
A Summary of the FV Homomorphic

Encryption Scheme and the Average-Case

Noise Growth

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Mathematics and Statistics

University of Saskatchewan

Saskatoon

By

Derek Perrin

©Derek Perrin, 9/2021. All rights reserved.

Unless otherwise noted, copyright of the material in this thesis

belongs to the author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Saskatchewan's Research Archive

https://core.ac.uk/display/478191184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Mathematics and Statistics

142 McLean Hall

106 Wiggins Road

University of Saskatchewan

Saskatoon, Saskatchewan S7N 5E6

Canada

Or

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

i

Abstract

Homomorphic encryption is a method of encryption that allows for secure computation of

data. Many industries are moving away from owning expensive high-powered computers and

instead delegating costly computations to the cloud. In an age of data breaches, there is an

inherent risk when putting sensitive data on the cloud. Homomorphic encryption allows one

to securely perform computations on the cloud without allowing the host or any other party

access to the raw data itself. One application being explored is encrypting health data on

low-powered embedded devices, uploading it to a cloud application, performing computations

to assess health risks, and send the results back to the user’s device for decryption and

interpretation. Another application being explored is digital voting.

This thesis aims to provide a summary of the current state-of-the-art of homomorphic

encryption. We will begin by providing the reader with sources for the current main im-

plementations and schemes they are based on. We will then present the mathematical

background used in existing schemes. This includes a background on lattices, cyclotomic

fields, rings of integers, and the underlying believed-to-be-hard problems existing schemes

take advantage of. We will then shift our attention to the FV scheme which is based on the

ring-LWE problem and is one of the main schemes used today. We will then briefly discuss

some optimizations used in FV implementations. Finally, we will look at some probabilistic

experiments which suggest the noise growth in FV is significantly lower than the theoretical

maximum in the average case, and will explore some of the benefits that can be gained.

ii

Acknowledgements

First and foremost, I am very thankful for my supervisor Dr. Cameron Franc. He pro-

vided me with my first research experience, inspired me to pursue graduate studies, and also

provided a ton of support and guidance throughout this journey. I am always impressed with

his knowledge and am forever grateful for his willingness and patience to teach me all of the

background required, offer reading courses and discussion groups, answer my questions, and

work with me as an equal. This thesis would not have been possible without him.

I would like to thank Dr. Jenna Rajchgot and Dr. Steven Rayan for their support while

taking courses with them, and their outstanding work behind the scenes in preparing those

courses. I gained a deep appreciation and interest in algebra and algebraic geometry as a

result.

I would like to thank fellow graduate students Sheldon Miller, Gagandeep Virk, Christo-

pher Mahadeo, Mahmood Tarayrah, Jarrod Pas, Jason Goertzen, and Seth Dueck, as well as

my dear friend Dr. Ashton Reimer for all of their support, encouragement, and providing a

positive work environment during my studies.

Finally, I would like to thank all of the developers of the open-source software my research

relied upon. I relied on SageMath, Numpy, SciPy, SEAL, and Lattigo.

iii

Dedicated to: my loving partner, Karen; my daughter, Ayla; and my parents, My and

Valinda.

iv

Contents

Permission to Use i

Abstract iii

Acknowledgements iv

Contents vi

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1
1.1 Literature . 3

2 Background 5
2.1 Notation . 5

2.1.1 Ring Expansion Factor . 6
2.2 Lattices . 7

2.2.1 Ideal Lattices . 8
2.3 Cyclotomic Fields . 9

2.3.1 Rings of Integers . 10
2.4 Cryptographically Hard Problems . 13

2.4.1 Learning with Errors . 15
2.4.2 Cryptographic Applications . 16

2.5 Ring-LWE . 16
2.5.1 Cryptographic Application . 17

3 FV Scheme 20
3.1 Homomorphic Operations . 20

3.1.1 Addition . 21
3.1.2 Multiplication . 21

3.2 Relinearization . 23
3.3 Multiplicative Depth . 26

4 Optimizations 28
4.1 Number Theoretic Transform . 28

4.1.1 Discrete Fourier Transform . 28
4.1.2 Finite Fields . 29

4.2 FV Residue Number System . 29

v

4.2.1 RNS Decryption . 29

5 Ring Expansion Factor 31
5.1 Norm Growth . 31
5.2 FV Noise Growth . 34

6 Summary and Future Work 40

References 42

Appendix A Toy FV Sage Implementation 45

Appendix B Statistics 51
B.1 Log-normal Distribution . 51
B.2 Kolmogorov-Smirnov Test . 52

vi

List of Tables

1.1 Homomorphic Encryption Implementations 3

5.1 Norm growth statistics in Z[x]/ 〈xn + 1〉 . 35
5.2 Noise growth statistics in toy FV implementation 37
5.3 Maximum multiplicative depth comparison with δR and γR 39

vii

List of Figures

5.1 Observed norm growth for power-two cyclotomic polynomials 33
5.2 Growth of estimated log-normal parameters 34
5.3 Observed 99.9th percentile of the norm growth for 100,000 trials 36
5.4 Observed noise growth of 1000 trials of a single multiplication without relin-

earization in toy FV implementation . 38

viii

List of Abbreviations

HE Homomorphic Encryption
SHE Somewhat Homomorphic Encryption
FHE Fully Homomorphic Encryption
LWE Learning with Errors
RLWE Ring Learning with Errors
SVP Shortest Vector Problem
CVP Closest Vector Problem
BDD Bounded Distance Decoding
DFT Discrete Fourier Transform
FFT Fast Fourier Transform
NTT Number Theoretic Transform
RNS Residue Number System
CRT Chinese Remainder Theorem
KS Kolmogorov-Smirnov
UFD Unique Factorization Domain
CRT Chinese Remainder Theorem
SIMD Single Instruction Multiple Data

ix

1 Introduction

We assume standard undergrad material and terminology. See [DF04] for a comprehen-

sive background in algebra, and [HPS08] for an introductory background in mathematical

cryptography.

Cryptography is the art of concealing communications such that only intended recipients

can read the underlying message. To anyone eavesdropping on the conversation, the encrypted

message, called a ciphertext, appears to be nonsense. In order to decrypt the ciphertext, a

secret decryption key is required. Modern asymmetric cryptography schemes are constructed

such that their security relies on the assumption of some underlying mathematical problem

being difficult to solve. The RSA scheme [RSA78] relies on the assumption that factoring

is difficult, and the Diffie-Hellman key exchange [DH76] on the assumption that solving the

discrete log problem is difficult.

In 1978 [RAD+78], Rivest et al. proposed the idea of performing computations on cipher-

texts without requiring the decryption key.

Definition 1.1. For some encryption scheme E , let M, C be rings known as the plaintext

and ciphertext spaces respectively, along with a set K referred to as the key space. Then if

we have encryption and decryption functions

ek :M→ C

dk : C →M

both ring homomorphisms for every k ∈ K, we call E a fully homomorphic encryption (FHE)

scheme. If there is a bound on the number of additions and multiplications which can be

performed in C such that decryption yields an incorrect result if that bound is exceeded, we

call E a somewhat homomorphic encryption (SHE) scheme. An SHE scheme is often referred

to as a levelled homomorphic encryption scheme in the literature.

1

There exist cryptosystems which have homomorphic properties with respect to a single

operation, rather than both ring operations. Some literature may refer to these cryptosystems

as being somewhat homomorphic. To avoid confusion, we adopt no such convention here and

SHE will always mean as in definition 1.1.

Example 1.2 (ElGamal [ElG85]). Let G = 〈g〉 be a cyclic group of prime order p. Alice

chooses a private key a ∈ {1, 2, . . . , p− 1}, and computes A = ga. Alice’s public key is

(g, p, A). Bob wishes to encrypt messages m1,m2 ∈ G. He chooses two ephemeral keys k1, k2 ∈

Z and computes the corresponding ciphertexts c1 = (gk1 ,m1 · Ak1), c2 = (gk2 ,m2 · Ak2) and

sends their coordinate-wise product (gk1+k2 ,m1 ·m2 ·Ak1+k2) to Alice. Alice is able to decrypt

by computing

(gk1+k2)−a ·m1 ·m2 · Ak1+k2 = (gk1+k2)−a ·m1 ·m2 · (ga)k1+k2

= m1 ·m2.

We see that the ElGamal scheme is multiplicatively homomorphic.

For 30 years, there was a search for an FHE scheme. In 2009, Gentry introduced the first

FHE scheme in their groundbreaking thesis [Gen09]. They introduce the concept of boot-

strapping, and show that any SHE scheme which has a decryption circuit of low complexity

and can evaluate its own decryption circuit is bootstrappable to an FHE scheme. This re-

lies on a circular security assumption in which an attacker gains no advantage if they have

access to an encrypted key that is encrypted under itself. In section 2 we will introduce the

concept of noise and see how it can lead to incorrect decryption when too much is accumu-

lated. The bootstrapping procedure evaluates the decryption circuit homomorphically, and

therefore “resets” the noise back down to some base level. The result is that we can perform

arbitrarily many operations without requiring decryption. In this thesis, we will look at the

scheme described in [FV12], some optimizations which are commonly used, and examine ways

to increase the depth of a circuit before decryption or bootstrapping is required.

2

Table 1.1: Homomorphic Encryption Implementations

Library name Languages Supported schemes

HElib C++ BGV, CKKS

SEAL C++, .NET BFV, CKKS

Palisade C++ BFV, BGV, CKKS, TFHE

Lattigo Go BFV, CKKS

CuHE CUDA LTV

CuFHE CUDA TFHE

1.1 Literature

There are several standard sources used for the research area of homomorphic encryption we

will focus on. When focusing on the hard problems that homomorphic encryption schemes are

based off of, we primarily look at the ones based on learning with errors and ring learning with

errors problems [Reg05, LPR10] which we will discuss in chapter 2. Most implementations

are in the ring learning with errors setting. There are two primary schemes used in HE

libraries [BGV14, FV12] and they perform exact integer arithmetic. In addition, there is a

scheme for performing arithmetic on approximate numbers [CKKS17]. There are also more

recent works [BLLN13, CGGI19] which perform integer arithmetic, with the latter work

focusing on a fast bootstrapping operation and bootstrapping after every operation. In this

thesis, we focus on the scheme introduced in [FV12] and discuss a variant of it in [BEHZ17] of

which Microsoft has implemented and made open source. There is a homomorphic encryption

standards organization trying to standardize homomorphic encryption; they provide a list

of libraries implementing various schemes as well as papers [ACC+18] providing suggested

parameters based on the currently best-known attacks. Some implementations along with

the schemes they implement are listed in Table 1.1.

Remark 1.3. The FV scheme introduced in [FV12] is sometimes referred to as the BFV

scheme in the literature. This is because the authors of [FV12] ported the scheme proposed

in [Bra12] to the ring-LWE setting. In this thesis we will refer to the scheme as FV, except

3

as seen in table 1.1.

Parameter selection is often done using an online tool [APS15] based on [Pla18]. The

primary homomorphic encryption scheme implementation we will refer to is [Lai17]. We make

a note that this paper is slightly dated and there have been some significant changes in SEAL

since publication of [Lai17]. When one wants to consider fully homomorphic encryption, there

is no better resource than Gentry’s thesis [Gen09] in which they introduce the concept of

bootstrapping. At the time of this writing, bootstapping appears to be the only known way

of achieving fully homomorphic encryption.

4

2 Background

This chapter aims to provide the mathematical background necessary for understanding

modern homomorphic encryption schemes. We will provide a brief introduction to lattices

and lattice problems, some algebraic number theory, and we will look at the problems that

homomorphic encryption schemes are based on.

2.1 Notation

We will use the standard notation that is used in [FV12].

We recall the mth cyclotomic polynomial Φm(x) to be the unique irreducible polynomial

in Z[x] whose roots are all primitive mth roots of unity ζjm = e
2πij
m

Φm(x) =
∏

1≤j<m
gcd(j,m)=1

(x− ζjm).

The degree of Φm(x) is ϕ(m) where ϕ(m) is the Euler phi function. We will typically

work with m a power of 2 so that Φm(x) = xm/2 + 1.

We will work with the quotient ring R = Z[x]/〈Φm(x)〉. Here, we use 〈·〉 to denote the ideal

generated by elements within the angled brackets. We will denote elements of R in lowercase

bold. For elements r ∈ R, we denote the coefficients of xi by ri so that r =
∑m−1

i=0 rix
i with

0 ≤ i < ϕ(m). In other words, we will work with the canonical representatives. Matrices will

be denoted by uppercase bold, and by an abuse of notation, we will also denote vectors of a

lattice in lowercase bold.

For q ∈ Z, we let Zq denote the set of canonical representatives of Z/qZ in (−q/2, q/2].

We let Rq denote the ring R with coefficients in Zq. We stress that Zq is not the ring Z/qZ,

but is in fact a set, and so elements of Rq have coefficients in (−q/2, q/2].

By a slight abuse of notation, we will let 〈·, ·〉 denote the standard inner product keeping

5

in mind we are always working with elements whose degrees are less than ϕ(m), and so

〈f ,g〉 =
∑
ri · si where ri, si are the coefficients of f ,g respectively. Clarification will be

provided if it is not clear from the context whether we are denoting an ideal or an inner

product. We will let b·c and d·e denote rounding down and rounding up respectively. We

let b·e denote rounding to the nearest integer; in case of any ambiguity we round up. We

let [·]q denote reduction modulo q in the range (−q/2, q/2] and |·|q denote the least positive

residue modulo q. When we say “reduce modulo q”, we are applying [·]q unless otherwise

stated. When working with elements of R, the operations b·cq, |·|q, and b·e are performed

coefficient-wise.

When given a probability distribution D, we denote sampling an element e from D by

e← D. When D is the uniform distribution U , we denote sampling by e
$←− U . We will often

sample e ∈ R from D. By this, we mean that the coefficients are each sampled individually

from D. We say D is B-bounded if it is supported on the interval [−B,B].

We will take ‖·‖ to mean the infinity norm, that is ‖v‖ = max {|vi|}. We will otherwise

let ‖·‖p denote the `p norm, that is ‖v‖p = p
√∑

i v
p
i . In the case when v ∈ R, we will take

‖v‖ to mean reduce modulo Φm(x) before applying ‖·‖.

When working with elements f ∈ Rq, we will let f [i] denote the ith coefficient in f . This

is the notation most commonly used in the literature. It is not to be confused with applying

[·]q, and clarification will be provided if the context is not clear.

2.1.1 Ring Expansion Factor

When ring elements are multiplied together and reduced modulo Φm(x), it is possible for

their norm to increase as a result. The maximum factor which they may expand by is called

the expansion factor of the ring and is defined as δR = sup
{
‖f ·g‖
‖f‖·‖g‖ for all f ,g ∈ R \ {0}

}
.

We have δR finite if R is a ring that is finite-dimensional as a vector space. To see this, we

note that the function in δR is homogeneous as a function of f and g, so it is determined

by its values on f ,g of norm 1. This is a compact set, and a continuous function attains

its maximum on a compact set. In the case of R as defined above, we can work out this

expansion factor explicitly.

6

Lemma 2.1. Let R = Z[x]/ 〈xn + 1〉. Then δR = n.

Proof. Let f ,g ∈ R with f =
∑n−1

i=0 aix
i, g =

∑n−1
i=0 bix

i. Let f · g = h =
∑2(n−1)

i=0 cix
i be

their product prior to reduction, with ck =
∑k

j=0 ajbk−j. Reducing modulo xn + 1 is done by

negating the last n − 1 terms and adding them to the first n − 1 terms. Combining terms

gives c̄k =
∑k

j=0 ajbk−j −
∑n−1

j=k+1 ajbn+k−j which has at most n products to sum. Then

‖f · g‖ = ‖h‖ ≤ n · ‖f‖ · ‖g‖

gives us an upper bound of n for δR. To see this is a least upper bound, take f ,g to have

coefficients all 1s and we get δR = n.

We will see below in chapter 5 that this maximum bound is attained quite rarely.

2.2 Lattices

Let v1, . . . ,vm be a set of linearly independent vectors in Rn. The lattice Λ generated by

v1, . . . ,vm is the set of all integer linear combinations of these vectors

Λ =

{
m∑
i=1

aivi | ai ∈ Z

}
.

If v1, . . . ,vm are linearly independent, they are said to be a basis for Λ. If Λ is a full-rank

lattice, that is m = n, we can define its dual lattice

Λ∗ = {x ∈ Rn | ∀v ∈ Λ, 〈x,v〉 ∈ Z} .

If we have U = {u1, . . . ,um} and V = {v1, . . . ,vm} two bases for Λ, then we can write

ui =
m∑
j

αijvj, αij ∈ Z.

The aij’s form an invertible m×m matrix A. Then U = AV. We have that 1 = det(AA−1) =

det(A) det(A−1). Both A and A−1 have integer coefficients, so det(A), det(A−1) ∈ Z. The

only units in Z are ±1, so det(A) = ±1 and we say that A is a unimodular matrix.

An integer lattice is an additive subgroup of Zn. That is, it is a lattice whose vectors all

have integer coordinates. If Λ satisfies qZn ⊆ Λ ⊆ Zn, we say Λ is a q-ary lattice.

7

Definition 2.2. For a lattice Λ with a basis {v1, . . . ,vm}. We define the standard funda-

mental domain of Λ to be the n-dimensional parallelepiped

F(v1, . . . ,vm) =

{
m∑
i=1

tivi | 0 ≤ ti < 1

}
.

Definition 2.3. For a lattice Λ of dimension m and fundamental domain F , we define the

determinant det(Λ) of Λ to be Vol(F) the volume of the standard fundamental domain. This

is also called the covolume of Λ since it is the volume of the quotient group Rn/Λ.

Remark 2.4. The volume of a fundamental domain does not depend on the choice of funda-

mental domain, at least as long as one avoids pathologies (for example, by insisting that the

domain is Lebesgue measurable). We will work consistently with the standard fundamental

domain.

If dim Λ = n, then we can form a square matrix F (V) by the rows of the basis vectors V

of Λ and compute Vol(F) by

Vol(F) = |det(F (V))| .

The volume of the standard fundamental domain is independent of the basis chosen for Λ.

To see this, we let U, V be any two bases for Λ related by a unimodular matrix A. Then

Vol(F(V)) = |det(F (V))|

= |det(AF (U))|

= |det(A) det(F (U))|

= |±1| |det(F (U)|

= Vol(F(U)).

Definition 2.5. The ith successive minimum, λi = λi(Λ), of a lattice Λ is the radius r of

the smallest ball such that there are i linearly independent vectors of length ‖vi‖2 ≤ r. It is

clear that 0 < λ1 ≤ · · · ≤ λn.

2.2.1 Ideal Lattices

We can form lattices based on ideals of rings.

8

Definition 2.6. If we let f(x) ∈ Z[x] be a monic polynomial of degree n, and R =

Z[x]/ 〈f(x)〉 be a ring then we have R ∼= Zn by xi 7→ ei where the eis are the standard

basis vectors of Zn. Ideals of I ⊆ R also form lattices which are isomorphic to sublattices of

Zn. Such a lattice is called an ideal lattice.

We remark that although the ideals of R all form lattices in Zn, not all sublattices of Zn

correspond to some ideal in R.

Example 2.7. Let Λ = Z[x]/ 〈x2 + 1〉. Consider the sublattice generated by the basis b1 =

(1 + 5x),b2 = (1 + 2x). In this sublattice, multiplication by x corresponds to π/2 rotation.

The vector −7 · b1 + 2 · b2 = −5− 31x is in this sublattice, but x · (−5− 31x) = (31− 5x)

is not in the sublattice, and therefore it is not generated by an ideal since ideals are closed

under multiplication.

Ideal lattices and their applications to cryptography were first introduced [LM06] as a

generalization of a cyclic lattice (i.e., a lattice Λ such that rot(Λ) = Λ, where rot maps

xi 7→ x(i+1 mod n)).

We recall that ideals are closed under both addition and scalar multiplication by elements

in R. This additional structure is what makes ideal lattices an appealing candidate for HE

schemes, and in fact is what Gentry uses in [Gen09] to construct an FHE scheme.

2.3 Cyclotomic Fields

We will now give some background on the algebraic structures used. We begin by recalling

some definitions. In this section, modular arithmetic may be performed in the usual way and

is not restricted to a set of representatives as in section 2.1. For the following definitions, we

let K/F be a field extension.

Definition 2.8. An element α ∈ K is said to be algebraic over F if it is the root of some

polynomial in F [x]. If every element of K is algebraic over F , then we say K/F is algebraic.

If K/F is a finite field extension, then K/F is algebraic. The converse is not true.

There exist infinite field extensions which are algebraic over the basefield. For example,

9

K = Q(
√

2,
√

3,
√

5, . . .) the field extension generated by all square roots of prime numbers

is an infinite, algebraic extension.

Definition 2.9. If F = Q, and K = Q(α) a finite extension for some α algebraic over Q,

then we say α is an algebraic number and K is an algebraic number field, or simply a number

field. If α is a root of a monic polynomial in Z[x], we call α an algebraic integer.

Recall that for a number field K = Q(α), there exists a unique irreducible polynomial

f(x) ∈ Q[x] whose root is α. This polynomial is called the minimal polynomial of α, and

deg f(x) = [K : Q] (i.e. the dimension of K as a vector space over Q). If we let the minimal

polynomial of α be of degree n, then

K =

{∑
i

aiα
i | ai ∈ Q, 0 ≤ i < n

}
.

We then clearly have K ∼= Q[x]/ 〈f(x)〉 given by α 7→ x.

Definition 2.10. For any positive integer m, and ζm a primitive mth root of unity, the mth

cyclotomic polynomial is the minimal polynomial

Φm(x) =
∏

gcd(j,m)=1

(x− ζjm)

whose roots are all the primitive mth roots of unity.

We obtain the mth cyclotomic field K = Q(ζm) by adjoining an mth primitive root of

unity ζm to Q. The dimension of K over Q as a vector space is equal to ϕ(m). In this paper,

we primarily concern ourselves with cyclotomic number fields.

2.3.1 Rings of Integers

Definition 2.11. Let K be a number field. The set of all algebraic integers in K is called

the ring of integers of K and is denoted OK .

It is worth noting OK is indeed a subring of K. When we say “ring of integers,” it is

implied we are referring to the ring of integers of some number field K. To avoid confusion,

we will refer to Z as the rational integers.

10

Definition 2.12. A unique factorization domain (UFD) is an integral domain in which

every non-zero element can be written uniquely as a product of irreducible elements up to

permutation and multiplication by units.

The rational integers are a UFD as all integers factor uniquely into a product of prime

powers, but in general this is not the case with the ring of integers.

Example 2.13. Let K = Q[
√
−5], then we have OK = Z[

√
−5]. In this ring, 6 = 2 · 3 and

6 = (1 +
√
−5)(1−

√
−5), but 2, 3, (1 +

√
−5), and (1−

√
−5) are all irreducible elements in

OK , so we have two different factorizations of 6 into irreducible elements.

In general, unique factorization does not hold in OK , but as it turns out this concept of

unique factorization may be generalized. We make use of the following results from algebraic

number theory.

Theorem 2.14. Every ideal in a Dedekind domain factors uniquely into a product of prime

ideals.

Proof. See [Neu13, thm. 3.3]

Theorem 2.15. The ring of integers is a Dedekind domain.

Proof. See [Neu13, thm. 3.1]

So it is clear that although elements may not factor uniquely in the ring of integers, ideals

of OK factor uniquely into products of prime ideals. This allows us to begin discussion on

the splitting of primes in the ring of integers.

Definition 2.16. Let K be a number field and OK its ring of integers. A prime p ∈ Z is

said to split if 〈p〉 ∈ OK can be written as a non-trivial product of prime ideals in OK . If this

product is square-free, we say p splits completely, and p is ramified if it is not square-free. If

the only factorization of p is the trivial one, we say p remains prime in OK .

Example 2.17. Consider the ring of Gaussian integers Z[i]. In this ring we can write 5 =

(1+2i)(1−2i), and so 5 splits. It can be shown that every prime p of the form p ≡ 1 (mod 4)

splits. Conversely, if p ≡ 3 (mod 4), then p does not split and remains prime. Furthermore,

we have 2 = u(1 + i)2 where u is some unit in Z[i], and so 2 is ramified.

11

Theorem 2.18. The ring of integers of Q(ζm) is Z[ζm].

Proof. See [Was97, thm. 2.6].

Remark 2.19. The examples we have seen so far have involved number rings of the form

K = Q(α) and their corresponding rings of integers have been OK = Z[α]; in general we do

not always have OK = Z[α]. One nice feature of cyclotomic fields is that their ring of integers

is always monogenic.

Theorem 2.20. Let K = Q(ζm), p prime with p - m, and f the order of p mod m. Then p

splits into ϕ(m)/f distinct primes in Z[ζm].

Proof. See [Was97, thm. 2.13].

When considering the mth cyclotomic field, we have OK = Z[ζm] ∼= Z[x]/ 〈Φm(x)〉, and

Theorem 2.20 tells us that primes of the form p ≡ 1 mod m split completely. Another result

from number theory tells us exactly how to find these prime factors. We give the special

instance of this method, namely when OK = Z[α] for K = Q(α).

Theorem 2.21. Let p ∈ Z prime, and K and OK as above. Let f be the minimal polynomial

of α over Q. Let f̄ denote the image of f in (Z/pZ)[x]. We factor f̄ as

f̄(x) = f̄1 · f̄2 · · · · · f̄r.

Then pOK factors uniquely in OK as

pOK = pe11 pe22 . . . perr

where pi = pOK + 〈fi(α)〉 = 〈p, fi(α)〉 and ei = deg fi.

Proof. See [Neu13, prop. 8.3]

For algorithms on factoring polynomials modulo p, see [Coh13].

Theorem 2.21 shows we can find a factorization of p simply by factoring a cyclotomic

polynomial modulo p and evaluating each of its factors at ζm. Since we know primes of the

form p ≡ 1 mod m split completely in Z[ζm], Φm(x) must factor into exactly n = ϕ(m) linear

factors. Since (Z/pZ)× is cyclic of order p − 1, it has some generator g. We have m | p − 1,

12

and so there exists a unique subgroup of order m with a generator of the form a = (g(p−1)/m).

Each linear factor in the factorization of Φm modulo p is given by (x− ai) for i ∈ (Z/mZ)×.

Finally, by the CRT this gives an isomorphism

(Z/pZ)[x]/ 〈Φm〉 ∼= (Z/pZ)[ζm] ∼=
∏

1≤i<m,
(i,m)=1

(Z/pZ)[ζm]/
〈
p, ζ im − ai

〉
.

Each of the factors in the product of quotients is prime and therefore maximal, so each factor

is isomorphic to a field, namely Z/pZ. This gives (Z/pZ)[x]/Φm
∼= (Z/pZ)n. We conclude

this section with an example of splitting a prime.

Example 2.22. Let K = Q(ζ8) be the eighth cyclotomic field. The minimal polynomial of

ζ8 is Φ8(x) = x4 + 1. If we choose p = 17, then Φ8 factors as (x+ 2) · (x+ 8) · (x+ 9) · (x+ 15)

modulo p. By theorem 2.21, we have that 5 splits as 5OK = 〈5, ζ8 + 2〉 ·〈5, ζ8 + 8〉 ·〈5, ζ8 + 9〉 ·

〈5, ζ8 + 15〉.

Implementations will typically impose congruence conditions on p for this splitting prop-

erty, and allows us to work over a finite field of order p rather than some extension field.

This CRT isomorphism allows us to perform pointwise multiplication. An application of this

is single instruction, multiple data (SIMD).

2.4 Cryptographically Hard Problems

In this section we will examine the underlying hard problems that homomorphic encryption

schemes are based on.

Definition 2.23. Given a lattice Λ, the Shortest Vector Problem(SVP) is to find a shortest

non-zero vector in the lattice Λ. In terms of the notation used above, find a vector v ∈ Λ

such that ‖v‖2 = λ1(Λ).

Remark 2.24. There may be more than one shortest vector in Λ. For example, if we work in

the integer lattice Z2, the vectors (0,±1), (±1, 0) are solutions to SVP. In a lattice, there are

always finitely many shortest vectors.

The SVP problem is known to be NP-hard under randomized reductions [Ajt98].

13

Definition 2.25. Given a lattice Λ and a target vector t ∈ Rn such that t /∈ Λ, the Closest

Vector Problem (CVP) is to find a vector v ∈ Λ such that ‖t− v‖2 is minimized.

There are several variants of SVP and CVP. Below we will let γ ≥ 1 be an approximation

factor and we will let d(t,Λ) be the distance of a vector t ∈ Rn to the closest lattice point in

Λ. In the γ = 1 case, we get the versions of these problems introduced above.

Definition 2.26. Given a lattice Λ, the γ-Approximate Shortest Vector Problem (SVPγ) is

to find a non-zero vector v ∈ Λ such that ‖v‖2 ≤ γ · λ1(Λ).

Definition 2.27. Given a lattice Λ and a target vector t ∈ Rn, the γ-Approximate Closest

Vector Problem (CVPγ) is to find a vector v ∈ Λ such that ‖t− v‖2 ≤ γ · d(t,Λ).

Definition 2.28. Given a lattice Λ, the γ-Shortest Independent Vector Problem (SIVPγ) is

to find linearly independent vectors v1, . . . ,vn such that ‖vi‖ ≤ γλn(Λ)

Definition 2.29. Given a basis B of a lattice Λ(B), and a target vector t such that d(t,Λ) ≤

γ · λ1(Λ), the γ-Bounded Distance Decoding Problem (BDDγ) is to find a vector y ∈ Λ such

that ‖y − t‖2 < d(t,Λ).

Definition 2.30. We let Znq denote n-dimensional vectors with coefficients modulo q. Given

vectors a1, . . . am ∈ Znq , and a bound β < q, The Short Integer Solutions Problem(SIS) is to

find a non-trivial, “short” z ∈ Zm such that

Az = 0 (mod q)

where A = [a1| . . . |am]. We require ‖z‖ ≤ β otherwise we can simply use Gaussian elimination

to solve for z.

In SIS, the matrix A defines a lattice

Λ(A)⊥ = {z ∈ Zm : Az = 0 (mod q)}

and the problem becomes finding a shortest vector in Λ(A). In 1996, Ajtai gave a reduction

from worst-case GapSVP and SIVP to average-case SIS[Ajt96].

14

2.4.1 Learning with Errors

The Learning with Errors problem (LWE) was first introduced by Regev in 2005 [Reg05].

We look at two versions of the LWE problem.

Definition 2.31. Let n, q ∈ Z and χ a probability distribution on Z often referred to as the

error distribution. Then the Search-LWE problem is to find a vector s ∈ Znq given m noisy

inner products

b1 = 〈s, a1〉+ e1
...

bm = 〈s, am〉+ em

where ai
$←− Znq and ei ← χ.

Definition 2.32. Let n, q, χ as in definition 2.31, A = (a1, . . . , am) with ai
$←− Znq and

e = (e1, . . . , em) with ei ← χ. Then for some s ∈ Znq , the Decision-LWE problem is to

distinguish between (A, sTA + eT) and (A,vT) with v
$←− Zmq .

We typically choose χ to be a spherical Gaussian distribution centred around the origin

with width αq >
√
n for some α.

Let A ∈ Zm×nq to be the m × n matrix representing each random vector ai. If we have

m ≤ n, we can solve the above system using Gaussian elimination. However, since Gaussian

elimination uses row operations, this makes any error terms grow and our solution will effec-

tively be a random vector. If we have m > n, then adding the error term to Im(A) moves

outside of Im(A) due to being in a higher dimensional space. This makes it impossible for

Gaussian elimination to return anything since there is a high probability an arbitrary vector

in a higher-dimensional space won’t have a pre-image; in other words, the system will almost

certainly be inconsistent.

The LWE problem is provably as hard as some worst-case lattice problems. Regev gives a

quantum reduction from GapSVP and SIVP to LWE [Reg05], and a classical reduction from

GapSVP to LWE is given in [BLP+13].

15

2.4.2 Cryptographic Applications

Using the LWE problem, we can create an asymmetric key cryptography scheme. We begin

by looking at the scheme proposed by Regev [Reg05], and later examine the variant in [FV12].

First, we choose public parameters n, q,m, σ with the variable n being the dimension of the

vector space we are working with, q a prime modulus, m the number of equations in our

system, and σ the standard deviation of the probability distribution χ on Zq. The remainder

of the scheme is as follows:

• Private Key: Choose a secret vector s ∈ Znq .

• Public Key: Choose a matrix A ∈ Zm×nq uniformly at random, and sample e ∈ χmq .

Return the public key as pk = (A,b = A · s + e) ∈ Zm×nq ×Zmq . We note that the noise

e is exposed by taking pk[0] · s− pk[1].

• Encrypt: Encryption is done on each bit x of the message as follows: choose a uniformly

random vector s ∈ Zm2 . Return (A · s, 〈b, s〉) ∈ Znq ×Zq if x = 0, and return (A · s, b q
2
c+

〈b, s〉) ∈ Znq × Zq if x = 1.

• Decrypt: Given the ciphertext pair (a, b), return 0 if b − 〈a, s〉 is closer to 0 than to

b q
2
c, and 1 otherwise.

2.5 Ring-LWE

For the Ring Learning with Errors (Ring-LWE) problem, we modify the LWE problem

slightly. First, we let Φm(x) be the mth cyclotomic polynomial. We choose q ∈ Z with q ≡ 1

mod m. We let R = Z[x]/ 〈Φm(x)〉 be a polynomial quotient ring and we let Rq = R/Zq
be the polynomial quotient ring with coefficients in (−q/2, q/2]. For efficiency reasons, we

usually choose m to be a power of 2. This gives more efficient algorithms for multiplication

discussed in chapter 4. We choose a secret polynomial s ∈ Rq as before. We let As,χ be the

distribution in Rq × Rq obtained by sampling a ∈ Rq uniformly at random, e ∈ Rq the

polynomial with coefficients obtained by sampling from χ like before, and returning the pair

(a,b = a · s + e) ∈ Rq ×Rq.

16

Definition 2.33. The Search Ring Learning with Errors Problem (Search Ring-LWE) is to

determine the secret s ∈ Rq by sampling pairs (ai,bi) from As,χ.

Definition 2.34. Given samples of pairs (ai,bi) as above, the Decision Ring Learning with

Errors Problem (Decision Ring-LWE) is to distinguish between pairs sampled uniformly at

random and pairs sampled according to the distribution As,χ.

2.5.1 Cryptographic Application

We will first look at a basic scheme introduced in [LPR10] when the ring-LWE problem was

first introduced.

As with LWE, we choose a prime modulus q with the extra condition that q ≡ 1 mod 2d

where d is a power of 2, and χ an error distribution on Zq. We work with elements in the

ring Rq = Zq[x]/〈xd + 1〉. The steps are then as follows:

• Private Key: Choose a secret s ∈ R with coefficients sampled from χ.

• Public Key: Choose an element a
$←− Rq and output the pair pk = (a,b = a · s + e) ∈

Rq ×Rq where e is an error term chosen from the error distribution. As with LWE, we

see that the noise e is exposed by taking pk[0] · s− pk[1].

• Encrypt: The plaintext space is Rt. The authors of [LPR10] use the t = 2 case, but

we are not restricted to working with t = 2, and so will consider the general case here.

To encrypt a message m ∈ Rt, we begin by sampling three small error terms u, e1, e2

from our error distribution. We then compute

c1 = [a · u + e1]q

c2 =
[
b · u + e2 +

⌊q
t

⌋
·m
]
q
.

The ciphertext we output is ct = (c1, c2) ∈ Rq ×Rq.

17

• Decrypt: To decrypt a pair ct = (c1, c2), we first compute

c2 − c1 · s = b · u + e2 +
⌊q
t

⌋
·m− a · u · s− e1 · s mod q

= a · u · s + e · u + e2 +
⌊q
t

⌋
·m− a · u · s− e1 · s mod q

=
⌊q
t

⌋
·m + (e · u + e2 − e1 · s) mod q.

We refer to the term in parentheses as the noise term, and it is denoted by v. We see

that if we scale the above expression by t
q

and round, that as long as the noise isn’t too

large, we recover the message m.

Lemma 2.35. For a ciphertext c with noise as above, and a
$←− Rq, s,u, e1, e2 ← D where

D is a B-bounded distribution, decryption is correct if ‖v‖ < 1
2

(
q
t
− |q|t

)
.

Proof. From above, we have c2 − c1 · s =
⌊
q
t

⌋
·m + v + q · r for some r ∈ R. Using the fact

that q =
⌊
q
t

⌋
· t+ |q|t where |q|t is the least positive residue of q modulo t. Scaling by t

q
gives

t

q
(c2 − c1 · s) = m− |q|t

t
m +

t

q
v + tr

= m +
t

q

(
v − |q|t

t
m

)
+ tr.

Since the final step of decryption is applying [·], we can simply drop tr. Then to decrypt

correctly we require
∥∥∥ tq (v − |q|t

t
m
)∥∥∥ < 1

2
.

∥∥∥∥ tq
(

v − |q|t
t

m

)∥∥∥∥ ≤ ∥∥∥∥ tqv

∥∥∥∥+

∥∥∥∥ tq · |q|tt m

∥∥∥∥
≤ t

q
‖v‖+

|q|t
q
‖m‖

≤ t

q
‖v‖+

|q|t
q
· t

2
, since ‖m‖ ≤ t

2

<
1

2

=⇒ ‖v‖ < 1

2

(q
t
− |q|t

)
.

It is worth noting that the literature has conflicting values for the bound on v. In [FV12],

they give a bound of ‖v‖ < 1
2
· b q

t
c and omit the details of the proof; [BEHZ17] gives the

18

above bound, but also omits the details of the proof; and Player gives a bound of ‖v‖ <
1
2

(
q
t
− t
)
[Pla18]. Player’s work differs slightly from above and so uses the fact that |q|t < t to

get their bound. Player’s bound is more of a worst-case scenario, but not necessary since we

know the values q, t. The bound in [FV12] appears to be incorrect, and we therefore use the

bound above and found in [BEHZ17]. Proving the bound given in [FV12] would be a stronger

result since it would permit a higher bound on the noise before decryption or bootstrapping

is required.

An advantage of the ring-LWE scheme presented is that key sizes are reduced compared

to the LWE scheme. The LWE cryptosystem required m×n samples and a matrix product to

give m random scalars, while its ring-LWE counterpart only required sampling n coefficients

followed by a polynomial multiplication. This increased efficiency is why most state-of-the-art

implementations of FHE are based on ring-LWE rather than LWE.

On the matter of hardness of ring-LWE, a quantum reduction from worst-case SVPγ on

ideal lattices to search ring-LWE is given in [LPR10]. Furthermore, the best-known attacks

on ideal lattices appear to have no significant advantage compared to those on a random

lattice. Since LWE-based schemes are reducible to worst-case lattice problems, parameter

selection for security of ring-LWE is often based on the best-known attacks against LWE

[ACC+18, APS15].

19

3 FV Scheme

In this thesis we will focus on the somewhat homomorphic encryption scheme proposed

in 2012 by Fan and Vercauteren [FV12]. They introduce a ring-LWE variant of Brakerski’s

scheme in [Bra12] which builds from the scheme proposed in [LPR10]. There is a difference

of a sign and order with the public keys in [FV12] compared to [LPR10], and we adopt

the convention used in [FV12] for convenience with decryption, and the notation is as de-

fined in chapter 2. We will also look at optimizations to FV, parameter selection, and an

implementation of FV, namely Microsoft’s Simple Encrypted Arithmetic Library (SEAL).

The problem with the scheme proposed above is that ciphertexts grow in size. Multiplying

two ciphertexts together results in a ciphertext containing three terms. The FV scheme

introduces the idea of relinearization. If we view the two components of our ciphertexts as

being coefficients in Rq[y], then we can see that ciphertexts are initially linear. If we multiply

two ciphertexts c1, c2 ∈ Rq[y], we end up with something quadratic. Relinearization allows us

to shrink this quadratic ciphertext product into something linear. When we view ciphertexts

as elements of Rq[y], we can view the first step of decryption as evaluating the ciphertext at

s where s ∈ Rq is the secret key.

3.1 Homomorphic Operations

The two operations we work with are addition and multiplication. As mentioned above, we

will view our ciphertexts as elements in Rq[y]. We will write ct(y) = c0 +c1 ·y. If we evaluate

ct(y) at its secret key s and reduce modulo q, we get

[ct(s)]q = [c0 + c1 · s]q =
⌊q
t

⌋
·m + v. (3.1)

The reversal of the terms using addition rather than subtraction here is due to the difference

in public key mentioned above. Rounding and reducing modulo t then gives us our plaintext

20

as required.

3.1.1 Addition

The goal here is to take two ciphertexts ct1, ct2, add them together, and have their sum

decrypt to the sum of their respective plaintexts m1, m2 ∈ Rt. If we evaluate the ciphertexts

at s as above and add them, we obtain

[c0 + c1 · s]q =
⌊q
t

⌋
·m1 + v1 +

⌊q
t

⌋
·m2 + v2

=
⌊q
t

⌋
· (m1 + m2) + v1 + v2.

In order to add the mi’s, we need to reduce modulo t afterwards. We have m1 + m2 =

[m1 + m2]t + t · r for some r ∈ R. Simplifying above gives

c1 + c2 · s =
⌊q
t

⌋
· [m1 + m2]t +

⌊q
t

⌋
· t · r + v1 + v2 + q · (α1 + α2)

=
⌊q
t

⌋
· [m1 + m2]t +

q

t
· t · r− |q|t r + v1 + q · (α1 + α2) + v2

=
⌊q
t

⌋
· [m1 + m2]t + v1 + v2 − ε · t · r + q · (r + α1 + α2)

where ε =
|q|t
t

= q
t
−
⌊
q
t

⌋
< 1. From the appearance of the v1 + v2 term above, we see the

noise grows additively. That is, the noise of our new ciphertext is simply the sum of the noise

of the previous ciphertexts, up to some additional factor that is at most t.

3.1.2 Multiplication

As previously mentioned, multiplication introduces a new problem: we end up with a cipher-

text with three elements. To see why this is the case, we recall that ciphertexts are linear

elements of R[y] and so their product must be quadratic. It is worth noting this is a valid

ciphertext that will decrypt if we evaluate it at s as in (3.1) prior to reduction modulo q. We

explain below how this works.

Similar to what we did with addition, we begin by writing out our cipherexts evaluated

at s. This gives us

ct1(s) =
⌊q
t

⌋
·m1 + v1 + q · r1, ct2(s) =

⌊q
t

⌋
·m2 + v2 + q · r2.

21

If we carry out this multiplication in the natural way, we get

(ct1 · ct2)(s) =
⌊q
t

⌋2
· (m1 ·m2) +

⌊q
t

⌋
· (m1 · v2 + m2 · v1)

+ q ·
⌊q
t

⌋
· (m1 · r2 + m2 · r1) + q(v1 · r2 + v2 · r1) + v1 · v2 + q2 · r1 · r2.

If we want to decrypt this in the usual way and recover m1 ·m2, we see there is an extra

factor of bq/tc we need to get rid of before we can scale by t/q and round. The natural way to

deal with this is to scale the above product by bq/tc−1. The problem with doing this is that

the term q2 ·r1 ·r2 will more than likely require rounding, and we will not be able to remove it

when reducing modulo q. The term q2 · bq/tc−1 can be as large as q/2 after reduction modulo

q. The authors of [FV12] work around this by using the approximation

t

q
· (ct1 · ct2)(s) =

⌊
t

q
c0

⌉
+

⌊
t

q
c1

⌉
· s +

⌊
t

q
c2

⌉
· s2 + ra

where ra is an error term from approximating. With this approximation, the authors are able

to get rid of the extra factor of bq/te at the cost of some extra error.

Lemma 3.1. For ciphertexts ct1, ct2, with [cti(s)]q =
⌊
q
t
·mi + vi

⌋
, and ct1 · ct2(y) =

c0 + c1 · s + c2 · s2, and the noise terms vi are bounded by some value E, we have[⌊
t

q
c0

⌉
+

⌊
t

q
c1

⌉
· s +

⌊
t

q
c2

⌉
· s2
]
q

=
⌊q
t

⌋
·m1 ·m2 + v3.

where ‖v3‖ < 2 · δR · t · E · (δR · ‖s‖+ 1) + 2 · t2 · δ2R · (‖s‖+ 1)2.

Proof. See [FV12, lem. 2].

The above is an example of multiplying two ciphertexts that are linear in R[y]; the result

is a ciphertext that is quadratic in R[y]. Classical FV only allows multiplication of degree

1 ciphertexts in R[y] and bundles the relinearization method described below as part of the

overall multiplication process. As it turns out, we can repeatedly use the above technique to

multiply ciphertexts of arbitrary size, and this is what is done in [Lai17]. More concretely, if

we have two ciphertexts ct1 = (c′0, . . . , c
′
k), ct2 = (d′0, . . . ,d

′
l) ∈ R[y] of degrees k, l, with

22

each encrypting a product of plaintexts
∏k

i=1 mi,
∏k+l

j=k+1 mj respectively, then we can write

ct3(s) =
〈
(c0, . . . , ck+l), (1, s, . . . , s

k+l)
〉

=
⌊q
t

⌋
· [m1 · . . .mk+l]t + v

= (ct1 · ct2)(s)

=

[
k+l∑
i=0

⌊
t

q
ci

⌉
· si
]
q

where ci =
∑

s+t=i c
′
s · d′t.

3.2 Relinearization

We first concern ourselves with classical FV (i.e., dealing with ciphertexts consisting of three

elements).

Now that we have a way to multiply ciphertexts, we see the problem is that our ciphertext

is quadratic in y rather than linear (i.e., it has three terms instead of two). In the original

FV scheme, this would only allow us to perform a single multiplication and then we would

need to decrypt the result. The authors introduce a technique called relinearization to bring

the ciphertext back down to having two terms. They give two versions of relinearization, but

we will only focus our attention on the first version.

The idea of relinearizing is to convert the above quadratic ciphertext into an equivalent

linear one at the cost of some extra noise. In other words, if we have a quadratic ciphertext

ct(y) = c0 + c1 · y + c2 · y2, and its “equivalent” linear ciphertext ct′(y) = c′0 + c′1 · y, we

want to write

[
c0 + c1 · s + c2 · s2

]
q

= [c′0 + c′1 · s + r]q (3.2)

where r is a small error term from relinearizing. We need to keep in mind that relinearization

is an operation that happens homomorphically, so we can only work with the public key. The

technique used is to find a way to provide a masked copy of s2 in much the same way we mask

s in the public key. We do this by generating an extra public key called a relinearization key

23

denoted rlk. If we use the same method as with the public key, the obvious way of choosing

rlk would be rlk = (−(a · s + e) + s2, a), with a
$←− Rq, e← χ, and as we did with the public

key in 2, we can compute rlk[0] + rlk[1] · s = s2 − e. With this in mind, we can see the

natural way to choose c′0 and c′1 is

c′0 = c0 + rlk[0] · c2 (3.3)

c′1 = c1 + rlk[1] · c2. (3.4)

If we apply the first step of the decryption algorithm, and use the fact that rlk[0]+rlk[1]·s =

c2 − e, we get

c′0 + c′1 · s = c0 + c1 · s + c2 · s2 − c2 · e. (3.5)

The authors of [FV12] acknowledge it is not as simple as providing a masked copy of s2 in the

exact same way as the public key because the multiplication of the error term e with c2 could

result in a massive increase in error due to c2 being a random element in Rq (i.e., having

norm q/2). The first version of relinearization proposed [FV12] is to convert the coefficients

of c2 into some other base T that has smaller norm. We emphasize that this new base T is

unrelated to the plaintext value T and is not chosen with respect to t. In fact, as we will see

below, it is chosen with respect to the ciphertext modulus q. To avoid confusion, some works

use w to represent the base change instead. As the authors of [FV12], we stick with T in this

thesis.

Example 3.2. Let f(x) = 12 + 3x+ 9x2 + x4, and T = 2. Then we can decompose f as

f(x) = (x+ x2 + x4) · 20 + (x) · 21 + (1) · 22 + (1 + x2) · 23.

This idea of decomposing c2 into a smaller base is used in several schemes [FV12, BGV14,

BV14, BEHZ17].

Remark 3.3. The literature often says we can write c2 =
∑l

i=0 c
(i)
2 · T i with l = blogT (q)c.

However, we must be careful with how we compute this. We cannot simply choose any

representative modulo q or T , but we must remain consistent. That is, we either need to

always remain centered modulo q or convert to the least positive residue. We present an

algorithm to explicitly show how to perform this base conversion.

24

Algorithm 1: BaseDecomp(cm, T)

Input: cm the degree m− 1 coefficient of a ciphertext ct ∈ Rq[y] with deg ct >= 2

and T a positive integer with T < q

Output: (c
(0)
m , . . . c

(l)
m), where l = blogT (q)c, and c

(i)
m ∈ RT , 0 ≤ i ≤ l such that

ct =
∑l

i c
(i)
m · T i

1 l← logT q;

2 for i = 0 to l do

/* Operations are done coefficient-wise */

3 c
(i)
m ← [cm]T ; /* Centered reduction of cm mod T */

4 cm ← (cm − c
(i)
m)/T ;

5 end

6 return (c
(0)
m , . . . , c

(l)
m);

When we slice c2 up in this way, we can make a minor adjustment to the above proposed

method of choosing rlk to get a new way to relinearize. The idea is to provide a relinearization

key as above, but with l varying powers of T all scaling s2. This gives us a length l key of

the form (−(ai · s + ei) + T i · s2, ai) for i ∈ [0, l]. This now gives new ciphertexts

c′0 =

[
c0 +

l∑
i=0

rlk[i][0]c
(i)
2

]
q

(3.6)

c′1 =

[
c1 +

l∑
i=0

rlk[i][1]c
(i)
2

]
q

. (3.7)

Now it can easily be seen that this relinearizes exactly as we want. Furthermore, the error

does not grow too much because our error terms are now multiplied by c
(i)
2 ∈ RT where T

was chosen so all of the c
(i)
2 ’s have small norm.

Just as we generalized multiplication and addition to ciphertexts of arbitrary lengths, so

too can we generalize relinearization. The process is as follows:

• Let ct = (c0, . . . , cm) be a degree m ciphertext in Rq[y].

• Select a base T as above, with l = blogT qc.

• Generate m−1 relinearization keys rlki = (−(aj ·s+ej)+T j ·si, aj), j ∈ [0, l], i ∈ [2,m].

25

• Using all of the relinearization keys, and initializing c′0 = c0, and c′1 = c1, we compute

c′0 =

[
c′0 +

l∑
i=0

rlkj[i][0] · c(i)
j

]
q

(3.8)

c′1 =

[
c′1 +

l∑
i=0

rlkj[i][1] · c(i)
j

]
q

(3.9)

(3.10)

with j ∈ [2,m].

The obvious drawback to supporting relinearization of ciphertexts of arbitrary size is that

we would need to know a priori how large of ciphertexts we will encounter, and we need to

handle more keys. At the time of this writing, this seems to be the best known way to handle

relinearizing ciphertexts of arbitrary size.

For simplicity, we will work with a ciphertext of degree 2. If we apply the first step of

decryption to the relinearized ciphertexts c′0, c
′
1

c′0 + c′1 · s = c0 + c1 · s + c · s2 −
l∑

i=0

c
(i)
2 · ei (3.11)

then we expose the noise added from relinearizing. We see that the newly added noise is∑l
i=0 c2 · ei. Therefore, the upper bound on the noise introduced by relinearizing is given by

(l+1) · T
2
·B ·δR. First, we note that the noise introduced is additive and not at all dependent

on the ciphertexts being relinearized. Second, if we want to generalize this to a ciphertext of

arbitrary degree m ≥ 2, we simply need to multiply the above bound by m− 1.

3.3 Multiplicative Depth

As we have seen, homomorphic addition increases noise additively, but homomorphic multipli-

cation increases noise significantly more, even when not paired with relinearizing. According

to Lemma 3.1, a single multiplication increases the noise by a factor of roughly1 2 · t · δ2R · ‖s‖.

Choosing s of small norm helps keep this noise growth low, but the ring constant and our

1For brevity, we will only consider the dominant term here.

26

choice of plaintext modulus clearly play a significant role in noise growth. Due to the major

role multiplication plays in noise growth compared to addition, the literature often refers to

the depth of a circuit as the number of multiplications that may be performed before either

decryption or a bootstrapping operation is required. We present the multiplicative depth for

the classical FV scheme where multiplication only happens with linear ciphertexts in Rq[y].

Theorem 3.4. Let the notation be as above, along with χ a B-bounded probability distribu-

tion. The FV scheme has multiplicative depth L and decrypts properly provided

4 · δLR · (δR + 1.25)L+1 · tL−1 < bq/Bc.

Proof. See [FV12, thm. 1].

The authors of [FV12] also provide a way of bootstrapping the above scheme to be fully

homomorphic. We do not discuss that here and refer the interested reader to their work for

more details.

27

4 Optimizations

Microsoft’s SEAL adds several optimizations to the classical BFV scheme we looked at.

We will discuss some of those optimizations in this chapter.

4.1 Number Theoretic Transform

In this section we will discuss the number theoretic transform (NTT). This is used to speed

up polynomial multiplication.

4.1.1 Discrete Fourier Transform

First we recall the discrete Fourier transform (DFT).

Definition 4.1. Given an input vector xn = (x0, . . . , xn−1) ∈ Cn, let ωn = e
−2πi
n be a

primitive nth root of unity. Then F(x) = (X0, . . . , Xn) ∈ Cn is the DFT of x where

Xk =
n−1∑
j=0

xjω
k
n.

The inverse DFT is given by

xk =
1

n

n−1∑
j=0

Xjω
−k
n

The DFT can be computed naively in O(n2) time. The fast Fourier transform(FFT) is

a more efficient algorithm that runs in O(n log n) time. Polynomial multiplication can per-

formed naively in O(n2) time. To speed this up, we take the FFT of a polynomial and perform

coordinate-wise multiplication and follow that with an inverse-FFT to achieve polynomial

multiplication in O(n log n).

28

4.1.2 Finite Fields

The DFT can be generalized to work with fields besides C so long as ωn is a primitive nth

root of unity. If we choose our field to be Z/pZ with p prime, we know there exists a primitive

root r ∈ Z/pZ. To compute the DFT of a sequence of n integers, we require a primitive nth

root of unity, ωn. By Dirichlet’s theorem on arithmetic progressions, there are infinitely many

primes p ≡ 1 (mod n), so we can always find p of the form p = kn+ 1 for some k ∈ Z. This

allows us to set ωn ≡ rk (mod p). Now ωnn ≡ rkn ≡ rp−1 ≡ 1 (mod p). We also have that

ωmn 6≡ 1 (mod p) for m < n, so ωn is a primitive nth root of unity as required.

We call this version of the DFT the number theoretic transform(NTT). It has similar

properties to the DFT. The main use of the NTT in various HE implementations is to speed

up the multiplication of ciphertexts.

4.2 FV Residue Number System

The residue number system (RNS) variant of the FV scheme was first introduced in [BEHZ17].

Since the ciphertext modulus q does not need to be prime, this scheme uses the Chinese

Remainder Theorem (CRT) representation of q. If q is chosen to be a product of “small”,

coprime moduli, the need for multiprecision arithmetic can be avoided. We can take “small”

to mean a machine word. The FV scheme needs to be modified slightly to be compatible with

these CRT representations of ciphertexts. The two functions that are not directly compatible

are multiplication and decryption of ciphertexts. This is due to the non-positional nature of

RNS. We first begin by defining several functions used throughout the scheme.

4.2.1 RNS Decryption

We recall that standard FV decryption consists of four steps:

1. Evaluate [ct(s)]q

2. Multiply by t
q
.

3. Round each coefficient to the nearest integer, rounding up in the case of ambiguity.

29

4. Apply [·]t (reduce coefficients to the range [−t/2, t/2)).

The first and third steps can be done in RNS, but the other two steps need modifications to

work with RNS.

Definition 4.2. Let t, q, R,Rq as above. We define Division and Rounding in R[Y] as

DRi : ct =
i∑

j=0

ct[j]Y j 7→
i∑

j=0

⌊
t

q
ct[j]

⌉
Y j.

Ciphertexts are in Rq while messages are in Rt. The fourth step listed above involves

taking ciphertexts from Rq into Rt. It is easy to see that we cannot simply apply [·]t to each

component in RNS form. Instead, the idea is to use the Chinese Remainder Theorem to

convert an element from
∏n

i=1Rqi to an element in Rq, then reduce that element modulo ti

for each ti in t = t1t2 . . . tm.

Definition 4.3. The fast base conversion is a map

FastBconv : Rq → Rt

where q =
∏n

i=1 qi, t =
∏m

i=1 ti, and z = (z1 = z mod q1, . . . , zn = z mod qn). The goal is to

write z = (z′1 = z mod t1, . . . , z
′
m = z mod tm). Given z, q, and t, the algorithm is

z′j =

∣∣∣∣∣∣∣∣∣∣
n∑
i=1

∣∣∣∣∣zi
(
q

qi

)−1∣∣∣∣∣
qi

× q

qi︸ ︷︷ ︸
z+αq

∣∣∣∣∣∣∣∣∣∣
tj

(4.1)

and is applied coefficient-wise.

It is worth noting that (4.1) does not give exactly z, but instead gives an extra multiple

of q. This is because the qis are typically chosen to be a word length, and so multiprecision

division is required, which is computationally expensive. The authors work around this by

dealing with this approximate result and adjusting it in a way that is faster than multipreci-

sion reduction modulo q.

The division and rounding steps do not work correctly in RNS. To get around this, the

authors of [BEHZ17] replace rounding with flooring. This obviously introduces an error term.

Lemma 1 of [BEHZ17] shows how to combine this error term with the error term introduced

from FastBconv, and lemma 2 of [BEHZ17] gives a method they call a γ-correction technique.

30

5 Ring Expansion Factor

The ring expansion factor δR was first introduced in [LM06]. When we reduce a ring

element modulo an ideal generated by a polynomial f , it is possible for the infinity norm to

increase. The maximum size it can increase by is captured by δR. For the ring we typically

work with in ring-LWE, the maximum such growth is equal to the degree of f . As we have

seen in the previous chapters, this factor is important when it comes to providing an upper

bound on the noise of ciphertexts, and is also used to determine the maximum noise growth

when multiplying ciphertexts. For certain polynomials, it is possible for this growth to be

exponential, and in fact we will look at some examples where this is the case.

In this chapter, we will look at ring expansion factors for arbitrary polynomials. Further-

more, we will look at the growth of multiplying arbitrary polynomials and reducing them

modulo arbitrary ideals as well as those of the form xn + 1. We will provide some numerical

experiments which suggest that δR = n for the quotient ring Z[x]/ 〈xn + 1〉 is a significant

overestimate of the actual growth of the norm after reduction. It remains an open ques-

tion of how one might be able to exploit such average case improvements in cryptographic

applications where guaranteed correctness of decryption is a typical requirement.

5.1 Norm Growth

In the standard homomorphic encryption schemes, we will often want to multiply elements

together. Since we are working in a polynomial quotient ring, it is standard to reduce our prod-

ucts to their canonical representatives. The result of this reduction can cause the norm to grow

substantially. As shown in lemma 2.1, when working with the quotient ring Z[x]/ 〈xn + 1〉,

the maximum a norm can grow by is equal to n. We recall that reducing the product is

done by using the fact that xn ≡ −1 mod xn + 1. It is easy to cook up an ideal where the

norm can grow exponentially. A simple example is taking the ideal generated by xn − cxn−1

31

for some constant c. Then xn ≡ cxn−1 and it is easily seen that xn+k ≡ ck+1xn−1 for any

positive integer k. In [LM06], the authors provide bounds on the expansion factor for a given

polynomial.

By sampling random elements in the ring Z[x]/ 〈xn + 1〉 with n a power of two, we can

try to see how elements grow from multiplication and reduction. The motivation behind this

is to see how close to δR the norms of elements actually grow by. We see that the actual norm

growth of these trials appears to be bounded as O(n0.58) on average.

If we can prove, that with great certainty, the likely growth of norms is much less than

the worst-case estimate of δR = n, then on average we can decrease all of the noise bounds

we showed in chapter 3 by choosing a smaller value than n. This has the effect of increasing

the number of levels of multiplication we can perform.

Histograms of the results of the above experiment are shown in Figure 5.1. When running

100,000 trials of multiplying polynomials and reducing them modulo xn + 1 for various n,

fitting various pdfs to the resultant norm growths using SciPy [VGO+20], selecting the best

candidate via the KS test (see B.2), we see that the norm growth appears to exhibit behaviour

similar to that of a log-normal distribution; for a definition of the log-normal distribution

along with a description of the parameters, see appendix B.1. Using the Python library, SciPy

[VGO+20], we computed what the expected maximum norm growth would be for the 99.9th

percentile. As a function of n, we observe that 99.9th percentile corresponds to ≈ n0.58.

As seen in table 5.1, in most instances the observed norm growth in Z[x]/ 〈xn + 1〉 appears

to exhibit log-normal behaviour. This is seen by comparing the values in the D-stat column

to the critical values listed at the top. The null hypothesis H0 is that the distribution is a

log-normal distribution. We reject H0 when the D-stat is greater than the critical value for

a given confidence level. We observe that the hypothesis H0 is sometimes rejected, implying

the norm growth does not come from a log-normal distribution. More experimentation may

be needed to say with confidence this comes from a log-normal distribution. For example, one

could try running these experiments using different software or libraries, comparing against

a different set of distributions, using different statistical tests, or using a different range for

sampling coefficients.

Remark 5.1. The outliers in the plots seem to occur for small values of n, even after re-

32

20 30 40 50 60
Observed Growth

0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

Norm growth [x]/ x1024 + 1
log-normal

(a) Z[x]/
〈
x1024 + 1

〉
30 40 50 60 70 80 90 100

Observed Growth
0.00

0.02

0.04

0.06

0.08

De
ns

ity

Norm growth [x]/ x2048 + 1
log-normal

(b) Z[x]/
〈
x2048 + 1

〉

50 60 70 80 90 100 110 120 130
Observed Growth

0.00

0.01

0.02

0.03

0.04

0.05

0.06

De
ns

ity

Norm growth [x]/ x4096 + 1
log-normal

(c) Z[x]/
〈
x4096 + 1

〉
80 100 120 140 160 180 200

Observed Growth
0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

Norm growth [x]/ x8192 + 1
log-normal

(d) Z[x]/
〈
x8192 + 1

〉
Figure 5.1: Observed norm growth for power-two cyclotomic polynomials

33

running the trials several times. This could be due the range used for sampling coefficients,

or that this distribution observation starts to break down at smaller values of n. The outlier

in figure 5.3 could be for the fact that we are measuring the inherently noisy part of the

distribution.

0 500 1000 1500 2000 2500
Degree of Polynomial Modulus

0

5

10

15

20

25

Sc
al

e
Pa

ra
m

et
er

Scale Parameter Growth

(a) Scale growth

0 250 500 750 1000 1250 1500 1750
Degree of Polynomial Modulus

5

10

15

20

25

30

35

40

Lo
ca

tio
n

Pa
ra

m
et

er

Location Parameter Growth

(b) Location growth

0 250 500 750 1000 1250 1500 1750
Degree of Polynomial Modulus

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Sh
ap

e
Pa

ra
m

et
er

Shape Parameter Growth

(c) Shape growth

Figure 5.2: Growth of estimated log-normal parameters

5.2 FV Noise Growth

In this section we will look at the noise growth from multiplication of arbitrary ciphertexts

in the classical FV scheme.

If we have some ciphertext ct = (c0, . . . , cn) encrypting some plaintext m = [m1 . . .mn]t

34

Table 5.1: KS test statistics for norm growth in polynomial quotient rings of the form
Z[x]/ 〈xn + 1〉 under a log-normal pdf assumption for 100,000 trials.

α Dcrit

0.10 0.00386

0.05 0.00429

0.01 0.00514

Modulus D-Stat p-value
99.9th

Percentile
Modulus D-Stat p-value

99.9th

Percentile

x2 + 1 0.03819 < 0.001 2.97 x940 + 1 0.00384 0.104 49.9

x4 + 1 0.00782 < 0.001 3.13 x960 + 1 0.00405 0.074 50.5

x8 + 1 0.00319 0.258 4.28 x980 + 1 0.00302 0.319 51.0

x16 + 1 0.00141 0.988 5.92 x1024 + 1 0.00431 0.047 52.3

x32 + 1 0.00269 0.463 8.33 x1040 + 1 0.00257 0.521 52.6

x64 + 1 0.00183 0.887 11.9 x1100 + 1 0.00369 0.129 54.3

x128 + 1 0.00224 < 0.001 17.1 x1180 + 1 0.00435 0.044 56.4

x256 + 1 0.00245 < 0.001 24.8 x1240 + 1 0.00508 0.011 57.8

x320 + 1 0.00280 0.411 27.9 x1280 + 1 0.00294 0.350 58.9

x360 + 1 0.00400 0.080 29.8 x1360 + 1 0.00383 0.105 60.8

x400 + 1 0.00381 0.109 31.5 x1400 + 1 0.00519 0.009 61.8

x480 + 1 0.00409 0.069 34.8 x1440 + 1 0.00340 0.196 62.7

x500 + 1 0.00264 0.488 35.5 x1480 + 1 0.00502 0.012 63.9

x512 + 1 0.00357 0.154 35.9 x1500 + 1 0.00487 0.017 63.7

x560 + 1 0.00459 0.029 37.7 x1520 + 1 0.00393 0.089 64.6

x640 + 1 0.00366 0.137 40.6 x1580 + 1 0.00302 0.320 66.0

x700 + 1 0.00323 0.246 42.7 x1600 + 1 0.00335 0.209 66.3

x780 + 1 0.00332 0.218 45.2 x2048 + 1 0.00404 0.075 75.9

x860 + 1 0.00287 0.381 47.5 x4096 + 1 0.00456 0.031 110.1

x900 + 1 0.00333 0.215 48.6 x8192 + 1 0.00364 0.139 159.6

35

0 250 500 750 1000 1250 1500 1750
Degree of Polynomial Modulus

0

20

40

60

80

100

120

140

160

99
.9

th
 P

er
ce

nt
ile

99.9th Percentile Growth

Figure 5.3: Observed 99.9th percentile of the norm growth for 100,000 trials

and the secret key s needed to decrypt ct, then it turns out we can easily measure the noise

associated with that particular ciphertext. Recall

ct(s) =

[
n∑
i=0

ci · si
]
q

=
⌊q
t

⌋
·m + v,

then we can isolate the noise simply by writing the above as[
n∑
i=0

ci · si −
⌊q
t

⌋
·m

]
q

= v. (5.1)

For a Sage implementation of measuring noise using the above method, along with a toy

implementation of the FV scheme, see appendix A.

We can design an experiment similar to that in 5.1 by performing multiplications of

arbitrary ciphertexts and measuring the growth of their noise by equation (5.1). The detailed

method used is as follows:

1. Select the degree n of the polynomial modulus to work with.

2. Fix the error distribution χ with deviation σ = 3.19 so that it is B-bounded with

B ≈ 19.14.

36

Table 5.2: Noise growth statistics and bounds for a single multiplication without
relinearization in toy FV implementation under the BKZ sieve cost model

n log2 q log2 t
Maximal growth

(bits)

Observed growth

(bits)

1024 27 1 42 11

2048 54 3 49 16

4096 109 25 80 37

8192 218 54 138 67

3. Select a bit-length for q according to the suggested parameters in [ACC+18] for n

under the classical BKZ sieve cost model using the uniform ternary distribution for key

selection.

4. Select a plaintext modulus t such that the noise growth from a single multiplication

will still allow correct decryption.1

5. Generate random plaintext elements, encrypt them, perform a multiplication, and

record the noise growth relative to the ciphertext with the largest norm.

We are interested in how large the noise grows relative to the norm of a ciphertext. Figure

5.4 shows histograms for the above experiment with n = 1000 trials for each quotient ring,

and 5.2 shows the maximal noise growth observed under the given parameters along with the

maximal possible noise growth given in lemma 3.1. Examining the results in table 5.2, we

see that the maximal noise growth is 2-4 times that of the maximal observed noise growth

under a fixed set of parameters.

Using the experimental results in section 5.1, we can replace the ring constant δR = n

with the value γR = n0.58, and can recompute the worst-case bounds for multiplication seen in

chapter 3. We emphasize here that working with γR is based only on experimental results, and

that we have not proven such a value is even justified. Table 5.3 shows the multiplicative depth

of the classical FV scheme using both δR and γR with the suggested parameters in [ACC+18]

1There is no recommended way to select this parameter. It is dependent on the individual use case.

37

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Observed Growth (bits) 1e1

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Noise Growth in / x1024 + 1

1.38 1.40 1.42 1.44 1.46 1.48 1.50
Observed Growth (bits) 1e1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Noise Growth in / x2048 + 1

3.60 3.62 3.64 3.66 3.68 3.70
Observed Growth (bits) 1e1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

Noise Growth in / x4096 + 1

6.50 6.52 6.54 6.56 6.58
Observed Growth (bits) 1e1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

Noise Growth in / x8192 + 1

Figure 5.4: Observed noise growth of 1000 trials of a single multiplication without
relinearization in toy FV implementation. See Table 5.2 for maximal growth values
with fixed parameters observed here.

38

Table 5.3: Maximum multiplicative depth for classical FV with δR and γR using rec-
ommended parameters for 128 bit security in the classical case

n log2 q δR γR δR-depth γR-depth

1024 27 1024 55.72 0 1

2048 54 2048 83.29 1 3

4096 109 4096 124.50 3 6

8192 218 8192 186.11 7 13

16384 438 16384 278.20 14 26

32768 881 32768 415.87 28 49

for 128-bit security in the classical model. We recall from theorem 3.4 that the plaintext

modulus t has a role in determining the multiplicative depth, but we have dropped it from

these calculations since it is a user-defined parameter not impacting security. The parameter

t was left in table 5.2 because it was a required parameter in the toy FV implementation. We

see in table 5.3 that as long as t is chosen conservatively so as not to contribute too much

noise, we can approximately double the multiplicative depth of a classical FV circuit under

the γR assumption.

39

6 Summary and Future Work

Since Gentry’s thesis in 2009, there have been significant contributions to the study of

homomorphic encryption cryptosystems. The hardness results are primarily based on the

LWE scheme and general, random lattices. As mentioned in chapter 1, the popular HE

libraries are based on the ring-LWE problem. Currently, the best-known attacks on ring-

LWE-based cryptosystems are not significantly better than attacks on general LWE-based

ones [ACC+18]. In section 2.3 we provided background for general cyclotomic fields, but

in this thesis we have primarily looked at power-two cyclotomic fields. Additionally, this is

what the state-of-the-art implementations use. While many of the results generalize to the

general cyclotomic case, it is not currently recommended to use non-power-two cyclotomics

[ACC+18].

Some of the main ring-LWE schemes [BGV14, FV12, BLLN13] are reliant on the ring

expansion factor δR for determining circuit depth. As seen in the experiments outlined in

chapter 5, the average-case growth of multiplication of ring elements appears to exhibit be-

haviour much better than the worst-case of δR = n. More work is needed to better understand

the noise growth of ring elements in power-two cyclotomics. It would be desirable to exploit

this average-case growth to increase circuit depth. We once again remark that circuit depth

is also dependent on the plaintext modulus t although security is not affected. In [Pla18],

they remark about the automatic parameter selection of SEAL without giving any concrete

method for choosing t. However, in issue #232 on the SEAL GitHub repository, one of the

lead developers states that the automatic parameter selection was removed due to bugs.

In section 4.2 we introduced the RNS variant of the FV scheme [BEHZ17] used in SEAL.

At the time of this writing, there is no bootstrapping operation that is compatible with this

variant. The bootstrapping operation of the classical FV scheme appears to be incompatible

with the RNS variant. Microsoft seems to have chosen this variant because of its increased

40

performance, but it would be beneficial if it could be made into a fully homomorphic scheme

while still retaining the performance benefits.

41

References

[ACC+18] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey
Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya
Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and
Vinod Vaikuntanathan. Homomorphic encryption security standard. Technical
report, HomomorphicEncryption.org, Toronto, Canada, November 2018.

[Ajt96] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting, STOC ’96, page 99–108, New York, NY, USA, 1996. Association for Com-
puting Machinery.

[Ajt98] Miklós Ajtai. The shortest vector problem in l2 is np-hard for randomized re-
ductions. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 10–19, 1998.

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
learning with errors. Journal of Mathematical Cryptology, 9(3):169–203, 2015.

[BEHZ17] Jean-Claude Bajard, Julien Eynard, M. Anwar Hasan, and Vincent Zucca. A full
rns variant of fv like somewhat homomorphic encryption schemes. In Roberto
Avanzi and Howard Heys, editors, Selected Areas in Cryptography – SAC 2016,
pages 423–442, Cham, 2017. Springer International Publishing.

[BGV14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully ho-
momorphic encryption without bootstrapping. ACM Trans. Comput. Theory,
6(3):Art. 13, 36, 2014.

[BLLN13] Joppe W. Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved
security for a ring-based fully homomorphic encryption scheme. In Cryptography
and coding, volume 8308 of Lecture Notes in Comput. Sci., pages 45–64. Springer,
Heidelberg, 2013.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Proceedings of the Forty-Fifth Annual
ACM Symposium on Theory of Computing, STOC ’13, page 575–584, New York,
NY, USA, 2013. Association for Computing Machinery.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical gapsvp. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, pages 868–886, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

42

[BV14] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryp-
tion from (standard) LWE. SIAM J. Comput., 43(2):831–871, 2014.

[CGGI19] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Tfhe:
Fast fully homomorphic encryption over the torus. Journal of Cryptology, 2019.

[CKKS17] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic
encryption for arithmetic of approximate numbers. In International Conference
on the Theory and Application of Cryptology and Information Security, pages
409–437. Springer, 2017.

[Coh13] Henri Cohen. A course in computational algebraic number theory, volume 138.
Springer Science & Business Media, 2013.

[DF04] David Steven Dummit and Richard M Foote. Abstract Algebra, volume 3. Wiley
Hoboken, 2004.

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE
transactions on Information Theory, 22(6):644–654, 1976.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE transactions on information theory, 31(4):469–472,
1985.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[Gen09] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009. crypto.stanford.edu/craig.

[HPS08] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. An introduction to math-
ematical cryptography, volume 1. Springer, 2008.

[Lai17] Kim Laine. Simple encrypted arithmetic library 2.3. 1. Microsoft Research
https://www. microsoft. com/en-us/research/uploads/prod/2017/11/sealmanual-
2-3-1. pdf, 2017.

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks
are collision resistant. In International Colloquium on Automata, Languages, and
Programming, pages 144–155. Springer, 2006.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Henri Gilbert, editor, Advances in Cryptol-
ogy – EUROCRYPT 2010, pages 1–23, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

[MJ51] Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of
the American statistical Association, 46(253):68–78, 1951.

43

crypto.stanford.edu/craig

[Neu13] Jürgen Neukirch. Algebraic number theory, volume 322. Springer Science & Busi-
ness Media, 2013.

[Pla18] Rachel Player. Parameter selection in lattice-based cryptography. PhD thesis,
Royal Holloway, University of London, 2018.

[RAD+78] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On data banks
and privacy homomorphisms. Foundations of secure computation, 4(11):169–180,
1978.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In STOC’05: Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, pages 84–93. ACM, New York, 2005.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[VGO+20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020.

[Was97] Lawrence C Washington. Introduction to cyclotomic fields, volume 83. Springer
Science & Business Media, 1997.

44

Appendix A

Toy FV Sage Implementation

def inf_norm(f):

return max(abs(max(f)),abs(min(f)))

def reduce_and_centre(f, coeff_mod):

coeff_min , coeff_max = ceil(-coeff_mod /2), (coeff_mod -1) //2

g = 0

for i in range(f.lift().degree () + 1):

c = f[i] % coeff_mod

if c > coeff_max:

c -= coeff_mod

g += c*x^i

return g

def least_positive_residue(f, coeff_mod):

return sum((f[i] % coeff_mod)*x^i for i in range(f.lift().degree

() + 1))

class Ciphertext(object):

def __init__(self ,coeff_modulus , pt_modulus , ring , *elements):

if len(elements) == 1:

raise ValueError("Ciphertexts cannot consist of only 1

element")

self.elements = list(elements)

self.coeff_modulus = coeff_modulus

self.pt_modulus = pt_modulus

self.R = ring

def __add__(self , c2):

if len(self) != len(c2):

raise ValueError("Ciphertexts need to be the same size")

temp = [self.R(reduce_and_centre(sum(x),self.coeff_modulus))

for x in zip(self.elements , c2.elements)]

return Ciphertext(self.coeff_modulus , self.pt_modulus , self.

R, *temp)

def __sub__(self , c2):

if len(self) != len(c2):

raise ValueError("Ciphertexts need to be the same size")

temp = [self.R(reduce_and_centre(x[0] - x[1]),self.

coeff_modulus) for x in zip(self.elements , c2.elements)]

return Ciphertext(self.coeff_modulus , self.pt_modulus , self.

45

R, *temp)

def __mul__(self , c2):

q = self.coeff_modulus

t = self.pt_modulus

this allows us to multiply by an integer plaintext , since

multiplication

by an integer works the usual way.

if isinstance(c2, Integer):

temp = [reduce_and_centre(c2*c, self.coeff_modulus) for

c in self.elements]

return Ciphertext(q, t, self.R, *[c2*self[i] for i in

range(len(self))])

elif isinstance(c2 , Ciphertext):

temp = [0]*(len(self) + len(c2) - 1)

for i in range(len(self)):

for j in range(len(c2)):

temp[i + j] += self[i]*c2[j]

c1c2 = []

for c in temp:

c1c2.append(self.R(

reduce_and_centre(

self.R(sum(round(t/q*c[i])*x^i for i in

range(c.lift().degree () + 1))), q)))

return Ciphertext(q, t, self.R, *c1c2)

else:

return TypeError("c2 is not of type Ciphertext or

Integer")

def __rmul__(self , c2):

if isinstance(c2, Integer) or isinstance(c2 , Ciphertext):

return self*c2

else:

raise TypeError("c2 is not of type Ciphertext or Integer

")

def __getitem__(self , i):

return self.elements[i]

def __len__(self):

return len(self.elements)

class Plaintext(object):

def __init__(self ,coeff_modulus ,ring ,msg):

self.coeff_modulus = coeff_modulus

self.R = ring

self.msg = self.R(msg)

46

def __add__(self , f):

temp = reduce_and_centre(self.msg + f.msg ,self.coeff_modulus

)

return Plaintext(self.coeff_modulus , self.R, temp)

def __sub__(self , f):

temp = reduce_and_centre(self.msg - f.msg , self.

coeff_modulus)

return Plaintext(self.coeff_modulus , self.R, temp)

def __mul__(self , f):

if isinstance(f, Integer):

tmp = reduce_and_centre(self.msg*f, self.coeff_modulus)

return Plaintext(self.coeff_modulus , self.R, tmp)

elif isinstance(f, Plaintext):

temp = reduce_and_centre(self.msg*f.msg , self.

coeff_modulus)

return Plaintext(self.coeff_modulus , self.R, temp)

else:

raise TypeError("f is not of type Plaintext or Integer")

def __rmul__(self , f):

if isinstance(f, Integer) or isinstance(f, Plaintext):

return self*f

else:

raise TypeError("f is not of type Plaintext or Integer")

def __getitem__(self , i):

return self.msg[i]

def __eq__(self , f):

return self.msg == f.msg

def lift(self):

return self.msg.lift()

class FV(object):

parms = [poly_modulus_degree , coeff_modulus , plain_modulus]

in FV , these are [n, q, t].

def __init__(self , parms):

self.n, self.q, self.t, self.T = parms

R.<x> = PolynomialRing(ZZ)

self.R = R.quotient(x^self.n + 1)

self.l = floor(log(self.q, self.T))

The following parameters are defaults used in SEAL

self.std_dev = 3.19

47

self.B = 6*self.std_dev

self.chi = RealDistribution(’gaussian ’, self.std_dev)

def gen_secret_key(self):

s = sum(randint (-1,1)*x^i for i in range(self.n))

return self.R(s)

def gen_pub_key(self , s):

a = self._sample_uniform ()

e = self._sample_chi ()

return [self.R(reduce_and_centre(-a*s + e, self.q)), a] # we

need to reduce that first part modulo q and centre it

def gen_relin_key_v1(self , s):

rlk = []

s_squared = s*s

for i in range(self.l + 1):

a_i = self._sample_uniform ()

e_i = self._sample_chi ()

rlk.append ((self.R(reduce_and_centre ((-(a_i*s + e_i) + (

self.T^i)*s_squared),self.q)), a_i))

return rlk

def encrypt(self , pk , m):

u, e1, e2 = self._sample_chi (), self._sample_chi (), self.

_sample_chi ()

p0 , p1 = pk

c0 = self.R(reduce_and_centre(p0*u + e1 + floor(q/t)*m.msg ,

self.q))

c1 = self.R(reduce_and_centre(p1*u + e2 , self.q))

return Ciphertext(self.q, self.t, self.R, c0 , c1)

def decrypt(self , s, ct):

m_noisy = (t/q)*self.R(reduce_and_centre(sum(ct[i]*s^i for i

in range(len(ct))), self.q))

To get rid of the noise , we round each coefficient.

m_bar = self.R([round(coeff) for coeff in m_noisy])

return Plaintext(self.t, self.R, reduce_and_centre(m_bar ,

self.t))

def relinearize(self , rlk , ct):

if len(ct) != 3:

raise ValueError("Can only relinearize ciphertexts with

3 elements")

c0 , c1 , c2 = ct

c2_sliced = self._base_convert(c2)

if len(c2_sliced) != len(rlk):

raise ValueError("c2_sliced is not the same length as

48

rlk for some reason.")

c0_prime = self.R(reduce_and_centre(c0 + sum(rlk[i][0]*

c2_sliced[i] for i in range(len(rlk))), self.q))

c1_prime = self.R(reduce_and_centre(c1 + sum(rlk[i][1]*

c2_sliced[i] for i in range(len(rlk))), self.q))

return Ciphertext(self.q, self.t, self.R, c0_prime , c1_prime

)

Used for creating a specific plaintext message. This should

probably go in the Plaintext class ,

but I’d need a nicer way to pass our quotient ring to the

Plaintext class.

def plain(self , msg):

return Plaintext(self.t, self.R, msg)

def random_plain(self):

coeff_min , coeff_max = ceil(-self.t/2), (self.t-1) //2

msg = self.R(sum(randint(coeff_min , coeff_max)*x^i for i in

range(self.n)))

return Plaintext(self.t, self.R, msg)

def _sample_uniform(self):

coeff_min , coeff_max = ceil(-self.q/2), (self.q-1) //2

return self.R(sum(randint(coeff_min ,coeff_max)*x^i for i in

range(self.n)))

def _sample_chi(self):

return self.R(sum(round(self.chi.get_random_element ())*x^i

for i in range(self.n)))

Decomposes a polynomial in R_q to one in R_T.

def _base_convert(self , f):

rebased = []

f = self.R(least_positive_residue(f, self.q))

T = self.T

for i in range(self.l + 1):

tmp = self.R(reduce_and_centre(self.R(sum(((f[j])%T)*x^j

for j in range(self.n))), self.T))

rebased.append(tmp)

f = (f - tmp)*(1/T)

return rebased

Takes as input the secret key s, plaintext pt, and its

corresponding ciphertext ct.

def noise(s, pt , ct , R):

q, t = ct.coeff_modulus , pt.coeff_modulus

n = len(ct)

49

Delta = floor(q/t)

cs = R(sum(ct[i]*s^i for i in range(n)))

v = R(reduce_and_centre(cs - R(Delta *(reduce_and_centre(pt.msg ,

t))), q))

return inf_norm(v)

50

Appendix B

Statistics

This appendix serves as a refresher for some basic results and techniques from statistics.
Information on the log-normal distribution may be found in most undergraduate textbooks
on statistics. We will also use the Kolmogorov-Smirnov test [MJ51]. The methods below are
implemented in most statistics libraries, and in this thesis we use the ones implemented in
SciPy [VGO+20].

B.1 Log-normal Distribution

Let Y be a random variable that is normally distributed with mean µ and standard deviation
σ. If X is a random variable such that X = exp(Y), then we say X is a log-normal distribution
parameterized by µ and σ.

With this parameterization for X, we can find its probability distribution function (pdf)
fX(x). If we let FX(x) be the cumulative distribution function (cdf) of X, then we recall

FX(x) = Pr(X ≤ x) =

∫ x

−∞
fX(t) dt.

We note that X only takes positive values. Then we have

FX(x) = Pr(X ≤ x)

= Pr(lnX ≤ lnx)

= Pr(Y ≤ lnx)

=

∫ lnx

−∞
fY (y) dy

where fY (y) is the pdf of the normal distribution on Y given by

fY (y) =
1

σ
√

2π
exp

(
−(y − µ)2

2σ2

)
.

Using the Fundamental Theorem of Calculus to take the derivative of FX(x) gives

fX(x) =
1

σx
√

2π
exp

(
−(lnx− µ)2

2σ2

)
.

It is easily seen that the median and standard deviation of X are eµ and eσ respectively. It
is important to not confuse the mean with the median, as the mean of X is actually given

by eµ+
σ2

2 .

51

An alternative parameterization is to take s = eµ to be the shape parameter, σ to be the
scale parameter, and λ to be the location parameter.

When one wants to compute percentiles of a log-normal distribution, a näıve and often
common approach is to compute the percentile of its corresponding normal distribution, and
then back-transform the result via exponentiation; this is the implementation in [VGO+20].

B.2 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test (KS test) is a goodness-of-fit test used to determine if a sample
is from a particular continuous probability distribution. The KS test is a non-parametric test.
In other words, it makes no assumption about the underlying distribution. Non-parametric
tests are often used when we do not know what distribution the samples are coming from.

The KS test measures the differences between the empirical cdf Fn(x) and the cdf F (x)
of the reference distribution to be tested. The KS test returns a test statistic

D = sup
x
|Fn(x)− F (x)| .

For a given significance level α, we can find critical values for D. In practice, these critical
values are found in software and so we do not present them here. If D is less than the critical
value for α, we fail to reject the null hypothesis H0 that the samples are from the distribution,
and we reject H0 if D exceeds the critical value.

52

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Literature

	Background
	Notation
	Ring Expansion Factor

	Lattices
	Ideal Lattices

	Cyclotomic Fields
	Rings of Integers

	Cryptographically Hard Problems
	Learning with Errors
	Cryptographic Applications

	Ring-LWE
	Cryptographic Application

	FV Scheme
	Homomorphic Operations
	Addition
	Multiplication

	Relinearization
	Multiplicative Depth

	Optimizations
	Number Theoretic Transform
	Discrete Fourier Transform
	Finite Fields

	FV Residue Number System
	RNS Decryption

	Ring Expansion Factor
	Norm Growth
	FV Noise Growth

	Summary and Future Work
	References
	Appendix Toy FV Sage Implementation
	Appendix Statistics
	Log-normal Distribution
	Kolmogorov-Smirnov Test

