0 + toffset), Aura is directly above the tangent point of time t0 and OMI is measuring
towards the corresponding tangent-point latitude and longitude. The time interval toffset

corresponds to the expected time offset between MLS and OMI measurements over the same
geographic coordinates, and can be calculated as

toffset =
doffset

vsat

, (B.1)

where vsat is the Aura satellite linear speed. The Aura linear speed can be approximated as

vsat =
2π (rEarth + zsat)

T
, (B.2)

where T is the Aura satellite orbital period. The Aura orbit arc length distance offset and
angular offset can be calculated as

doffset = (rEarth + zsat) θoffset, and

θoffset = arccos

(
rEarth + ztan

rEarth + zsat

)
,

(B.3)

respectively. Substituting Eqs. (B.2) and (B.3) into Eq. (B.1) results in

toffset =

(
T

2π

)
arccos

(
rEarth + ztan

rEarth + zsat

)
. (B.4)

Take the average Earth radius (rEarth) as 6 371 km, zsat as the average Aura altitude above
the mean Earth surface height (705 km), and the Aura orbital period (T ) as 98.8 minutes
(Waters et al., 2006). The tangent altitude (ztan) for MLS ozone retrievals is between 0 and
60 km. The time offset for the extreme tangent altitudes of 0 km and 60 km is 7.08 minutes
and 6.77 minutes, respectively. The average between these two extremes is approximately
6.9 minutes. Thus, it can be assumed that OMI measures over the tangent point geographic
location approximately 6.9 minutes after MLS has measured data for said tangent point.

117


	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction
	Background
	Atmospheric Remote Sensing
	Atmosphere
	Instrument Geometries
	Instrument Sensors

	Radiative Transfer
	Radiometric Quantities
	Scattering and Absorption
	Reflection
	Beer-Lambert Law
	Radiative Transfer Equation
	Successive Orders of Scattering
	SASKTRAN
	Example Simulated Radiances
	Limb versus Nadir
	Engine Comparison


	Atmospheric Ozone and Nitrogen Dioxide
	Ozone and Nitrogen Oxide Pollution
	Diurnal Variations of Nitrogen Oxides
	Remote Sensing of Tropospheric Ozone and Nitrogen Dioxide

	Relevant Instruments and Retrieval Algorithms
	OMI
	TROPOMI
	OSIRIS
	GOME
	TEMPO
	MLS

	Optimal Estimation
	Derivation
	Averaging Kernel Matrix
	Levenberg-Marquardt Method and Convergence Criteria

	Non-Coincident Limb-Nadir Matching

	Analysis of Canadian Ozone Retrievals for Simulated TEMPO Measurements
	Introduction
	Methodology
	Atmospheric Model
	Measurements and Instrument Models
	Retrieval Parameters
	GOME-Based Retrievals
	Validation

	OMI-Based Retrievals
	Validation

	TEMPO-Based Retrievals
	Statistical Analysis
	HRSSApprox Engine
	Example Retrieval


	Results and Discussion
	GOME-Based Retrievals
	OMI-Based Retrievals
	TEMPO-Based Retrievals

	Conclusion

	Assessment of Non-Coincident Limb-Nadir Matching for Measuring Tropospheric Nitrogen Dioxide
	Introduction
	Methodology
	Results
	OSIRIS NO2 Data Version Comparison
	OSIRIS Gridded Stratospheric NO2 VCD Maps
	OSIRIS-OMI Limb-Nadir Matching Reanalysis
	OMI-minus-OSIRIS Product Validation
	OSIRIS-TROPOMI Limb-Nadir Matching Analysis
	TROPOMI-minus-OSIRIS Product Validation

	Discussion
	OSIRIS Gridded Stratospheric NO2 VCD Maps
	OSIRIS-minus-OMI Tropospheric NO2 VCDs
	TROPOMI-minus-OSIRIS Tropospheric NO2 VCDs

	Conclusion and Future Work
	Conclusion
	Future Work


	Conclusion
	Conclusions
	Future Work

	References
	Appendix Maximum Latitude Difference Between TEMPO Line of Sight Intersections with Atmospheric Layers
	Appendix Time Offset Between MLS and OMI Measurements Over the Same Geographic Location

