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Abstract

The Kobayashi-Hitchin correspondence shows that the moduli space of stable Higgs bundles MX(r, d)

corresponds directly with solutions to the Hitchin equations, which are self-dual, dimensionally-reduced Yang-

Mills equations written on a smooth Hermitian bundle E of rank r ≥ 1 and degree d on a smooth compact

Riemann surface X of genus g ≥ 2 [5]. We may expand this correspondence to all g ≥ 0 when we consider

twisted versions of the Hitchin equations. As surveyed by Rayan [14], the moduli space MX(r, d) can be

equipped with a natural U(1) action and the fixed points of this action can be encoded in a “twisted”

representation of an A-type quiver,

•
(r1,d1)

•
(r2,d2)

· · · •
(rn,dn)

,
φ1 φ2 φn−1

where
∑n
i=1 ri = r,

∑n
i=1 di = d and φi is a bundle map from a rank ri, degree di, bundle to a rank ri+1 and

degree di+1 bundle tensored by a fixed holomorphic line bundle L. Moreover, in the special case when X is the

projective line, the Birkhoff-Grothendieck theorem says that vector bundles in the above quiver decompose

into a direct sum of line bundles. Expanding each node accordingly, this allows for many interesting types

of quivers, such as argyle quivers as explored by Rayan and Sundbo [15].

This thesis aims to introduce the reader to stable quiver representations in a twisted category of bundles

on X. We begin by reviewing the standard theory of linear quiver representations as well as the theory of

holomorphic vector bundles on algebraic curves. After this background material, we introduce the notion of

a stable vector bundle defined in terms of the Mumford slope condition [9] and then extend this definition

more generally to stable twisted quiver representations in the category of bundles on X. From these twisted

representations we introduce several associated induced ordinary quiver representations. Finally, we present

necessary conditions for stability as linear programming problems when X = P1 for quiver representations

of type (2,1) and type (2,2) and discuss how these necessary stability conditions are manifested in the

aforementioned induced ordinary quiver representations.
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1 Introduction

The heart of this thesis lies in two mathematical objects, holomorphic vector bundles and linear quiver

representations. The first several chapters of this thesis are dedicated to introducing these topics, with

Chapter 2 introducing quiver representations and Chapter 3 introducing holomorphic vector bundles. In

Chapter 4, we combine these ideas to construct stable quiver representations in a twisted category of bundles

on an algebraic curve. This thesis can be seen as directly motivated by work of Gothen and King [4],

Schmitt [18], Rayan [13], and Rayan and Sundbo [15]. The notion of stability is present throughout these

works, as it is the necessary mathematical condition for the construction of well-formed moduli spaces. The

stability condition present in this thesis is a generalization of the one discovered by Mumford [9] involving

the so called slope of a vector bundle. This notion of stability was adapted by Hitchin [5] as a tool to study

a particularly important moduli space, that of Higgs bundles. The study of this rich moduli space is another

direct motivation for our work. The following development of twisted quiver representations, which occupies

the rest of this introduction, follows Rayan in the survey paper [14].

Unless otherwise denoted, let X be a smooth compact Riemann surface of genus g. Then X can be

equipped with a natural line bundle, the cotangent bundle, which we denote ωX . If E is a holomorphic

bundle on X and φ is a holomorphic section φ ∈ H0 (X,End(E)⊗ ωx) then the data (E , φ) is referred to as

a Higgs bundle. Higgs bundles have gained prominence as they arise as a source of solutions to the Hitchin

equations, which are self-dual, dimensionally-reduced Yang-Mills equations written on a smooth Hermitian

bundle E of rank r ≥ 1 and degree d on X where g ≥ 2 [5]. We may expand this correspondence to all

g ≥ 0 when we consider twisted versions of the Hitchin equations. However, only some Higgs bundles arise as

solutions to the Hitchin equations. Higgs Bundles that arise as solutions to the Hitchin equations are said to

be stable and the Kobayashi-Hitchin correspondence establishes the connection between stable Higgs bundles

and solutions to the Hitchin equations. Just as with Mumford’s [9] earlier work, stable Higgs bundles can

be classified in terms of a slope condition. That is, a Higgs bundle (E , φ) is stable if and only if for each

subbundle 0 ( U ( E such that φ (U) ⊆ U ⊗ ωX we have that

deg (U)

rk (U)
<

deg (E)

rk (E)
.

As we might expect, the space of stable Higgs bundles forms a “nice”, meaning Hausdorff, moduli space.

As highlighted in [14], the space of all stable pairs (E , φ) with underlying smooth bundle E can be considered

a moduli space by taking the conjugation action of the group of holomorphic automorphisms of E . This

moduli space has the structure of a non-singular quasi-projective variety and is denoted MX(r, d).
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Until this point, we have only encountered the first mathematical object at the heart of this thesis,

namely Higgs bundles which include vector bundles as a special case. Our ultimate goal for this introduction

is to show how the moduli space of stable Higgs bundle has a deep fundamental connection with our second

mathematical object, twisted quiver representations.

Let (E , φ) be a stable Higgs bundle inMX(r, d) and let U(1) be the circle group. Then there is a natural

group action U(1) ×MX(r, d) → MX(r, d) given by (λ, (E, φ)) →
(
E, eiλφ

)
where λ ∈ [0, 2π) so that φ

is rotated by λ. We wish to understand the fixed points of this group action. In other words, we wish to

determine all (E , φ) such that (E , φ) = (E , eiλφ) for all λ ∈ [0, 2π) . At first glance, this equation is satisfied

if and only if φ = 0. But MX(r, d) is a moduli space, so we need to view this equality only up to class

equivalence. That is, the equation is satisfied in the moduli space whenever (E , eiλφ) ∈ [(E , φ)]. Thus, as the

equivalence class is defined by taking the conjugation action of the group of holomorphic automorphisms of E

we have that this equation is satisfied if and only if for each λ there exists an automorphism ρλ of E such that

(E , ρ−1
λ φρλ) = (E , eiλφ) or simply ρ−1

λ φρλ = eiλφ. Viewing λ as ranging over the real numbers, ρλ is really a

1-parameter family of automorphisms of E . Thus, this family has a generator which we denote dρλ
dλ |λ=0= Λ.

Differentiating both sides of the fixed point equation with respect to λ gives

(
−ρ−1

λ

(
dρλ
dλ

)
ρ−1
λ

)
φρλ + ρ−1

λ φ
dρλ
dλ

= ieiλφ.

Consider now the special case where λ = 0. Then the equation becomes

(
−ρ−1

0

(
dρλ
dλ
|λ=0

)
ρ−1

0

)
φρ0 + ρ−1

0 φ

(
dρλ
dλ
|λ=0

)
= iφ.

When λ = 0, we must then have ρ−1
0 φρ0 = ei(0)φ or simply ρ−1

0 φρ0 = φ. But our group action is rotation

by λ. Therefore when λ = 0, the action must be trivial. Thus, we must have ρ−1
0 = ρ0 = IdE . Therefore

iφ =

(
−ρ−1

0

(
dρλ
dλ
|λ=0

)
ρ−1

0

)
φρ0 + ρ−1

0 φ

(
dρλ
dλ
|λ=0

)
= −

(
dρλ
dλ
|λ=0

)
φ+ φ

(
dρλ
dλ
|λ=0

)
= [Λ, φ] .

Thus, (E , φ) is fixed if and only if [Λ, φ] = iφ. But Λ is a linear map from E → E , so it must have

eigenvalues given by sections of E and eigenspaces given by subbundles of E . Thus, let B1, · · · , Bn be the

eigenspaces of Λ and s1, · · · , sn be the eigenvalues. Then, as Bk is an eigenspace we must have

2



iφ (Bk) = [Λ, φ]Bk

= Λφ (Bk)− φ (ΛBk)

= Λφ (Bk)− φ (skBk)

= Λφ (Bk)− skφ (Bk)

and therefore Λφ (Bk) = (sk + i)φ (Bk) . So sk+i is an eigenvalue of Λ and φ (Bk) is the associated eigenspace.

Recalling that φ ∈ H0 (X,End(E)⊗ ωx) we must have that φ (Bk) ⊆ Bj ⊗ ωX for some j and moreover

sj = sk + i. Thus, we see that φ is actually a map from eigenspaces of Λ in to eigenspaces of Λ by increasing

the eigenvalue by i. We can re-index the eigenspaces as necessary so that sn = sn−1 + i = · · · = s1 + (n− 1)i

and φ : Bn−1 → Bn ⊗ ωX . Thus, we have a holomorphic chain

B1
φ→ B2 ⊗ ωX

φ→ B3 ⊗ ω2
X

φ→ · · · φ→ Bn−1 ⊗ ωn−2
X → Bn ⊗ ωn−1

X .

In summary, as the Bj ’s are eigenspaces of E we must have the decomposition of E into subbundles

E = ⊕nj=1Bj and φ acts like a chain with respect to this decomposition. Equivalently, if rkBj = rj and

degBj = dj we see all of the data of the solutions to this fixed point problem can be represented in a A-type

quiver

•
(r1,d1)

•
(r2,d2)

· · · •
(rn,dn)

φ1 φ2 φn−1

which lives in the ωX -twisted category of bundles on X. The Higgs field φ may be reconstructed as

φ =


0 0 0 0

φ1 0 0 0

0
. . . 0 0

0 0 φn−1 0

 .

Moreover, in the special case that X is the 2-sphere S2 with unique complex manifold structure, denoted

symbolically as P1, the Birkhoff-Grothendieck Theorem (see Theorem 3.4.3) says that holomorphic vector

bundles decompose into a direct sum of line bundles (each of which are rank 1). So our quiver may be

expanded to one of the form

3



•
d11

•
d12

· · · •
d1n

•
d21

•
d22

· · · •
d2n

...
...

...
...

•
dr11

•
dr22

· · · •
drnn

where each node is a line bundle of the specified degree drij .

Thus, we see that quivers are connected with stability on the ωX -twisted category of bundles on X. These

mathematical objects are known as “quiver bundles” or equivalently as “twisted” quiver representations along

the curve X. In the special case where X = P1, the Birkhoff-Grothendieck Theorem allows us to consider

and study many different types of quivers. This thesis aims to explore the connection between stability

on the twisted setting and properties of ordinary quiver representations. To do so, we make attempts to

recast stability for twisted quiver representations on P1 as a solution to a linear programming problem. This

study appears in Chapter 4. In particular, we develop linear programs that provide necessary conditions for

stable quiver representations of type (2,1) and type (2,2), and then discuss how these necessary conditions

are manifested in two induced ordinary quiver representations. Finally, in Chapter 5 we speculate on future

directions for further research.

4



2 Quiver Representations

The goal of this chapter is to develop some of the basic theory of quiver representations that will be needed

for the development of twisted quiver representations in future chapters. We begin this chapter by introducing

the definition of a quiver followed by several examples. We follow this introduction to quivers with formalizing

the notion of a quiver representation and present several examples of these representations. Next, morphisms

of quivers are introduced as well as several algebraic properties associated to quiver representations including

the notion of indecomposable representations and the Krull-Schmidt Theorem. Lastly, we finish this chapter

by introducing the path algebra of a quiver representation and highlight some representations of path algebras

through examples. For a more expansive introduction to quiver representations, we refer the reader to the

first two chapters of [17], from which much of theory presented here is adapted.

2.1 Introduction to Quiver Representations

We first begin with the definition of a quiver, which informally can be thought of as a directed graph with

a finite number of vertices and arrows. We assume the reader is familiar with basic definitions from graph

theory.

Definition 2.1.1. A quiver Q is a collection of data Q = (Q0, Q1, s, t) where

• Q0 is a set of vertices.

• Q1 is a set of arrows.

• s is a map s : Q1 → Q0 which maps an arrow to its starting point.

• t is a map t : Q1 → Q0 which maps an arrow to its terminal (end) point.

Thus, for each element α ∈ Q1, visually we have an arrow:

s(α) t(α).α

Throughout this thesis, we assume that Q0 and Q1 will both be finite sets. We provide some classic

examples of quivers to introduce the reader to these fundamental mathematical objects. The following

examples are adapted from [7].

5



Example 2.1.2 (Jordan Quiver). Suppose Q0 = {1}, Q1 = {α}, and s(α) = t(α) = 1. Visually, we represent

this quiver as:

•
1

α

♦

Example 2.1.3. Suppose Q0 = {1, 2}, Q1 = {α}, s(α) = 1, and t(α) = 2. Visually, we represent this quiver

as:

•
1

•
2

α

♦

Example 2.1.4. Suppose Q0 = {1, 2, 3}, Q1 = {α, β, ψ, φ}, s(α) = 1 = s(ψ), s(β) = 3 = s(φ), t(α) = 2 =

t(β), t(ψ) = 3, and t(φ) = 1. Visually, we represent this quiver as:

•
2

•
1

•
3

α β

ψ

φ

♦

Example 2.1.5 (D4-type quiver). Suppose Q0 = {1, 2, 3}, Q1 = {α, β, γ}, s(α) = 1, s(β) = 3, s(γ) = 4, and

t(α) = t(β) = t(γ) = 2. Visually, we represent this quiver as:

•
3

•
1

•
2

•
4

α

β

γ

♦

We now introduce the topic at the heart of this chapter: quiver representations. For a more expansive

introduction, see [17].

Definition 2.1.6. A k-linear representationM of a quiverQ is a collection of dataM = (Mi, φα)i∈Q0,α∈Q1

where

• Mi, i ∈ Q0 is a collection of k-vector spaces.

• φα, α ∈ Q1 is a collection of k-linear maps φα : Ms(α) →Mt(α).

6



We say that a representation M is finite when each of the vector spaces Mi, where i ∈ Q0, is finite

dimensional. Of course, a representation is always given with respect to a field k. It will often be the case

that we assume that k is algebraically closed. Furthermore, for much of the work in this thesis, it will be the

case that k = C. One of the primary goals in the study of quiver representations is to attempt to classify all

representations of a given quiver up to isomorphism. We illustrate this in the following classical examples

adapted from [7]:

Example 2.1.7 (Jordan quiver). Consider again the Jordan quiver where Q0 = {1}, Q1 = {α}, s(α) =

t(α) = 1 with representation M1 = V and linear map φα. Therefore we have the following representation.

•
V

φα

Thus, all representations of a Jordan quiver are pairs (V, φα) . Classifying all representations of the Jordan

quiver amounts to finding all endomorphisms of V up to change of basis. From linear algebra, it is well

understood that this amounts to finding all conjugacy classes of these endomorphisms. Furthermore, if we

assume k is algebraically closed, then every square matrix is similar to a matrix in Jordan canonical form and

so we can always choose as a representative from each of these conjugacy classes a matrix that is in Jordan

form. This is the inspiration for the name of this fundamental quiver. ♦

Example 2.1.8. We have that

•
k2

•
k3

φα

where φα =


1 0

1 0

0 0

 is a representation of the quiver

•
1

•
2
.α

♦

Example 2.1.9 (Kronecker quiver). Consider the quiver Q

•
1

•
2

β

α

with representation M given by

•
V1

•
V2

φβ

φα

7



Classifying all representation of Q is a difficult process. So we consider the sub-case where dim V1 = dim

V2 = 1. Fix a basis B1 and B2 for V1 and V2 respectively. Then φα : V1 → V2 is represented by a matrix [x]

and φβ : V1 → V2 is represented by a matrix [y] for x, y ∈ k. A change of basis for either V1 or V2 just rescales

[x] or [y] by some nonzero λ ∈ k respectively (x→ λx or y → λy). Thus, it is should now be obvious that the

representations of Q are in bijection with the set k2

k∗ where k2 comes from our choice of x and y and we mod

out by all none zero scalars k∗. Letting k = C, as we will do in our later work, we see that the one dimensional

representations of Q are in bijection with C2

C∗ under the above limitations. Of course, as
(C2\(0,0))

C∗ u P1, we

see that removing the zero map and quotienting out by rescaling leads to the representations of Q to be

in bijection with P1. Removing the zero map, which is required for the quotient space to be topologically

separated, anticipates the notion of a stability condition which will arise in our future work.

This gives us a very interesting construction of P1 as the one dimensional representations of the Kronecker

quiver over C, excluding the zero map. ♦

Example 2.1.10 (D4-type quiver). Consider the quiver Q given in Example 2.1.5. A representation M of

Q is given by:

•
k

•
k

•
k2

•
k
.

φγ

φβ

φα

Of course, in this case, each of the maps φi are of the form

a
b

 for a, b ∈ k.

♦

2.2 Morphisms of Quivers

Like most mathematical objects, the study of morphisms or maps between objects allow for rich theory to be

developed. The same is true for quiver representations. We now provide a formal definition of a morphism

of quiver representations from [17].

Definition 2.2.1. LetQ be a quiver and supposeM = (Mi, φα)i∈Q0,α∈Q1
andN = (Ni, ψα)i∈Q0,α∈Q1

are two

representations of Q. A morphism f : M → N of representations is a tuple of maps (f1, f2, · · · , fi, · · · ) ,∀i ∈

Q where fi : Mi → Ni is a k-linear map such that for each α ∈ Q1 the diagram

8



•
Mi

•
Mj

•
Ni

•
Nj

fi

φα

fj

ψα

commutes so that fj ◦ φα(mi) = ψα ◦ fi(mi),∀mi ∈ Mi. If each map fi is a bijection, then we say that f is

an isomorphism and M and N are isomorphic representations of Q.

Example 2.2.2. Consider again the quiver Q:

s(α) t(α).α

with representations

M : •
k

•
k

N : •
k2

•
k2

I2φα
.

Where φα = [a] for some a ∈ k. Let f =

a
0

 ,
1

0

 . Then it is clear that

1

0

 ◦ φα(b) = I2 ◦

a
0

 (b) so

that f is a morphism of M and N. However, it should be clear that f is not an isomorphism since the mapsa
0

 and

1

0

 are not bijections. ♦

Example 2.2.3. Consider the D4 quiver Q given in Example 2.1.5 and the following representations:

•
k

M : •
k

•
k2

•
k

•
k2

N : •
k2

•
k4

•
k2

φγ

φβ

φα

ψα

ψβ

ψγ

Suppose that φi =

xi
xi

 and ψi =


0 xi

yi 0

0 0

0 0

 for xi, yi ∈ k and i ∈ Q1. Let f : N → M be defined

9



by f = (f1, f2, f3, f4) =

π2, π2, π2, A =

1 0 0 0

1 0 0 0

 where π2 is the projection map in the second

coordinate and f4 = A : k4 → k2. Thus, for any

a
b

 ∈ k2 we have that:

a
b



bxi

ayi

0

0



[b]

bxi
bxi



ψi

π2 A

φi

so that f is a well defined morphism of representations. ♦

With the notion of isomorphic representations, we now have a well defined equivalence relation on the set

of all representations of a quiver Q. Before proceeding, we introduce some standard notation. Define Rep Q to

be the set of all representations of a quiver Q. Furthermore, we also denote the set of all morphisms between

M,N ∈ Rep Q by Hom (M,N) . It can be easily seen that Rep Q forms a category and that Hom (M,N)

has the structure of a k-vector space by point-wise addition of morphisms. Our primary goal for the rest of

this chapter will be to describe the structure of the category of k-linear representations of a quiver Q.

2.3 Properties of Quiver Representations

Just as one can consider direct sums of vector spaces, one can just as naturally consider direct sums of quiver

representations. The following definitions are from [17].

Definition 2.3.1. Let M and N be representations of the quiver Q. Define their direct product by

M ⊕N =

Mi +Ni,

φα 0

0 ψα


i∈Q0,α∈Q1

.

Of course, applying Definition 2.3.1 recursively we see that we can consider direct sums of any finite

number of representations. A natural question that arises from Definition 2.3.1 is which representations M of

Q can be represented as a direct sum of non-trivial representations. This leads to the notion of decomposable

and indecomposable representations.

Definition 2.3.2. A representation M ∈ Rep Q is called indecomposable if M 6= 0 and M cannot be

written as the direct sum of two nonzero representations. In other words, M is indecomposable if and only

if M ∼= N ⊕ L where N,L ∈ Rep Q implies N = 0 or L = 0.
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Thus, if a representation is decomposable, we know it can be constructed by considering the direct sum

of a finite number of non-trivial representations. A natural next question would be to determine which

representations in Rep Q are decomposable, and for these representations that are decomposable, are these

decompositions unique? These questions are answered in the following theorem.

Theorem 2.3.3 (Krull-Schmidt Theorem). Let Q be a quiver and suppose M ∈ Rep Q. Then there exists a

unique decomposition (up to arrangement of the terms) M ∼= M1⊕M2⊕ · · ·⊕Mn where Mi ∈ Rep Q ∀i and

each of the Mi are indecomposable.

Proof. We provide the proof for existence. For a proof of uniqueness, see [1]. The proof is by induction. If

M is indecomposable the proof is complete. Suppose then M is decomposable and therefore M = N1 ⊕N2

for some non-trivial representations N1, N2 ∈ Rep Q of strictly smaller dimension. The fact that N1 and

N2 are strictly smaller in dimension is due to the fact that M is assumed to be finite dimensional, followed

by observing how the linear maps in Definition 2.3.1 are defined. We can then continue recursively in this

manner on N1 or N2 as needed. This recursion algorithm must terminate due to the assumption that M is

finite dimensional and each step in the algorithm strictly reduces dimension.

In summary, we see that any representation M ∈ Rep Q can be constructed from indecomposable rep-

resentations, and that these indecomposable representations form the building blocks of all representations

in Rep Q. Thus, our primary goal of classifying all representations of a given quiver up to isomorphism can

be simplified greatly by equivalently classifying all indecomposable representations of a given quiver up to

isomorphism. We now aim to expand on our theory of morphisms of quivers.

Given a morphism f between two representations M,N ∈ Rep Q we can use f to construct two important

representations of Q. These representations are the kernel and cokernel representations of f. The following

constructions are adapted from [17].

• We construct the kernel representation denoted ker f. Suppose that M = (Mi, φα)i∈Q0,α∈Q1
and N =

(Ni, ϕα)i∈Q0,α∈Q1
are two representations of a quiver Q and that f : M → N is a morphism. From

elementary linear algebra, we know that ker fi = Li is a subspace of the vector space Mi. Define the

map ψα : Li → Lj by ψα = φα | Li. We show that this map ψα is well defined. Suppose x ∈ Li. Using

the fact that f is a morphism, we have fj ◦ψα (x) = fj ◦φα (x) = ϕα ◦ fi (x) = ϕα (fi(x)) = ϕα (0) = 0

as x ∈ ker fi = Li and therefore ψα (x) ∈ ker fj = Lj as desired.

• We construct the cokernal representation denoted coker f. Suppose again that M = (Mi, φα)i∈Q0,α∈Q1

and N = (Ni, ϕα)i∈Q0,α∈Q1
are two representations of a quiver Q and that f : M → N is a morphism.

From elementary linear algebra, we know that Ni
fi(Mi)

= Ti is a subspace of the vector space Ni. Define

a map γα : Ti → Tj by γα (ni + fi (Mi)) = ϕα (ni)+fj (Mj) . We show that this map γα is well defined.

Suppose that ni + fi (Mi) = n′i + fi (Mi) for some ni, n
′
i ∈ Ni. Then ni − n′i ∈ fi (Mi) . So using the

linear transformation ϕα we have that ϕα (ni − n′i) = ϕα (ni)−ϕα (n′i) ∈ ϕα (fi (Mi)) = fj (φα (Mi)) ⊆

fj (Mj) as φα (Mi) ⊆Mj . Thus, ϕα (ni) + fj (Mj) = ϕα (n′i) + fj (Mj) as desired.

11



We summarize these two important representations in the following definitions adapted from [17].

Definition 2.3.4. The kernel representation denoted ker f is the representation L = (Li, ψα)i∈Q0,α∈Q1

constructed above.

Definition 2.3.5. The cokernel representation denoted coker f is the representation T = (Ti, γα)i∈Q0,α∈Q1

constructed above.

Example 2.3.6. Consider the morphism f : N → M given in Example 2.2.3. Let us compute the kernel

and cokernal representations of f.

• It is easy to see that kerf1
∼= kerf2

∼= kerf3
∼= k as each of these kernels is of the form X =

a
0

 : a ∈ k

 . On the other hand, simple linear algebra shows that ker A=ker f4
∼= k3 as the

kernel of this map is of the form Y =




0

a

b

c

 : a, b, c ∈ k


. Thus, the kernel representation is given by:

•
X2

•
X1

•
Y

•
X3

ψβ |X2

ψγ |X3

ψα|X1

• We now compute the cokernal representation. As f1 = f2 = f3 = π2 is the surjective projection map

from k2 to k we have that fi (Ni) ∼= Mi and therefore Mi

fi(Ni)
∼= {0} for i = 1, 2, 3. On the other hand,

we see that imf4 = imA =


a
a

 : a ∈ k

 ∼= k. Therefore, M4

f4(N4)
∼= k. Since all of our outer nodes are

0, we have the cokernal representation:

•
0

•
0

•
k

•
0
.

0

0

0

♦

Of course, given two representations M and N of a quiver Q and a morphism f between them, kerf

and cokerf give us two additional representations to study. Perhaps more importantly, as readers with a
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foundation in category theory may be aware, these representations exhibit an extremely important defining

algebraic property that is used extensively. We verify that our notion of kernel and cokernel make sense in

the context of category theory as done in [17].

Theorem 2.3.7. Let M,N and L be representations of the quiver Q. Let f : M → N be a morphisms

between them. Then a kernel of f is a morphism g : L→M such that the following conditions hold:

1. f ◦ g = 0.

2. Given any representation X of Q and any morphism v : X →M such that f ◦ v = 0, there is a unique

morphism u : X → L such that g ◦ u = 0. In symbols:

X

L M N.

u

g f

v

Proof. Our goal is to show that our definition of the kernel representation of f defined in Definition 2.3.4

coincides with this categorical definition. Thus, define L to be the kernel representation of Definition 2.3.4

and let g : L→M be the identity map. Then clearly for any li ∈ Li, fi ◦ gi(li) = fi(li) = 0 by the definition

of Li. To show the second condition, suppose v : X →M is a map such that f ◦v = 0 for some representation

X = (Xi, χα)i∈Q0,α∈Q1
. Define the map u : X → L by ui(xi) = vi(xi) where xi ∈ Xi. Thus, as g is simply

the identity, we get g ◦ u = v as desired. We only need to show that u meets the commutative property of

being a morphism. If xi ∈ Xi then ψα ◦ ui(xi) = ϕα ◦ vi(xi) = vj ◦ χα(xi) = uj ◦ χα(xi) which shows that u

is a well defined morphism. Furthermore, since g is the injective identity morphism, this u is unique.

A similar result can shown to be true for the cokernal representation which is summarized in the following

theorem. The proof uses a similar idea to the one given above.

Theorem 2.3.8. Let M,N and L be representations of the quiver Q. Let g : L→M be a morphisms. Then

a cokernel of g is a morphism f : M → N such that the following conditions hold:

1. f ◦ g = 0.

2. Given any representation X of Q and any morphism v : M → X such that v ◦ g = 0, there is a unique

morphism u : N → X such that u ◦ f = v. In symbols:

L M N

X.

v

fg

u

As we have seen, quiver representations have a number of nice algebraic properties extended directly from

vector spaces. One of the most important algebraic tools that we have to study quiver representations come

in the form of short exact sequences. For more expansive coverage, see [17].

13



Definition 2.3.9. A sequence of morphisms L
g→ M

f→ N is exact at M if im g = ker f. A sequence of

morphisms · · · →M1
f1→M2

f2→M2
f3→ · · · is called exact if every representation Mi in the sequence is exact.

Of course, Definition 2.3.9 also extends naturally to the concept of a short exact sequence as we see in

the following example.

Example 2.3.10. Consider the quiver Q in Example 2.1.3 and the following representations.

S(2) : •
0

•
k

S(1) : •
k

•
0

0

0

We construct the short exact sequence

0 S(2) S(1)⊕ S(2) S(1) 0.0 (0,I1) (I1,0) 0

Which is short exact as im(0, I1) = {0} ⊕ S(2) = ker(I1, 0) . ♦

We now introduce some important language which arises in both the study of quiver representations and

our study of homomorphic vector bundles to come in subsequent chapters.

Definition 2.3.11. A morphism g : L → M is a called a section if there exists a morphism h : M → L

such that h ◦ g = 1L. A morphism f : M → N is called a retraction if there exists a morphism v : N →M

such that f ◦ v = 1N .

Definition 2.3.12. A short exact sequence

0 L M N 00 g f 0

splits if g is a section.

It can be easily observed that the short exact sequence given in Example 2.3.10 splits by using the

function π2 : S(1) ⊕ S(2) → S(2) given by projection in the second coordinate or π2(x, y) = y. We see

that π2 ◦ (0, I1) = I1 = 1S(2). Fortunately, our next theorem gives us a nice relationship between short exact

sequences, sections and retractions. Furthermore, the theorem also shows that a short exact sequence induces

an important decomposition of the middle representation. Due to the length of its proof, it is omitted. For

a detailed proof, see [17].

Theorem 2.3.13. Let

0 L M N 00 g f 0

be a short exact sequence of representations in Rep Q. Then
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• g is a section ⇔ f is a retraction

• If g is a section, so that the sequence is splits, M ∼= L⊕N.

Theorem 2.3.13 shows us the power of using short exact sequences and split short exact sequences when

studying quiver representations. To further use short exact sequences as an algebraic tool, we want to use a

short exact sequence of representations to induce a short exact sequence between vector spaces of morphisms.

To construct the maps between these Hom spaces we use covariant and contravariant functors. The following

constructions are just specific examples of the more general notion of a functor developed in category theory.

• Let X,Y and Z be representations of the quiver Q and let f : Y → Z and g : X → Y be morphisms.

Consider the map of categories Hom (X,−) : C → C ′ defined by Hom (X,−) ((Y, f)) = (Hom(X,Y ), f∗)

where f∗ : Hom(X,Y )→ Hom(X,Z) is the map given by f∗(g) = f ◦ g. The map Hom (X,−) is called

a covariant functor. Thus, we have constructed a map f∗ between Hom spaces as desired.

• Let X,Y and Z be representations of the quiver Q and let h : Y → Z and g : Z → X be morphisms.

Consider the map of categories Hom (−, X) : C → C ′ defined by Hom (−, X) ((Y, h)) = (Hom(Y,X), h∗)

where h∗ : Hom(Z,X)→ Hom(Y,X) is the map given by h∗(g) = g ◦ h. The map Hom (X,−) is called

a contravariant functor. Thus, we have constructed a map h∗ between Hom spaces as desired.

These maps f∗ and h∗ constructed above allow us to take short exact sequences of quiver representations

and produce lots of short exact sequences of Hom spaces as the next theorems shows. For detailed proofs,

see [17].

Theorem 2.3.14. Let

0 L M N 00 g f 0

be a sequence of representations in Rep Q. Then this sequence is exact ⇔ for every representation X ∈ Rep

Q the sequence

0 Hom(X,L) Hom(X,M) Hom(X,N) 00 g∗ f∗ 0

is exact.

Theorem 2.3.15. Let

0 L M N 00 g f 0

be a split exact sequence of representations in Rep Q. Then for every representation X ∈ Rep Q the sequence

0 Hom(X,L) Hom(X,M) Hom(X,N) 00 g∗ f∗ 0

is also split exact.

Of course, both of the above theorems hold equally well in terms of the maps between Hom spaces built

using the construction of the contravariant functor. We are now in a position to define two additional type

of representations, projective and injective representations.
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2.4 Projective and Injective Representations

2.4.1 Paths

Projective and injective representations are both defined in terms of paths. Informally, a path can be thought

about as a way to “walk” from vertex i to vertex j by moving along the arrows only in the direction in which

the arrow is pointing. We provide a formal definition below adapted from [7]. We adopt the convention of

paths being read from right to left analogous with composition of functions.

Definition 2.4.1. Let Q = (Q0, Q1, s, t) be a quiver. A path C from i ∈ Q0 to j ∈ Q0 of length l is a

(possibly empty) sequence c = (αl, αl−1, · · · , α1) with αh ∈ Q1 such that

1. s (α1) = i

2. s (αh) = t (αh−1) = i for h = 2, 3, · · · , l

3. t (α1) = j.

One important observation is that for each vertex i of Q we have exactly one path of length zero, denoted

ei which is the path consisting of no arrows. In other words, the individual “walking” along the quiver never

leaves the vertex i. This observation leads to two important definitions adapted from [7].

Definition 2.4.2. A oriented cycle is a path c from i to i such that l(c) > 0.

Definition 2.4.3. Let Qn be the set of all paths of length n of the quiver Q.

It should be easily seen that Definition 2.4.3 coincides with our use of our notation so far. Each vertex

in Q0 can be thought about as the path of length zero at that vertex and each arrow in Q1 can simply

be thought about as a path of length 1. Our primary goal in introducing paths is to construct a k-vector

space, denoted kQ whose basis is the set of all paths in Q. Of course, for this vector space to be well

defined, we need a well defined binary operation which we construct as follows. If c = (αl, αl−1, · · · , α1)

and d = (βr, βr−1, · · · , β1) are two paths in Q define there product cd as follows: If t (βr) = s (α1) then

cd = (αl, αl−1, · · · , α1, βr, βr−1, · · · , β1) . If t (βr) 6= s (α1) then cd = 0. In other words, the path cd of length

l(cd) = l(c) + l(d) is built by composing the paths c and d. It can be easily shown that the vector spaces kQn

are subspaces of kQ and that kQ can be expressed as a direct sum of the kQi. This shows that kQ is only

finite dimensional when Q contains no cycles (otherwise we could construct paths of infinite length). Due to

this fact, we assume a quiver Q contains no cycles unless otherwise stated.

Example 2.4.4. Consider the quiver Q

•
1

•
2

α .

This quiver has exactly three paths e1, e2 and c = (α) . We compute its multiplication table.
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• e1 e2 c

e1 e1 0 0

e2 0 e2 c

c c 0 0

One natural way to understand this vector space is through the k-linear bijective representation

φ : kQ→ GL2(k)

where φ (e1) =

1 0

0 0

 = A1, φ (e2) =

0 0

0 1

 = A2 and φ (c) =

0 0

1 0

 = A3. Thus, kQ can be understood

as a 3 dimensional k-vector space given explicitly as Spank {A1, A2, A3} =


a 0

b c

 | a, b, c ∈ k
 . ♦

Example 2.4.5. Let us examine the D4-type quiver given in Example 2.1.5 and determine the structure of

kQ. We will abuse notation slightly and use the same notation for the paths and the associated arrows of the

quiver Q. We have the following following multiplication table.

· e1 e2 e3 e4 α β γ

e1 e1 0 0 0 0 0 0

e2 0 e2 0 0 0 0 0

e3 0 0 e3 0 0 0 0

e4 0 0 0 e4 α β γ

α α 0 0 0 0 0 0

β 0 β 0 0 0 0 0

γ 0 0 γ 0 0 0 0

Just as above, we want to understand this vector space through a k-linear bijective representation. In this

case consider the map φ : kQ→ GL4(k) given by

1. φ(e1) =


1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 = A1

2. φ(e2) =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 = A2
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3. φ(e3) =


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 = A3

4. φ(e4) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 = A4

5. φ(α) =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

 = A5

6. φ(β) =


0 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

 = A6

7. φ(γ) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

 = A7

It is easy to verify that this is a k-linear bijective representation since the above set of matricies Ai have the

same multiplication table. Thus kQ can be understood as a 7 dimensional k-vector space given explicitly as

Spank {A1, A2, A3, A4, A5, A6, A7} =




a 0 0 0

0 b 0 0

0 0 c 0

e f g d

 : a, b, c, d, e, f, g ∈ k


.

♦

2.4.2 Projective and Injective Representations

We are now in the position to define two important families of representations. The projective and injective

representations. We will see that for each vertex of a quiver Q we can construct a projective and injective

representation. For a more expansive exposition, see [7].
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Definition 2.4.6. Let Q be a quiver. The projective representation at vertex i is the representation

P (i) = (P (i)j , φα)j∈Q0,α∈Q1
defined by.

1. P (i)j is the k-vector space with basis consisting of all paths from i to j.

2. If j
α→ k is an arrow of Q then φα : P (i)j → P (i)k is an injective map which maps a path c ∈ P (i)j to

φα(c) = dc where d is the path d = (α).

Definition 2.4.7. Let Q be a quiver. The injective representation at vertex i is the representation

I(i) = (I(i)j , φα)j∈Q0,α∈Q1
defined by.

1. I(i)j is the k-vector space with basis consisting of all paths from j to i.

2. If j
α→ k is an arrow of Q then φα : I(i)j → I(i)k is a surjective map defined as follows. If c is a path

from j to i whose 1st term is α, i.e c = (xr, xr−1, · · · , x1, α) then φα(c) = d = (xr, xr−1, · · · , x1). If the

first term of c is not α then φα(c) = 0. This map is clearly surjective, because for any path z from k to

i we can construct a path from j to i as zα.

We now have all of the knowledge of quiver representations needed to construct quiver bundles. The next

chapter focuses on our second primary object of this thesis, holomorphic vector bundles.
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3 Holomorphic Vector Bundles

This chapter aims to introduce the reader to holomorphic vector bundles over Riemann surfaces. We begin

by laying the groundwork for holomorphic vector bundles by recalling some basic results from complex analysis

followed by formally defining the notion of a Riemann surface. Next, we define the notion of a holomorphic

line bundle and give four key examples of line bundles which will be used extensively throughout the chapter.

After introducing line bundles, we discuss some of the theory surrounding line bundles including sections and

sheaves. After introducing line bundles, we generalize them to introduce vector bundles and introduce two

important theorems of holomorphic vector bundles, the Riemann-Roch theorem and Birkhoff-Grothendieck

theorem. Lastly, we end this chapter by defining the notion of stability for holomorphic vector bundles and

classify stability for vector bundles on P1.

3.1 Foundations of Holomorphic Vector Bundles

We first recall some foundational material on holomorphic functions and Riemann surfaces. Similar definitions

and theorems can be found in any introductory textbook on complex analysis, e.g. [10], and as such we omit

their proofs here.

Definition 3.1.1. A function f : D → C, where D ⊆ C, is called holomorphic if for each a ∈ D there

exists a neighbourhood U of a such that f is a complex differentiable at each point in U .

Recall that f is complex differentiable at a point w if and only if the limit limz→w
f(z)−f(w)

z−w exists. An

equivalent definition of a holomorphic function is defined in terms of a complex analytic function.

Definition 3.1.2. A function f : D → C, where D ⊆ C is an open set, is said to be complex analytic if

for each x0 ∈ D there exists a neighbourhood U of x0 and a power series on U such that

f(z) =

∞∑
n=0

an(x− x0)n

where ai ∈ C. In other words, there exists a power series which converges to f on U .

Based on Definition 3.1.2, we see that a complex analytic function is an infinitely differentiable function

whose Taylor series at any point z pointwise coverages to f in some neighbourhood U . The connection

between holomorphic and complex analytic functions is presented in the following theorem. The proof of the

theorem can be found in [10].
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Theorem 3.1.3. A complex valued function is holomorphic if and only if it is complex analytic.

Theorem 3.1.3 is useful as it allows us to view holomorphic functions locally as Taylor series, a fact that

will often be used in upcoming proofs. With the definition of a holomorphic function in place, we are now in

a position to define a Riemann surface. The following definition is adapted from [6].

Definition 3.1.4. A Riemann surface is a one-dimensional complex manifold (a two-dimensional real

smooth manifold) with a maximal set of coordinate charts φα : Uα → R2 ∼= C such that φβ ◦ φ−1
α is a

invertible holomorphic function from φα (Uα ∩ Uβ) to φβ (Uα ∩ Uβ).

Example 3.1.5 (Riemann sphere). Let M = S2 be the unit sphere in R3. Our goal is to construct a set

of coordinate charts for M satisfying Definition 3.1.4. We do this using stereographic projection. Let N

be the north pole of M and S be the south pole of M . Let p ∈ M \ N and let L be the line containing

p = (x, y, z) and S. We want to assign p the point p′ given by the intersection of L and the plane z = 1.

L can be defined parametrically by the equation L(t) = (tx, ty, t(z + 1) − 1) where t ∈ R. It is easy to

see that p′ is the point on L when t = 2
z+1 . So p′ =

(
2x
z+1 ,

2y
z+1 , 1

)
. Thus, we define a coordinate chart

φ0 : M → R2 by φ0(x, y, z) =
(

2x
z+1 ,

2y
z+1

)
. It is also an easy computation to show that φ−1

0 (x, y) =(
4x

x2+y2+4 ,
4y

x2+y2+4 ,
8

x2+y2+4 − 1
)

. We complete a similar construction by taking a point q ∈ M \ S and

letting L′ be the line containing N and q. As above, we want to assign q = (x, y, z) the point q′ given by the

intersection of L′ and the plane z = −1. As expected, solving for q′ gives q′ =
(
−2x
z+1 ,

−2y
z+1 ,−1

)
. Thus, we define

a coordinate chart φ1 : M → R2 by φ1(x, y, z) =
(
−2x
z+1 ,

−2y
z+1

)
. Just as above, an easy computation shows

that φ−1
1 (x, y) =

(
4x

x2+y2+4 ,
4y

x2+y2+4 , 1−
8

x2+y2+4

)
. Lastly we observe that φ1 ◦φ−1

0 : R2 \ (0, 0)→ R2 \ (0, 0)

is given by φ1 ◦ φ−1
0 (x, y) =

(
4x

x2+y2 ,
4y

x2+y2

)
, which is clearly an invertible holomorphic function. ♦

A closer examination of Example 3.1.5 is in order. If z = a + bi ∈ C then z−1 = a
a2+b2 + −b

a2+b2 i.

This of course looks very similar in structure to the map φ1 ◦ φ−1
0 found above. In fact, given the correct

reparametrizations of C we can transform φ1 ◦ φ−1
0 into a map of the form

(
φ1 ◦ φ−1

0

)
(z) = z−1. To see

this, observe
(
φ1 ◦ φ−1

0

)
(z) = 4

(
a

a2+b2 ,
b

a2+b2

)
. If we rescale the target space by a factor of 1/4 in the

x coordinate and −1/4 in the y coordinate we get a map of the desired form. In other words, with the

correct parametrizations, using the coordinate charts U0 and U1, a coordinate on the intersection U0 ∩ U0

takes the form z in U0 and z−1 ∈ U1. From now on, we will denote the Riemann sphere as P1, which

reflects its identification as a complex manifold with 1-dimensional complex projective space, also known as

the projective line. As we have seen, holomorphic functions are defined in some open subset of C. This

definition can then naturally be extended to the concept of holomorphic functions of Riemann surfaces using

the transition functions between coordinate charts. The following definition is adapted from [6].

Definition 3.1.6. A holomorphic function of Riemann surfaces is a map f : M ′ → M such that for

each coordinate chart φα : Uα → C on M and φ′β : U ′β → C on M ′ the map φα ◦ f ◦ φ
′−1
β is holomorphic. A

holomorphic function on M is a holomorphic function f : M → C.
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We end this section with a classic theorem from complex analysis and one that we will make use of

throughout this chapter. For the proof, again see [10].

Theorem 3.1.7. Let M be a Riemann surface. If M is connected and compact, then the only holomorphic

functions on M are constants.

3.2 Holomorphic Line Bundles and their Sections

We now introduce a main character in this chapter, holomorphic line bundles over a Riemann surface. This

is an expansive topic. For a more exhaustive and thorough introduction, see chapter two of [6] on which

this chapter is based. As explained in the the introduction, holomorphic line bundles are a special type

of a two-complex dimensional manifold (or four-real dimensional manifold) which enjoy rich algebraic and

topological structure. We begin with a definition.

Definition 3.2.1. A holomorphic line bundle L over a Riemann surface M is a two-dimensional complex

manifold L with a holomorphic projection π : L→M such that:

1. For each m ∈M , π−1 has the structure of a one-complex dimensional vector space.

2. Each point m ∈M has a neighbourhood U and a homeomorphism ϕU such that the diagram

π−1 (U) ∼=ϕU U × C

U

π

is commutative.

3. ϕV ◦ ϕU−1 is of the form

(m,w)→ (m, gV U (m)w)

where gV U is a nonvanishing holomorphic function.

The map gV U in Definition 3.2.1 is refereed to as the transition function of the line bundle from U to

V . A closer inspection of Definition 3.2.1 has a number of immediate consequences. First, for each point

m ∈ M we assign a copy of the complex vector space C. Second, we see that for some neighbourhood

U of m, all of the points in U are assigned the same parametrized vector space C. Finally, if we take a

second neighbourhood V which also contains m, then the transition function gV U is really a nonvanishing

holomorphic map M → C. In other words, for a point m in U ∩ V, the transition function gV U gives us a

different parametrization of C depending on if we are viewing m as contained in U or in V . We now introduce

the some of the most important line bundles.
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3.2.1 Four Important Line Bundles

There are four important line bundles that appear regularly and are critical to our development of the topic

of vector bundles. These four line bundles will be used extensively in our upcoming work. In particular in

the proofs of Theorem 3.4.2 and Theorem 3.4.3. For a more thorough treatment, see chapter two of [6].

1. The trivial bundle is the bundle M × C where the function ϕU is the identity map, π(m, z) = m for

all (m, z) ∈M × C, and gV U (m) = 1 for all m ∈M . The three axioms of 3.2.1 are immediate.

2. We construct the point bundle Lp as follows. Suppose p ∈ M . Choose an open set U0 containing

p such that U0 is coordinatized by z and z(p) = 0. Let U1 = M − {p}. Then U0 ∩ U1 = U0 − {p}.

Now as z is a holomorphic nonvanishing function on U0 ∩U1 we see that it defines a transition function

g01. In summary, the bundle at a point, which we denote Lp, is the set M × C with projection

π(m,w) = m, ϕU1 = Id and ϕU0(m,w) = (m, (z (m) + δ (m))w) where δ is the complex Dirac delta

centered at p (i.e is the function which gives the value zero everywhere except at zero and whose integral

over C is one). Then on the intersection U0 ∩ U1 = U0 − {p} we have ϕU0
◦ ϕ−1

U1
= ϕU0

◦ Id so that

ϕU0 ◦ϕ−1
U1

(m,w) = (m, g01(m)w). The three axioms should now be immediate with a simple topological

verification that ϕU0 does indeed define a homeomorphism (which is apparent in the fact that z is

holomorphic and the Dirac delta is continuous).

3. We construct the canonical bundle or the cotangent bundle ωX as follows. Let M be a Riemann

surface with coordinate charts φα and φβ . Choose parametrizations z of φα (Uα) and w of φβ (Uβ) such

that w (z) = φβ◦φ−1
α (z) on Uα∩Uβ . The canonical bundle is the bundle ωX where ϕUα(z, q) = (z, dz(q))

and π(m, z) = m for all (m, z) ∈ M × C. Then as dw = w′dz we may define a transition function

f = dz
dw as ϕUβ ◦ ϕUα (z, dz(q)) =

(
z, dwdz (dz(q))

)
= (z, dw(q)).

4. Consider the Riemann sphere P1 given in Example 3.1.5 with the coordinate patches U0 and U1. The

line bundle O(n) is the bundle where π(m, z) = m for all (m, z) ∈ M × C. We want to define the

transition function for this line bundle to be the map g01 = wn on the intersection U0 ∩ U1
∼= C∗ for

reasons we will see shortly. Thus, define the the function ϕU1
to be the identity map and ϕU0

(m, z) =

(m, (mn + δ(m)) z) where δ is the Dirac delta centred at 0. Thus, on the intersection U0 ∩U1
∼= C∗ we

have ϕU0
◦ϕ−1

U1
(m, z) = (m,mnz). This of course has the form of a nonvanishing holomorphic function

since mn is nonvanishing on the intersection.

3.2.2 Basic Properties of Line Bundles

As we explained earlier, line bundles can really be thought of as a collection of one dimensional vector spaces

(which each look like copies of C) parametrized by our Riemann surface M . Therefore it should make sense

that we can generalize many of the usual operations on vector spaces studied in linear algebra to line bundles.

We summarize these properties here. For a more thorough treatment, we again refer the reader to [6].
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1. Suppose L is a line bundle with transition functions gαβ . Then its dual, denoted L∗, is the line bundle

with transition functions gαβ(L∗) = g−1
αβ (L). It should then be immediate that the dual of the tangent

bundle is the cotangent bundle and vice versa from our work above.

2. Given two line bundles L and L̃ we can form the line bundle L⊗L̃ with transition functions gαβ(L⊗L̃) =

gαβ(L)gαβ(L̃).

3. A homomorphism of line bundles L and L̃ is a pair of smooth continuous maps (f, g) such that the

following diagram commutes

L −→f L̃

↓π1
� ↓π2

M −→g M̃

.

It can be shown that the space of all homomorphism Hom(L, L̃) is itself a line bundle and Hom(L, L̃) ∼=

L∗ ⊗ L̃.

4. Using our above results we see that Hom(L,L) ∼= L∗ ⊗ L and therefore it has transition functions

gαβ(L∗ ⊗ L) = gαβ(L∗)gαβ(L) = g−1
αβ (L)gαβ(L) = 1. But we have shown above that the line bundle

whose transition functions are all equal to the identity is the trivial bundle. Thus, Hom(L,L) ∼= L∗⊗L

is the trivial bundle M × C. This should make sense to us, because the only endomorphisms of the

vector space C to itself is the underlying field of scalars C.

3.2.3 Sections of a Line Bundle

As we have seen, line bundles have rich algebraic structure and can be classified by studying their transition

functions. We now examine a new type of function associated to a line bindle which we will use extensively.

As we shall soon see, understanding these functions provide tremendous insight into line bundles.

Definition 3.2.2. A holomorphic section of a line bundle L over a Riemann surface M is a holomorphic

map s : M → L such that π ◦ s = idM .

Consider a holomorphic section s on a Riemann surface M restricted to a neighbourhood U of a point

m. Then by the commutativity of the diagram in Definition 3.2.1 we have that ϕU ◦ s|U : U → U × C and

ϕU ◦ s|U (m) = (m, sU (m)) where sU : U → C is a holomorphic function. This structure is easiest to see by

noting that π ◦ s(m) = IdM (m) = m = IdU ◦ ϕU ◦ s|U (m) so that s is indeed completely defined locally by a

holomorphic map sU . Applying again the commutativity of Definition 3.2.1 then shows that sU = gUV ◦ sV .

This then allows us to consider sections as a collection of holomorphic maps sU which we can glue together

using the transition functions on L. Thus, given two sections s and t we can use the transition functions gUV

to see that sU = gUV sV and tU = gUV tV . But this then implies sU
tU

= sV
tV

. So s
t is a global meromorphic

function on M and that for each pair of sections, we can construct one of these global meromorphic functions.
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As we know, the only holomorphic functions on a Riemann surface M are constants. Sections, however, give

us a means to construct holomorphic objects that only locally are single-valued functions but which enjoy

many of the useful properties of functions nonetheless.

For instance, if s and t are two sections of L we can construct the section s+t through pointwise addition,

i.e s + t(r) = s(r) + t(r). Furthermore, we can scalar multiply a section via (λs)(m) = (λ)s(m). Thus, we

see that the sections of L form a vector space, which we denote H0 (M,L) .

Example 3.2.3. Consider the line bundle O(n) constructed previously with transition functions gUV = zn.

Then if s is a section on O(n) we have sU0
= znsU1

and so sU0
(z) = znsU1

(z∗) for some z ∈ U0
∼= C and

z∗ ∈ U1
∼= C. Since sU0 and sU1 are holomorphic functions, they can be represented locally by power series

and therefore we have

∞∑
0

amz
m = zn

∞∑
0

a∗mz
∗m.

But from Example 3.1.5 we know that z∗ = z−1 and therefore we see the above equality implies a∗m =

am = 0 for m > n and a∗0 = an, a
∗
1 = an−1, · · · , a∗n = a0. Therefore we see that we have n+ 1 possible choices

for a0, · · · , an and thus the dimension of the vector space H0
(
P1,O(n)

)
is n+ 1.

♦

3.3 Line Bundles and Sheaf Theory

We have now seen that line bundles can be understood by studying both their transition functions and

sections. Both of these objects, however, are defined locally. Our primary goal is to collect this local

information as a global structure. The primary algebraic tool to study these global properties is sheaf theory.

The following definitions are adapted from chapter two of [6].

Definition 3.3.1. A sheaf S on a topological space X associates to each open set U ⊆ X an abelian group

S(U), called the sections over U , such that if V is a open subset of X and U ⊆ V there exists a restriction

map rV U : S (V )→ S (U) such that the following hold:

1. If U ⊆ V ⊆W , then rWU = rV U ◦ rWV .

2. If σ ∈ S(U), τ ∈ S(V ), and rU(U∩V ) (σ) = rV (U∩V ) (τ) there exits p ∈ S (U ∪ V ) such that r(U∪V )U (p) =

σ and r(U∪V )V (p) = τ .

3. If σ ∈ S (U ∪ V ) is such that r(U∪V )U (σ) = 0 and r(U∪V )V (σ) = 0 then σ = 0.

It will primarily be the case that we let X = M in the context of Definition 3.3.1. The remaining question

is which abelian group we will assign to the open sets U of M . There are four primary sheaves which will

construct depending on need.
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1. Assign S (U) the group of holomorphic functions on U via pointwise addition. We denote this group

O (U).

2. Assign S (U) the group of holomorphic sections of the line bundle L over U . We denote this group

O (L) (U) .

3. Assign S (U) the group of constant functions of U with values in C or Z.

4. Assign S (U) the group of nonvanishing holomorphic functions on U via function composition. We

denote this group as O∗ (U).

Sheaves naturally come with a notion of cohomology. Our goal is to construct cohomology groups using

several of the sheaves listed above and study their algebraic properties to gain insight about algebraic prop-

erties of our line bundle. The cohomology groups of a sheaf S are constructed as follows. Suppose the set

{Uα}α∈A is a locally finite covering of M of open sets. Let C0 = ⊕α0∈Asgn(σ)S (Uα0
) and more generally

consider the group

CP =
⊕

α0 6=···6=αp∈A

sgn(σ)S
(
Uα0 ∩ · · · ∩ Uαp

)
,

where σ is the permutation on p + 1 letters that transforms (α0, · · · , αp) into the index. In other words, a

rearrangement of the order of the Uαi appearing in the intersection results in multiplication by the sign of

the permutation used to undertake this reordering. We now define our boundary operator on the groups Cp

which will be used in our construction of cohomology groups.

Definition 3.3.2. Suppose that f ∈ S
(
Uα0
∩ · · · ∩ Uαp

)
. The boundary operator is a homomorphism

δ : Cp → Cp+1 defined pointwise by

(δf)α0···αp+1
=
∑
i

(−1)
i
fα0···α̂i···αp+1

| Uα0
∩ · · · ∩ Uαp+1

.

Informally, Definition 3.3.2 says that the boundary operator is a map which takes elements of S
(
Uα0 ∩ · · · ∩ Uαp

)
and maps them to linear combinations of components of Cp but restricted to intersections of length p + 2.

It is also easy to check that δ2 = 0 or that two applications of this operator becomes the zero map. We have

now built a enough machinery to define the cohomology groups for a sheaf S.

Definition 3.3.3. The p-th cohomology group of a sheaf S, relative to a given covering {Uα}α∈A , is the

group

Hp (M,S) =
kerδ : Cp → Cp+1

imδ : Cp−1 → Cp
.

One very important application of the cohomology groups of sheaves is stated and proved in the following

theorem. This is a technique that is used extensively in proofs of future results. The proof of the theorem

follows that of [6].
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Theorem 3.3.4. If

0→ S f−→ T h−→ U → 0

is a short exact sequence of sheaves on M , then there is a long exact sequence of cohomology groups

0→ H0(M,S)→ H0(M, T )→ H0(M,U)
δ0−→ H1(M,S)→ H1(M, T )→ H1(M,U)

δ1−→ · · ·

Proof. We construct the boundary operator δ0. This proof can then be generalized to construct δp using the

same method, although with slightly more tedious notation.

Suppose u = (uα, uβ , uγ , · · · ) ∈ H0(M,U) = ker(C0(U)). Then by the definition of δ0 we have (δ0u)αβ =

uα−uβ where (δ0u)αβ denotes the image of u in the αβ coordinate. Now by our hypothesis, we have a short

exact sequence of sheaves and therefore h is a surjective map. Thus, there exists a t = (tα, tβ , tγ , · · · ) ∈ C0(T )

such that h(t) = u which sends tα → uα. Consider now δ0t ∈ C1(T ). Then as before (δ0t)αβ = tα − tβ . But

as h is a homomorphism we have h(tα− tβ) = h(tα)−h(tβ) = uα−uβ = 0 and therefore δ0t ∈ ker(h). Thus,

by the exactness of our series we know that ker(h) = im(f) and therefore there exists a unique (since f is

injective) s ∈ C1(S) such that sαβ → tα − tβ . Consider now δ1s ∈ C2(S). Then a calculation shows that

(δ1s)αβγ = −sβγ + sαγ − sαβ . But f is a homomorphism so

f((δ1s)αβγ) = −f(sβγ) + f(sαγ)− f(sαβ) = −(tβ − tγ) + (tα − tγ)− (tα − tβ) = 0,

from which f((δ1s)) = 0. Using the fact that f is injective allows us to conclude that δ1s = 0. Thus,

s ∈ H1(M,S) and we set δ0u = s.

Theorem 3.3.4 gives us the algebraic tools necessary to develop the notion of the “degree” of a line bundle.

Consider the short exact sequence of sheaves

0→ Z→ O e2πif→ O∗ → 0

Where O is the the sheaf given by holomorphic functions of a line bundle L and O∗ are those holomorphic

functions which are nonvanishing. Then by Theorem 3.3.4 we have a long exact sequence of sheaves

0 H0
(
P1,Z

)
H0
(
P1,O

)
H0
(
P1,O∗

)
H1
(
P1,Z

)
H1
(
P1,O

)
· · · .

As sections are defined locally in terms of holomorphic functions, by Theorem 3.1.7 the only holomorphic

functions on compact Riemann surfaces are constants. Therefore we have the long exact sequence

0 Z C C∗ H1 (M,Z) H1 (M,O) H1 (M,O∗) · · · .

Now as the exponential map from C to C∗ is surjective, the exactness of this series shows that H1 (M,Z)

injects into H1 (M,O). Furthermore, from Hitchin [6], we know that H1 (M,O) vanishes for n > 1. Thus,

combining this information we can produce the short exact sequence
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0 H1(M,O)
H1(M,Z) H1 (M,O∗) H2 (M,Z) 0.

deg

But H2 (M,Z) ∼= Z. It can be shown that H1 (M,O∗) completely characterizes equivalence classes of line

bundles over M [6], and so the map deg gives an integer-valued invariant of such classes, called the degree .

This notion of degree of a line bundle has a number of important properties which we list below.

1. If L1 and L2 are two line bundles, then deg (L1 ⊗ L2) = deg L1 + deg L2.

2. If Lp is the line bundle over the point p, then deg Lp = 1.

3. If s ∈ H0(M,L) is a section with zeros at points p1, · · · , pn with multiplicities m1, · · · ,mn respectively,

then deg L =
∑
imi.

4. On M = P1, deg O (n) = n.

3.4 Vector Bundles and Some Important Results

3.4.1 Vector Bundles

We have now closely examined line bundles and introduced several of their important properties. As expected,

the notion of line bundle can be further generalized to higher dimensional complex manifolds through the

notion of a vector bundle, which we will now define below.

Definition 3.4.1. A holomorphic vector bundle E of rank m over a Riemann surface M is a complex

manifold with a holomorphic projection π : E →M such that:

1. For each m ∈M , π−1 has the structure of a m-dimensional complex vector space.

2. Each point m ∈M has a neighbourhood U and a homeomorphism ϕU such that the diagram

π−1 (U) ∼=ϕU U × Cm

U

π

is commutative.

3. ϕV ◦ ϕU−1 is of the form

(z, w)→ (z,A(z)w)

where A : U ∩ V → GL (m,C) is a holomorphic map to the space of m ×m invertible matrices with

coefficients in C.

Just like in the case of line bundles, most operations that can be preformed on vector spaces can also be

preformed on vector bundles, which we describe below. For further explanation, see [6].
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1. If E1 and E2 are vector bundles, we can construct the vector bundle E1⊕E2 in the natural way (using

direct sums of vector spaces) and rkE1 ⊕ E2 = rkE1 + rkE2.

2. We can form the tensor product E1 ⊗ E2 that has transition functions A1A2(z) = A1(z)A2(z).

3. If E is a vector bundle, then the dual of E is the vector bundle E∗ with transition functions A−1.

4. If E is a vector bundle, we can form a line bundle Det (E) with transition functions Det (A). Note

here that the transition functions A are invertible, so they have a nonzero determinant which will be a

nonvanishing holomorphic function.

5. The degree of a vector bundle E is the degree of Det (E).

Theorem 3.4.2 (Riemann-Roch). If E is a vector bundle on a compact Riemann surface of genus g, then

dimH0(M,E)− dimH1(M,E) = degE + rkE(1− g)

Proof. The proof proceeds by induction on the rank of E and relies on several results from earlier sections.

It is adapted from [6].

Base Case Our basis for induction is when m = 1 so that E is a line bundle. We construct this case

using three results

1. Suppose that L is the trivial bundle on M and let s be a section of L. Then sU = gUV sV = (1)sV = sV

which shows that the local functions are the same on the intersection. As U and V are arbitrary, we

see that we must have that O(L) = O or that the sections of L are simply given by the holomorphic

functions on M . But the only holomorphic functions on a compact Riemann surface are constants and

therefore O(L) = O ∼= C and therefore dimH0(M,O) = 1. Now as M is compact, we have by definition

that the genius g is given by g = dimH0(M,K). Applying Serre duality gives dimH1(M,O) ∼=

dimH0(M,K)∗. But any finite dimensional vector space has the same dimension as it’s dual and

therefore dimH1(M,O) = g. Thus,

dimH0(M,O)− dimH1(M,O) = 1− g.

Now as L is the trivial bundle we have (almost by definition, since it is defined in terms of a homomor-

phism to the integers) that degO = 0 and of course rkO = 1. Thus,

dimH0(M,O)− dimH1(M,O) = 1− g = 0 + 1(1− g) = degO + rkO(1− g).

So the result is shown for the trivial bundle.
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2. Suppose that the result holds for a line bundle L. We will show it holds for LL−1
p and LLp. Consider

the short exact sequence

0→ O(L)
sp−→ O(LLp)→ Op(LLp)→ 0.

Now for any line bundle L̃ we have that dimOp(L̃) = 1 since Op(L̃) = π−1(p) and therefore H0(M, L̃) ∼=

C. We also will make use of the topological fact that H2(M,C) ∼= C and that Hp(M,C) = 0 for p > 2.

Using the theorem proven above we construct the long exact sequence

0→ H0(M,L)→ H0(M,LLp)→ C ∼= H2(M,C)→ H1(M,L)→ H1(M,LLp)→ H3(M,C) ∼= 0.

In earlier sections, we have seen that deg(Lp) = 1 and that deg(LL̃) = deg(L) +

deg(L̃).Using these facts along with the algebraic result that the alternating sum of dimensions in any

long exact sequence is zero gives

dimH0(M,LLp)− dimH1(M,LLp) = dimH0(M,L)− dimH1(M,L) + 1

= deg(L) + (1− g) + 1 (applying our hypothesis)

= deg(L) + (1− g) + deg(Lp)

= deg(LLp) + (1− g)

proving the result for LLp.

We now show the result for LL−1
p . Consider the short exact sequence

0→ O(LL−1
p )

sp−→ O(L)→ Op(L)→ 0.

Using a similar idea to that above we construct the long exact sequence,

0→ H0(M,LL−1
p )→ H0(M,L)→ C ∼= H2(M,C)→ H1(M,LL−1

p )→ H1(M,L)→ H3(M,C) ∼= 0.

Now since deg(Lp) = 1 it must be the case that deg(L−1
p ) = −1. Using these facts along with the

algebraic result that the alternating sum of dimensions in any long exact sequence is zero gives

dimH0(M,LL−1
p )− dimH1(M,LLp) = dimH0(M,L)− dimH1(M,L)− 1

= deg(L) + (1− g)− 1

= deg(L) + (1− g) + deg(L−1
p )

= deg(LL−1
p ) + (1− g)
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proving the result for LL−1
p .

3. We now prove that every line bundle L is isomorphic to some product of line bundles

Lp1 · · ·LpmL−1
q1 · · ·L

−1
qn .

Consider the short exact sequence

0→ O(L)
snp−→ O(LLnp )→

O(LLnp )

O(L)
→ 0.

if f is a section on L and z is a coordinate that vanishes at p then
O(LLnp )

O(L) is the quotient space induced

by the map f(z)→ znf(z). By construction,
O(LLnp )

O(L) only sees the first n terms in the Taylor expansion

of f(z) at p and therefore H0(M,
O(LLnp )

O(L) ) ∼= Cn. Thus we have the long exact sequence.

0→ H0(M,L)→ H0(M,LLnp )→ Cn ∼= H2(M,Cn)→ H1(M,L)

→ H1(M,LLp)→ H3(M,Cn) ∼= 0.

Again applying the fact that that the alternating sum of dimensions in any long exact sequence is zero

gives

dimH0(M,LLnp ) = dimH1(M,LLp) + dimH0(M,L)− dimH1(M,L) + n

≥ + dimH0(M,L)− dimH1(M,L) + n

Because dimH1(M,LLp) ≥ 0.We can choose n ∈ N sufficiently large such that that the right hand

side becomes positive so that dimH0(M,LLnp ) > 0. Thus there exists a holomorphic section s of LLnp .

Suppose that s vanishes at p1, · · · , pk with multiplicities m1, · · · ,mk. Then clearly ss−m1
p1 · · · s−mkpk

is nonvanishing since we are killing all of the zeros of s using the section s−m1
p1 · · · s−mkpk

. Thus, we

have found a nonvanishing section and therefore it induces a isomorphism between the line bundle

LLnpL
−m1
p1 · · ·L−mkpk

and the trivial bundle. This then shows that L must be of the form

L ∼= Lmkpk · · ·L
m1
p1 L

−n
p

which proves the result.
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Induction step. Suppose now that E is a vector bundle of rank m and that the result holds for all bundles

of lower rank. Our first objective is to find a subbundle L contained in the vector bundle E. To do this

we employ a similar strategy used above by trivializing the vector bundle L∗ ⊗ E by finding a nonvanishing

holomorphic section. If we can show the bundle L∗ ⊗ E is trivial, then clearly E must equipped with the

inverse transition functions of L∗. In other words, for every transition function gαβ on L* its inverse function

gβα = g−1
αβ will be a map on E and therefore it must contain L as a subbundle. Just as above, we construct

the short exact sequence

0→ O(E)
snp−→ O(E ⊗ Lnp )→ S → 0.

Where S is simply the quotient
O(E⊗Lnp )

O(E) . We argued above that H0(M,
O(LLnp )

O(L) ) ∼= Cn. Thus replacing

L with E simply results in a dimension increase to mn as E is of rank m. Thus we construct the long exact

sequence

0→ H0(M,E)→ H0(M,ELnp )→ Cmn ∼= H2(M,Cmn)→ H1(M,E)→ H1(M,ELnp )→ 0.

Thus using our now standard technique we show

dimH0(M,ELnp ) ≥ mn+ dimH0(M,E)− dimH1(M,E).

Choosing n sufficiently large we can find a section s of E ⊗ Lnp . Suppose s vanishes at p1, · · · , pk with

multiplicities m1, · · · ,mk. Then clearly ss−m1
p1 · · · s−mkpk

is nonvanishing since we are killing all of the zeros

of s using the section s−m1
p1 · · · s−mkpk

. Thus we have found a nonvanishing section of E ⊗ LnpL−m1
p1 · · ·L−mkpk

.

Setting L∗ = LnpL
−m1
p1 · · ·L−mkpk

gives our desired result that E ⊗ L∗ is trivial and so L ⊂ E . We use this

result to construct one last short exact sequence

0→ O(L)→ O(E)→ O(Q)→ 0.

Where Q = E
L which is clearly of rank m− 1. As is now standard procedure we construct the long exact

sequence

0→ H0(M,L)→ H0(M,E)→ H0(M,Q)→ H1(M,L)→ H1(M,E)→ H1(M,Q)→ 0.

Again applying the fact that that the alternating sum of dimensions in any long exact sequence is zero

gives
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dimH0(M,E)− dimH1(M,E) = dimH0(M,L)− dimH1(M,L) + dimH0(M,Q)− dimH1(M,Q)

= degL+ (1− g) + degQ+ (m− 1)(1− g) (using our hypothosis twice)

= degE +m(1− g).

We used here that degE = degL+ degQ which comes immediately from the fact that the tensor product

preserves determinants (from linear algebra) detE = detL⊗ detQ = L⊗ detQ.

Thus, we have the desired result. We now move to the theorem that most influences our future work as

highlighted in the introduction to this thesis. The proof we present here is again adapted from [6].

Theorem 3.4.3 (Birkhoff-Grothendieck). If E is a rank m holomorphic vector bundle over P1, then we have

the following decomposition of E

E ∼= O (a1)⊕ · · · ⊕ O (am )

Proof. The proof is by induction on m.

Base Case. Since m = 1 then E is a line bundle. We want to show E has the desired form. Consider the

short exact sequence of sheaves

0→ Z→ O e2πif→ O∗ → 0

Where O is the the sheaf given by holomorphic functions on E and O∗ are those holomorphic functions

which are nonvanishing. Then by Theorem 3.3.4 we have a long exact sequence of sheaves

0 H0
(
P1,Z

)
H0
(
P1,O

)
H0
(
P1,O∗

)
H1
(
P1,Z

)
H1
(
P1,O

)
· · ·

As we know, sections are defined locally in terms of holomorphic functions. But by by Theorem 3.1.7 the

only holomorphic functions on compact Riemann surfaces are constants. Therefore we have the long exact

sequence

0 Z C C∗ H1
(
P1,Z

)
H1
(
P1,O

)
H1
(
P1,O∗

)
· · ·

Now since the exponential map from C to C∗ is surjective the exactness of this series shows that H1 (M,Z)

injects into H1 (M,O). Furthermore we know that H1 (Pn,O) vanishes for n > 1. Thus, combining this

information we can produce the short exact sequence
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0
H1(P1,O)
H1(P1,Z) H1

(
P1,O∗

)
Z 0.

deg

But
H1(P1,O)
H1(P1,Z)

∼= 0 since topological this is a zero dimensional complex torus. Thus, the degree map here

is a bijection and there exits only one line bundle over P1 for each degree recalling the fact that the group

H1
(
P1,O∗

)
classifies the line bundles over P1 completely. Thus since E is a line bundle over P1 is must be

of the form E ∼= O (n).

Induction step. Suppose then that E is a rank m vector bundle and the result holds for all degrees less

than m. We begin with s familiar construction to the one used in the proof of Theorem 3.4.2. That is,

we construct a short exact sequence using the product of point bundles Lp and its corresponding canonical

section sp which vanishes uniquely at p. Thus, consider the short exact sequence of sheaves

0 O(E) O (E ⊗ Lp1Lp2 · · ·Lpn)
O(E⊗Lp1Lp2 ···Lpn)

O(E) 0.
sp1sp2 ···spn

But Lp1Lp2 · · ·Lpn has a section sp1sp2 · · · spn that has exactly n zeros each with multiplicity 1 and therefore

Lp1Lp2 · · ·Lpn has degree n and thus Lp1Lp2 · · ·Lpn ∼= O(n). Thus, we have constructed the short exact

sequence of sheaves

0 O(E) O (E ⊗O(n)) O(E⊗O(n))
O(E) 0.

Using our now familiar technique used in the proof of Theorem 3.4.2 we can use this short exact sequence

to construct a long exact sequence. This, along with the fact that the alternating sum of dimensions of any

long exact sequence is zero gives the relation

dimH0
(
P1, E ⊗O(n)

)
≥ mn+ dimH0

(
P1, E

)
− dimH1

(
P1, E

)
.

Thus, we may chose n sufficiently large so that dimH0
(
P1, E ⊗O(n)

)
> 0. For such an n, E ⊗O(n) will

have holomorphic sections. We denote E ⊗O(n) as E(n). Consider now the short exact sequence of sheaves

0 O (E (n− 1)) O (E (n)) O(E(n))
O(E(n−1)) 0.

sp

Thus this short exact sequence induces a long exact sequence by Theorem 3.3.4. By the exactness of this

long exact sequence we have that the map

H0
(
P1, E (n− 1)

)
H0
(
P1, E (n)

)sp

is injective. We want to study the space of sections given above. To that end, suppose dimH0
(
P1, E (n− 1)

)
=

dimH0
(
P1, E (n)

)
. This then would imply that sp is an isomorphism. Thus, every section of H0

(
P1, E (n)

)
is of the form ssp for some s ∈ H0

(
P1, E (n− 1)

)
. But sp vanishes at p and then so too does ssp. Thus,

every section of H0
(
P1, E (n)

)
vanishes at p. But p was arbitrary, so every section in H0

(
P1, E (n)

)
vanishes
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at every p which implies E(n) has no nontrivial holomorphic sections. This is a contradiction, and therefore

sp is not an isomorphism and dimH0
(
P1, E (n− 1)

)
6= dimH0

(
P1, E (n)

)
. Thus it must be the case that

dimH0
(
P1, E (n− 1)

)
< dimH0

(
P1, E (n)

)
. Thus choosing n sufficiently large, we can find an n such that

dimH0
(
P1, E (n− 1)

)
= 0 and dimH0

(
P1, E (n)

)
6= 0. Replacing this sufficiently large n in the long exact

sequence constructed above gives the long exact sequence.

0 0 H0
(
P1, E(n)

)
H0
(
P1, E(n)

E(n−1)

)
H1
(
P1, E(n− 1)

)
· · ·

Thus, by the exactness of this sequence, we see that the map H0
(
P1, E(n)

)
→ H0

(
P1, E(n)

E(n−1)

)
is

injective. Moreover, this map works by taking a non-zero section of E(n) and evaluating it a point p. So if

s is a non-trivial section of E(n) then s(p) 6= 0. As this holds for all p, s is a nonvanishing section. Thus,

just as in the proof of Theorem 3.4.2, this nonvanishing section trivializes a line bundle contained in E(n)

through the map φ : P1×C→ E(n) by φ (r, λ) = λs(r). Using this inclusion map, we construct a short exact

sequence.

0 P1 × C E(n) E(n)
P1×C 0

φ ϕ

where E(n)
P1×C is the quotient bundle induced from φ. Since P1 ×C is embedded in E(n) our immediate goal is

to decompose E(n) into a product containing P1 ×C. This, however, is only possible if E(n)
P1×C is contained in

E(n) and is complementary to P1 × C. To show this, we find a homomorphism ψ : E(n)
P1×C → E(n) such that

ϕ ◦ ψ = 1 so that ψ is a bijective map onto a subbundle of E(n). To construct ψ consider the short exact

sequence of vector bundles

0
(
E(n)
P1×C

)−1

⊗
(
P1 × C

) (
E(n)
P1×C

)−1

⊗ E(n)
(
E(n)
P1×C

)−1

⊗ E(n)
P1×C 0.

Replacing the associated terms in the sequence with their respective homormophism bundle gives

0 Hom
(

E(n)
P−1×C ,P

1 × C
)

Hom
(
E(n)
P1×C , E(n)

)
Hom

(
E(n)
P1×C ,

E(n)
P1×C

)
0.

But holomorphic homomorphisms between vector bundles are just holomorphic sections, so the above

short exact sequence can actually be viewed as a short exact sequence of sheaves. Thus, this short exact

sequence induces a long exact sequence.

0 H0
(
P1, Hom

(
E(n)
P1×C ,P

1 × C
))

H0
(
P1, Hom

(
E(n)
P1×C , E(n)

))

H0
(
P1, Hom

(
E(n)
P1×C ,

E(n)
P1×C

))
H1
(
P1, Hom

(
E(n)
P1×C ,P

1 × C
))

· · ·
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Consider the identity homomorphism ι from E(n)
P1×C to itself. Then clearly ι is a nonvanishing section, so

ι ∈ H0
(
P1, Hom

(
E(n)
P1×C ,

E(n)
P1×C

))
. Our goal is to show that ι is in the kernel of the map in the long exact

sequence. But since this sequence is exact, it is sufficient to show that it would be in the image of the map

H0
(
P1, Hom

(
E(n)
P1×C , E(n)

))
→ H0

(
P1, Hom

(
E(n)
P1×C ,

E(n)
P1×C

))
. In other words, this section could be pulled

back into

H0
(
P1, Hom

(
E(n)
P1×C , E(n)

))
.

Now of course, rk E(n)
P1×C < rkE = m and therefore by our induction hypothesis E(n)

P1×C splits into a direct

sum of line bundles

E(n)

P1 × C
= O(b1)⊕ · · · ⊕ O(bm−1).

Consider the short exact sequence of sheaves

0 O (O (−1)) O (E (n− 1)) O
(
E(−1)
P1×C

)
0

and the induced long exact sequence

0 H0
(
P1,O (−1)

)
H0
(
P1, E (n− 1)

)
H0
(
P1, E(−1)

P1×C

)

H1
(
P1,O (−1)

)
H1
(
P1, E (n− 1)

)
· · · .

As the bundleO(−1) has degree−1 thenH0
(
P1,O (−1)

)
= 0. Moreover, with our specific choice of signifi-

cantly large n, H0
(
P1, E (n− 1)

)
= 0 also. Thus, applying Theorem 3.4.2 toO(−1) shows dimH1(P1,O(−1)) =

0 and therefore H1(P1,O(−1)) vanishes also. Therefore our long exact sequence becomes

0 0 0 H0
(
P1, E(−1)

P1×C

)

0 H1
(
P1, E (n− 1)

)
· · · .

But this implies

0 = H0

(
P1,

E(−1)

P1 × C

)
=
⊕
i

H0
(
P1,O (bi − 1)

)
using our decomposition found above. Since this direct sum vanishes all the terms in the sum must all vanish,

and this can only happen if O (bi − 1) has negative degree. So bi ≤ 0. We now apply Theorem 3.4.2 to the

line bundle O (−bi) and we see that dimH1
(
P1,O (−bi)

)
= 0. Thus, noting that Hom

(
E(n)
P1×C ,P

1 × C
)
∼=(

E(n)
P1×C

)−1

and that E(n)
P1×C was defined as a decomposition of O(bi) and therefore

(
E(n)
P1×C

)−1

is defined in

terms of a decomposition of O(−bi) we see that
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H1

(
P1,

(
E(n)

P1 × C

)−1
)

=
⊕
i

H1
(
P1,O(−bi)

)
= 0.

Thus, substituting this zero term into our long exact sequence shows that ι must lift to a section of

H0
(
P1, Hom

(
E(n)
P1×C , E(n)

))
. Therefore E(n) splits into a decomposition of the trivial bundle P1 × C ∼=

O(0) = O and E(n)
P1×C . In other words, E(n) = O ⊕ E(n)

P1×C . Thus, as E(n) = E ⊗O(n) we see that

E =

(
O ⊕ E(n)

P1 × C

)
⊗O(−n)

= (O ⊕O(b1)⊕ · · · ⊕ O(bm−1))⊗O(−n)

= O(−n)⊕O(b1 − n)⊕ · · · ⊕ O(bm−1 − n)

as desired.

3.4.2 Stable Vector Bundles

We now introduce another topic which will be a primary focus in our work here, namely the notion of a

stable vector bundle. This notion of stability was first introduced by Mumford [8].

Definition 3.4.4. Let E be a vector bundle over a Riemann surface X.Then, E is said to be stable if for

each subundle 0 ( U ( E we have degU
rkU < degE

rkE . We say that E is semistable if degU
rkU ≤

degE
rkE .

The next theorem completely classifies stability for the special case when X = P1.

Theorem 3.4.5. On X = P1 there are no stable holomorphic vector bundles of rank m ≥ 2. There exist

semistable bundles if rank m ≥ 2, which are of the form E ∼= O (a)⊕O (a)⊕ · · · ⊕ O (a) for some a ∈ Z.

Proof. Let E be a vector bundle of rank m ≥ 2 over X. Then by Theorem 3.4.3 we have the following

decomposition, E ∼= O (a1)⊕ · · · ⊕ O (am). We proceed by cases.

1. Suppose that ai < 0 for all i = 1, · · · ,m. Reorder the index as necessary so that a1 ≤ a2 ≤ · · · ≤ am.

Consider the subbundle U ∼= O (am) of E. Then we observe that

am
1
≥ a1 + a2 · · ·+ am

m

as am − ai ≥ 0 for all i = 1, · · · ,m− 1 and therefore (m− 1)am − a1 − a2 − · · · − am−1 ≥ 0 giving the

above equality.

2. Suppose that ai < 0 for some i and aj ≥ 0 for some j. In other words, the decomposition contains

line bundles of both negative and non-negative degree. Reorder the index as necessary so that am ≤

am−1 ≤ · · · ≤ an+1 ≤ 0 ≤ an ≤ an−1 ≤ · · · ≤ a1. Consider the subundle U ∼= O (a1) ⊕ · · · ⊕ O (an) of

E. Then we observe that
a1 + · · ·+ an

n
≥ a1 + a2 · · ·+ am

m
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as n < m and therefore (m− n)a1 + · · ·+ (m− n)an − nan+1 − · · · − nam ≥ 0.

3. Suppose that ai ≥ 0 for all i = 1, · · · ,m. Reorder the index as necessary so that a1 ≤ a2 ≤ · · · ≤ am.

Consider the subbundle U ∼= O (am) of E. Then we observe that

am
1
≥ a1 + a2 · · ·+ am

m

as am − ai ≥ 0 for all i = 1, · · · ,m− 1 and therefore (m− 1)am − a1 − a2 − · · · − am−1 ≥ 0 giving the

above equality.

Thus, we see that on X = P1 there exist only semistable bundles of rank m ≥ 2 which occur precisely

when a1 = a1 = · · · = am. Of course when m = 1, E is a line bundle and as there are no nontrivial proper

subbundles E would be trivially stable by definition. Although Theorem 3.4.5 says that there are no stable

higher rank bundles on P1 we feel it is important to note that this is not a general phenomenon. In fact,

for most Riemann surfaces it is indeed very easy to find examples of higher rank stable holomorphic vector

bundles. We now wish to generalize this notion of stability to twisted quiver representations in the category

of bundles on X as presented in [13].
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4 Stability Conditions for Twisted Quiver

Representations

The primary goal of this chapter is to define a notion of stability for twisted quiver representations on P1

and give interpretations of this stability in terms of linear programs. We begin with a discussion motivating

a suitable definition of stability for these representations and follow this discussion with a formal definition

and several examples. Next, we introduce some induced ordinary quiver representations which arise naturally

when considering twisted quiver representations of bundles. We then present several standard theorems which

characterise stability, with particular focus on connected graphs. Lastly, we end this chapter by interpreting

stability conditions for general quiver representations of type (2, 1) and (2, 2) on P1 and give interpretations

of this stability in terms of linear programs which we then use to find implications for stability in terms of

the aforementioned induced ordinary quiver representations.

4.1 Twisted Quiver Representations and Stability

The origin of the study of twisted bundles and their associated twisted quiver representations can be traced

to investigations into the topological structure of the moduli space of Higgs bundles, as surveyed for instance

in [13]. Twisted quiver representations have become a rich field of mathematical research independent of

these underlying motivations, as exhibited in [3] and later works.

To begin, let X be an algebraic variety. We will restrict our attention to those varieties which are non-

singular, connected and projective algebraic curves over C. Equivalently, we will want X to be a smooth,

connected, compact Riemann surface. We say that a vector bundle F over X is “twisted” by a line bundle

L when tensored by L, or F ⊗ L. Suppose then that E and F are vector bundles over X. If φ : E → F ⊗ L

is a map of vector bundles we also say that the map φ is twisted by L. We often refer to φ as a length 2

holomorphic chain, for reasons that shall become apparent.

This twisting action is a key notion which allows us to view maps of vector bundles as quiver representa-

tions in an enhanced category of bundles on X. Recall that a linear map from a vector space V to a vector

space W can be viewed as a representation of the A2 quiver with nodes labelled m and n, where m = dim

V and n = dim W . This map is an element of Hom(V,W ), which is the same as Hom(V ⊗W ∗, k), where

k is the field. But V ⊗W ∗ is an abstract vector space while k is k1. In other words, we did not write V

as km and W as kn (by choosing a basis). To keep everything at the same level of abstraction, one can
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write Hom(V ⊗W ∗, L) where L is a 1-dimensional k-vector space (isomorphic to k when we take a basis

element). Generalizing to vector bundles on X, a representation in this larger category should be a map

in Hom(E ⊗ F ∗, L), where E and F are rank m and n bundles, respectively, and L is a bundle of rank 1.

Equivalently, this is a map E → F ⊗L. The twisting line bundle L naturally appears by generalizing the idea

of taking an abstract vector space L instead of k in the ordinary quiver example. To formalize this category,

we take morphisms from E to F to be graded by tensor powers of L. This formalization will not be used

explicitly, and so we do not pursue it here. Our notion of stability of twisted quiver representations in the

category of bundles is defined on the tuple of data (E,F, L, φ) as follows.

Definition 4.1.1. Consider a representation (E,F, L, φ) as introduced above and the map of vector bundles

Φ : E ⊕ F → (E ⊕ F ) ⊗ L given by Φ =

0 0

φ 0

. We say that the tuple (E,F, L, φ) is stable if for each

subbundle 0 ( U ( E ⊕ F such that Φ (U) ⊆ U ⊗ L we have degU
rkU < degE⊕F

rkE⊕F . We say that the tuple is

semistable if degU
rkU ≤

degE⊕F
rkE⊕F .

Informally, Definition 4.1.1 says that a tuple is stable if the slope condition holds for all invariant subspaces

of Φ. Stability conditions of twisted quiver representations in the category of bundles over X = P1 are of

primary interest to us. The motivation for this particular case comes from work on the moduli spaces of

Higgs bundles [11] and from a refinement of this work to argyle quivers [12]. Note that argyle quivers

are An quivers, with particular labels, for n arbitrarily large. Representations of these quivers consist of

a collection of vector bundles and twisted maps φi linking pairs of them in sequence; hence the “chain”

terminology mentioned earlier. Note furthermore our definition of stability is specific to the A2 case, but can

be generalized accordingly to the An situation.

Example 4.1.2. Let X = P1, E = O(n), F = O(−1), and L = O(n+ 1). So φ : E → F ⊗ L and therefore

φ : O(n)→ O(n) so that φ ∈ Hom (O(n),O(n)) . We want to determine the conditions on φ for the tuple to

become stable. We proceed by cases.

1. Suppose φ = 0 so that Φ =

0 0

0 0

. Consider the subbundle E of E = E⊕F . Then Φ (E) = 0 ⊆ E⊗L

but degE
rkE = n

1 = n > n−1
2 = degE

rkE . Thus, the tuple is unstable in this case.

2. Suppose φ 6= 0 so that Φ =

0 0

φ 0

. It is easy to see that E is not invariant since Φ (E) =

 0

φ(E)

 ⊆
F ⊗ L * E ⊗ L. However, we see that Φ (F ) = 0 ⊆ E ⊗ L and that degF

rkF = −1
1 = −1 < n−1

2 = degE
rkE if

and only if n ≥ 0. Thus, we see that the tuple will have stability under the conditions that φ 6= 0 and

n ≥ 0.

♦

40



We also want to consider situations where E and F are of higher rank. When X = P1, the Birkhoff-

Grothendieck theorem gives decompositions E = O(a1)⊕O(a2)⊕· · ·⊕O(an) and F = O(b1)⊕O(b2)⊕· · ·⊕

O(bm), and so φ can be represented by an n×m matrix

φ =


φ11 φ12 · · · φ1m

φ21
. . .

... φ2m

...
...

. . .
...

φn1 φn2 · · · φnm

 .

If L = O (t), then φij ∈ Hom (O (ai) ,O (bj)⊗O (t)) ∼= H0 (O (−ai)⊗ (O (bj)⊗O (t))) and therefore

away from ∞, φij is just a complex polynomial of degree bj + t− ai. But this representation of φ as a linear

transformation means the data (E,F, L, φ) can simply be viewed as an “expanded” A2 quiver in which the

nodes represented by E and F can be replaced by a collection of n and m nodes, respectively, one for each

line bundle in each decomposition. Visually, this quiver is a labelled bipartite graph with two columns of n

and m vertices, respectively, constructed by viewing φij as an adjacency matrix and the labels given by ai

or bj respectively.

Example 4.1.3. Suppose E = O(3)⊕O(7)⊕O(4), F = O, L = O(−1) and

φ =
[
φ11 φ12 φ13

]
.

Thus, we have the bipartite graph:
•
3

•
7

•
−1
.

•
4

Equivalently, we have

•
7

•
−1

•
3

•
4
.

Thus, we see that this quiver resulting from expanding the initial A2 quiver has the same D4 type quiver

structure we studied extensively in our earlier chapter on representations of quivers.
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♦

4.2 Induced Ordinary Quiver Representations

Consider again the tuple of data (E,F, L, φ). This tuple generates several induced ordinary quiver represen-

tations which we will continue to explore throughout this chapter. Recall that we have a natural commutative

diagram

E F ⊗ L

X.

πE

φ

πf⊗πL

1. Consider the natural restriction to a point p ∈ X of the map φ. This restriction of φ yields

Crk(E) ∼= E Crk(F ) ⊗ C ∼= F ⊗ L ∼= Crk(F )

{p}.

πE

φ|p

πf⊗πL

In other words, for each p ∈ X we a have a natural induced quiver representation

•
Crk(E)

•
Crk(F )

.

Of course, this quiver representation makes sense for all maps φ regardless of stability. A natural

question which we wish to explore is how the notion of stability translates to conditions on this induced

quiver representation.

2. As φ : E → F ⊗ L is a map vector bundles, we have a induced map of global sections

φ̃ : H0 (X,E)→ H0 (X,F ⊗ L) .

When X = P1, we have already seen that H0 (X,E) ∼= Cn and H0 (X,F ⊗ L) ∼= Cm for some m,n ∈ N.

Thus, we see φ induces a quiver representation Cn → Cm. Again, the natural question that arises is

how stability is manifested in this induced quiver representation.

Example 4.2.1. Consider again Example 4.1.2. We will examine each of the two induced quiver represen-

tations.

1. We have that φ ∈ Hom (O(n),O(n)) = H0
(
P1,O(−n)⊗O(n)

)
= H0

(
P1,O

)
where O is the trivial

bundle. Thus, we see that φ is constant and then so to is φp. In this case stability gives no additional

information about the induced quiver.
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2. We have that φ induces a quiver φ̃ : H0 (X,O(n)) ∼= Cn+1 → H0 (X,O(n)) ∼= Cn+1 so that φ̃ is a

endomorphism of Cn+1. The stability condition that φ 6= 0 is manifested in the induced quiver as

requiring φ̃ to have positive rank.

♦

4.3 Argyle Quivers

Our primary goal for this section is prove Theorem 4.3.1 and examine its implications for the induced

quivers we introduced in the previous section. Theorem 4.3.1 tries to classify stability for a general type

(2, 1) quiver over P1 using linear programming. This type of quiver falls into a family of quivers known as

argyle quivers. Argyle quivers are of the form (n, 1) for the A2 case or more generally (n1, 1, n2, 1, · · · , nj , 1)

for longer holomorphic chains of quivers, where each element of the ordered list specifies the rank of the

corresponding bundle in the chain. The implications for stability for arglye quivers where first explored by

Rayan and Sundbo [16].

Theorem 4.3.1 (General (2,1) case). Consider the map

φ : O (a)⊕O (b)→ O (−1)⊗O (t)

Where φ = (φ1, φ2) is given by φ1 : O (a) → O (t− 1) , φ2 : O (b) → O (t− 1) and E = O (a) ⊕ O (b),

F = O (−1) and L = O (t) where a, b ∈ Z and t > 0. If the tuple (E,F, L, φ) is stable then φ1 6= 0, φ2 6= 0

and the following system of equations is satisfied.

−a− b− 2 < 0

a− 2b− 1 < 0

b− 2a− 1 < 0

2a+ 2b− 3t+ 4 < 0.

Proof. If E = E⊕F , then to determine the stability conditions for φ we need to consider the map Φ : E→ E⊗L

given by Φ =


0 0 0

0 0 0

φ1 φ2 0

 and check the slope condition for invariant subbundles observing that

degE
rkE

=
a+ b− 1

3
.

We proceed by cases.
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1. For case I we complete full calculations, although some may not be strictly necessary, in order for the

reader to get a taste for the computations. Suppose φ1 = φ2 = 0, in which case Φ = 0. We consider

maximal subbundles of E to see if they are invariant and gather conditions for stability.

(a) Consider the fact that Φ (E) = 0 ⊆ E ⊗ L. Then in order for E to satisfy the slope condition we

require

degE

rkE
=
a+ b− 1

3
<
a+ b− 1

3

which is only satisfied when a+ b < −2.

(b) Next, we see Φ (F ) = 0 ⊆ F ⊗ L. Then in order for F to satisfy the slope condition we require

degF

rkF
=
−1

1
<
a+ b− 1

3

which is only satisfied when a+ b > −2.

(c) If U1 = O (a) ⊕ 0 ⊕O (−1), then Φ (U1) = 0 ⊆ U1 ⊗ L. Then in order for U1 to satisfy the slope

condition we require

degU1

rkU1
=
a− 1

2
<
a+ b− 1

3

which is only satisfied when a− 2b− 1 < 0.

(d) If U2 = 0 ⊕O (b) ⊕O (−1), then Φ (U2) = 0 ⊆ U2 ⊗ L. Then in order for U2 to satisfy the slope

condition we require

degU2

rkU2
=
b− 1

2
<
a+ b− 1

3

which is only satisfied when b− 2a− 1 < 0.

(e) If U3 = O (a)⊕0⊕0, then Φ (U3) = 0 ⊆ U3⊗L. Then in order for U3 to satisfy the slope condition

we require

degU3

rkU3
=
a

1
<
a+ b− 1

3

which is only satisfied when 2a− b+ 1 < 0.

(f) If U4 = 0⊕O (b)⊕0, then Φ (U4) = 0 ⊆ U4⊗L. Then in order for U4 to satisfy the slope condition

we require

degU4

rkU4
=
b

1
<
a+ b− 1

3

which is only satisfied when 2b− a+ 1 < 0.

Thus, stability requires a solution to the following linear program.
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a+ b+ 2 < 0

−a− b− 2 < 0

a− 2b− 1 < 0

b− 2a− 1 < 0

2a− b+ 1 < 0

2b− a+ 1 < 0.

However, no such solution exists.For completeness, we note that φ 6= 0 and a = b = −1 result in

a semistable but not stable outcome.

2. Without loss of generality, suppose φ1 6= 0 and φ2 = 0, in which case Φ =


0 0 0

0 0 0

φ1 0 0

. We consider

maximal subbundles of E to see if they are invariant and gather conditions for stability.

(a) If U4 = 0⊕O (b)⊕0, then Φ (U4) = 0 ⊆ U4⊗L. Then in order for U4 to satisfy the slope condition

we require
degU4

rkU4
=
b

1
<
a+ b− 1

3

which is only satisfied when 2b− a+ 1 < 0.

(b) If U1 = O (a) ⊕ 0 ⊕O (−1), then Φ (U1) = 0 ⊆ U1 ⊗ L. Then in order for U1 to satisfy the slope

condition we require
degU1

rkU1
=
a− 1

2
<
a+ b− 1

3

which is only satisfied when a− 2b− 1 < 0.

Thus, stability requires a solution to the following linear program.

a− 2b− 1 < 0

2b− a+ 1 < 0

but no such solution exists. Again, for completeness, we note that φ = 0 and a = b = −1 results

in a semistable representation in this case.

3. Lastly, suppose φ1 6= 0, φ2 6= 0, and Φ =


0 0 0

0 0 0

φ1 φ2 0

. We consider the four (maximal) invariant

subbundles of E and gather conditions for stability.
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(a) We have that Φ (F ) = 0 ⊆ F ⊗ L. Then in order for F to satisfy the slope condition we require

degF

rkF
=
−1

1
<
a+ b− 1

3

which is only satisfied when a+ b > −2.

(b) If U1 = O (a)⊕ 0⊕O (−1), then Φ (U1) =


0

0

φ1(a)

 ⊆ U1⊗L as φ1 (O (a)) ⊆ F ⊗L. Then in order

for U1 to satisfy the slope condition we require

degU1

rkU1
=
a− 1

2
<
a+ b− 1

3

which is only satisfied when a− 2b− 1 < 0.

(c) If U2 = 0⊕O (b)⊕O (−1), then Φ (U2) =


0

0

φ2(b)

 ⊆ U1⊗L as φ2 (O (b)) ⊆ F ⊗L. Then in order

for U2 to satisfy the slope condition we require

degU2

rkU2
=
b− 1

2
<
a+ b− 1

3

which is only satisfied when b− 2a− 1 < 0.

(d) Of course, H = kerφ gives rise to an invariant bundle as Φ (H) = 0 ⊆ F ⊗ L. As φ is a map from

a bundle of rank 2 to one of rank 1 we know it must be the case that rk(H) = 1. We now need to

determine the degree of H. To do this, consider the short exact sequence

0 H E F ⊗ L 0,1 φ

where 1 is the injection of H as a subbundle. Then degH = degE−deg (F ⊗ L) = a+b− (t−1) =

a+ b− t+ 1. So in order for H to satisfy the slope condition we require

degH

rkH
=
a+ b− t+ 1

1
<
a+ b− 1

3

which is only satisfied when 2a+ 2b− 3t+ 4 < 0.

Thus, stability requires a solution to the following linear program.

−a− b− 2 < 0

a− 2b− 1 < 0

b− 2a− 1 < 0

2a+ 2b− 3t+ 4 < 0
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which has many solutions depending on our choice of t > 0. Python code has been written using

Google’s OR-tools to provide solutions to this system and is given in Appendix A.

Let us examine the induced ordinary quiver representations of the general (2,1) case using the results

of Theorem 4.3.1. Consider first the induced map of global sections φ̃ : H0 (X,E) → H0 (X,F ⊗ L) . This

induced map φ̃ corresponds to the ordinary quiver representation

•
Ca+b+2

•
Ct.

An important consequence of the linear system presented in Theorem 4.3.1 is that it implies a ≥ 0 and

b ≥ 0. Consider then the last inequality in the theorem given by 2a + 2b − 3t + 4 < 0. Manipulating this

inequality gives t > 2
3 (a+ b+ 2) , and so stability implies that φ̃ can at most drop rank by a factor of two

thirds. Thus, in the (2,1) case stability is manifested in this induced quiver as a condition on the maximum

rank of the kernel of φ̃.

Next, let us consider the quiver induced by the natural restriction of φ to a point p ∈ P1. Then

φ ∈ Hom (O (a)⊕O (b) ,O (t− 1)) ∼= H0
(
P1, (O (−a)⊕O (−b))⊗O (t− 1)

)
∼= H0

(
P1,O (t− a− 1)⊕O (t− b− 1)

)
.

Away from ∞, φ looks like a pair of polynomials (f1, f2) where f1 is of degree t− a− 1 and f2 is of degree

t− b−1. Consider the special case where a = b. Then, in this case, the inequality 2a+ 2b−3t+ 4 < 0 implies

a+ 1 < 3
4 t but then a+ 1 < 3

4 t < t as t > 0. So t− a− 1 > 0 which means that f1 and f2 both have positive

degree. Thus, in this quiver, when a = b, stability is manifested in the condition that f1 and f2 both have

positive degree.

4.4 Properties of Stability of Twisted Quiver Representations

In Theorem 4.3.1 we studied the general (2,1) problem. Our primary objective was to determine which labelled

quivers admit stable twisted representations. Thus, a natural next step is to develop some characterizations

of stability in addition to the direct slope condition given in Definition 4.1.1.

Proposition 4.4.1. If a representation (E,F, L, φ) is stable, then rkF degE − rkE degF > 0.

Proof. By construction, F is always an invariant subbundle of Φ. Thus, as (E,F, L, φ) is stable we must have

degF
rkF < degE+F

rkE+F which is easily manipulated to the desired inequality.

One of the particularly interesting observations of Proposition 4.4.1 is that E = F results in instability.
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Theorem 4.4.2. A representation (E,F, L, φ) is stable if and only its dual (E∗, F ∗, L∗, φH) is stable, where

φ∗ : F ∗ → E∗ ⊗ L∗ is the conjugate transpose of φ.

Proof. We proceed by standard arguments. First, we need to show that an invariant stable subbundle of

E = E ⊕ F is also an invariant subundle of E∗ = E∗ ⊕ F ∗. Thus, let U be a φ invariant subbundle of E.

Thus, we can construct the exact sequence

0 U E E
U 01 ψ

where ψ is just the canonical map into the moduli space, and again 1 is the subbundle injection. Using this

exact sequence and Φ, we can form a sequence of commutative squares:

0 U E E
U 0

0 U ⊗ L E⊗ L E
U ⊗ L 0

1 ψ

Φ ΨΦ

where Ψ is the induced map constructed from Φ that acts on the moduli space E
U . Dualizing the above

sequence of commutative squares gives us a dual sequence of commutative squares

0 U∗ ⊗ L E∗ ⊗ L
( E
U

)∗ ⊗ L 0

0 U∗ E∗
( E
U

)∗
0

Φ∗ Ψ∗Φ∗

This shows a natural correspondence between U and
( E
U

)∗
= E∗

U∗ . In other words, if U is invariant under Φ

then E∗
U∗ is also invariant under Φ∗. All that remains to show is that stability of one of these bundles implies

stability of the other. Thus, suppose that U is stable subbundle of E. Then,

degU

rk U
<

degE
rk E

⇔ rk EdegU < rk U degE

⇔ rk EdegU − rk EdegE < rk U degE− rk EdegE

⇔ (degU − degE) rk E < − degE (rk E− rk U)

⇔ degU − degE
rk E− rk U

< −degE
rk E

⇔ degE∗ − degU∗

rk E∗ − rk U∗
<

degE∗

rk E∗

⇔ deg (E∗/U∗)
rk (E∗/U∗)

<
degE∗

rk E∗

48



which completes the proof.

Theorem 4.4.3. Let X = P1 and suppose E and F are vector bundles over X. If a representation (E,F, L, φ)

is stable, then it is simple, meaning that it does not decompose into a direct sum of proper, nonzero subobjects.

Equivalently, if (E,F, L, φ) is stable then the associated labelled bipartite graph to the adjacency matrix φ is

connected.

Proof. We proceed by standard arguments. Thus, suppose that the quiver Q associated to the stable tuple

(E,F, L, φ) decomposes into two non-trivial quivers Q1 and Q2. These quivers then give rise to tuples

(E1, F1, L, φ1) and (E2, F2, L, φ2). If degEi+degFi = di and rkEi+rkFi = ri then d1+d2 = degE+degF = d

and rkE + rkF = r. Now as (E,F, L, φ) is stable, any proper invariant subbundle of E ⊕ F meets the slope

condition. But Ei⊕Fi is a proper subbundle and as the path from Ei to Fi is independent this then implies

Ei⊕Fi will be invariant under Φ (i.e it will map Ei into Fi only). Thus, Ei⊕Fi also meets the slope condition

and therefore di
ri
< d

r . But d
r = d1+d2

r1+r2
. Therefore d1

r1
< d1+d2

r1+r2
which implies d1r2 < d2r1. But d2

r2
< d1+d2

r1+r2

implies d2r1 < d1r2. Combining the previous two inequalities gives a contradiction.

In Theorem 4.3.1 we classified stability of the general (2, 1) quiver by studying three primary cases.

Applying Theorem 4.4.3 to this example shows that in actuality we needed to only consider a single case for

stability, and the conditions for that case fully define stability. It is important to see that Theorem 4.4.3

is really a structure theorem, and says something about stability in terms of the general structure of the

bipartite graph associated with the representation under consideration.

If Mnm is the set of all possible φ =


φ11 φ12 · · · φ1m

φ21
. . .

... φ2m

...
...

. . .
...

φn1 φn2 · · · φnm

 for a bundle E of rank n to a bundle F of

rank m, then the order of the set of possible underlying graphs is

|Mnm |=
nm∑
k=0

(
nm

k

)
,

which is the number of labelled bipartite graphs with n + m and type (n,m). On the other hand, the

number of connected bipartite graphs with j nodes is given in [19]. However, this sequence includes all

decompositions and is unlabelled. We will only be interested in one specific decomposition (n,m) of the j

nodes depending on the rank of E and F respectively. The fact that we consider a sequence constructed by

counting unlabelled connected bipartite graphs is perhaps not as daunting as it may appear, since we posses

the adjacency matrix φ and unlabelled graphs still count the number of edges. The connected unlabelled

graphs are each associated to a family of labelled cases as we will soon see.
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4.5 Non-Argyle Quivers

In this section our primary goal is to prove Theorem 4.5.1 which involves a non-argyle type (2,2) quiver. These

quivers are much more complex in nature primarily as there exists many more possibilities for embedding

invariant subbundles in E, F, and E ⊕ F.

Theorem 4.5.1 (General (2,2) case). Consider the map

φ : O (a)⊕O (b)→ (O (c)⊕O)⊗O (t)

where φ =

φ11 φ12

φ21 φ22

 , E = O (a)⊕O (b) , F = O (c)⊕O, L = O (t) , a, b, c ∈ Z, and t > 0. If (E,F, L, φ)

is stable, then at most one of the φij is zero. If φij = 0 for some i, j ∈ N then the following linear program

is satisfied:

a+ b− 3c > 0

a+ b+ c > 0

a+ b− c > 0

−a+ b− c > 0

−a+ 3b− c > 0

3a− b− c > 0.

If φij 6= 0 for all i, j ∈ N, then the following linear program is satisfied:

a+ b− 3c > 0

a+ b+ c > 0

a+ b− c > 0

−a+ 3b− c > 0

3a− b− c > 0.

Proof. If E = E⊕F , then to determine the stability conditions for φ we need to consider the map Φ : E→ E⊗L

given by

Φ =


0 0 0 0

0 0 0 0

φ11 φ12 0 0

φ21 φ22 0 0


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and check the slope condition for invariant subbundles, observing that

degE
rkE

=
a+ b+ c

4
.

Our goal is to again proceed by cases observing that we have a total of
∑4
k=0

(
4
k

)
= 16 quiver shapes.

Importantly, by Theorem 4.4.3 we see immediately that
(

4
0

)
+
(

4
1

)
+ 4 = 11 of these cases can discarded

immediately as admitting no stable representations. We reason as follows. There are exactly three non

labelled connected bipartite graphs with 4 nodes [19]:

• • • • •

1) • • 2) 3)

• • • • •
Of these three graphs only two, graphs 2 and 3, are of type (2,2). Thus, the first may be discarded.

Graph 2 has a total of three edges, and thus is really represented by a family of four labelled cases as we will

illustrate below:

1.
•
a

•
c

•
a

•
c

•
b

•
0

•
b

•
0

2.
•
a

•
c

•
b

•
c

•
b

•
0

•
a

•
0

3.
•
a

•
c

•
c

•
a

•
b

•
0

•
0

•
b

4.
•
a

•
c

•
c

•
b

•
b

•
0

•
0

•
a
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As a, b, and c are arbitrary it should now be apparent that although their are 4 labelled graphs of this

type, (in)stability in any one of the cases implies (in)stability in all. Thus, let us simply consider case 1

whose adjacency matrix is given by φ =

φ11 φ12

0 φ22

 and therefore

Φ =


0 0 0 0

0 0 0 0

φ11 φ12 0 0

0 φ22 0 0

 .
Let us now examine the invariant bundles in this case and move towards classifying stability.

• If U1 = O (c) then Φ (U1) = 0 ⊆ U1⊗L. Thus, in order for U1 to satisfy the slope condition we require

degU1

rkU1
=
c

1
<
a+ b+ c

4

which is only satisfied when a+ b− 3c > 0.

• If U2 = O then Φ (U2) = 0 ⊆ U2 ⊗ L. Thus, in order for U2 to satisfy the slope condition we require

degU2

rkU2
=

0

1
<
a+ b+ c

4

which is only satisfied when a+ b+ c > 0.

• If U3 = F then Φ (U3) = 0 ⊆ U3 ⊗ L. Then in order for U3 to satisfy the slope condition we require

degU3

rkU3
=
c+ 0

2
<
a+ b+ c

4

which is only satisfied when a+ b− c > 0.

• If U4 = O (a) + O (c) then Φ (U4) =⊆ U4 ⊗ L as φ11 maps O (a) → O (c) ⊗ L . Thus, in order for U4

to satisfy the slope condition we require

degU4

rkU4
=
a+ c

2
<
a+ b+ c

4

which is only satisfied when −a+ b− c > 0.

• If U5 = O (a) + F then Φ (U5) =⊆ U5 ⊗ L as φ11 maps O (a) → O (c) ⊗ L . Thus, in order for U5 to

satisfy the slope condition we require

degU5

rkU5
=
a+ c+ 0

3
<
a+ b+ c

4

which is only satisfied when −a+ 3b− c > 0.

• If U6 = O (b) +F then Φ (U6) =⊆ U6⊗L as φ12 maps O (b)→ O (c)⊗L and φ22 maps O (b)→ O⊗L.

Thus, in order for U6 to satisfy the slope condition we require

degU6

rkU6
=
b+ c+ 0

3
<
a+ b+ c

4

which is only satisfied when 3a− b− c > 0.
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It is important to recall that φ : E → F is mapping a rank two bundle into a rank two bundle. Thus,

φ11 6= 0 and φ22 6= 0 implies φ embeds a subbundle into both O(c) and O. However, there still exists the

possibility for an embedded subbundle in the kernel of E⊕F which could be of either rank zero or rank one.

Regardless of this ambiguity, it is clear that the following linear system is satisfied:

a+ b− 3c > 0

a+ b+ c > 0

a+ b− c > 0

−a+ b− c > 0

−a+ 3b− c > 0

3a− b− c > 0.

There are of course many solutions to this system. Python code has been written using Google’s OR-tools

to provide solutions to this system and is given in Appendix B.

We now wish to study the representation with adjacency matrix φ =

φ11 φ12

φ21 φ22

 corresponding to

•
a

•
c

•
b

•
0

It is perhaps useful to observe that because this bipartite graph is complete and symmetric there is exactly

one labelled and one non-labelled graph of this shape. This of course corresponds directly to the fact there

is only one 2 by 2 adjacency matrix with four non zero entries.

Let us now examine the invariant bundles in this case and move towards classifying stability.

• If U1 = O (c) then Φ (U1) = 0 ⊆ U1 ⊗L. Thus, in order for U1 to satisfy the slope condition we require

degU1

rkU1
=
c

1
<
a+ b+ c

4

which is only satisfied when a+ b− 3c > 0.

• If U2 = O then Φ (U2) = 0 ⊆ U2 ⊗ L. Thus, in order for U2 to satisfy the slope condition we require

degU2

rkU2
=

0

1
<
a+ b+ c

4

which is only satisfied when a+ b+ c > 0.
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• If U3 = F then Φ (U3) = 0 ⊆ U3 ⊗ L. Then in order for U3 to satisfy the slope condition we require

degU3

rkU3
=
c+ 0

2
<
a+ b+ c

4

which is only satisfied when a+ b− c > 0.

• If U4 = O (a) + F then Φ (U4) =⊆ U4 ⊗ L as φ11 maps O (a) → O (c) ⊗ L. Thus, in order for U4 to

satisfy the slope condition we require

degU5

rkU5
=
a+ c+ 0

3
<
a+ b+ c

4

which is only satisfied when −a+ 3b− c > 0.

• If U5 = O (b) +F then Φ (U5) =⊆ U5⊗L as φ12 maps O (b)→ O (c)⊗L and φ22 maps O (b)→ O⊗L.

Thus, in order for U5 to satisfy the slope condition we require

degU6

rkU6
=
b+ c+ 0

3
<
a+ b+ c

4

which is only satisfied when 3a− b− c > 0.

Then by the same argument above, our linear system is given by:

a+ b− 3c > 0

a+ b+ c > 0

a+ b− c > 0

−a+ 3b− c > 0

3a− b− c > 0.

There are again many solutions to this system. The code of Appendix B applies to this system, too.

Let us examine the induced ordinary quivers of the general (2,2) case using the results of Theorem 4.5.1.

Consider first the induced map of global sections φ̃ : H0 (X,E) → H0 (X,F ⊗ L) . This induced map φ̃

corresponds to the quiver

•
Ca+b+2

•
Cc+2(t+1).

Recall that in the (2,1) case we where able to use the stability condition found in Theorem 4.3.1 containing t

to provide a meaningful restraint on the kernel of φ̃. But Theorem 4.5.1 has no conditions on t and therefore

is quite different in structure to the system presented in Theorem 4.3.1. Fortunately, the system(s) found in

Theorem 4.5.1 does still say something about φ̃. In both systems we have that a+ b− c > 0 or equivalently
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a+b+2 > c+2. An important consequence of the linear system presented in Theorem 4.5.1 is that it implies

a ≥ 0 and b ≥ 0. Therefore we must have a+ b+ 2 ≥ c+ 3. When t = 1, we have the quiver

•
Ca+b+2

•
Cc+4

and therefore as a+ b+ 2 ≥ c+ 3 we see that φ̃ can increase in rank by at most one. In general we see this

stability condition is manifested as φ̃ increasing rank by at most 2t− 1.

Next, let us consider the quiver induced by the natural restriction of φ to a point p ∈ P1. Then

φ ∈ Hom (O (a)⊕O (b) ,O (c+ t)⊕O (t)) ∼= H0
(
P1, (O (a)⊕O (b))⊗ (O (c+ t)⊕O (t))

)
∼= H0

(
P1, (O (a+ c+ t)⊕O (a+ t))⊕ (O (b+ c+ t)⊕O (b+ t))

)

So φ locally looks like a tuple of polynomials (f1, f2, f3, f4) where f1 is of degree a+c+ t, f2 is of degree a+ t,

f3 is of degree b+ c+ t, and f4 is of degree b+ t. As, the linear program in Theorem 4.5.1 has no conditions

on t it is difficult in this case to say anything concrete about this induced quiver other then stability requires

f2 and f4 to both have positive degree.
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5 Future Directions

We dedicate the final chapter of this thesis to speculating on future directions of this research. We provide

a list of both some immediate and longer term objectives and ideas that warrant future study.

1. The ultimate culmination of this research would be a full classification of the stability conditions for a

twisted representation of a type (n,m) quiver over X = P1 including understanding how the stability

conditions are manifested in the induced quiver representations. If this can be achieved then, as

motivated by [15], a natural next step would be to extend these results to more generalized holomorphic

chains of the form (n1,m, n2,m, · · · , nj ,m).

2. Apart from the fact that Theorem 4.4.3 is necessary but insufficient for characterizing stability, it is clear

that the techniques employed in this thesis do not scale well with the general problem. Indeed, as an

example, there are 4032 unlabelled connected bipartite graphs with 10 nodes [19]. It would be exhaustive

to develop unique linear programs for each of these graphs. We speculate that to classify stability

conditions completely for a type (m,n) quiver, a much more sophisticated algebraic characterization of

stability will need to be developed. In particular, it may an incomplete approach to only consider φ as

an adjacency matrix (and thus thinking about each entry as zero or nonzero), Instead, we may need to

classify these morphisms φ in a different manner. This is primarily due to the potential for embedded

bundles when E and F are both of higher rank. These embedded bundles will lead to conditions

for stability, but they cannot be observed directly by only considering the quiver representation of

the bundle. We note that promising motivic methods are developed in [2] for extracting topological

invariants of spaces of stable holomorphic chains and are worth investigating here.

3. An obtainable next step towards further understanding the general problem would be to study the

general (3, 2) case. Indeed, there are only 5 unlabelled connected bipartite graphs with 5 nodes of

which only three are of type (3, 2). Thus, only three linear programs would need to be developed

to study this case in general. Furthermore, this situation is advantageous, particularly in the case

corresponding to the complete bipartite graph, as in this case φ is guaranteed to drop rank allowing

us to have a condition on t. The stability conditions for the general (3, 2) quiver would be the first

example of a non-argyle representation that in certain cases must drop rank and thus should provide

great insight as to whether the results of the general (2, 1) quiver can be extended to more complex

cases. In particular, in both the (2, 1) and (2, 2) case we see that stability imposes restrictions on the

induced map of global sections φ̃. By studying the (3, 2) case we hope to understand better how exactly
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these conditions are manifested in order to develop a more general theorem.

4. It is not fully understood as to what role the path algebra plays in the stability of twisted quiver

representations. In particular, with the appropriate transformations, Theorem 4.4.3 guarantees that a

single connected path algebra must exist for each quiver admitting stable twisted representations. In

our work here, we have observed instances where the path algebra is not enough to determine stability.

This connects to the issue of embedded invariant subbundles that are not “read off” in a simple way from

the nodes of the graph, and to the inadequacy of a matrix representative for φ. Still, finer properties of

the path algebra may interact with stability. For the (2,2) case we examined earlier, it can be shown

that the three edge stable bundle has a non-cyclic path algebra. However, in the case of the 4 edge

or complete graph, it can be shown that this graph has a cyclic path algebra. We conjecture that the

characterizations of the path algebra will play an important role to further understand stability.
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Appendix A

Python Code for (2,1) Quiver on P1

from ortools.sat.python import cp_model

class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):

""" Print intermediate solutions ."""

def __init__(self , variables):

cp_model.CpSolverSolutionCallback.__init__(self)

self.__variables = variables

self.__solution_count = 0

def on_solution_callback(self):

self.__solution_count += 1

for v in self.__variables:

print(’%s=%i’ % (v, self.Value(v)), end=’ ’)

print()

def solution_count(self):

return self.__solution_count

def SearchForAllSolutionsSampleSat ():

""" Showcases calling the solver to search for all solutions."""

# Creates the model.

model = cp_model.CpModel ()

# Creates the variables .

num_vals = 200

a = model.NewIntVar(-200 , num_vals - 1, ’a’)

b = model.NewIntVar(-200 , num_vals - 1, ’b’)

#c = model. NewIntVar(-200 , num_vals - 1, ’c ’)

#t = model. NewIntVar(-200 , num_vals - 1, ’t ’)

# Creates the constraints .

model.Add(-a - b- 2 < 0)

model.Add(a - 2*b - 1 < 0)

model.Add(b - 2*a - 1 < 0)

#model.Add(2*a + 2*b - 3*t +4 < 0)

#model.Add(a < 0)

#model.Add(b < 0)

# Create a solver and solve.

solver = cp_model.CpSolver ()

solution_printer = VarArraySolutionPrinter([a, b])

status = solver.SearchForAllSolutions(model , solution_printer)

print(’Status = %s’ % solver.StatusName(status))

print(’Number of solutions found: %i’ % solution_printer.solution_count ())

SearchForAllSolutionsSampleSat ()
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Appendix B

Python Code for (2,2) Quiver on P1

from ortools.sat.python import cp_model

class VarArraySolutionPrinter(cp_model.CpSolverSolutionCallback):

""" Print intermediate solutions ."""

def __init__(self , variables):

cp_model.CpSolverSolutionCallback.__init__(self)

self.__variables = variables

self.__solution_count = 0

def on_solution_callback(self):

self.__solution_count += 1

for v in self.__variables:

print(’%s=%i’ % (v, self.Value(v)), end=’ ’)

print()

def solution_count(self):

return self.__solution_count

def SearchForAllSolutionsSampleSat ():

""" Showcases calling the solver to search for all solutions."""

# Creates the model.

model = cp_model.CpModel ()

# Creates the variables .

num_vals = 200

a = model.NewIntVar(-200 , num_vals - 1, ’a’)

b = model.NewIntVar(-200 , num_vals - 1, ’b’)

c = model.NewIntVar(-200 , num_vals - 1, ’c’)

#t = model. NewIntVar(-20 , num_vals - 1, ’t ’)

# Creates the constraints .

model.Add(a + b- 3*c > 0)

model.Add(a + b + c > 0)

model.Add(a + b - c > 0)

model.Add(-a + b - c > 0)

model.Add(-a + 3*b - c > 0)

model.Add(3*a - b - c > 0)

#model.Add(a < 0)

#model.Add(b < 0)

#model.Add(c < 0)

# Create a solver and solve.

solver = cp_model.CpSolver ()

solution_printer = VarArraySolutionPrinter([a, b, c])

status = solver.SearchForAllSolutions(model , solution_printer)

print(’Status = %s’ % solver.StatusName(status))

print(’Number of solutions found: %i’ % solution_printer.solution_count ())

SearchForAllSolutionsSampleSat ()
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