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Abstract

In real-time communications it is often vital that data arrive at its destination in a timely fashion.

Whether it is the user experience of online games, or the reliability of tele-surgery, a reliable, consistent and

predictable communications channel between source and destination is important. However, the Internet as

we know it was designed to ensure that data will arrive at the desired destination instead of being designed

for predictable, low-latency communication.

Data traveling from point to point on the Internet is comprised of smaller packages known as packets. As

these packets traverse the Internet, they encounter routers or similar devices that will often queue the packets

before sending them toward their destination. Queued packets introduces a delay that depends greatly on

the router configuration and the number of other packets that exist on the network. In times of high demand,

packets may be discarded by the router or even lost in transmission. Protocols exist that retransmit lost

packets, but these protocols introduce additional overhead and delays - costs that may be prohibitive in some

applications.

Being able to predict when packets may be delayed or lost could allow applications to compensate for

unreliable data channels. In this thesis I investigate the effects of cross traffic and router configuration on a

low bandwidth traffic stream such as that which is common in games. The experiments investigate the effects

of cross traffic packet size, bit-rate, inter-packet timing and protocol used. The experiments also investigate

router configurations including queue management type and the number of queues. These experiments are

compared to real-world data and a mitigation strategy, where n previous packets are bundled with each new

packet, is applied to both the simulated data and the real-world captures.

The experiments indicate that most of the parameters explored had an impact on the packet loss. However,

the real world data and simulated data differ and would require additional work to attempt to apply the

lessons learned to real world applications. The mitigation strategy appeared to work well, allowing 90% of

all runs to complete without data loss. However, the mitigation strategy was implemented analytically and

the actual implementation and testing has been left for future work.
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1 Introduction

1.1 Motivation

With the increased demand placed on networking infrastructure, it has become more important than ever

for network providers to provide acceptable Quality of Service (QoS) for their subscribers. Network oper-

ators often employ traffic shaping algorithms to attempt to ensure that subscribers maintain an acceptable

throughput level [41, 47]. Traffic shaping and the stochastic nature of current packet networks cause individ-

ual packet delivery times, or latency, to vary widely. Although achieving guaranteed end-to-end data transfer

rates is usually the primary concern for Internet Service Providers (ISP), achieving sufficient and consistent

end-to-end delivery time is important to some applications such as video games, media streaming and on-line

communications.

The variations in delivery time, or jitter, can often be ignored under normal situations. For time sensitive

applications such as distributed virtual environments [34, 63], media streaming [24], real-time communications

[59], gaming [5, 50] and time synchronization [39] small variations in delivery time have a larger overall affect

than latency and can lead to errors or poor user experience.

Network congestion can lead to packet loss that can increase the time it takes for data to be transferred

to the destination. In heavily utilized routers packets are dropped under certain conditions and according

to configured rules due to the inability to queue all incoming data. The effect of dropped packets depends

on the protocol and application but typically will introduce at least a Round Trip Time (RTT) delay from

the source to destination. The increased delay contributes to the variation in latency thus contributing to

degraded user experience.

Network stability and reliability has a large impact on the user experience of multiplayer games. Armitage

identifies First Person Shooters (FPS) and other similar reaction-based games as being primarily affected by

poor network conditions [3]. Armitage also suggests that sports and racing games can also be intolerant to

high latency, but their tolerance is largely dependent on the game.

For example, increased round trip time between players in a real-time strategy game can alter the perceived

positions of players in the game. This difference between game clients can be the difference between hitting

your target or being hit. The visual representations of other players in the game may vary slightly between

clients depending on how long it takes for new information to be disseminated to all clients. This means that

one client may register a shot they take as hitting their target, but would be forced to rewind time and replay

the event if the server had different positions for the players. Similarly, you may appear to have dodged an
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attack from another player but would become teleported back in order to replay the events as seen by the

server.

Similar effects can occur with interactive items in games. For example, opening or closing doors or viewing

the contents of chests. In these cases the client will typically perform the action preemptively assuming that

the current state of the player and the interactive item is correct. However, if confirmation from the server

indicates the current information such as player position or item state is incorrect, the game would be forced

to rewind the interactions, in some cases teleporting players back behind closed doors or causing items to

disappear from inventories.

Massively Multiplayer Online Role Playing Games (MMORPG) such as World Of Warcraft and Black

Desert Online have similar problems. One common solution is to eliminate real-time player to player inter-

actions as much as possible and either lock items to a specific player or provide each player with their own

copy of the item with which to interact. This allows gameplay to proceed relatively smoothly with a RTT as

high as a second [16]. However, some gameplay such as Player vs Player (PvP) combat and instances where

multiple players are engaging in Player vs Environment (PvE) can experience similar teleportation or missed

attacks as a result of other player’s interactions. MMORPGs often mitigate missed attacks by providing

players with Areas of Effect (AoE) and rules stating ranged attacks always hit their target. However, the

problem with out-of-date information is nearly impossible to eliminate.

Real Time Strategy (RTS) is another popular online game genre. RTS involves controlling many small

military and civilian units around a map in order to gain a strategic advantage over an opponent. One might

expect that this control over many small units would result in significant network traffic, but in reality the

network coordination for RTS games consists of packets on the order of tens of bytes at a frequency of 10

packets per second or fewer. Excessive latency can have an impact on the game; the result typically appears

only as a delay in the movement of troops and the construction of buildings. Some RTS games attempt to

overcome latency by reducing the number of packets sent and increasing the number of user actions into each

packet [56].

Racing games are also a genre of games that may suffer from increased latency due to packet loss [66].

However much work has been done in mitigating the affects of latency in racing games, such as predict-

ing player actions, time dilation, and dead reckoning [35]. However when such attempts fail, the players’

perception of the game state, such as car position and race position may differ.

In recent years, multiplayer games have become popular on mobile platforms utilizing 3G, LTE, and now

5G networks. However, the wireless medium can introduce additional instability into the network, increasing

packet loss, jitter, and latency [40]. Recent developments in cloud computing have started shifting gaming

to the cloud, with mobile devices (and computers) acting as thin clients rendering only a video stream and

transmitting periodic control updates. This cloud-based gaming is susceptible to degradation due to packet

loss and latency [29].

Disruptions in the timely transmission of data between devices is a significant cause of poor user experience
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in multiplayer games. While game play time varies greatly between games, players, and genres, it is important

to create an immersive and seamless experience for the player. It may not be possible to completely eliminate

the problem, but by reducing data loss on the network, reducing latency in data transmission, introducing

client side character movement prediction, or implementing similar techniques, it may be possible to provide

a positive user experience despite an unstable network. If the Mean Time Between Failures (MTBF) or

noticeable disruptions in game play is long enough, a player may be willing to forgive the occasional hiccup.

A better understanding of the influence of network congestion on game packet loss may enable earlier

network degradation recognition and in-game logic compensation. Analyzing packet loss over a variety of

network conditions would provide further insight into the feasibility of potential general or specific solutions

to the problem of packet loss in classes of network conditions. Machine Learning tools could be applied

to help predict network instability or packet loss to better aid in the packet loss mitigation One simplistic

mitigation strategy would be to retransmit every packet an adaptive number of times, so that the information

is received at a latency cost of a multiple of the game update interval (16 ms or 33 ms), which typically is

smaller than the round trip time. The RTT can vary between 30 and several hundred milliseconds depending

on the network, hardware/software configuration and physical distance from the server [57].

1.1.1 Networks

There are many different network technologies with differing characteristics that pose a challenge to un-

derstanding packet loss. Interference from other devices on the network or environmental conditions differ

greatly depending on the medium used to transmit signals. Different protocols are used to combat interfer-

ence depending on the transmission medium and standards used. Traffic shaping and policing take several

forms and can be configured according to corporate policy and therefore can differ greatly from one ISP to

another.

Cellular phone technologies are prone to wireless interference. To combat the interference, several tech-

niques are implemented on transmitters. One such technique, called Carrier Sense Multiple Access with

Collision Avoidance (CSMA/CA), detects if the channel is too noisy to transmit or is currently in use by

another transmitter and will wait increasingly longer random amounts of time if unable to transmit [61]. A

related technique, called Carrier Sense Multiple Access with Collision Detection (CSMA/CD), detects when

the data being transmitted collides with another transmission or has been obscured by noise; once detected

the transmitter will again wait a random amount of time, increasing with each failed attempt, before at-

tempting to transmit again [61]. The response to collisions or noise on the network can introduce significant

delay on busy or noisy links. Since the amount of delay before retransmission is randomly chosen, albeit with

known constraints, the overall delay increase is random and may be impossible to predict. CSMA/CD and

CSMA/CA will be discussed in greater detail in later sections.

Often, mobile networks will also divide data into smaller pieces that are then encoded with error detection

or error correction techniques [21]. Error correction allows the receiver to detect, and in many instances
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correct, transmission errors; this added layer of complexity adds computational time on both the transmitter

and receiver as well as increasing the total amount of data transmitted. While this time would generally be

constant for encoding, in the event of errors additional processing may be required to correct the data, thus

increasing the transmission time. In the event that the receiver is unable to correct the data, many mobile

protocols implement a variant of a method called Auto Retransmit reQuest (ARQ) [12] to request that data

be retransmitted. This retransmission can also cause increased delays that are difficult to model.

Wireless technologies such as WiFi, Bluetooth, and LTE suffer from interference between devices that

operate in the shared wireless spectrum allocated for communication. These technologies implement similar

protections against noisy links. Bluetooth and older WiFi networks operate on widely used unlicensed

frequencies that are even more prone to interference then cellular networks thus increasing the random

variation in delay. In prior work, Bluetooth is shown to have fewer random delays than WiFi but more than

cellular networks [22].

Physical links, like those comprising wired networks and the backbone of the Internet, do not suffer as

much from electrical interference or traffic from other nodes. Unlike WiFi and other wireless technologies,

physical links typically are shielded from external noise and are typically point-to-point networks, meaning

the only data transmitted is between two devices eliminating the possibility of data collision. Despite these

protections, physical networks still implement the same interference and traffic detection mechanisms. Cable

networks and some older Ethernet networks do have multiple clients on the same physical link so they will

occasionally collide and create additional delays thus increasing jitter.

Due to the complicated nature of wireless networks and the relatively low interference seen by wired

networks, this thesis will take the first step by using a wired network to simplify the simulation and analysis.

Future work would include expanding the simulation into larger more complicated networks including WiFi

and LTE.

1.1.2 Routers

Routers are used to direct traffic between networks but sometimes routers are required to fulfill other roles

such as traffic policing and traffic shaping. Traffic policing is the enforcement of rate limits determined by

ISP subscription tiers or corporate policy. Policing typically uses a token bucket or similar mechanism [31].

Token buckets allow short bursts of bandwidth, over the limit, after periods of inactivity. At a sustained

transfer rate that meets or exceeds the configured rate, packets will begin to be dropped depending on the

size of the incoming buffer. Traffic shaping and QoS attempt to prevent any one data stream from consuming

all the available bandwidth. Traffic shaping is typically accomplished by assigning data streams to packet

queues based on classification rules defined by the network administrator. Packets are then drawn out of

queues according to an algorithm known as a packet scheduler [61].

For this research, the generated application traffic is assumed to be from a game with a relatively low data

rate requirement. It is further assumed that the internet connection to the ISP is not saturated and therefore
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does not encounter traffic policing by the ISP. These assumptions remove one source of jitter from the

system, thus simplifying the analysis. While these assumptions should hold true under most circumstances,

it is possible that some games may transmit more data or the ISP link may be saturated with other traffic

during game play.

1.1.3 Evaluation Methodology

Due to the complexity of controlling real hardware, a simulation environment was developed using NS-3

[53] and The Click Modular Router [32]. The NS-3 network simulation software was selected because of

its popularity and large networking component library. Click, a software package that allows developers

to create custom router configurations, was selected because NS-3 does not include a configurable router

but does include integration with Click. With these packages, an environment was parameterized in which

attributes such as Link capacity, traffic rates, and router queueing algorithms to allow for simulation of a

vast number of network configurations and conditions.

1.2 Thesis Statement

Network games require real-time communications to maintain synchronization between clients [22]. Other

internet applications such as collaboration software [19], live media streaming [10], and teleoperation [51]

have also benefited from real-time communication technology. With the increased use of mobile devices as a

platform for these types of applications, the transmission characteristics of packets on wireless networks such

as WiFi and LTE have become an important topic. In many cases, game state updates are small packets

sent to clients at a fixed interval; for example, a 128 byte packet every 33ms or 17ms for frame rates of 30

and 60 frames per second respectively [13].

This thesis determines what factors in competing network traffic and bottleneck routers have the most

influence on low bandwidth game-traffic. Data is collected via a simulation environment, and an analysis

technique based on run-length encoding is developed and used to determine the impact of each of the pa-

rameters chosen to study which informs a mitigation technique. The work is then compared with real-world

data to test validity.

1.3 Outline

The rest of this thesis is laid out as follows. Chapter 2 covers the background and related work for modeling

and predicting loss. Chapter 3 describes the experimental configuration and experiments. Chapter 4 presents

results and analyses. Chapter 5 contains conclusions and future work.
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2 Background and Related Work

This chapter provides the background information and related work that demonstrates the need for

additional research. First, there is a brief discussion about the IP protocol used on the Internet focusing on

packet loss sources, most of which are outside application control. Next follows a discussion of several studies

investigating and identifying traffic shaping due to network policy. After that existing mitigation techniques

for packet loss and latency are discussed. Finishing off the chapter is a look at previous work relating to

packet loss prediction.

2.1 Data Transmission Overview

Packet networks, such as those supported by the IP network layer protocol, are complicated systems with

many discrete components. At the top layer of the Internet protocol architecture, the application communi-

cates using an Application Protocol Interface (API) to send blocks of data to the operating system directly

or to an intermediate library which then forwards the data to the operating system. The operating system

uses its network stack implementation to generate packets from the data provided by the application. These

packets are sent on the network through modems, routers, and switches until the packet finally reaches its

destination. At the destination, the packet is retrieved by the operating system’s network stack and the pay-

load is then forwarded to the application that processes the data. There are many complicating factors within

the Internet and subsystems that cause differing amounts of delay depending on environmental conditions.

The exchange of data between applications starts in the application; for games, this is generally during

the processing of game state and before the rendering of the actual frame. Scheduling when the application

sends the data depends on many factors including thread scheduling, and for games, the rendering frame rate.

The packet is not actually transmitted on the network when the application creates the packet; instead, the

application queues the data, along with meta-data such as the destination, with the operating system through

the provided API and continues processing. Once the operating system has received the data, the data is

wrapped in either User Datagram protocol (UDP) or Transmission Control Protocol (TCP) headers inside

Internet Protocol (IP) and Ethernet headers and then queued for transmission via the physical hardware.

In many point-to-point networks such as data centers, ADSL links, and wired home networks where

computers are plugged directly into a router or switch, the transmission protocol does not need to be aware

of other traffic on the network. In these cases, each machine has a dedicated connection to a switch or router

that coordinates the forwarding of packets to the destination.
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However, in unswitched networks where more than two devices share the physical medium (or more

than one device transmit and receive on the same medium), such as most cable networks and wireless

technologies, the Network Interface Card (NIC) must wait until the physical medium is free to transmit.

One mechanism to implement this access protocol is known as Carrier Sense Multiple Access with Collision

Avoidance (CSMA/CA). If the physical medium is currently being used by another host on the network,

determined by first listening for existing traffic, the network card will wait a random number of time steps

where the random number will be between 0 and 2i − 1, where i is the number of times the network has

been sensed as busy [27]. If, during a transmission, the NIC senses that another host is also transmitting, or

there has been a burst of interference, it will cease transmitting and perform the same exponential back-off

as when waiting for the network to be clear; this is known as Carrier Sense Multiple Access with Collision

Detection (CSMA/CD). However, in modern wired networks the need for CSMA/CD is greatly reduced due

to isolation of a link by restricting access to only two devices, such as the computer and the switch [61].

In some networks, for example wireless networks and power line networks, additional processing must be

done to ensure reliable reception of data. Due to the limited frequencies available, multiple devices may be

attempting to communicate on the same channel, prompting the need for protocols other than CSMA/CA

and CSMA/CD [25]. Additionally, to ensure reliable delivery of data, packets are often broken up into

smaller blocks and encoded with error correction codes and error detection codes to attempt to improve

channel reliability and quality. In many cases, if a packet or segment has been detected as damaged then the

physical layer protocol utilizes an Automatic Repeat reQuest (ARQ) mechanism to request that a block be

retransmitted.

In order to share a frequency band between multiple clients, several multiplexing techniques can be

utilized. Multiplexing takes two forms: Time Division Multiplexing (TDM) and Frequency Division Multi-

plexing (FDM). TDM partitions transmission time into discrete time units and clients are assigned one or

more of the time units to transmit data. Frequency Division Multiplexing involves dividing a larger frequency

band into multiple smaller frequency bands that are then assigned to clients.

Duplexing is similar to multiplexing but only creates two divisions. Duplexing is often employed to

govern when or how NICs can transmit and receive. For example, Frequency Division Duplexing divides

the allocated frequency band in two, one band for transmitting and the other for receiving. The goal of

Multiplexing and Duplexing is to provide the clients with a pseudo-guaranteed share of total bandwidth; this

guarantee greatly depends on the number of clients and the types of traffic on the network. This division

means that on some FDM networks with fewer clients than divisions, some of the available bandwidth will be

left unused. However, barring interference, clients will enjoy a relatively constant throughput. On the other

hand, on networks with many clients, the interference between clients will cause significant degradation in

the QoS.

As a packet travels from source to destination, the packet may encounter one or more devices that

temporarily stores the packet and then retransmits the packet. These devices can be switches, which typically
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redirect packets to another device on the same network, or routers which act as bridges between two different

networks. It is in the router that most of the QoS and traffic shaping occur. In a typical router, packets may

be classified according to one or more metrics such as strings embedded in the payload, port, destination,

protocol, etc. [4] and placed into a buffer that corresponds to the classification. The router then chooses

the next packet to send, using a scheduler algorithm configured specifically for the current application. It is

through the classification/scheduling mechanism that network administrators control the quality of service

for customers or application types.

Common classification and scheduling algorithms include Weighted Fair Queue (WFQ), Strict Priority

(SP), and Stochastic Fair Queue (SFQ). WFQ and SFQ are variations of the Fair Queue (FQ) which typically

classifies packet flows based on source/destination pairs with a Round Robin (RR) scheduler where a packet

is drawn from each queue in turn [44]. WFQ adds a weight to each queue and the scheduler algorithm draws

a number of packets from each queue proportional to the weight assigned to the queue [48]. This weight

allows the network administrator to prioritize traffic flows and helps guarantee throughput for flows that

may otherwise have packets dropped. SFQ also uses the RR scheduler, but modifies the a classifier to use

a hashing algorithm with random seed that is perturbed periodically to ensure that any two packet flows

are not continuously queued together [42]. SP, however, takes a different approach, emptying queues with

the highest priority before moving on to lower priority queues. This allows the administrator to guarantee

throughput for some classifications of traffic, but may ultimately starve low priority traffic. Variations of

these algorithms and similar algorithms are sometimes used as well, giving network administrators control

over how traffic is forwarded.

Queues, however, can only hold a finite number or packets, or bytes, depending on the configuration. In

the simplest case, referred to as DropTail, when a queue is full and a packet arrives, the packet is dropped.

Under high load DropTail does not perform well, maintaining a full buffer and preventing congestion control

from properly adjusting. To combat the issues with DropTail, other queue management algorithms, such

as Random Early Detection (RED) and Controlled Delay (CoDel) were developed to start dropping packets

before the queue is full to trigger congestion control earlier and keep the buffer available for bursty traffic.

Once a packet has reached its destination, the data is extracted from the packet and the application is

notified of the arriving data. Similar to what occurs when sending data, the application may be unable to

process the data as soon as it arrives. The receiver must wait until the appropriate thread is scheduled or

the application is in a particular state before processing the incoming data.

2.2 Transport Layer Protocols

There are two main transport layer protocols in use on the Internet today, Transmission Control Protocol

(TCP), and User Datagram Protocol (UDP) [61]. TCP has features to ensure reliable transfer and congestion

control built into its protocol and is often used for applications such as web browsing, file transfers and media
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streaming. The reliable nature ensures that all data gets transferred and the congestion control ensures that

all streams have an appropriate share of the network. Reliability of the network comes at a cost of both

latency and variation in latency due to the retransmission of lost data or throttling of the transmission rate.

On the other hand, UDP is a minimalistic protocol that has neither congestion control nor reliable delivery.

The simple nature of UDP allows for quick transfer of data from source to destination but suffers from packet

loss over congested networks. The reduced latency has made UDP the first choice for real-time applications

such as video games and communications.

While UDP may seem like an attractive choice for applications where latency is most important, there are

issues that can affect the end-user experience of an application that uses UDP as its transfer protocol. Some

applications can tolerate the occasional loss of data, but often applications implement their own reliability

mechanisms such as UDP Data Transfer (UDT) [20] or Reliable UDP (RUDP) [6, 62] that can cause increased

jitter in the event of packet loss.

2.3 Measurement Studies

BADABING [58], developed by Sommers et al., was created to estimate packet loss along a route on the

Internet. Like similar active measurement tools, BADABING worked by sending small probe packets to a

destination server and calculating the resulting loss statistics. Instead of sending probe packets in a Poisson

distribution like standard packet loss measurement tools, BADABING sent a sequence of packets at fixed

intervals with a variable probability. The application could then look at packet loss in each sequence to

determine if the network was starting to drop packets, continuing to drop packets, or finished dropping

packets. They were then able to estimate the packet loss for other packet streams on the network. They

also showed that using Poisson distribution for probe packets was ineffective for measuring loss episode

frequency and loss episode duration. They demonstrated that their method not only produced more accurate

results, but with a smaller number of probes than previous estimators. This thesis explores the possibility of

embedding a similar mechanism into a game using its own update mechanism for estimation of packet loss.

The game could then use this information to compensate for expected packet loss.

Carullo et al. [8] described a simulation using NS-3 to study the performance of WebRTC over LTE.

WebRTC is a technology that allows web applications to communicate in a peer-to-peer manner and uses

UDP to traverse NAT firewalls. In their experiment, they built the simulation environment using physical

machines for LTE clients and the web server, enabling them to generate real traffic from a real application.

Their experiment consisted of transferring video from one client to another and then analyzing the packet

traces. The NS-3 simulator was configured with four scenarios representing the ideal case, a more realistic

configuration with fading and channel error, an increasingly more realistic scenario with fading, errors, and

finite queues, and finally a configuration with fading errors, finite queues, and interfering cross-traffic. The

simulator was also configured to simulate client movement. Their results indicated that with increasingly
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realistic configurations the throughput decreased and jitter and packet loss increased. The introduction of

cross-traffic created an increase of 1 ms (34%) in the jitter median and a 19 kb/s (13%) decrease in the

throughput median. The packet loss median also increased with slightly under 1% more packets lost, an

approximate 14% increase over the similar scenario without cross-traffic. Similarly this thesis explores the

effect of the network configuration on an application’s data stream. However, instead of analyzing WebRTC

over LTE with varying degrees of realism, this work focuses on game-traffic through a simple router, varying

factors such as cross-traffic and router configuration.

2.4 QoS and Traffic Shaping Modelling

Weinsberg et al. introduced a framework called Packsen [65] that was able to detect when a network path

was being shaped and the approximate parameters used to shape the traffic, assuming that a WFQ or SP

scheduler was being used. The Packsen framework consists of a measurement server that sends the data

to the end client and an experiment server that contains scripts and parameters required to coordinate and

operate an experiment.

To detect if an ISP is actively shaping traffic, two short data flows are simultaneously sent to the client

and the distributions of packet inter-arrival times are compared using the Mann-Whitney U-test (MWU) [37].

The MWU test is a nonparametric test to determine if one of two distributions is stochastically greater than

the other. If the packet inter-arrival time distributions differ, the ISP is assumed to be shaping the traffic.

Once shaping has been detected, Packsen then attempts to calculate the weights or priorities given to each

flow to create this behavior. Assuming that the two packet flows were sent at just below link capacity, the

actual bandwidth would be expected to be determined by the queue weights.

Cross-traffic is particularly troublesome when attempting to detect traffic shaping and determining

weights. To combat cross-traffic, Packsen [65] repeats the experiment multiple times until the variance

in the results drops below an arbitrary threshold. While Packsen may work well as a standalone test to

determine if a link or path is being shaped, the methodology used by Packsen (the experiment and mea-

surement server interactions) make real-time detection of traffic shaping and prediction of future behavior

in a mobile application difficult. The methodology Packsen uses for comparing inter-arrival times could be

explored as an alternative to analyzing packet loss. However, the effectiveness of inter-packet arrival times

may be reduced in low loss environments.

DiffProbe was introduced by Kanuparthy and Dovrolis [30] to allow researchers to test if their ISP is

treating different traffic flows differently by either dropping packets or increasing the latency of packets.

DiffProbe assumed that the ISP is classifying IP packet flows into high and low priority streams. It also

assumed that the ISP is using SP or WFQ scheduling and either Weighted Random Early Detection (WRED)

or DropTail (DT) queue management. If the ISP does not perform differentiation, it is assumed that the ISP

uses a First-Come First-Served (FCFS) queue with DT management. DiffProbe simultaneously generates
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two packet flows, an application stream that is intended to be classified as low priority and a probe stream

that is intended to be classified as high priority.

During the test, the probe stream was increased to just below the customer’s link rate limit. Differenti-

ation was determined by comparing the relative end-to-end delay statistics and packet loss statistics of the

two packet streams using Kullback-Leibler divergence [33]. Once it has been detected that the probe and

application streams have been treated differently, the queue type is determined by examining the bursts of

probe packets received, immediately after application packets, for variability in the end-to-end delay. Packet

bursts that exhibit large variability are assumed to be WFQ, while low variability is assumed to be due to SP

queues. The type of queue management is determined by analyzing the packet loss rates of the application

and probe streams.

ShaperPrope [31], an extension of DiffProbe, was developed with a slightly different approach than Packset.

Instead of using the inter-packet time to determine if a packet stream was being shaped, ShaperPrope used the

throughput curve over a set period of time to determine if there was any throttling being done. The method

assumed that traffic shaping was done through a token bucket of a fixed size and fixed token generation

rate. Token buckets work by incrementing a token counter by some rate up to a set value (the bucket size),

and then as packets are forwarded, the token counter is decremented. If the token counter is at zero, the

remaining packets are queued until a token is available. The size of the bucket and the token generation rate

correspond to the burst rate and the throttled traffic rate respectively.

Assuming data was being sent as fast as possible in the presence of a traffic shaper, the recipient would

observe high throughput until the token bucket became empty and the packet stream was throttled. Using the

measured throttled rate and the duration and rate of the un-throttled traffic, an estimate of the bucket size

could be made. The authors note that cross-traffic could have an impact on the results by artificially reducing

the received data rate and suggested removing outliers from the rate calculations. The direct application of

this method of detecting traffic shaping to data generated by applications that create low to moderate traffic

would not work due to the requirement for ShaperPrope to saturate the network. While ShaperPrope could

be used to detect current shaping parameters on application start, the knowledge of shaping parameters may

not be sufficient to create an accurate model of the network.

Zhang et al. [68] developed a methodology for identifying links treating traffic differently on the path

between two points. To determine if a link was being throttled, they systematically probed multiple paths

using different types of traffic. For each type of traffic, they calculated packet loss statistics for each path

between the source and the destination. Using a complete network graph, they use boolean algebra as

described by Nguyen and Thiran [45] to identify individual links that are congested. If different traffic types

have different performance on a link, one could conclude that the given link is treating the traffic differently.

Molavi Kakhki et al. [43] investigated traffic differentiation on mobile networks. They employed a VPN

to record packet flows that they then used as a baseline for determining whether traffic was throttled. They

replayed the recorded traffic over the mobile network while maintaining the inter-packet spacing as closely as
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possible. They compared the recorded traffic with the replayed traffic to determine if the traffic was throttled

for the given path. Several different types of streams, such as HTTP, YouTube and P2P, were tested to see

if different traffic was handled differentially. To develop the system, they employed commercially available

hardware to perform real world traffic shaping. Additional experiments indicated that stream classification

was based on destination port, keywords embedded in the first data packet, or a combination of the two.

In their experiments using several American ISP they found that YouTube, Netflix, and Spotify were most

impacted by the ISP traffic shaping policies. In some cases the traffic was simply throttled, in other cases

proxies or middle boxes manipulated the data providing cached copies of data or changing the network

connection parameters. With the increase in encrypted traffic, the ISP-controlled proxies and middle boxes

become less likely to have an impact on network traffic due to their inability to manipulate the contents of

a stream undetected.

2.5 Mitigation

An alternative mechanism for concealing jitter and latency from a user is through in-game mitigation tech-

niques where the game hides the lag with in-game elements. For example, animation sequences that allow

for the game to synchronize when interacting with items. However, hiding lag and jitter in-game may not

work for all games.

One example of this technique is demonstrated by Gao et al. [17] where they replaced network players

with bots when game updates were late. In their paper, they developed a game of pong that incorporated the

bot replacement technique. In their implementation, the game would ignore input from a networked player

if the latency became too high and substituted a bot in their place. When network conditions improved,

the user’s inputs were once again used to control the character. While the game was receiving inputs from

the player, the game would train the bot using regression analysis so it would behave like the player. The

authors had previously built a dead-reckoning algorithm to handle network lag, but they found the predictive

algorithm produced significantly lower error. With this approach packets are intentionally discarded once

the bot takes over. It is possible that the bot would not be adequately trained by the time it is required to

take over the role as player. It would be beneficial if the incoming packets were used to train the bot further,

even if they arrived late. With the technique described in Section 4.3, more information would be received

in each packet; even if the data was too late to act on, the additional information could be used to further

enhance the bot’s predictive abilities.

Although intended for industrial environments with remotely operated robots, Hou et al. developed a

framework that incorporated movement prediction and packet loss probabilities that could achieve a zero

latency experience [23]. The authors used a Kalman Filter [28] to predict a position in the future and a

k-repetition packet scheme (k packets are repeated) to achieve reliability. They then created an optimization

problem to determine how far into the future to predict and the minimum amount of bandwidth required to
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achieve the desired latency. Most of their calculations were done considering wireless networks such as 5G, and

as such they also considered other factors such as increased error correction encoding and multiple antennas.

Despite this, many of the principles involved could be applied to most on-line games. Additionally, if the

network state were constantly monitored, for example through feedback from the recipient, the optimization

problem could be recalculated on the fly adjusting the k value as needed. With an additional feedback

mechanism this type of framework could easily be incorporated into the work provided in the next chapters.

2.6 Game Streaming

Game streaming services now are becoming popular to gaming enthusiasts. With game streaming services

the user uses a thin client to render the output (visuals and audio) and register inputs from the user (button

presses, finger swipes, etc). In this scenario, small on-demand packets would be sent from the user to the

server and the server would send back each frame as it is rendered. This increase in the reliance on the

network also increases the potential for network conditions to play a part.

Some mitigation techniques have been proposed such as Outatime [36]. With Outatime, the game server

renders multiple potential scenes that could result from user input. The thin client would then choose which

scene to display depending on the input detected and potentially blend scenes together to achieve the desired

outcome. The server employed worker instances that would execute predicted inputs and return back the

rendered frames including 3-D positioning information and additional viewpoints. The 3-D information and

additional images allow the client to render scenes even if the outcome was not accurately predicted. The

downside to this approach is that not only is the server subject to packet loss from the client, but the client

may also lose packets coming from the server. The synchronous packet loss means that the client may not

receive any predicted data from the server in a timely fashion. Additionally, the increased data load from the

server means more packets that potentially could be lost. Additional techniques such as the one described

in Section 4.3 may help mitigate packet loss in both directions.

2.7 Packet Loss Prediction and Machine Learning

Immich et al. built a novel approach to combating packet loss for streaming videos [26]. In their system

they assign each frame an importance value that when combined with the predicted packet loss adjusts the

amount of Forward Error Correction (FEC) that is applied to each packet. Packet loss prediction was done

through statistics of reports of packet loss sent by the recipient back to the server. The recipient would keep

track of the periods of time where packets were received without errors and the periods that packets were

lost or had errors and periodically report to the server. The server would then calculate a probable packet

loss percentage for the next batch of packets to be transmitted using statistics sent by the recipient. This

probability was then combined with the importance level of the frame using Ant Colony Optimization (ACO)

where simulated ants randomly navigate the search space. The importance level of a frame was determined
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using several factors including Motion Intensity, Frame type (I or P frame) and frame size. The Motion

Intensity was determined using a Recurrent Neural Network that was trained off-line with labeled data.

They found that their system was able to increase the QoE of the video while reducing network bandwidth

requirements as compared to other methods. Their approach has a similar method of analyzing the packet

loss where statistics of the periods of received and lost packets are calculated to determine the state of the

network. With a similar feedback mechanism, it would be possible to have the server dynamically adjust the

redundancy of data being sent to the client. In some instances this could be error correction as is done here,

but in other cases where future states are unknown it may simply be redundant data.

With the goal of improving the performance of scientific data transfers, Giannakou et al. developed a

Machine Learning (ML) framework to predict packet loss percentages in TCP streams [18]. Their approach

involved training a Random Forest Regression (RFR) [7] using existing datasets including metrics such as

average RTT, Source, Destination, initial TCP congestion window, throughput, duration, and file size. To

improve performance of the ML algorithm they applied a smoothing algorithm to reduce short term noise in

order to expose the long-term trends. Their experiments indicated that the methodology worked reasonably

well with an approximate 97% accuracy rate on the training datasets, but much worse (> 66%) when trained

and tested on unrelated data. They concluded that the relative importance of each feature used varies over

time, however they indicate their algorithm performed well for datasets with similar statistics.

Verma et al. presented an approach to hide packet loss in real-time music streams [64]. In their paper

they propose a solution where a MLP network was trained on similar audio as the music that was to be

transmitted and the recipient device would use that MLP network and the past two seconds of received audio

to construct the data for missing packets. They compared their work to similar AR solutions and found that

their approach resulted in fewer errors for almost all configurations of the AR algorithm. However, they did

note that their algorithm was unable to run in real time on their test CPU, so current implementations would

need to rely on other hardware to achieve real-time prediction of lost data. Although their work was focused

on predicting missing audio, depending on the application a similar method could be used to fill in the gaps

for missing game state or user input.

Cheng et al. attempt to improve the Forward Error Correction (FEC) on media streams using Long

Short-Term Memory (LSTM) ML network to determine the number of Reed-Solomon (RS) encoded packets

to send [11]. In their solution they divided the data sent into blocks and used feedback from the recipient to

determine the number of lost packets per block. The LSTM was trained on existing datasets, with a RTT-

sized gap between the historical blocks and predicted blocks to account for the time it takes for feedback

from the client. This does indicate that in order to train the LSTM the RTT of the route must be known

in advance. In both of their experiments with simulated data and then existing captured data, they found

that the LSTM accurately predicted the packet loss 70% of the time. This accuracy allows the algorithm

to automatically adjust the redundant packet data sent, improving performance while ensuring that most of

the data is received in a timely fashion. This paper describes an algorithm that could be easily applied to
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similar packet loss mitigation techniques such as the one presented here.

Another approach to minimize packet loss by directing traffic more efficiently was explored by Mao

et al.[38]. In their paper they implemented a mesh network in the lab and used traffic at the edges to train

a Tensor based Deep Learning model to properly route traffic on the edge nodes. They found that the

new Tensor based approach nearly eliminated packet loss in their experimental environment. However, their

findings require changes to network infrastructure and therefore could not be applied directly to mobile games.

Additionally, their experiments don’t necessarily represent the real world and they themselves indicate that

more work needs to be done to consider other factors such as packet size in the routing algorithm.

Roy and Ghosh compared two separate ML approaches (Decision Tree (DT) and Logistics Regression

(LR)) to predicting the class of packet loss (high or low) for use in edge routers to determine whether a

packet stream was accepted [54]. From a pre-analysis of their sampled datasets, they found that download

speed, download throughput, upload throughput, ISP, and technology (ADSL, Satellite, Fiber, etc) were

the highest predictors of packet loss. Using 10-fold cross validation with 80% of their data to train the two

ML models and the remaining 20% to test against they found that the DT algorithm had 89% accuracy

outperforming the LR algorithm with only 86% accuracy. If enough information was available during the

startup of a mobile game, it may be possible to utilize a similar method to determine the class of packet

loss that would be seen and compensate and/or inform the user they may experience degraded performance.

Under most circumstances the amount of information available to a game client at startup is limited, but

a similar idea could be used throughout the game play to inform the mitigation strategy to either increase

or decrease the number of packets to resend. Investigation into whether a ML algorithm could be used to

improve the performance of the mitigation strategy has been left for future work.

2.8 Chapter Summary

The Internet is not well-suited for real-time communications due to the variability in the packet trip times

and packet loss. Most Internet components were built with the idea of reliable data transfer from source to

destination. This reliability, when used on a congested network, can cause jitter in the packet trip times. If

some of the reliability is removed, for instance replacing the TCP protocol with UDP, the destination may

not receive all the packets. Packet loss and jitter can create a poor user experience if applications are not

designed to handle poor network conditions or require real-time synchronization.

Most research into compensating for packet loss and jitter has been from media streaming and similar

situations where future information is already known, allowing for the use of FEC. In these instances ma-

chine learning has been used with some success in predicting the future state of the network, allowing for

adjustments to the FEC algorithm. For real-time applications, the two areas predominately explored are end-

to-end trip time prediction and traffic differentiation detection. Trip time prediction using machine learning

techniques such as MLP, ARX and Auto-Regression achieved some success in related work and may warrant
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additional research. Research into identifying when packet streams are being manipulated by network policy

have been shown to work well in identifying when throughput is being reduced by network policy, but has

done very little in attempting to compensate for or bypass such restrictions. Some research has also been

done in client side or server side prediction of either user inputs or server outputs in order to mask delays in

the network traffic.
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3 Experiment Configuration and Design

This chapter contains descriptions of the simulation software, simulation parameters, and experiments.

The simulation software is described first, followed by the simulation environment and the parameters used

for the experiments; then the experiments and their designs are described in detail. Section 3.4 focuses on

describing the run length analysis that is the basis for all of the analysis in Chapter 4. Finally, Section 3.5

describes a proposed mitigation strategy that is then explored later in Chapter 4.

3.1 Simulation Environment

All simulation is done with NS-3 [53], a discrete event-based network simulator often used for research and

protocol development, and the Click Modular Router [32]. Discrete event simulators model activity as events

that are then sequentially processed by the system rather than modeling the system as a continuous simulator

that constantly updates element state. An event-based simulator can jump from one discrete event to another,

potentially enabling a simulation to execute faster than real time. NS-3 has many built-in modules such as

CSMA links, routers, and computer nodes. All elements in NS-3 are written in C++ and the framework

allows for the development of new elements that can be easily integrated into simulations.

NS-3 comes with built-in integration for the Click Modular Router allowing sophisticated routing to be

performed inside of an NS-3 simulation [60]. The Click Modular Router is a software router designed to

ease router development and other network devices through a custom scripting language. The Click Modular

Router has many built-in components such as queues, classifiers, schedulers, and packet redirection. Click

Modular Router elements are written in C++ and the framework provides a simple mechanism for defining

custom elements for use in router design.

To distribute the simulation to multiple computers, the Berkeley Open Infrastructure for Network Com-

puting (BOINC ) [2] was used. BOINC allows any number of computers to be used as compute nodes, all

coordinated by a central server. Each compute node, by default, is configured to process tasks only when

idle, making BOINC a perfect candidate to utilize unused computers in the campus computer labs. Although

BOINC has mechanisms for issuing parameters and for collecting and analyzing results, the size of the results

for these experiments made it easier to upload the results to a large storage facility for later analysis.
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3.2 Experimental Parameters and Performance Measurements

All simulations follow the same pattern (Figure 3.1). Two computers, one generating simulated game-traffic

and another computer generating simulated cross-traffic at rates up to 200 Mbps, are both connected by a

common link to a router. This router acts as a gateway that routes the traffic to a second network where

two computers are simulated, one that receives the game-traffic and another that receives the cross-traffic.

The logical flow of data is denoted with a dotted line, the solid lines indicate a physical connection between

devices and actual data flow occurs within these physical connections.

Figure 3.1: Diagram of the simulated network.

Both the source and destination networks are modeled with gigabit links to minimize collision probability.

The router includes a token bucket rate limiter, limiting the outgoing traffic to 100 Mbps to introduce a

bottleneck in the traffic flow; the queue length was fixed at 200 packets. The 200 packet buffer size is larger

than the minimum recommended using the small-buffer model, but small enough to quickly drop packets

under load instead of increasing the latency of the packets [55].

3.2.1 Experiment Configuration

Each experiment consists of a node sending simulated game-traffic consisting of 128-byte packets, at 60

packets per second, for 120 seconds, while a second node simultaneously sends packets at a specified rate,

inter-transmission time and packet size. Packet Capture (pcap) files are generated from the traffic stream as

packets reach the router, as they leave the router, and as they reach their destination, thereby facilitating

stream characteristic comparison and analysis. Game packets contain a sequence number so that, using only

the packets captured on the receiving node, we could easily identify and quantify dropped packets. Unlike

the simulation, real world traffic may deliver UDP packets out of order, or too late to be used; these packets

would also be considered dropped. The captured game-traffic at the receiver is then run-length encoded as

a series of counts of (received, dropped) packets, to further facilitate the analysis. For example, a run of 20
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successful packets followed by 2 lost packs is encoded as (20, 2). The run length encoding is further described

in Section 3.4.

3.2.2 Initial Experimental Factors

The experimental factors are the cross-traffic characteristics and the router policies. The remainder of this

section describes the chosen configurations. Table 3.1 outlines the cross-traffic parameters and selected values.

Table 3.1: Cross-Traffic Parameters

Parameter Values

Cross-Traffic Streams TCP, UDP

Mean Bitrate (Mbps) 25, 50, 75, 100, 125, 150, 175, 200

Mean Packet Size (Bytes) 128, 256, 439, 512, 1024, 1500

Packet Size Distribution Constant, Uniform, Gaussian, Realistic

Packet Size Standard Deviation (Bytes) 1, 2, 4, 8, 16, 32, 64, 128

Packet Size Range (Bytes) 1, 2, 4, 8, 16, 32, 64, 128

Inter-Packet Time Distribution Constant, Uniform, Gaussian, Realistic

Inter-Packet Time Range (percent) 10, 20, 40

The packet size distribution settings include a) constant, b) uniform random, c) Gaussian, and d) realistic

(drawn from trace data) distributions. The uniform packet size distribution created randomly-sized packets,

uniformly distributed between PacketSizeMean± PacketSizeRange. The Gaussian distribution generated

a random packet size with a specified mean and standard deviation. Realistic packet sizes were determined

using the pdx/vwave dataset [49] downloaded from CRAWDAD [67], consisting of traces gathered from

sniffing packets on public hot-spots around Portland, OR in July, 2009. The traces were combined to create

an empirical, histogram-based packet size distribution. As the resulting distribution had a mean packet size

of 439 bytes, 439 bytes was added to the Mean Packet Size parameter to allow for direct comparison with

the other distributions.

The inter-packet transmission time settings are the same as those for packet size. The constant inter-

packet time setting calculates an inter-packet time from the mean bitrate and packet size. For uniform

distributions, the inter-packet time range parameter is a percentage of the calculated inter-packet time. The

Gaussian inter-packet distribution used a standard deviation of 10% of the calculated inter-packet time. The

10% value was chosen to keep the percentage within ±40%, similar to the uniform distribution. The realistic

inter-packet spacing was generated using a modified version of the synthetic traffic generating code created

by Ammar et al. [1]. Modifications were made to accommodate variable-sized packets.
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Table 3.2: Router Configuration Parameters

Parameter Values

Type of Queue DropTail, RED

Number of Queues 1, 2, 3

Type Of Classifier Shared, Dedicated, Random

Table 3.2 provides the router configuration factor values. The Type Of Classifier and Number of Queues

determined the queue into which the cross-traffic and game-traffic packets were placed. In all cases, all game-

traffic was placed in the first queue as all packets in a data stream would typically be treated in the same

manner. For the shared classifier, all traffic was placed in the first queue. The dedicated classifier evenly

split the cross-traffic between the remaining queues, leaving the first queue dedicated to game-traffic. The

Random classifier used a uniform distribution to assign the cross-traffic to one of the available queues.

The Type Of Queue (or router queue management policy) parameter is either Random Early Detection

(RED) or DropTail. RED [15] is an algorithm that was designed to increase fairness between flows by

introducing randomness to determine which packets are queued. The RED algorithm drops packets according

to configured probability that is roughly proportional to the queue size once the number of packets in the queue

reaches a specified threshold. DropTail, unlike RED, does not drop packets with a configured probability but

instead drops packets that cannot be queued when the queue reaches capacity. The queues were configured

using the defaults, or recommended settings, from the Click documentation. RED queues were configured to

begin randomly dropping packets once there were more than 5 packets in the queue, with a linear increase in

the packet drop probability up to 2% when there were 75 or more packets in the queue. These numbers were

based on Click documentation examples and only slightly modified to prevent the degenerative case (where

the queue becomes full and behaves much like a DropTail queue).

Due to the large number of parameters, a full-factorial experiment would have resulted in a prohibitive

number of configurations. Fortunately, many combinations were illogical and were removed (for example,

experiments that would result in zero or negative payload sizes). The resulting number of configurations to

evaluate was over 86,000.

3.2.3 Extended Experimental Factors

In order to explore additional parameters without significantly increasing the number of runs, a reduced

parameter-set was created by eliminating some of the values from the initial experimental parameters (Sec-

tion 3.2.2) and adding some additional values to explore.

Table 3.3 contains the parameters and values used for the second set of experiments. Of the Packet

Size Distributions, only the realistic and constant values remain, chosen because the artificial distributions
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Table 3.3: Extended Cross-Traffic Parameters

Parameter Values

Cross-Traffic Streams TCP, UDP, 2 TCP, 3 TCP, 1 UDP 1 TCP, 1 UDP 2 TCP, 1 UDP 3 TCP

Mean Bitrate (Mbps) 75, 100, 125, 150, 175, 200

Mean Packet Size (Bytes) 439, 512

Packet Size Distribution Constant, Realistic

Inter-Packet Time Distribution Constant, Realistic

performed similarly and to provide contrast between artificial and empirical configurations. Most of the

Mean Packet Size values were eliminated, leaving only the 439-byte and 512-byte configurations, chosen to

remain because the 439-byte configurations were required for the Realistic Packet Size Distribution and 512

was the closest of the remaining values. The Inter-Packet Time Distribution was also reduced to the realistic

and constant configurations, again to provide contrast between the random and non-random distributions.

The 25 Mbps and 50 Mbps configurations were removed from the Mean Bitrate because they were deemed

unlikely to have any significant impact on the results being so far below the bottleneck link capacity.

The largest addition to the Extended Experimental Factors is the inclusion of multiple Cross-Traffic

Streams. While in the previous experiment only a single TCP or a single UDP stream comprised the entire

cross-traffic, the new configuration parameters included additional configurations that included multiple

simultaneous cross-traffic streams at a time. For the second set of experiments, up to 3 TCP streams could

be present in the cross-traffic with or without a single UDP stream. The decision to only include a single UDP

stream was because it is believed that a single UDP stream behaves the same as N UDP streams provided

the net bitrate of the streams is the same, while TCP has additional overhead for congestion management

and flow rate control that makes multiple TCP streams more interesting to observe.

Table 3.4: Extended Router Configuration Parameters

Parameter Values

Type of Queue DropTail, RED, CoDel, AdaptiveRED

Number of Queues 1

Type Of Classifier Shared

For the queue related parameters, most of the previous configurations were removed, leaving only Number

of Queues: 1 and therefore only one valid Type Of Classifier: shared. These parameters were primarily kept
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to reduce the complexity in the router during this experiment. In this experiment, two additional values

were added to Type of Queue; CoDel and AdaptiveRED. CoDel [46] is a queue management algorithm

designed to reduce the amount of time a packet is in a queue. The CoDel algorithm measures the minimum

amount of time a packet has been in the queue over a configured sliding window and drops packets from the

beginning of the queue if the minimum delay exceeds the target delay for at least the sliding window duration.

AdaptiveRED [14] extends RED by automatically adjusting the probabilities to minimize fluctuations in the

queue length. The AdaptiveRED queues were configured with a target queue length of 100 packets and a

maximum drop probability of 5%. The parameters for AdaptiveRED were chosen with the desire to keep the

queue half-full on average with a probability that prevented the queue from degenerating into the DropTail

state. CoDel was configured with the defaults of a 5 ms target latency through the router over a 100 ms

sliding window of packet forwarding activity.

3.3 Real World Data Collection

In addition to simulating various network conditions, data was collected over the Internet using a simulated

game. For these experiments, a small server application was configured on DigitalOcean1 to accept UDP

packets and record the success/loss characteristics. Several devices were then configured similarly to the

game packet generator in the simulation used in the first two experiments, with a client application that

transmitted 7200 128-byte packets at 60 packets per second to the server. The configuration details for the

devices are in Table 3.5. The LTE device primarily captured data in a residential area and in a business

park, but also included data from the university campus and the commute between locations. WiFi and

wired data was collected using a business level ISP as well as a residential Cable and ADSL provider. At the

university a single wired device was used to generate data.

Table 3.5: Real World Device Configurations

Device A B C D E F

OS WIN 10 WIN 10 CentOS 6 WIN 10 WIN 10 Android

Network Type WiFi Wired Wired Wired WiFi LTE

ISP Business Park University Business Park ADSL/Cable ADSL/Cable Telco

3.4 Run-Length Analysis

User gameplay experience is greatly affected by the length of time the game can be played without experi-

encing interruptions due to network lag. Network lag can be caused by network conditions delaying packets,

1https://digitalocean.com
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or by the loss of packets causing data retransmission. Network lag interruptions can pull the gamer out of

the immersive experience [9, 50, 52]; however, lag may not always be an issue. For example, if the network

can transmit data without lag for a minimum period of two minutes, than any game that could be played in

under two minutes is less likely to experience lag, therefore likely increasing the user experience.

This leads to the assessment of whether or not a game is playable. For the purposes of this thesis, playable

has been defined as being able to play for a sufficient amount of time to complete a level or run of a game

without data loss. How long the game needs to run without data loss, and the impact of data loss on the

user experience, depends greatly on the game. For example, twitch games that involve fast reactions like

FPS games would be most impacted by late or lost data, potentially causing glitches in the game like missed

shots and teleporting players. However, FPS games tend to run until an objective or time limit is reached

so the run times can be longer than the two minutes explored here. The racing game genre operates mostly

with a deterministic physics engine allowing games to remain in sync, however late or lost inputs could cause

clients to desynchronize. Fortunately, racing games tend to have short levels, reducing the length of time

(or duration) for which data loss needs to be avoided. Board games or RTS games can be more resilient to

delays in data transmission. The game requirements would be used to inform the bounds of the run length

required for a playable game.

Therefore, if we can determine on average how long a game can play uninterrupted and how long these

interruptions last, we may be able to derive mitigation techniques that will provide the user with the expe-

rience associated with longer periods of gameplay. With longer gameplay, the possibilities for a successful

network gaming experience are increased. Additionally, if we can identify the conditions that lead to net-

work instability, game developers could implement mitigation techniques that pre-emptively alter networking

parameters or gameplay to reduce the effect of packet loss.

To characterize the relationship between lost and received packets and to aid in understanding when a

network is reliable and unreliable, a run-length encoding of received/lost packets was employed to observe the

stability of packet reception. Put another way, network communications can be described as a sequence of

(Received, Lost) tuples (which we refer to as success/loss intervals, or just intervals). Received is the number

of sequential packets sent that were received by the game client that met the gameplay requirements and

Lost is the number of sequential packets sent that failed to be received by the game client or failed to meet

the gameplay requirements such as being received out of order or too late to be processed in a timely fashion.

These individual tuples are elements of a sequence of tuples that represent a single simulation or data

capture period (also referred to as a run). New intervals are created with the first packet received that

meets the gameplay requirements. For example, ten successive packets that met the gameplay requirements

followed by two packets that did not meet the gameplay requirements would be represented as the tuple

(10, 2). It follows that an arbitrary period or run could then be described as a sequence of these tuples;

for example, ((10,2), (100, 12), (2, 2)). An example taken from one of the experiments is ((919, 1), (380,

1), (3299, 1), (2599, 0)). One thing to note, however, is that any run losing packets at the beginning of the
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run will have the first interval encoded as (0, x) where x is the number of packets lost; similarly any run

ending with successfully received packets will have the last interval encoded as (x, 0) where x is the number

of packets received.

This technique is a form of run-length encoding. This encoding enables us to quickly calculate loss

statistics and identify if packets are lost in long sequences or in short sequences while maintaining the

temporal relationship of the packets in the data received.

Figure 3.2a is an example run of the simulation. The router and cross-traffic parameters for this run are

the following:

• UDP Cross-traffic,

• Two DropTail Queues,

• Random Classifier,

• 512-byte Packet Size,

• Uniform distribution with two bytes standard deviation,

• Uniform inter-packet time distribution with +/- 20% spread, and

• 125 Mbps bitrate.
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(a) Frequent and Consistent Packet loss
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(b) Bursty Packet Loss

Figure 3.2: Example Runs Demonstrating Run-Length Encoding

Given the run-length data for a run, we can plot the start of each interval as a percentage loss; for example

the interval (10, 2) would be 2 / (10 + 2) = 16.67% packet loss. With this visualization, we can see the

percentage of packets lost over time; however, the magnitude of each interval must be determined by the

spacing between each plotted point. Ideally, we would see only a few points (all of which are at or near zero)

representing long sequences of received packets followed by only a few lost packets. This plot can be used to

determine the volatility of the network over time.
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In the run in Figure 3.2a, there appear to be heavy concentrations (almost solid bands) at 50% and 33%

and lower concentrations (slightly less intense bands) at 66% and 16%. The percentages are a result of integer

math, resulting in bands at common fractions such as 1/2, 1/3, 2/3, 1/4, etc. In this chart, most of the time

the number of packets lost is less than or equal to the number of packets received. There are some exceptions

though, the most noticeable is the line at 66%, that indicates occasionally twice as many packets are lost

than received. The figure shows how the ratio changes over time; the magnitude of each tuple however,

is difficult to determine. Even though the horizontal space between dots on this chart represents the time

between each interval (and, therefore, the total number of packets represented by each dot), the number of

plotted intervals tends to obscure this information. This is a weakness of this visualization technique that is

difficult to overcome without very (physically) large visualizations or very low packet transmission rates.

We can overcome this weakness, in part, by counting the number of each unique (received/lost) value

tuples. As shown in Table 3.6, a clearer picture of the relationship between successfully received packets

and the subsequently lost packets emerges. Table 3.6 allows us to see the frequency of the success/loss ratio

while also showing the maximum number of packets lost in an interval. These two data representations, used

together, assist in the interpretation of the number of packets lost and the relationship between packet loss

and time.

Table 3.6: Success/Loss Interval counts (frequent and consistent)

Packets Received

L
os

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 324 954 57 44 163 9 8 22 2 2 6 1 0 1 1

2 88 252 0 8 44 0 5 8 0 0 2 0 0 0 0

Table 3.7: Percent Loss Interval Counts (frequent and consistent)

Percent 6.67 7.69 8.33 9.09 10 11.11 12.5 14.29 15.38 16.67 20 22.22 25 28.57 33.33 50 66.67

Count 1 1 6 2 2 22 8 9 2 163 52 5 57 44 962 576 88

Using the data in Table 3.6, no more than two packets are ever consecutively lost during this example

configuration. Despite the poor network conditions and high packet loss, the network appears to be stable

with very little variation in the number of packets lost over time. However, in both representations it is not

easy to determine the distribution of the packet loss. Table 3.7 contains the same data, grouped by percent

loss, giving a better indication of the overall distribution of percent loss. Figure 3.2b is another example run

of the simulation. The router and cross-traffic parameters for this run are the following:

• UDP Cross-traffic,
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• Two DropTail Queues,

• Random Classifier,

• 512-byte Packet Size,

• Realistic packet-size distribution,

• Realistic inter-packet time distribution, and

• 75 Mbps bitrate.

The counts of each success/loss pair for this configuration can be seen in Table 3.8. In this configuration,

fewer packets were lost than in the previous example. However, the network appears to be relatively unstable,

having periods of little to no packet loss, punctuated by network instability, with up to five consecutive

packets lost. The bursts in the packet loss indicate that the network likely experienced several short periods

of congestion.

Table 3.8: Success/Loss Interval counts (infrequent and bursty)

Packets Received

L
os

t

1 2 3 4 5 6 7 8 10 11 12 13 14 17 20 23 24 26 29 39 41 47 50 56

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 38 59 8 5 17 3 3 7 2 0 1 1 3 3 1 3 1 1 2 1 1 1 0 1

2 22 20 1 2 4 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0

3 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Packets Received

L
os

t

63 65 74 75 77 89 90 101 103 109 143 173 204 327 361 428 473 550 616 726

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 1 2 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1

2 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.9 shows the percentage loss breakdown for the second example run. In this table, the frequent

single packet losses produce numerous low percentage counts. Like Table 3.7, in Table 3.9 most of the intervals

have 33%, 50%, or 66% packet loss. However, Table 3.9 has two instances where the packet loss was greater

than 70%.
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Table 3.9: Percent Loss Interval Counts (infrequent and bursty)

Percent 0.0 0.11 0.14 0.16 0.21 0.23 0.28 0.3 0.49 0.57 0.91 0.96 0.98 1.1 1.11 1.32 1.33 1.38 1.52 1.56 1.75 2.08 2.38 2.5 2.53 3.33 3.7

Count 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1

Percent 3.85 4.0 4.17 4.76 5.56 6.67 7.14 7.69 9.09 11.11 12.5 14.29 15.38 16.67 20.0 25.0 28.57 33.33 40.0 42.86 50.0 66.67 71.43 75.0

Count 1 1 3 1 3 3 1 1 2 7 3 3 1 17 7 8 4 61 1 1 58 23 1 1

The previous charts and tables are useful for visualizing individual runs, but statistical techniques were

used to compare runs. Table 3.10 contains the aggregated received/lost measurements generated for the

configurations used in Figure 3.2a and Figure 3.2b. The six columns on the left are the values for received

packets including Standard Deviation, Mode, Median, Mean, Minimum and Maximum packets received in

a row. The five columns in the middle are the values for lost packets, including the Standard Deviation,

Mode, Median, Mean, and Maximum number of packets dropped per run-length. The right side of the table

contains the statistics for the percentage of packets lost for each run-length in a configuration.

Table 3.10: Example Run-Length Statistics

Received Packets Lost Packets Percent Lost Packets in an Interval

stdev Mode Median Mean Min Max stdev Mode Median Mean Max stdev Mode Median Mean Max

frequent and consistent 1.6 2 2 2.4 1 15 0.40 1 1 1.2 2 13 33 33 37 66

infrequent and bursty 105 2 2 29 1 905 0.54 1 1 1.3 5 20 33 33 32 75

Comparing the two configurations, we see that the greatest differences between the two configurations are

the Standard Deviation of consecutively received packets and the Maximum number of consecutive packets

received and lost. The Standard Deviation could be used as a measure of the stability of the network and

could be used by applications to adapt to, or alert upon, changing network conditions. The Maximum number

of packets lost provides us with the value of the number of packets, or updates, for which an application

would be required to compensate under the given network conditions. The mean packets received can be

thought of as the Mean Time Between Failure (MTBF), representing the expected time the application can

run before experiencing a packet loss. The right side of the table gives an indication of the ratio between

successful and lost packets per interval. Similar to the lost packets metrics, the Standard Deviation and

the Maximum values provide us with the most insight; the Standard Deviation could be used to indicate

the stability of the network and the Maximum value indicates the maximum period of time the game could

run uninterrupted. Throughout the following sections and chapters, the maximum number of packets lost

(Maximum Packets Lost), the mean number of received packets (Mean Success Length), and maximum percent

lost packets (Maximum Percent Loss) will be used for comparing different configurations to help identify

network conditions that are unusable and those that may be able to be overcome with mitigation techniques.

While the previous charts and tables are useful for analyzing the data for individual configurations,

they are unwieldy for determining the effect of small changes in the cross-traffic when comparing hundreds
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of configurations at a time. Using the statistics calculated for each configuration and then grouping the

configurations by a configuration parameter enables analysis of the impact of changing that parameter.

Figure 3.3a is an example of taking the maximum number of packets lost for each configuration and generating

a heat map. Each cell corresponds to a single integer value of a parameter’s measurement. The shading of

each cell corresponds to the number of configurations that resulted in a output value that fit into that

cell. The darker the cell, the more configurations it contains. Each column contains the same number of

configurations, allowing direct comparison between the distributions.
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Figure 3.3: Maximum consecutive packets lost vs. bitrate

Due to the loss of granularity, and the difficulty of identifying subtle shading differences, a bubble chart

can also be used to display the same information. Figure 3.3b contains the same information as Figure 3.3a,

but uses different-sized bubbles (centered on the number of packets lost) where the area of the bubble is

proportional to the number of configurations that had that value. The visualization shows us that the 75

Mbps set of configurations resulted in losses that are not noticeable in the heat map. The bubbles in the

charts are translucent so that the overlapping bubbles can be seen, and darker overlapped areas indicate the

close proximity of two or more data points (but has no other meaning in the analysis). Unfortunately, the

overlapping bubbles can make it difficult to see individual points.

3.5 Proposed Mitigation Technique

In online games, packet loss can lead to degraded performance or produce unwanted visual or game play

artifacts. While an increase in latency is also detrimental to the game-play experience, minor increases in

latency can be tolerated by most games. With this in mind, one possible mitigation technique to reduce

latency due to packet loss that could be deployed involves combining a number of previous packet payloads

with every new packet transmitted. Assuming that the application can tolerate a short increase in delivery

latency, the application would have all the information it needs to survive a small number of consecutive lost

28



packets.

A simple “what if we retransmitted the previous x packets” scenario was deployed. Since rerunning the

experiments with the mitigation technique would be prohibitive, an analytic approach was taken. Giving the

existing run-length data, any packet loss run-length that preceded at least one successfully received packet

was reduced by the mitigation amount and the successful region increased by the same number. For example,

if the single packet mitigation analysis was applied to a run where one packet was received, two packets were

lost, and one packet was received, the results would be one packet received, one packet lost, and two packets

received. Successful run-lengths without packet loss run-lengths between them were then merged. However,

this analysis does not take into account the impact of increasing the game packet size, which may indicate a

possible threat to validity and has been left to future work.

3.6 Summary

Real world analysis of the effects of cross-traffic and network configuration on game-traffic is difficult due

to limited access to the internal workings of the Internet. To better understand the interaction between the

cross-traffic, router configuration and game-traffic, a simulation environment was created that enables each

component to be individually configured, thereby allowing examination of their complex interactions.

For each experiment, one set of parameters was selected from a pool of available configurations and then

simulated with varying quantities of cross-traffic (an empty network, an underutilized network, a saturated

network and an over saturated network) to characterize the effect the simulation configuration has on the

game-traffic under different cross-traffic rates.
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4 Analysis and Results

This chapter reviews the results of the experiments and comments on the effectiveness of the proposed

mitigation strategy. Section 4.1 looks at the impact, on the game-traffic, of manipulating individual simulation

parameters. The experiments quantified the conjecture that packet loss is difficult to predict; however, the

length of successive losses is less than four packets in our domain of interest. An example mitigation technique

for these communications challenges is presented in Section 4.3 wherein recent packets are retransmitted along

with the current packet. The proposed mitigation technique is then analytically applied to the captured data

to evaluate its effectiveness. Section 4.4 investigates real-world data, compares the real data to the simulated

data, and evaluates the effectiveness of the proposed mitigation technique within the real-world scenarios.

Finally, in Section 4.5, the results of the previous sections are discussed.

4.1 Single Parameter Analysis

In this section, each parameter is analyzed to determine the effect that the parameter values have on the

overall packet loss characterization. For each parameter, the packets lost and packets received are analyzed

in an attempt to determine if there are any patterns that can be exploited by a mitigation technique.

4.1.1 Cross-Traffic Data Rates

In this section the data is grouped by the configured cross-traffic bitrate to determine what impact, if any, the

cross-traffic bitrate had on the game-traffic packet loss. Packet loss starts early, around 50 Mbps, suggesting

additional factors contribute to packet loss, and increases as the bitrate increases. The details of the analysis

and results can be found in the next section.

Results

The bubble chart in Figure 4.1a shows maximum consecutive packet loss from the run-length encoding of

each configuration. Each configuration used to generate Figure 4.1a is run with the same pseudo-random

number seed to ensure that the pseudo-random numbers generated have a minimal impact on the results,

allowing direct comparison between runs. The first observation from Figure 4.1a is that very few game

packets were being dropped when the cross-traffic was configured at 25 Mbps or 50 Mbps. This is expected,

as the outbound link is well below the saturation point. For cross-traffic bitrates over 100 Mbps, the effect

on the game-traffic was similar in each case. The router dropped a significant number of packets without a
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(a) Maximum consecutive packets lost
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(b) Maximum percentage of packets lost
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(c) Mean consecutive packets received

Figure 4.1: Bitrate Distribution
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discernible pattern. A small number of experiments with a bitrate of 75 Mbps cross-traffic, experienced game

packet drops. For cross-traffic bitrates under 75 Mbps, there is little or no packet loss; however, the packet

loss increases as the bitrate increases.

Overall, across all configuration groups, 89% of the runs had fewer than five consecutive packets lost. For

configuration groups with high bitrates, the number of runs with fewer than five consecutive packets lost

drops to as low as 26%. This could present a problem for mitigation techniques that proactively retransmit

small number of packets every frame time, such as those discussed in Section 3.5.

Comparing Figure 4.1a to Figure 4.1b, where the same data is used to create a bubble chart of the maxi-

mum percentage lost for each configuration, there appears to be a similar trend. Most configurations experi-

ence a per-interval packet loss under 20%, but at bitrates beginning at 50 Mbps, there are runs/configurations

that experience a higher percentage of packets being lost in an interval. Clear bubbles of packet loss appear

at 33% (integer multiples of two successes followed by one loss), 50% (integer multiples of one success followed

by one loss), 66% (integer multiples of one success followed by two losses) and 80% and greater (integer mul-

tiples of one success followed by four or more losses). As the bitrate increases, configurations with maximum

percent loss over 80% increase at a seemingly linear rate similar to the max packet loss seen in Figure 4.1a.

For configurations with a bitrate over 125 Mbps, the number of configurations with no packet loss remains

almost constant with values ranging from 6,335 to 6,419.

Figure 4.1c represents the distribution of the Mean Success Length for the configurations when grouped

by bitrate. Similar to Figure 4.1a and Figure 4.1b, most runs experienced little or no packet loss and therefore

had a Mean Success Length at or near 7200. At low bitrates, occasionally a single packet is lost, causing

the Mean Success Length to drop slightly to just below 7200. These dropped packets mostly occurred at

the beginning or end of the run, therefore not causing the Mean Success Length per run to drop in half.

It is important to note that halving would occur any time a run had only two run-lengths of received

packets separated by at least one loss. This halving happens on all bitrates higher than 25 Mbps but it is

most noticeable at 100 Mbps. The distribution of the Mean Success Length, when the bitrate is over 100

Mbs, appears to be very similar; however, given the results of Figure 4.1a and Figure 4.1b, it is likely the

similarities are due to the many small data points in close proximity causing the distributions below 1000 to

blend together. There are, however, noticeable differences around zero Mean Success Length, and magnifying

the area below 1000 would reveal more differences, confirming that the distributions are different.

4.1.2 Influence of Packet Size Distribution

The combination of the Packet Size Distribution, Mean Packet Size, Packet Size Range, and Packet Size

Standard Deviation parameters resulted in 85 valid combinations to be examined to determine if the packet

size distribution of the cross-traffic has any effect on the game-traffic packet loss. After grouping the simu-

lation data by packet size and distribution configuration, it appears as if packet size and distribution of the

cross-traffic does not have a significant impact on the game-traffic packet loss. However, it does appear that
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the 128-byte configurations and the realistic distribution did cause slightly more game-traffic packet loss.

This was verified with a statistical analysis; investigation as to why this is occurring has been left for future

work. The full analysis and charts are in the following section.

Results

Figure 4.2 through Figure 4.4e contains the visualizations of the Maximum Packet Loss parameter distri-

butions. There were too many datapoints to fit onto a single chart, so the results are presented in eleven

charts.
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Figure 4.2: Maximum number of packets lost for a Constant and Realistic per packet size distributions

Figure 4.2 shows that the 128-byte configuration has a slightly higher number of runs with a Maximum

Packet Loss between two and four than other configurations. A similar pattern emerges in Figure 4.3 and

Figure 4.4 where a slight increase in the number of 128-byte configurations with a maximum packet loss of

two, three, and four packets when compared to the other configurations for uniform and gaussian distributions

of cross-traffic respectively. However, possibly due to the sparse nature of the charts, the results are difficult

to see. Looking at the raw data, there is a 2.6% increase in the number of 128-byte configurations with

a maximum of four or fewer packets lost (4 packets lost was chosen to match the mitigation analysis in

Section 4.3). This would indicate that having smaller packets in the cross-traffic reduced the number of

packets lost in the game-traffic. This seems counter-intuitive as one would assume the smaller packets would

fill up the router queue quicker (the router queue was configured for 200 packets), reducing the probability

that game packets make it into the queue. A possible explanation could be beat frequencies in the generated

data, where packets from the two streams would occasionally be generated simultaneously, creating additional

packet loss or delay; this would suggest that different random seeds or bitrates may produce different results.

However, there is also a negative trend in the number of configurations with four or fewer maximum packets

lost as the size of the packet increases. It should also be noted that, even though the 128-byte configurations
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(a) 128-byte configurations
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(b) 256-byte configurations
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(c) 439-byte configurations
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(d) 512-byte configurations
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(e) 1024-byte configurations

Figure 4.3: Maximum number of packets lost for Uniform configurations per packet size and range
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(a) 128-byte configurations
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(b) 256-byte configurations
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(c) 439-byte configurations
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(d) 512-byte configurations
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(e) 1024-byte configurations

Figure 4.4: Maximum number of packets lost for Gaussian per-packet size distributions
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appeared to have reduced the number of high loss runs, the number of zero loss runs were also slightly

reduced, indicating that, under certain conditions, the smaller packets also increased the number of packets

lost in the very low packet loss scenarios.
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Figure 4.5: Maximum percent packets lost for Constant and Realistic configuration per packet size
distribution

The distributions of the remaining configurations vary slightly, but no other noticeable differentiations

appear in these visualizations. Other than the configurations with 128-byte mean packet size, it would

appear that the packet size and distribution have little impact on the game-traffic packet loss. There are,

however, other patterns visible in these charts that need to be explored further. For each configuration, the

largest concentration of runs had no packet loss, followed by two packet losses and then one packet loss.

Concentrations of packet losses of 5, 8, and 11 packets occur as well. The packet loss concentration patterns

do not appear to be dependent on the packet size, but other configuration groupings may yield different

results.

A similar pattern emerges when we look at the distributions of the Percent Packet Loss in Figure 4.5,

Figure 4.6 and Figure 4.7. Once again, the 128-byte configurations have a noticeably different distribution

than the other configurations. This time, the 128-byte configurations have an increase in runs that have

50% and 66% percent packet loss and slight reductions in the upper and lower percentage losses. However,

unlike the Maximum Packet Loss charts, the Maximum Percent Loss charts have more variation between

configurations. The 256-byte configurations have a slightly elevated number of runs with 66% packet loss

when compared to the larger packet sizes and the 1024-byte and 1500-byte configurations appear to have the

fewest numbers of runs with 66% and 33% packet loss. The realistic configuration also appears to have a

slightly reduced percent packet loss compared to the other configurations.

There is a general pattern in which the larger the cross-traffic packet size, the lower the percent packet loss

in the game-traffic; however, it is difficult to be certain from these charts. This result seems more intuitive, as
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(a) 128-byte configurations
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(b) 256-byte configurations
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(c) 439-byte configurations
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(d) 512-byte configurations
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(e) 1024-byte configurations

Figure 4.6: Maximum percent packets lost for Uniform configurations per packet size distribution
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(a) 128-byte configurations
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(b) 256-byte configurations
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(c) 439-byte configurations
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(d) 512-byte configurations
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(e) 1024-byte configurations

Figure 4.7: Maximum percent packets lost for Gaussian configuration per packet size distribution
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we would expect the larger packets to take up less space in the 200-packet queue than the equivalent number

of bytes in smaller packets. Since there is not a similar pattern in the packets lost in the Maximum Packet

Loss charts, it appears that the maximum packet loss remains more or less constant (with the exception of

the 128-byte packet configurations), but the larger packets in the cross-traffic reduced the overall packet loss

in the game-traffic (resulting in slight differences in the percent loss). This would indicate that the packet

size and the packet size distribution could have a larger impact than would be indicated by the Maximum

Packet Loss results.

Once again, additional patterns occur that cannot be used to distinguish between configurations, but are

interesting nonetheless. All configurations have a large concentration of runs with 0% packet loss. Concen-

trations at 33%, 50%, and 66% are seen which are due to integer loss: success ratios of 1:2, 1:1, and 2:1

or multiples thereof. Similar distributions would be expected in the other percent packet loss charts in this

chapter.

Using the Mean Success Length metric (Figure 4.8, Figure 4.9, and Figure 4.10), a clear differentiation

for the 128-byte packet configurations can be seen. When the mean packet size is 128 bytes, there is a sharp

decrease in the number of packets received in a row with a cross-traffic packet size distribution of Gaussian,

Uniform and Constant. This corresponds to similar increases in the packets lost in Figure 4.2, Figure 4.3,

and Figure 4.4 and maximum percentage loss in Figure 4.5, Figure 4.6, and Figure 4.7. Unlike the Maximum

Percent Loss results, there does not appear to be any significant pattern with any of the other configurations.

With these three charts, the number of packets sequentially lost is only slightly increased, while the average

number of packets sequentially received significantly decreased indicating that, in some cases, the 128-byte

configurations caused short (alternating) runs of successfully received packets and runs of packet loss. This

would suggest that the number of run intervals (a run of received packets followed by a run of lost packets)

would be increased for the 128-byte configurations. This hypothesis is verified by looking at the Cumulative

Distribution Function (CDF) heatmap for the number of intervals per configuration group, as illustrated in

Figure 4.11. In this heatmap, each vertical band represents the CDF for one configuration group and the

color shade at each point on the vertical axis represents the percentage of runs in the configuration group

that has, at most, that number of intervals.

Groupings for each packet-size distribution combination are visible, with only minor differences within

each grouping. For example, all of the configurations with a uniform distribution and 128-byte mean packet

size have a similar CDF while the next larger packet size (256-byte) has a distinctly different CDF. There

appears to be pattern where an increase in the packet size causes a decrease in the number of intervals.

While there appear to be slight differences between the distributions, and ranges within distributions, the

differences are so small that they are likely due to random fluctuations in the simulations.

As expected from the previous charts, the 128-byte configurations have distinctly different CDFs from

the other configurations. All of the 128-byte configurations groups had approximately 70% of the runs with

only a single interval (indicating a perfect run). The remaining configurations, however, had approximately
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Figure 4.8: Average number of packets received for Constant and Realistic per packet size

80% perfect runs. Despite the dramatic differences in the starting position for the different CDFs, all of

the CDFs reach 85% by 15 intervals per run. After this, the CDFs rise at a similar rate and then diverge

significantly when the CDFs reach approximately 90%. The 128-byte configurations appear to diverge more

quickly, indicating a significant increase in the number of intervals for these configurations.

An exception to the previous observations occurs for the highest packet size distribution range for the

256-byte, 439-byte, and 512-byte Gaussian distributions. In these instances, the CDF rises fairly quickly,

indicating that a larger number of runs for these configurations had six or fewer intervals per run. We can

also see that, for these configurations, the CDF rises at a slower rate than the other configurations. However,

at the upper end (around 65 intervals) the CDF appears to be similar to the CDF for other packet size ranges

within the same packet size-distribution groups. This exception could possibly be explained by the Gaussian

distribution reducing some of the packet sizes below the minimum threshold, forcing the simulation to clamp

the packet size to the minimum allowable for TCP or UDP protocol. This would artificially increase the

number of small packets being generated for the cross-traffic data and decrease the overall bitrate. However,

one would expect these instances to rise slower, similar to the 128-packet configurations, unless the decrease

in bitrate was sufficient to reduce the packet loss in the game-traffic significantly.

Figure 4.11 also points out differences that do not show up in previous visualizations. Since Figure 4.11

is directly related to Figure 4.8, Figure 4.9, and Figure 4.10, a decrease in the MTBF in the Mean Success

Length results as the mean packet size increased would be expected. However, distinguishing between small

changes in values in the bubble charts can be challenging, and the CDF chart does not consider packet losses.

This would, for example, mean that a run that had one interval and one packet loss would have the same

contribution to the CDF as a run that had one interval and 7199 packets lost. Figure 4.8, Figure 4.9, and

Figure 4.10, on the other hand, would represent these two runs as 7199 and one respectively. Figure 4.11 does,

however, suggest that the packet size is impacting the network differently, and further investigation into the

cause of this differentiation may lead to improved network performance or enhanced network classification

models.
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(a) 128-byte configurations
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(b) 256-byte configurations
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(c) 439-byte configurations
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(d) 512-byte configurations
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(e) 1024-byte configurations

Figure 4.9: Average Number of packets received for Uniform per packet size distribution
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(a) 128-byte configurations
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(b) 256-byte configurations
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(c) 439-byte configurations
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(d) 512-byte configurations
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(e) 1024-byte configurations

Figure 4.10: Average Number of packets received for Gaussian per packet size distribution
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Figure 4.11: CDF of Interval count

Observations from the previous charts indicate that the 128-byte and realistic configurations resulted in

different packet losses in the game-traffic, while the other configurations did not appear to vary significantly.

To test if there are any significant differences in the game-traffic Maximum Packet Loss due to a change in the

cross-traffic packet size distribution, the 2-sample Kolmogorov-Smirnov (ks) Test was used to test the null

hypothesis that all game-traffic Maximum Packet Loss distributions are drawn from the same distribution.

The results of the 2-sample ks-test are shown in Figure 4.12. Every configuration group is compared to

each other configuration group and the p-value assigned a color gradient according to the scale on right. The

null hypothesis states that the distributions of Maximum Packet Loss are the same for each configuration and

therefore a p-value of less than 0.05 (5 on the scale) would be sufficient to reject the null hypothesis for that

configuration group. The horizontal axis is labeled with the identification of the interesting configurations

and the y axis has the same configurations as the x axis, with constant-128 at the bottom.

Inspecting Figure 4.12, there appear to be white or very faintly colored bands vertically and horizontally

for the configurations marked as constant-128, and realistic, as well as the configuration groups labeled

gaussian-128, and uniform-128. These white bands indicate areas where most of the 2-sample Kolmogorov-
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Figure 4.12: Heatmap of p-value from 2-sample Kolmogorov-Smirnov test

Smirnov Tests resulted in a p-value less than the 0.05 threshold, allowing us to reject the null-hypothesis

(that states the Maximum Packet Loss were drawn from the same distribution) and indicating that the

compared configurations are statistically different. Although it should be noted that some configurations,

such as gaussian-128-8 (the second last column in the gaussian-128 section), the comparison between uniform-

128 and any 1024-byte configuration (rows 34-41, 75-84), and the comparison between uniform-128 and the

uniform-439-256 (row 66) resulted in many values slightly higher than the 0.05 threshold. Additionally,

there are a few values scattered within the white areas that exceed the 0.05 threshold. The black squares,

present at the intersection of these white bands, indicate a very high similarity between the configuration and

itself, and other similar configurations. One further observation is that, other than the previously mentioned

configuration groups, no other configuration combination resulted in p-values less than 0.05.

Even though some 128-byte configuration comparisons did not result in significant differences when com-

pared to the other configurations, it is apparent that there is something about the 128-byte configurations that

cause many of them to have a significantly different result on the game-traffic than the other configurations.

Considering the apparent increase in game-traffic packet loss for the 128-byte configurations, a possible reason
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for the difference seen for the 128-byte configurations is that the increased number of cross-traffic packets

increased the competition for each slot in the router queue and, therefore, reduced the number of game-traffic

packets that were able to be transmitted. An investigation into the exact cause of the differentiation of the

128-byte packet configurations has been left for future work.

4.1.3 Influence of Inter-Packet Time Distribution

The next analysis focuses on the influence of the timing of the cross-traffic packets on the game-traffic.

The Combination of Inter-packet Time Distribution and Inter-packet Time Interval resulted in nine different

experimental configurations. After grouping the simulation data by the cross-traffic inter-packet time distri-

bution and interval, it appears that the inter-packet timing has minimal impact on the game-traffic packet

loss. However, the realistic inter-packet time distribution did appear to result in more packet loss, confirmed

by statistical analysis. The investigation of these results has been left for future work. The full analysis and

charts are in the following section.

Results

Figure 4.13 contains three charts, representing the distributions of the Maximum Packets Lost, Maximum

Percent Loss, and Mean Success Length, similar to the analysis of Packet Size Distribution in Section 4.1.2.

Figure 4.13a represents the distribution of the Max Packet Loss per run, for each of the Inter-packet Time

Distribution configuration groups. At first glance, it would appear that the height of the distributions vary

slightly, however this could simply be the result of random variation. Closer examination shows that the

largest concentration of configurations are once again at 0 packets lost. The next largest concentrations are at

one and two packets lost. These three bubbles remain largely unchanged for most of the configurations, with

changes only noticeable for the realistic configuration group (where the 0-packets lost bubble is reduced and

the 1-packet lost is slightly larger). Each of the configurations then have lower concentrations at 5-packets

lost, 8-packets lost, and packets lost for each value up to 15-packets lost. Above 15-packets lost, the bubbles

are reduced to points indicating that packet losses beyond that point are probably outliers. The Realistic

configuration has more packet losses beyond 15-packets (up to nearly 30-packets). With less than 0.5% of

runs with consecutive packet loss greater than 15 packets, packet losses of this degree are low. From this

chart, one could reasonably state that the realistic configurations resulted in greater packet loss. While

one may be tempted to conclude there are differences between the other configurations, this chart does not

provide enough detail to support that conclusion.

Figure 4.13b the shows bubble chart of the Maximum Percentage Loss for the Inter-packet Time Dis-

tribution configurations. For most configurations, the distribution remains the same. However, as before,

the realistic configuration group stands out. The realistic group has fewer configurations with up to 33%

packet loss per interval and an increase in configurations with up to 50% and 66% packet loss per interval

and minor differences in most visible values above 66% maximum packet loss per interval. Together these
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Figure 4.13: Inter-packet time distribution
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results indicate that the realistic configurations experienced a higher percentage of packet loss than the other

configurations. It should be noted that the high concentration of runs at 0% appears to remain constant

for all configurations, yet there were nearly 1000 fewer runs at 0% for the realistic configuration. For the

Realistic configurations, the decrease in perfect runs caused an increase not only as noted above, but also to

values between 1% and 25% percent loss. However, the values at these percentages still remained low and

are virtually invisible on this chart.

Figure 4.13c indicates the average time a game could run without experiencing a packet loss; a bubble

chart showing the distribution of Mean Success Length (which is the average size per run, of a string of

received packets). For most runs, the average size was approximately 7200 packets, indicating a run with

minimal or no packet loss. This chart shows only minor changes between configuration groups with the

realistic configuration once again having the most significant differences: a decrease in runs with no packet

loss and an increase in runs with an average successful run length of 3600 or less.

The Inter-packet Time Distribution had little influence on the maximum consecutive packets lost. The

most interesting configuration is the realistic inter-packet time distribution, with a slightly higher number

of consecutive packets lost, and thus, higher percentage loss and reduced average success run time then

the other configurations. To determine if the realistic configuration is statistically different from the other

configurations, the Two-Sample Kolmogorov-Smirnov Test was calulated, testing the null hypothesis that the

Maximum Packets Lost distributions were drawn from the same distribution. Looking at the p-values from

the Two-Sample Kolmogorov-Smirnov Test in Table 4.1, when comparing the realistic configuration to the

other configurations, a p-value lower than the 0.05 threshold is obtained, indicating the null hypothesis can

be rejected, concluding that the game-traffic packet loss as a result of realistic Inter-packet Time Distribution

is statistically different than the other configurations. The remaining configurations, when compared to each

other, resulted in p-values much higher than 0.05 and therefore, are not statistically different from each other.

Table 4.1: Inter-packet time distributions p values from the Kolmogorov-Smirnov test

Constant Gaussian(10) Gaussian(20) Realistic Uniform(10) Uniform(20) Uniform(40) Uniform(80)

Constant 1.00 1.00 0.00 1.00 1.00 0.994 0.512

Gaussian(10) 1.00 0.00 1.00 1.00 0.989 0.484

Gaussian(20) 0.00 1.00 1.00 1.00 0.907

Realistic 0.00 0.00 0.00 0.00

Uniform(10) 1.00 0.999 0.764

Uniform(20) 0.981 0.744

Uniform(40) 0.998

Uniform(80)

However, the realistic cross-traffic Inter-packet Time Distribution does have an impact on the game-traffic.

It appears that there is some property of the realistic inter-packet spacing that contributes to the packet loss.

One explanation could be the bursty nature of the realistic cross-traffic. The bursts would create periods
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where very few game packets would make it through the router, and would create periods where game-traffic

would have little to no congestion. This would increase the number of packets lost at lower bitrates, due to

the transient periods of high load, and reduce the packets lost at high bitrates, due to the transient periods of

low load. This result, unfortunately, does not help us with classifying traffic or attempting to predict or react

to changing network conditions. However, one could postulate that a more disciplined or predictable packet

forwarding algorithm could potentially reduce packet loss in low bandwidth applications that are competing

for time on the network. Further research would need to be done to come to any conclusion.

4.1.4 Influence of the traffic classifier

The focus so far has been on determining if the cross-traffic data characteristics have any impact on the

game-traffic packet loss. Now the focus moves to the router itself, to determine if the routing algorithms

can influence the game-traffic packet loss. In this section, the algorithm for classifying the traffic is modified

to determine if separating game-traffic from cross-traffic, or the number of queues, have any impact on the

game-traffic packet loss. In this section, the Classifier Type and Number of Queues parameters are varied

for a total of five different configuration groupings. As expected, classifying the game-traffic and cross-traffic

separately into different queues resulted in zero game-traffic packet loss. Increasing the number of queues

increases the number of runs with zero packet loss, but also increases the number of runs with more than

five consecutive packets lost. The full analysis is in the following section.

Results

Figure 4.14a is a bubble chart analyzing the number of configurations that experienced different levels of

Maximum Packet Loss, where X-axis is the classifier type:

• 3-dedicated: Indicates there are three queues and the game-traffic has been dedicated to a single queue

and the cross-traffic has been assigned to the remaining queues.

• 2-dedicated: Indicates there are two queues and the game-traffic has been dedicated to a single queue

and the cross-traffic has been assigned to the remaining queue.

• 3-random: Indicates there are three queues and the game-traffic has been dedicated to a single queue

and the cross-traffic is randomly distributed between all three queues.

• 2-random: Indicates there are two queues and the game-traffic has been dedicated to a single queue

and the cross-traffic is randomly distributed between both queues.

• 1-shared: All traffic goes through one single queue.

A round robin scheduler was used in all cases to determine what queue to forward packets from. As one

would expect, having the game-traffic in its own queue, separated from the cross-traffic, appears to eliminate

48



all game-traffic packet loss. In the dedicated instance, the number of queues did not appear to have any

impact on the game-traffic.

However, it is expected that the game-traffic could experience greater latency in the dedicated configura-

tions due to other queues needing to be serviced, however this increase in latency depending on the number

of queues, priorities, and amount of cross-traffic. In this instance, however, the game-traffic may actually

experience lower latency in the dedicated queues than other queues because the game-traffic would only be

queued for, at most, the amount of time it would take to transmit two cross-traffic packets (instead of a

time proportional to the cross-traffic rate as would be experienced in the random and shared configurations).

Latency due to cross-traffic, however, is outside the scope of this thesis and could be considered for future

work.

Looking at the random and shared configurations (where the cross-traffic is randomly distributed between

one, two, and three queues), there appears to be an inverse relationship between the number of queues and

game-traffic packets lost. However, this trend does not extend to each of the Maximum Packets Lost values.

For example, the number of configurations with Maximum Packet Loss of seven packets increases with the

number of queues while the number of configurations with a Maximum Packet Loss of two decreases with

the number of queues. For the number of configurations with four or fewer packets lost, an inverse trend

appears, an increase in queues decreases the number of configurations.

It should be remembered that the router configuration is an oversimplification of a real router and there

will rarely be an instance where a router would classify a stream into a queue of its own (unless the router

offered QoS guarantees or traffic classes). Additionally, the packet based-queues used may differ significantly

from queues that use a fixed byte sized buffer to limit the number of packets. Schedulers other than round

robin would also have an impact on the traffic, another investigation for future work.

Figure 4.14b represents the number of configurations that experienced specific Maximum Percent Loss.

Once again, the dedicated configurations experience very little or no packet loss. Similarily to Figure 4.14a,

there is an inverse relationship between the number of queues and the number of configurations with 0% loss

for the random/shared configurations.

The number of configurations with 0% packet loss is up significantly, with about 15% for the three-queue

random configuration, 10% for the two-queue random configuration and 3% for the shared configuration.

This increase may seem odd, but remember that percentage loss is calculated as 100 ∗ loss/(loss + success)

which means that if success > (199 ∗ loss) the result will be less than 0.5% and, therefore, effectively 0%.

This does suggest that many of the configurations that did not have a zero Maximum Packets Loss had a

significantly larger number of received packets than lost packets in each interval. The random and shared

configuration groups also experience an inverse relationship for the 33% and 50% Maximum Percent Loss

where, the larger the number of queues, the smaller the number of configurations in that configuration group.

Each of the random and shared configurations have a similar number of configurations that experience more

than 50% Maximum Percentage Loss. However, the actual distribution appears to be very different between
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Figure 4.14: Classifier Type Distribution
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the shared and random configurations.

Figure 4.14c shows the Mean Success Length distribution for each of the classifier type configuration

groups. Again, the dedicated configurations experienced no packet loss, and therefore had a Mean Success

Length of 7200. Of the remaining configurations, there is a clear trend where the increase in queue count

increases the Mean Success Length. Figure 4.14c confirms previous observations: an increase in the number

of queues decreases the number of configurations with a MTBF below 1000 packets and increases the number

of configurations with near perfect runs. The number of runs with MTBF between 1000 packets and 4000

packets also increases, indicating that more packets make it through the router as the number of queues

increase. This is expected; since each queue was configured with a size of 200 packets, as the number of

queues increase, the number of packets required to fill all the queues also increase. Additionally, the queue

containing the game-traffic fills slower, allowing more game packets to be queued and transmitted.

The simplistic classifier type was intended to determine if the number of queues, and how the packets were

distributed, had any impact on the game-traffic. Figure 4.14 indicates that having the game-traffic filtered

separately from a majority of the cross-traffic significantly decreased the probability of dropping packets from

the game-traffic. When game-traffic and cross-traffic packets share a queue, dividing the cross-traffic into

multiple queues has an impact on the game-traffic packet loss. Interestingly, as the number of cross-traffic

queues increase, the number of configurations with no packet loss, as well as the number of configurations

with five or more packets lost, increases. Figure 4.14 additionally indicates that increasing the number of

queues increases both the number of high percentage losses (more packets lost than received) and the low

percentage losses (more packets received than lost). This result indicates that more queues increases the

volatility of the network. While this example does not necessarily reflect real world scenarios, the results

here suggest that packet and packet stream classifiers can have a large impact on the performance of the

game-traffic. If game-traffic is classified along with bursty traffic, such as data streaming or web traffic,

the game data could easily be overwhelmed by the cross-traffic. However, having the game-traffic separated

allows the game-traffic to pass through with minimal impact on the cross-traffic.

The scheduler, in this instance, was a simple round robin scheduler but fair or weighted fair queues would

likely present a similar result. This is because, unless the game-traffic is queued separately from the cross-

traffic or placed in a queue with a high priority, the relatively small amount of game-traffic will always have

to compete with the larger volume of cross-traffic. As the number of queues increase, the queue containing

the game-traffic will also be competing with other queues. Additionally, with the increase in the number of

queues, the packet latency will increase, causing additional problems for online games.

4.2 Extended Attributes

Upon review of the prior results, additional parameters were investigated for the traffic streams and queue

algorithms. Due to the exponential increase in the number of runs required to complete the full combination of
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parameters, many of the parameters from the bitrate, packet-size, inter-packet timing, and traffic classification

that did not appear to influence the game-traffic packet loss were dropped. This resulted in a dataset that

only explored the new, extended parameter set without much consideration for the interactions between

parameters. The following sections are stand-alone results that cannot be directly compared to previous

charts and results. The new configuration parameters were presented in Table 3.3 and Table 3.4.

4.2.1 Influence of Traffic Stream Type

With the extended configuration for Traffic Streams Type, there are now seven configuration groups to

explore. In this experiment, the cross-traffic was divided evenly between several different stream combinations

for a total of seven groups. UDP cross-traffic streams have a detrimental impact on game-traffic packet loss.

A single TCP cross-traffic stream has the least packet loss, and an increase in TCP streams increases the

packets lost. Combining TCP streams with UDP streams decreases packet loss; however, the results may be

due to experimental design. The complete analysis and results follow in the next section.

Results

Figure 4.15a is a bubble chart representing the distribution of the Maximum Packets Lost for each config-

uration group. Since TCP congestion control reduces the bitrate of a TCP stream to help eliminate packet

loss, the cross-traffic reaches an equilibrium with the game-traffic after the initial period where the network

may be congested. This can be clearly seen in this chart – any configuration containing at least one TCP

traffic stream had fewer consecutive game packets lost compared with UDP only traffic.

The UDP-only cross-traffic stream has the most consecutive packets lost, with a near uniform distribution

of packet loss that trails off after 15 packets (with a larger concentration at two and eight packets). Across

all configurations, the 0-packet loss bubble appears to be relatively constant, probably due to the remaining

75 Mbps bitrate configuration that would have near zero packet loss.

It should also be noted that the use of only TCP cross-traffic does not eliminate packet loss, but just

reduces the maximum consecutive packets lost to one or two. While an increase in the number of TCP

streams seems to increase the amount of packet loss, if there is a UDP stream involved, an increase in the

number of TCP streams decreases the packet loss in the game-traffic. This decrease in packets lost is more

likely due to the decrease in the bitrate allocated to the UDP stream than the inclusion of another TCP

stream. The increase in packets lost due to the increase in the number of TCP streams alone is likely due to

the TCP streams competing for bandwidth before settling into equilibrium.

Examining Maximum Percent Loss in Figure 4.15b, two patterns appear to emerge. First, when there is

a UDP stream, an increase in TCP streams reduces the percentage of packets lost. Secondly, in TCP-only

configurations, the increase in the number of TCP streams increases the Maximum Percent Loss between 0%

and 33% (meaning that increasing the number of TCP streams increases the run-length of packet losses), but

combined with the results of Figure 4.15a (where only a few extra losses occur), increasing the number of TCP
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Figure 4.15: Traffic Stream Type
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streams does not seem to significantly decrease the run-length of received packets. The UDP configurations

have a high concentration of Maximum Percent Loss at 66%, indicating that, for many intervals, the lost

packets are double the number of packets received. There is also a large concentration at 50% and 33% for

the configurations containing a TCP packet stream. These high concentrations for TCP may be due to the

rate limiting algorithm; however, closer inspection of the temporal distribution of the packet loss would be

required to support that conclusion.

Figure 4.15c is a bubble chart of the distribution of the Mean Success Length, indicating how long a

game could possibly run between packet losses. This chart is somewhat difficult to read due to the high

concentrations of configurations with results below 1000 packets. However, this does indicate that a large

number of configurations would be virtually unplayable. The configurations with three TCP streams have the

most configurations at or near the 7200 successful packets-received mark. One conclusion that can easily be

made is that, in the conditions of the extended configurations, the UDP cross-traffic configurations resulted

in very few runs where the game ran for a minute (≈ 3600 packets) or two minutes (≈ 7200 packets).

Overall, it appears that UDP traffic has a more detrimental impact on the game-traffic as compared to

TCP. If the network administrators controlled the use of UDP, or application designers reduced the usage

of UDP in high bandwidth applications in favor of TCP (or another protocol that adjusted to network

conditions) the impact of cross-traffic on low bandwidth UDP streams such as those used by video games

could be reduced. However, an increase in TCP cross-traffic also appears to cause packet losses in game-

traffic, possibly due to the initial burst of traffic that is then throttled. Realistically, we can assume that TCP

streams would not be initiated at the same time and would not be going through the process of congestion

control at the same time, so the distributions may vary in real data. In this experiment the increase in

number of TCP streams reduced the bitrate of the UDP traffic, which is unrealistic as, in the Internet,

the attempted bitrate of independent data streams are unrelated in actual network deployments. In the

simulated deployments of UDP and TCP, there are some differences that could occur in the real Internet, but

without taking a real network trace and applying the analysis we cannot come to any conclusions. Further

investigation of the impact of TCP/UDP cross-traffic streams on game-traffic have been left for future work.

4.2.2 Influence of Queue Management Type

The next parameter examined is the Queue Management Type, which determines if and when a packet is

dropped upon packet arrival at the router. The simplest implementation, DropTail, drops packets once the

queue is full. AdaptiveRED and RED follow a similar algorithm that randomly drops packets, with increasing

probability, as the queue fills up, AdaptiveRED is an extension to the basic RED algorithm that attempts to

dynamically adjust the probability of packets being dropped, based on the average queue length. CoDel is an

algorithm that attempts to minimize the length of time packets are in the queue, and does this by dropping

packets that have been in the queue for too long.

The RED and AdaptiveRED algorithms behave similarly, with only minor differences in game-traffic
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packet loss. The CoDel and DropTail algorithm appear to have identical results indicating packets may

not be in the queue long enough to trigger the CoDel algorithm. Overall, it appears that the more passive

DropTail algorithm performs best, resulting in the fewest game-traffic packets lost. The full analysis and

results are in the following section.

Results

Figure 4.16a depicts the Maximum Packet Lost parameter and already a clear pattern emerges. CoDel and

DropTail appear to be almost identical. AdaptiveRED and RED are very similar with only slight differences

in the distribution at the low end. From this observation, one reasonable hypothesis is that the queue

size (200 packets) is too small for CoDel to be effective, effectively becoming DropTail, and that the RED

configuration appears to be similar to the result of the dynamic configuration of AdaptiveRED. The largest

difference between AdaptiveRED and RED is the number of configurations with one and two consecutive

packets lost; RED has 40% and 27% of the configurations with a maximum consecutive packet loss of one and

two respectively while AdaptiveRED has 14% and 52% of the configurations with one and two consecutive

packets lost respectively. Overall, DropTail and CoDel drop fewer game-traffic packets than the RED variants.

This may be due to the aggressive nature of RED, where it starts dropping packets even when the queue is

not yet full.

Figure 4.16b visualizes the distribution of Maximum Percent Loss. In this chart, once again the CoDel/Droptail

and RED/AdaptiveRED pairs appear somewhat related. AdaptiveRED drops a lower percentage of packets

than RED (with RED having an increase at 50% and AdaptiveRED having an increase in configurations

below 50%), though they both have similar shapes at the top end of the distribution. The RED configura-

tions perform better than CoDel and DropTail, where CoDel and DropTail have an increase in configurations

with runs having 66% packet loss. However, the increase in the number of configurations with runs ex-

periencing over 80% packet loss for RED/AdaptiveRED, compared to the relatively few configurations for

CoDel/DropTail, suggest that (under some circumstances) the DropTail/CoDel configurations may outper-

form the RED Variants. Although the reduction in packet losses between zero and 50% may make it look

like RED is performing better than AdaptiveRED, RED has the fewest configurations with 0% packet loss

and a significant increase in packet losses at or above 50%.

Figure 4.16c represents the distribution of Mean Success Length grouped by Router Queue Type. Not

unsurprisingly, given the results of the Traffic Stream Type experiments, most runs performed poorly and

resulted in a fairly low Mean Success Length. There are no clearly distinct configuration group(s). It

appears that CoDel and DropTail have the most configurations at, or near, 7200 packets and again the most

configurations at, or near, 3600 packets. This indicates that the CoDel and DropTail configurations allowed

the game to run longer than the RED variants. Of the RED variants, it appears that AdaptiveRED allowed

more configurations to run longer than RED, which is consistent with the observations in both Figure 4.16a

and Figure 4.16b
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Figure 4.16: Router Queue Type
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Of the queue management types used in the configurations, CoDel and Droptail caused the fewest game

packets to be dropped. CoDel and Droptail perform very similarly, likely due to the fact that most packets

would not stay in the queue for very long and would, therefore, not be dropped by the CoDel algorithm

(instead reverting to Droptail behavior). RED and Adaptive RED also perform similarly, but RED drops

a higher proportion of the game-traffic than AdaptiveRED, likely due to adaptiveRED adjusting the drop

probabilities to be less aggressive than the RED configuration.

Changing the Queue Type does not really have an impact on the game-traffic. If network operators wanted

to ensure low bandwidth UDP stream did not drop packets, they would have to increase total network capacity

to ensure that queues would not become full.

4.3 Results of Proposed Mitigation Technique on Simulated Data

As discussed in Section 3.5 an analytical approach was taken to determine if bundling previous packets with

each game update would help mitigate the problem of packet loss. In the following sections, the mitigation

technique is applied analytically to the simulation results and analyzed. With only four packets retransmitted,

approximately 90% of runs experienced little or no data loss for a full two minutes.

Results

Figure 4.17 compares the results of the analytical application of the mitigation technique on the results of

the Queue Type analysis from Section 4.2.2, using the Mean Success Length metric to demonstrate how

long the game would run without data loss. Comparing Figure 4.17b (where the previous packet data is

bundled to each outgoing packet) with Figure 4.17a (from Section 4.2.2) shows that even a single packet

retransmitted has a noticeable impact on the playability of the game. In all cases, each of the configuration

groups resulted in less packet loss - increasing the length of time the game could play without data loss. The

largest increase appears to be at the top of the chart where the bubbles(s) represent runs that had no data

lost (7200 consecutive packets received) or runs where one or two packets were lost at the beginning of the

run or the end (eg: 7199). The inclusion of the previous packet with each outgoing packet also reduces the

number of runs at, or around, zero for the Mean Success Length and increases the number of runs that are

playable for half of the run (3600) and a third of the run (2400).

Without the mitigation technique, the number of configurations with no data loss was around 14%.

However, with the inclusion of the previous packet, the number of runs with no (or little) data loss increased

to 28% for RED, 38% for DropTail/CoDel and 53% for AdaptiveRED. Contrary to the earlier results, it

appears that AdaptiveRED works best with this type of mitigation strategy. This also confirms that the

configurations using AdaptiveRED resulted in intervals where only a single packet is dropped, followed by

one or more successfully recieved packets. This is supported by Figure 4.16b where most of the runs have

a maximum percentage of packets lost at or below 50% and Figure 4.16a where most runs had one or fewer
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Figure 4.17: Results of mitigation: QueueType
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packets lost for any given interval. Even under bad network conditions, the mitigation strategy would increase

the probability of a good gameplay experience.

Increasing the number of packets retransmitted to four (the four previous packet payloads are retrans-

mitted with each new packet) further increases the length of time the game is playable. However, depending

on the game, the increased latency due to having four lost packets may be noticeable, even if the data is

eventually received. In Figure 4.17c, the number of runs with no data loss, or minimal data loss, has increased

again, this time to 93% for DropTail/CoDel, 86% for RED and 84% for AdaptiveRED. CoDel and DropTail

are performing better, with only a few configurations experiencing any packet loss. This may be unexpected,

but returning to Figure 4.16a, CoDel and DropTail had the most configurations with four or fewer packets

lost. AdaptiveRED and RED both have configurations with more than 15 packets lost. It is interesting to

note that, even though there are four previous packets payloads with each outgoing packet, all configuration

groups have at least one configuration experiencing enough packet loss to drop the playable game time to

mere seconds. However, this mitigation technique shows promise and has significantly increased the number

of runs with minimal data loss.

Examining the impact of the mitigation technique with respect to Bitrate (Figure 4.18), the results are less

clear. There is an increase in the number of runs with no data loss, but at high bitrates there are still a large

number of runs experiencing data loss. Figure 4.18b shows the distribution of Mean Success Length for the

Bitrate configuration groups utilizing a one packet retransmit mitigation strategy. For most configurations,

there is an increase in the runs experiencing no data loss. Looking at the raw data, the highest increase is at

125 Mbps (with a 34% increase). The remaining configurations (over 125 Mbps) experienced a 25% increase

in this metric. Around 60% of configurations experienced no data loss for the configuration groups over 100

Mbps while 90% of the configurations at or below 100 Mbps had no packet loss. There is an increase in the

number of runs with a Mean Success Length of 3600 and 2400 for the configurations over 100 Mbps and a

general reduction in the other values. The 25 Mbps, 75 Mbps, and 100 Mbps see a reduction in all values less

than 7199. As expected, an under-saturated network appears to function well, allowing most of the game

packets to travel freely through the router. With the inclusion of an extra packet being retransmitted, the

amount of data loss is further reduced. Even at higher bitrates, the mitigation strategy reduces data loss; a

majority of configurations are playable for the entire game period.

Figure 4.18c is the distribution of the Mean Success Length when retransmitting four packets, grouped

by Bitrate. Once again, there is a noticeable decrease in the number of configurations with a Mean Success

Length less than 7199. Despite the increase in the number of configurations around 7200, there are still a

number of configurations clustered below 1000 - indicating these configurations, on average, would allow the

game to run smoothly for approximately 17 seconds. Additionally, there still exist configurations at 75 Mbps

and 100 Mbps that exhibit data loss.

There is an increase in the number of runs slightly less than 7200, indicating that there were more than

four packets lost at the end of the run, or that more than four packets were lost at the very beginning of the
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Figure 4.18: Results of mitigation: cross-traffic Bitrate
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run. Looking again at the raw data for bitrates over 100 Mbps, the number of configurations experiencing

little or no data loss increases to between 75% and 85%, with the data loss increasing with the bitrate. For

configurations at or below 100 Mbps, the number of configurations experiencing little or no data loss was

between 98% and 100% (again, the data loss increased with the bitrate). The 50 Mbps configuration group

does experience data loss with runs at 3600 and around 2400, but on this chart those small numbers are hard

to see. Once again, the mitigation strategy appears to be useful; however, higher bitrates or high congestion

networks still present a problem for applications sensitive to data loss.

Figure 4.19 compares the distributions of the Mean Success Length for the cross-traffic Streams with and

without the mitigation strategy. Figure 4.19b demonstrates the effects of retransmitting a single packet.

When Figure 4.19b is compared to Figure 4.19a, there is an increase in the Mean Success Length for every

configuration group. Of all the configurations groups, the TCP-only configuration groups have the lowest

data loss. The configurations with two and three TCP streams also have a reduction in data loss but not to

the same extent as the single TCP configuration group. All TCP-only configurations still have runs with the

Mean Success Length less than 50% of the total run time. However, the single TCP-only configuration has

the least number of runs with a Mean Success Length less than 50% of the total run time. Any configuration

group with a UDP stream did not respond as much to the mitigation strategy of retransmitting a single

packet, with only a slight increase in the number of runs with little or no data loss. The UDP stream

configuration groups still have many configurations that were only able to run for small numbers of seconds

at a time before experiencing data loss.

Figure 4.19c shows the results of retransmitting four packets. In this scenario, the TCP-only configurations

now have almost all perfect runs, losing data only at the beginning or ends of the runs. The configurations

with a UDP stream still experience data loss; as the amount of bandwidth allocated to TCP streams increases,

less data is lost. The configurations with a UDP stream have more packets lost at the beginning or end of

the run resulting in several overlapping bubbles near 7200. The UDP-only configuration group still has 25%

of the configurations only able to run for at most 3.6 seconds (215 packets), and nearly 50% of the runs

have a Mean Success Length less than or equal to 3600 packets (60 second without losing data). However, in

Figure 4.15a, most configurations have fewer than 10 packets lost at any given time, and most packets lost

were in groups of four or less, suggesting that an increase in the mitigation strategy could produce better

results. Since a large portion of Internet traffic is TCP, these results suggest that a mitigation of as little as

four packets retransmitted may be sufficient to handle most cases of packet loss, assuming that the game can

tolerate a delay in game state of as much as four frames. As UDP traffic increases, the mitigation strategy

would also need to be made more aggressive by increasing the number of packets retransmitted.

Figure 4.20 visualizes the results of the mitigation strategy on the Classifier Type analysis. Figure 4.20a

shows the Mean Success Length for the Classifier Type without any mitigation strategy applied. Figure 4.20b

shows that a simple mitigation strategy of retransmitting a single packet of data has a noticeable impact

on the Mean Success Length, increasing the number of runs that have little or no data loss as compared

61



u
d
p

tc
p

1
tc

p
1
u
d
p

2
tc

p

2
tc

p
1
u
d
p

3
tc

p

3
tc

p
1
u
d
p

Cross-traffic Streams

0

1000

2000

3000

4000

5000

6000

7000

M
e
a
n
 S

u
cc

e
ss

 L
e
n
g
th

(a) No retransmission

u
d
p

tc
p

1
tc

p
1
u
d
p

2
tc

p

2
tc

p
1
u
d
p

3
tc

p

3
tc

p
1
u
d
p

Cross-traffic Streams

0

1000

2000

3000

4000

5000

6000

7000

M
e
a
n
 S

u
cc

e
ss

 L
e
n
g
th

(b) Retransmitting one packet

u
d
p

tc
p

1
tc

p
1
u
d
p

2
tc

p

2
tc

p
1
u
d
p

3
tc

p

3
tc

p
1
u
d
p

Cross-traffic Streams

0

1000

2000

3000

4000

5000

6000

7000

M
e
a
n
 S

u
cc

e
ss

 L
e
n
g
th

(c) Retransmitting four packets

Figure 4.19: Results of mitigation: cross-traffic Type
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to Figure 4.20a where no mitigation strategy was applied. Much like Figure 4.20a, where an increase in

the number of queues appears to have a decrease in the data lost, Figure 4.20b follows a similar pattern.

However, across the non-dedicated configurations, 27% of all runs are unable to sustain a stable game for

more than 30 seconds (1800 Mean Success Length). Additionally, contrary to the data loss trend, the two-

queue configuration has an increase in runs that were able to run for one minute (3600 Mean Success Length)

without any data loss. Another observation is that the increase in the number of queues reduced the number

of runs with a Mean Success Length just below 7200, indicating that with fewer queues, the game loses more

packets either at the beginning of the run, or at the end of the run. However, the mitigation strategy does

not appear to have a noticeable impact on values around 7200.

If the mitigation retransmission rate is increased to four, there is an increase in the number of runs that

have little or no data loss. At this point, each of the non-dedicated configurations appear to have a similar

distribution for the Mean Success Length. There is also a slight increase in the number of configurations

just below 7200, once again indicating that there are groups of lost packets at the beginning of runs and at

the end of runs. A closer look at the raw data does indicate that the previous trend still exists, where an

increase in queues correlates to a decrease in the number of almost perfect runs (with little or no data loss).

Additionally, an increase in queues sees an increase in configurations at nearly every Mean Success Length

value lower than 3600 (one minute of data-loss free runtime). This supports the results in Section 4.1.4,

where an increase in the number of queues seems to increase the data loss. Despite these results, even at four

packets retransmitted, no non-dedicated packet classifier configuration group ever achieved 90% near perfect

runs and the difference between the non-dedicated results was less than 10%. This result indicates that the

classifier type has little useful influence on the packet loss and that the mitigation strategy works similarly

across any realistic configuration group.

The Packet Size Distribution (Figure 4.21) results followed a similar pattern to what was seen in Sec-

tion 4.1.2. Figure 4.21 depicts the distribution of the Mean Success Length for the Packet Size Distribution

using different mitigation strategies. The x-axis shows each configuration group with labels centered on

their respective configuration group. With only one packet being retransmitted, the 128-byte configurations

continue to stand out. The 128-byte configurations became more pronounced, resulting in the 128-byte con-

figurations having fewer runs near 7200 and increasing the number of runs with a Mean Success Length at

or below 700 (≈11 seconds). Contrary to Figure 4.4, where 128-byte configurations groups had an increased

number of configurations with a Mean Success Length less than 70 (1.2 seconds), the single packet mitigation

strategy decreased the number of configurations with a Mean Success Length less than 70 (for the 128-byte

configurations) at a higher rate than the other configuration groups resulting in the 128-byte packet configu-

rations having fewer configurations with a Mean Success Length under 70. With the single packet mitigation

strategy, the 128-byte configurations still stand out with an increase in runs with a Mean Success Length

below 3600 and a slight decrease in runs with a Mean Success Length at 3600. Once the mitigation strategy

was increased to four packets, the distinction between the configuration groups becomes less pronounced as
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(c) Retransmitting four packets

Figure 4.20: Results of mitigation on the Classifier Type Analysis
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the results converge to similar distributions with no obvious trends in their differences.

The remaining configuration groups differed very little from each other, reinforcing the results from

Section 4.1.2. The results of the mitigation strategy seem to indicate that many of the 128-byte packet con-

figurations had runs with many single-packet losses that caused the initial analysis to calculate a lower Mean

Success Length but did not alter the Maximum Percent Loss and Maximum Packets Lost by a noticeable

amount. The mitigation strategy then eliminated those single packet losses, redistributing the Mean Success

Length to higher values. However, by increasing the number of packets retransmitted, the configurations ap-

pear to converge - indicating that all configuration groups had a similar Maximum Packets Lost distribution,

as confirmed by Figure 4.2, Figure 4.3, and Figure 4.4.

The remaining configuration, Inter-packet Time Distribution (Figure 4.22), provided very little insight

into the mitigation strategy. Much like the results of Section 4.1.3, each of the Inter-packet Time Distribution

configuration groups responded very similarly to the mitigation strategy. With each increase in the number

of retransmitted packets, the number of near-perfect runs increased by a similar margin, (from 71% near

perfect runs with no retransmission, to 79% near-perfect with the single packet retransmission, to 89% near

perfect runs with four packets retransmitted). The only exception was the Realistic configuration, which had

a slightly lower number of near-perfect runs (60% near-perfect runs with no retransmission, 73% near-perfect

runs with a single retransmission and 86% near-perfect runs with four packets retransmitted). These results

suggest that the Inter-packet Time Distribution has very little influence on the game packet loss and the

mitigation strategy. However, this may also indicate that the synthetic distributions are extremely unrealistic.

Since the synthetic distributions perform better, having fewer packets lost than the realistic distribution, this

may suggest possible improvements to packet transmission algorithms such as transmission of packets at fixed

intervals. In aggregate, with many traffic streams on the network, the synthetic nature may be lost, losing

any advantage from more synthetic packet generation. Further analysis of Inter-packet Time Distribution

has been left to future work.

4.4 Real World Observations

Part of the data collection included capturing game-like packets sent over a real network from a variety

of different sources (as described in detail in Section 3.3). This experiment involved sending packets from

multiple devices on several different networks to a central server that then recorded the packets received and

lost in a similar format as to what was used in previous experiments in this chapter. From the analysis,

the results were unlike the results from the simulations. LTE and ADSL proved to have the most unstable

networks and experienced high packet loss. WiFi appeared to have a significant impact on the packet loss,

but further investigation has been left for future work. The full results and analysis are below.
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(c) Retransmitting four packets

Figure 4.21: Results of mitigation on the Packet Size Distribution Analysis
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(c) Retransmitting four packets

Figure 4.22: Results of mitigation on the Inter-packet Time Distribution Analysis

67



Results

As the network conditions were unknown during the experiment runs, configurations are grouped by source

host and ISP as in Table 4.2. Using the same analysis as in previous sections, the results for Maximum

Packets Lost, Maximum Percent Loss, and Mean Success Length were compiled and visualized in Figure 4.23

and Figure 4.24.

Table 4.2: Real World Device Configurations

Device A B C D E F

OS WIN 10 WIN 10 CentOS 6 WIN 10 WIN 10 Android

Network Type WiFi Wired Wired Wired WiFi LTE

ISP Business Park University Business Park ADSL/Cable ADSL/Cable Telco

In Figure 4.23, the ADSL experiments exhibited packet loss of up to 2690 consecutive packets lost in a

run. Outliers exist at 6442 consecutive packets lost for one of the University runs, 4832 consecutive packets

lost for one of the Wired Cable runs, 6551 for one of of the Wired Cable runs, and 3842 for one of the

LTE runs. These outlying results were left in the quantitative analysis. Even though these outliers are

impossible to deal with at their magnitude, they do happen, albeit rarely. This does indicate that, in some

rare instances, game-play will be disrupted by extreme packet loss that no mitigation strategy will ever be

able to hide. In keeping with previous analysis in this chapter, a truncated chart (Figure 4.24a) with the

Maximum Packets Lost capped at 30, will be examined further for detail at the low end of packet loss.

The apparent differences between Figure 4.23 and Figure 4.24a are due to the differences in the y-axis scale

between the two charts. Figure 4.23 has a larger y-axis scale, and therefore the vertical distance between the

bubbles are reduced making the two charts appear to represent different datasets. This is most noticeable

with the cable scenarios (D, E), where, in Figure 4.23, the bubbles for no packets lost and one consecutive

packets lost are more separated and distinct than the corresponding bubbles in Figure 4.24a (where it appears

the two bubbles are closer in size).

In Figure 4.24a, most runs had run length intervals with fewer than five consecutive losses. The devices

on ADSL (D, E) and the device on LTE (F) experienced the most packet loss while Cable devices (D, E)

experienced the least packet loss. For these scenarios, any run with more than four consecutive packets lost

is a relatively rare event, occurring less than 2% of the time. The ADSL devices (D, E) had 8% of the runs

with more than four consecutive packets lost and the LTE device (F) had 7% of the runs with more than

four consecutive packets lost. The distribution of the Maximum Packet Loss for the LTE network appears

significantly different than the other distributions. At first glance the LTE distribution appears to follow

the half-normal distribution, but with additional samples the distribution may become more well-defined.

Despite device A (Windows 10 Wifi) and device C (CentOS 6 Wired) operating over a business level network,

they seem to experience a large number of consecutive packet losses in the same run. This may be explained
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by the traffic-shaping rules applied to the office router or business gateway. Further investigation has been

left for future work.

In the office scenario (A, C), WiFi seems to have a minimal effect on the outcome, as either the router

or ISP appears to have the most influence on the rate of packet loss. The cable ISP (D, E) frequently drops

small groups of packets, while ADSL (D, E) occasionally drops large groups of packets. The effect of WiFi

is minimal on ADSL and Cable, although the distributions vary slightly, this may just be due to the highly

variable nature of the network traffic. The LTE results indicate that packets are frequently lost, typically

in groups between one and seven, but occasionally up to 16 packets are lost at a time. The LTE loss may

correspond to load on the network, but that analysis has also been left for future work.
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Figure 4.23: Maximum number of consecutive packets lost (Full Chart)

The Maximum Percent Loss paints a slightly clearer picture of the packet loss. In Figure 4.24b, the ADSL

devices (D, E) lose a higher percentage of packets than any of the other configurations. The 100% packet

loss for the ADSL indicating packets were lost at the beginning of the sample run or one of the instances

where ADSL dropped more than 200 packets for every one packet received. The remaining high percentages

for ADSL likely indicate sequences where the packet received to lost ratio was between 1:9 (90% packet

loss) and 1:25 (96% packet loss) or some multiple of these ratios. The Office network (A, C) experienced

the least percentage of packet loss with most run length intervals having below 2% packet loss with outliers

at 16% and 85% indicating that even though there were more instances of high packet loss (Figure 4.24a),

these losses were accompanied by more received packets thereby reducing the Maximum Percent Loss. The

Office network outliers at 85% are one of the rare instances where more packets were lost in an interval,

than received. The Cable (D, E) and University (B) networks exhibited similar results with most of the runs

having a Maximum Percent Loss less than 2% with a few runs with up to 91% packet loss in an interval. The

WiFi Cable (E) experienced twice the number of instances with over 2% than the Wired Cable, but followed a

similar distribution. Scenario E (LTE) clearly indicates that the LTE network was the most volatile network
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(c) Mean number of consecutive packets received

Figure 4.24: Real World Results
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– with many runs experiencing intervals with over 50% packet loss and large concentrations between 30%

and 70%. Nevertheless, the LTE network still had over 80% of its runs with a Maximum Percent Loss less

than 50%.

The next metric to look at is the Mean Success Length, corresponding to an approximate Mean Time

Between Failure. If the system can operate for a sufficient duration between unrecoverable packet loss events,

then the network performance is acceptable. However, if data is lost while the game is running and the game

is unable to compensate for the lost data, the user experience will be negatively impacted.

In Figure 4.24c, the vast majority of the datasets collected did not lose a single packet. Smaller bubbles

occur around the 3600 packet run-length (half of the experiment run-time), likely indicating a single packet

loss event during the run, and smaller bubbles leading all the way down to almost zero indicate progressively

worse network conditions. Table 4.3 groups the results of Figure 4.24c into three categories: Near Perfect

(Percentage of runs from that host that had little or no packet loss), Around Half (Percentage of runs from

that host that were around the 3600 mark), and Less than a Quarter (Percentage of runs for that host that

had on average 2400 or fewer consecutive packets received). The corporate network (A, C) is, in fact, the

most stable, resulting in over 96% of the runs with little to no packet loss and long periods of successful runs.

The runner up, unexpectedly, was the Wired ADSL (D) with over 88% of the runs having little to no packet

loss followed by the University network (B) with over 86%, WiFi ADSL (E) with 85%, the Wired Cable (D)

with 68%, WiFi Cable (E) with 62%, LTE (F) with only 41% of the runs having little or no packet loss.

Device B (University Network), and Devices D and E on ADSL experienced a small number of captures that

resulted in short mean time between failures (indicating a very unstable network). Even though the ADSL

has over 84% near perfect runs, they also had some of the highest percentage of runs that were unable to run

for a quarter of the time, only having better results than the Cable (D, E) and LTE (F) networks. Conversely,

the ADSL had some of the lowest percentages of runs that had Mean Success Length around 3600, only the

Office (A, C) network having fewer results in that category. Overall, the Cable (D, E) and LTE (F) proved

to be the most unstable with the highest number of runs resulting in either a smooth runtime of 50%, or

runs that were unable to run smoothly for much more than 30s.

The LTE network has no collected run with a Mean Success Length less than 1200; most of the average

successful run-lengths were for the entire duration or around 1/4, 1/3, or 1/2 of the total run length (1800,

2400, and 3600 respectively). This was not expected. However, a close look at the run length data suggests

that many LTE connections experience a rough start, which would account for reduced MTBF values. If

the application waited for the network state to stabilize before capturing packets, the MTBF would likely

increase further. This means that mobile games connected over LTE could implement a warm up period

during loading screens or cut-scenes where packets are exchanged, so that the network has a chance to get

used to the new traffic, allowing the game play to run more consistently.

WiFi appears to have had an impact on packet loss. In Table 4.4 (a table containing the number of runs

that had a given Maximum Packet Loss), device A (WiFi on Business Park) has 50% more runs with packet
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Table 4.3: Real World Data Mean Success Length Breakdown

Near Perfect Around Half Less than a Quarter

A (Office WiFi) 96.1% 3.14% 0.714%

B (University) 86.1% 6.00% 7.86%

C (Office) 97.4% 1.71% 0.857%

D (ADSL) 88.4% 2.57% 9.00%

D (Cable) 67.6% 17.3% 15.1%

E (ADSL WiFi) 84.6% 3.14% 12.3%

E (Cable WiFi) 61.6% 19.3% 19.1%

F (LTE) 41.6% 24.4% 34.0%

Table 4.4: Real World Data Maximum Packet Loss

PPPPPPPPPPP
Host

Packets Lost
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 >30

A (Office WiFi) 673 13 3 3 4 3 1

B (University) 603 77 7 2 1 1 2 2 2 1 1 1

C (Office) 682 3 1 1 3 1 1 1 2 2 1 2

D (ADSL) 619 34 5 3 39

D (Cable) 473 214 7 1 1 1 1 1 1

E (ADSL WiFi) 592 27 1 1 2 1 2 2 3 6 6 2 5 3 2 1 1 1 42

E (Cable WiFi) 431 255 5 1 1 1 1 1 2 1 1

F (LTE) 291 170 85 57 34 12 20 13 7 1 4 1 1 1 1 1 1

loss than device C (Wired on Business Park). Packet loss in both cases is below 4%, and both of the scenarios

only had approximately 2% of the runs with greater than four consecutive packets lost. The ADSL WiFi (E)

device had 33% more runs with packet loss than the Wired ADSL device (D). In this instance, the ADSL

WiFi device (E) had twice the number of runs with more than four consecutive packets lost than the wired

device on ADSL (D). The WiFi on Cable (E) experienced an 18% increase in runs with packet loss over the

Wired device on Cable (D). However, the Cable network (D, E) has less than 2% of the runs with four or

more consecutive packets lost.

The Cable devices (D, E) experienced a greater number of packet losses and had the greatest increase

from wired to WiFi. Since the Cable devices used the same internal network as the ADSL devices (D, E),

the differences between the wired and Wifi may be due to interactions between the WiFi network and the

relatively unstable Cable network. Investigating these interactions has been left for future work.

The difference in WiFi vs. Wired is more noticeable looking at the Maximum Percent Loss (Figure 4.24b)

where the WiFi networks experience a more varied distribution of packet loss in the case of ADSL and simply

an increase in runs with packet loss in the case of Cable.

The Mean Success Length also supports the conclusion that WiFi has increased packet loss with an increase

in non-perfect runs and higher concentrations of runs with low Mean Success Length. The similarities between
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the WiFi and Wired results on the Business Network indicates there are other factors influencing the results.

Perhaps the Business Park had reduced radio interference or a better access point (as compared to the ADSL

and Cable networks), reducing the number of packets lost due to the wireless medium, or the difference in

packet loss may just be a result of the unpredictable nature of Internet traffic. However, the consistently

higher packet loss on WiFi networks may indicate that the WiFi networks are slightly more unstable. More

experiments are necessary to draw such a conclusion with any confidence and this has been left for future

work.

The results of the real world data appear to be very dissimilar to the results of the simulated traffic

from previous sections. Not only does each ISP exhibit different packet loss characteristics, but none of the

exhibited packet loss distributions appear to match any of the charts from previous sections. Additionally, the

overall packet loss appears to be lower in the real-world data as compared to the simulated data, indicating

that either the network is unsaturated, or there are traffic shaping algorithms in place to prevent the loss

of game-traffic packets. However, the erratic nature of LTE and the unexpected bursts of packet loss in the

ADSL do indicate there is a need to improve performance in real world networks and that there exists a role

for in-app mitigation strategies.

4.4.1 Mitigation Analysis on Real World Data

Similar to the analysis done for the simulation data, an analytical approach to the mitigation strategy was

applied to the collected real world data. In this analysis, the run lengths were recalculated to simulate repack-

aging the payloads of previous packets with each new packet sent. The results indicate that approximately

90% of the runs would experience little or no data loss with four packets retransmitted. However, the ADSL

and LTE networks still experienced significant packet loss that the mitigation strategy could not overcome.

The full analysis and results are in the following section.

Results

To match the presentation from Section 4.3, the results of one payload concatenation and four payload

concatenation on the Mean Success Length are compared to the non-mitigated data in Figure 4.25b. From

Figure 4.25b, the data loss on the University, Office, and Cable networks is all but eliminated. These three

networks maintained a Mean Success Length for at least half of the run time of two minutes with only a few

runs at 1/3 the total runtime, 1/5 the total runtime, and 1/8 the total runtime.

The ADSL appears mostly unchanged with only a minor reduction in the number of runs at each value at

or below 3600 (1 minute) and a minor increase in the number of runs with no data loss. This is not surprising

given the number of runs with high packet loss observed in Figure 4.23.

The LTE results further support the classification of the network as unstable by redistributing data points

to nearby values. For example, if the Mean Success Length without mitigation was 3600, with one packet

retransmitted the Mean Success Length became 3601, or a value near 2400 became near 3600, or something
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(b) Retransmitting one payload
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(c) Retransmitting four payloads

Figure 4.25: Results of mitigation: Real World Measurement
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similar. These near values caused overlapping circles to appear near 3600, 2400, and 1800. The redistribution

in this manner suggests that the run length intervals in these runs were of varying sizes and with differing

distributions of received/lost packets. While the number of runs with no packet loss did not seem to increase

by much for LTE, the number of runs with almost no data lost increased – causing overlapping circles near

7200 to appear in the chart.

Increasing the number of payloads retransmitted did very little to data loss for most scenarios. The

most significant changes in data loss visible in Figure 4.25c were from the LTE network that again increased

the number of runs with almost no data loss indicating that many runs had packet loss at the beginning,

supporting previous observations. The remaining Devices/ISPs had very little change (with a slight reduction

of data loss in each), supporting the initial observations from Figure 4.23 and Figure 4.24a that all of the

devices/ISPs experienced runs with more than four consecutive packets lost.

Despite how different the real world traffic is to the simulated traffic, the mitigation strategies, even at

the lowest level, appear to have a significant impact on the loss of data in a game or similar application. Even

in unstable networks like ADSL and LTE, the mitigation strategy works well enough that a game would be

playable for a full two minutes over 90% of the time.

4.5 Discussion

From Section 4.1 and Section 4.4, packet loss is random and hard to characterize. There are however,

some takeaways from the experiments that could help inform future network or application design. From

Section 4.1.2, we learn that cross-traffic consisting of small packets appear to have a significant detrimental

impact on game-traffic, potentially leading to network or application policies that would reduce small packet

transmissions. Section 4.1.3 demonstrated that synthetic distributions for the inter-packet time performed

better than the more realistic bursty transmission distribution. This insight into the inter-packet time could

lead to more organized transmission times, reducing the impact of bursty traffic. Section 4.2.1 indicated

that UDP cross-traffic also has a negative impact on game-traffic. Further research into the impact of UDP

cross-traffic could lead to mechanisms to control UDP more effectively or may lead to developers choosing to

use TCP instead. From the real world results in Section 4.4, we can see that some networks perform better

than others indicating that network design, traffic shaping policies, network medium, and total available

bandwidth can potentially have a large impact on game-traffic. However, without further investigation it is

difficult to come to any concrete conclusions.

Looking at the maximum number of packets lost in these experiments, it becomes clear that it may not be

possible to come up with a simple mitigation scheme that would work 100% of the time. It may be possible,

however, to devise a scheme that is “good enough” most of the time. However, mitigation techniques greatly

depend on the type of game that employs them. For example, a game that periodically sends out the complete

world state to all clients can probably afford to lose the occasional packet, because the world state would
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be retrieved at a later time and the user would only experience a slight disruption in the user experience.

However, games that send incremental non idempotent updates or events would be particularly impacted by

a lost packet because game clients would become out of sync and the game would become unplayable.

Section 4.3 explores the mitigation technique of packaging multiple packet payloads together per update

and compares the mean time between failures to the results without the mitigation technique and determines

that retransmitting previous packets may be sufficient to mitigate most packet loss. Section 4.4.1 explores

the same mitigation strategy with real world data and comes to the same conclusion, that the mitigation

strategy will work for most network situations.

Provided that the game can survive a delay in packets equal to a small multiple of the inter-packet time,

the mitigation technique explored would reduce the experienced effect of packet loss. In reliable transmission

protocols that employ ACKs or NAKs, delays due to packet loss are already at least on the scale of round trip

time. For small numbers of packets lost, retransmission would result in a more consistent game experience

and reduced latency and jitter for games that employ TCP or similar reliable protocols.

4.6 Summary

In this chapter, the data collected is evaluated in an attempt to identify patterns that may emerge. It is shown

that the cross-traffic protocols, packet size, and the overall bitrate have the largest impact on the game-traffic.

Real world data was also collected as a means to verify the simulation and validate the mitigation techniques.

The simulated traffic appears to have more packet loss than the real world data and the distributions of the

two datasets appear very dissimilar. The mitigation technique of retransmitting past packet payloads with

new updates appears to work much better with real world data than with the simulated data.
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5 Conclusions And Future Work

5.1 Summary

This thesis explored the impact of cross-traffic on low-bandwidth game packets passing through a common

network. A simulation environment was constructed to allow manipulation of the cross-traffic parameters and

record detailed logs of the game-traffic. For comparison, a simple real world experiment was also conducted.

The results were then encoded using run length encoding and statistics of the game-traffic characteristics

were visualized using bubble charts. Additionally, a mitigation strategy was explored and applied to both

the simulation results and the real world results.

In Section 4.1.1, the interaction between cross-traffic bitrate and game-traffic packet loss was explored

via simulation. The results from the initial batch of simulations were grouped into equal-sized categories for

each of the experimental cross-traffic bitrates and then analyzed. Each of the simulations was configured to

generate cross-traffic packets with a specific mean packet size from a configured random distribution. The

simulations were grouped based on the configured cross-traffic packet size and distribution to examine the

effect of these parameters on the game-traffic. Further classification analyzed the impact of the mean and

distribution of the cross-traffic inter-packet time (the time between packet transmissions).

The next experimental simulations focused on the impact of the number of queues in the router, and how

the traffic streams are classified. Some of the configurations classified the packets such that the game-traffic

was isolated from the cross-traffic, while other configurations directed cross-traffic packets into the same

queue as the game-traffic. In either instance, the simulations were run with between one and three queues.

The second batch of simulations grouped the experiments by the protocol(s) of the cross-traffic. The

protocol groupings included between zero and three TCP streams, with or without a UDP stream, in an effort

to determine if the protocol of the streams or the number of streams in the cross-traffic impacted the game-

traffic. The queue management protocol formed the final grouping of experiments: RED, AdaptiveRED,

CoDel, and DropTail.

A retransmission mitigation technique (with up to four packets retransmitted) was analytically applied

to the simulation data and then analyzed. Under most circumstances, the mitigation strategy eliminated

data loss with only a minor increase in the latency. However, the analysis of the simulation data revealed

that packet loss appeared to be bursty. In some instances, this bursty packet loss exceeded what a simple

retransmission of packets would be able to mitigate. The analysis of the mitigation strategy also revealed

that most packet losses occurred in runs shorter than five packets. The simulation parameters appeared to
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have minimal impact resulting in similar Mean Success Length distributions with a retransmission of four

packets.

Real world data was captured by simulating game-traffic over a number of real networks. These networks

included ADSL, Cable, Business Park, University, and LTE networks with both WiFi and wired infrastructure

where available.

The mitigation technique (with up to four packets retransmitted) was analytically applied to the real

world data and then analyzed. The real world data exhibited a similar pattern to the simulated data where

an increase in the number of packets retransmitted resulted in similar distributions. However, the ADSL

results had a noticeably different distribution with a larger number of runs that were unusable. Other than

the ADSL runs, the mitigation strategy worked well, providing a stable network for over 90% of the captured

runs.

The simulation series showed that cross-traffic characteristics could have an impact on the game-traffic.

However, applying the lessons learned to real world applications may prove difficult as most of the lessons

learned would require large systemic changes to network infrastructure. Both the real world and the simulated

results reacted well to the mitigation strategy in all but the most extreme packet loss scenarios, leading to

possible solutions that could be applied in real world games or applications.

5.2 Contributions

The simulations showed that, as the cross-traffic bitrate increases, more game-traffic packets are lost. This

suggests a link between cross-traffic bitrate and game-traffic packet loss. However, even with cross-traffic

bitrates below the destination network saturation point (100 Mbps), game-traffic packets are lost. Other

factors in the network contribute to packet loss and it is not just congestion that results in game-traffic

packet loss.

One of the factors that had the most impact on the game-traffic packet loss was the packet size of the

cross-traffic data. Each of the simulations were configured to generate cross-traffic packets from a configured

random distribution with a specific mean packet size. Small cross-traffic packets (128 bytes in the simulations)

resulted in increased game-traffic packet loss but a decrease in packet loss interval size. Overall, the small

cross-traffic packets resulted in reduced playability (the average length of time a game could run without

experiencing a packet loss) when compared to the other configurations. Outside of the anomaly with the

smaller cross-traffic packets a more expected pattern appears: an increase in the cross-traffic packet size

resulting in fewer cross-traffic packets queued reduced the maximum percentage of game-traffic packets lost

per run. Other than the small packet size configurations, the packet size (and distribution) did not have

a significant impact on the playability of a game over the network. A Two Sample Kolmogorov-Smirnov

statistical analysis of the results confirmed that the game-traffic packet loss of the 128-byte configurations

differ from over 80% of the remaining configurations; most configurations did not result in statistically
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different packet loss. This would suggest that reducing the number of small packets in a network, possibly

by bundling smaller packets, may significantly reduce the number of game packets lost.

The configurations with synthetic distributions (Constant, Guassian, Uniform) for cross-traffic had lower

packet loss than the configurations with the realistic inter-packet distribution (Poisson Pareto Burst Process

[1]), resulting in reduced playability. The configurations with synthetic distributions did not seem to differ

greatly from each other. A statistical analysis of the packet loss using the Two Sample Kolmogorov-Smirnov

test confirmed that the game-traffic packet loss from configurations with realistic inter-packet timing was

significantly different from the packet loss experienced in the other configurations but that the synthetic

cross-traffic inter-packet time distributions were not significantly different from each other. One possible

explanation for the statistical difference is the bursty nature of the Poisson Pareto Burst Process of the

realistic inter-packet timing distribution. A more aggressive traffic shaping algorithm is a potential solution

that could smooth bursty traffic, improving overall network performance.

Some of the simulation configurations classified the packets such that the game-traffic was isolated from the

cross-traffic, greatly reducing the game-traffic packet losses resulting in a stable, but unrealistic, network for

gameplay. In more realistic configurations, with game-traffic and cross-traffic sharing queues, there appears

to be a direct relationship between the number of queues and the playability of a game on the network. The

realistic configurations also displayed an inverse relationship between the number of queues and achieving

0% packet loss, indicating that distributing the cross-traffic over more queues reduced the packet loss of the

game-traffic and generally made the network more stable for playing games. An increase in the number of

queues will likely increase the latency of the game-traffic which may be more detrimental for some games.

The traffic shaping algorithms used can have a significant impact on mobile games; it may be possible to

identify these low bandwidth game-traffic streams and classify them differently to reduce packet loss.

The protocol type of the cross-traffic substantially affects game-traffic packet loss. The configurations

with TCP cross-traffic generally reduce the number of game-traffic packets lost. However, if there wasn’t

a UDP stream included in the cross-traffic, increasing the number of TCP streams appeared to increase

the number of game-traffic packets lost. For the configurations with TCP, and after equilibrium had been

reached, the general playability of games on the network does not appear to differ much between the different

TCP configurations. The bitrates of the UDP streams in the simulations were reduced with the increase in

TCP streams (to maintain a constant data-rate) which would not be a general pattern found in practice.

Overall, it appears that UDP traffic, present in the cross-traffic, has a detrimental impact on the game-traffic.

This would suggest that developers and network operators should strive to limit the amount of raw UDP in

favor of TCP or technologies that implement congestion control.

In simulations that analyze the game queue, the CoDel and DropTail configurations perform identically,

likely because packets are never in the queue long enough to trigger the CoDel algorithm, effectively turning

the CoDel queues into DropTail queues. The RED variants performed similar to each other, with the

AdaptiveRED simulations performing slightly better than RED, likely due to the dynamic configuration.
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Overall, the CoDel and DropTail configurations resulted in fewer packets lost and longer run times than

either of the RED queues, suggesting that a more passive queue management mechanism works in favor of

the game-traffic. However, a passive queue management system may have adverse affects on other traffic so

more testing is required. These results do suggest that the queue management has an impact on game-traffic

packet loss and may need to be tuned for the desired result.

The mitigation strategy, when applied to the simulated data in Section 4.3, would eliminate data loss with

only minor additional delays in data transmission time. However, some simulations, such as those configured

with high bitrate or UDP cross-traffic, still experienced significant data loss. Under normal conditions the

mitigation strategy with only four packets retransmitted should be sufficient to prevent data loss with only

an additional delay of up to 67 ms (per the simulation configuration). With an increase in packet loss, the

number of prior packets bundled with each packet could be increased further to reduce data loss. The impact

of increased game packet size on the packet loss has been left for future work.

As part of Section 4.4, real world data was captured by simulating game-traffic over a number of real

networks. The real world data indicated that the different networks exhibit very different results, results

that varied greatly from the simulated data. As expected from the real world data, the Business Park and

University topped the list with the most stable networks and longest uninterrupted game play times. The

ADSL connections also performed well, with almost as many games playing uninterrupted as the Business

Park and University; however, most of the remaining ADSL runs were virtually unplayable. Even the

University network experienced some unplayable games but to a lesser extent than the ADSL runs. The

Cable and LTE networks were playable about half the time, but experienced a lot of packet loss with very

many small runs of received packets. In each case, the resulting charts from the analysis were unique and

showed very little similarity to simulated results. These observations indicate that there are many different

factors, some of which were not explored, that can impact game-traffic. In some instances where a wired

and WiFi option were available, a direct comparison between the two technologies can be made. WiFi, in

general, has a detrimental impact on game playability, decreasing the number of perfect runs and increasing

the number of packets lost. An unanswered question for future work is whether the additional packet loss

from WiFi is simply due to the WiFi protocol, the wireless medium, or an additional network device in the

path between source and destination.

The mitigation strategy, when applied to the real world data in Section 4.4.1, produced results indicating

that a game could run for two minutes, without any data loss, over 90% of the time, with only four previous

packets being bundled. However, every network still experienced data losses; under most circumstances the

resulting data loss still resulted in a playable game. The ADSL and LTE networks experienced more packet

loss than the other networks, resulting in more games that were completely unplayable or only playable for

a shorter period. These results suggest that the proposed mitigation strategy may work well, most of the

time, in real world games.

80



5.3 Future Work

While investigating the impact of cross-traffic packet size on the game-traffic packet loss in Section 4.1.2, the

128-byte packet configurations exhibited behavior that differentiated them from the remaining configurations.

Speculation as to why these configurations differed includes load on the router and interactions with the

CDMA network. In real world traffic, many applications including mobile games have small packets (on the

order of 128-bytes) indicating that this problem may exist in practice. If the cause of the detrimental impact

of 128-bytes could be determined, and is confirmed to exist in the real world, the results could add guidance

to network or application design.

Outside of the investigation of the 128-byte configuration, there were some minor visual differences that

appeared to exist in the charts such as the difference in packet loss between packet sizes. These patterns may

have been due to the randomness of the simulations or may indicate unexplored relationships between the

configurations. Further investigation through repetition and multi variable analysis would help determine if

packet size is more important than originally determined.

During the analysis of the classification of traffic in Section 4.1.4, the question of latency, due to the

number of queues and amount of cross-traffic, was touched upon. Since some applications are sensitive to

changes in latency (jitter), an investigation into the impact of cross-traffic on the game-traffic latency could

lead to important improvements in both application and network design.

In Section 4.1.4, only round robin schedulers and simplistic classifiers were used. In real world applications,

routers typically employ much more sophisticated routing and traffic shaping algorithms. As part of future

investigations into the impact of routers on game-traffic, more realistic router designs would yield more useful

results.

As part of Section 4.2.1, where the protocol of the cross-traffic streams were analyzed, there were questions

about the impact of mixed UDP/TCP in real world scenarios. In the simulation experiments, the overall

bitrate of generated packets was a constant; however, for TCP traffic streams the number of transmitted

packets would be reduced due to congestion control. Additionally, the UDP streams were configured to

transmit at a constant rate despite the TCP streams reducing the actual transmitted bitrate; therefore,

the simulated bitrates were inaccurate whenever there was a TCP stream in the simulation. In real world

scenarios, the actual bitrates are dependent on the application and network congestion. More realistic and

controlled experiments with TCP, UDP, and Reliable UDP as cross-traffic, such as using real world traffic

captures, may provide insights into game-traffic packet loss that may yield improvements to the protocols,

network design, or application designs in the future.

In Section 4.3, realistic inter-packet time configurations performed significantly worse than the synthetic

configurations. This indicates that the inter-packet time of cross-traffic has an impact on the game-traffic

packet loss. However, it is currently unknown whether these observations could be applied to real world

data transmission. Further experimentation with synthetic distributions may lead to new traffic shaping
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algorithms that can be applied to real world applications.

The results from Section 4.4 indicated that the office network performed the best, yet still experienced

bursts of packet loss. The LTE network experienced the most packet loss and variability of all the networks

tested. The WiFi networks experienced more packet loss than Wired; however, the difference between WiFi

and Wired differed greatly between networks. There is some speculation as to these results being due to

the medium, congestion, or traffic shaping rules. Further investigation with a more controlled network,

where the cross-traffic can be inspected and compared to game-traffic, may yield results allowing for a better

understanding of packet loss in real world scenarios.
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[29] Teemu Kämäräinen, Matti Siekkinen, Antti Ylä-Jääski, Wenxiao Zhang, and Pan Hui. A measure-
ment study on achieving imperceptible latency in mobile cloud gaming. In International Conference on
Multimedia Systems, pages 88–99, Taipei, Taiwan, June 2017.

[30] Partha Kanuparthy and Constantine Dovrolis. DiffProbe: Detecting ISP service discrimination. In IEEE
International Conference on Computer Communication, pages 1–9, San Diego, CA, March 2010.

[31] Partha Kanuparthy and Constantine Dovrolis. ShaperProbe: End-to-end detection of ISP traffic shaping
using active methods. In ACM Conference on Internet Measurement, pages 473–482, Berlin, Germany,
November 2011.

[32] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek. The Click Modular
Router. ACM Transactions on Computer Systems, 18(3):263–297, 2000.

[33] Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

[34] Dan Lake, Mic Bowman, and Huaiyu Liu. Distributed scene graph to enable thousands of interacting
users in a virtual environment. In Workshop on Network and Systems Support for Games, pages 1–6,
Taipei, Taiwan, November 2010.

84



[35] Emil Larsson. Movement prediction algorithms for high latency games. Bachelor’s thesis, Blekinge
Institute of Technology, Karlskrona, Sweden, 2016.

[36] Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Yury Degtyarev, Sergey Grizan, Alec
Wolman, and Jason Flinn. Outatime: Using speculation to enable low-latency continuous interaction for
mobile cloud gaming. In ACM International Conference on Mobile Systems, Applications, and Services,
pages 151–165, Florence, Italy, May 2015.

[37] Henry B Mann and Donald R Whitney. On a test of whether one of two random variables is stochastically
larger than the other. The Annals of Mathematical Statistics, 18(1):50–60, 1947.

[38] Bomin Mao, Zubair Md Fadlullah, Fengxiao Tang, Nei Kato, Osamu Akashi, Takeru Inoue, and Kimihiro
Mizutani. A Tensor Based Deep Learning Technique for Intelligent Packet Routing. In IEEE Conference
on Global Communications, pages 1–6, Singapore, December 2017.
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