
        

 

 

 

 

QUANTIFYING PRODUCED AND INJECTED WATER VOLUMES 

IN SOUTHEASTERN SASKATCHEWAN 

 

A Thesis Submitted to the 
College of Graduate and Postdoctoral Studies 

In Partial Fulfillment of the Requirements 
For the Degree of Master of Science 

In the Department of Civil, Geological, and Environmental Engineering 
University of Saskatchewan 

Saskatoon 
 
 
 
 

By 
 

Keegan Jellicoe 

 

 
 
 
 
 
 
 
 
 
 

 Copyright Keegan Jellicoe, December 2020. All rights reserved. 
Unless otherwise noted, copyright of the material in this thesis belongs to the author 

 



 

i 
 

PERMISSION TO USE 
 

In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate 
degree from the University of Saskatchewan, I agree that the Libraries of this University may 

make it freely available for inspection. I further agree that permission for copying of this 
thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by 
the professor or professors who supervised my thesis/dissertation work or, in their absence, by 
the Head of the Department or the Dean of the College in which my thesis work was done. It is 
understood that any copying or publication or use of this thesis/dissertation or parts thereof for 

financial gain shall not be allowed without my written permission. It is also understood that due 
recognition shall be given to me and to the University of Saskatchewan in any scholarly use 

which may be made of any material in my thesis/dissertation. 

 

Requests for permission to copy or to make other uses of materials in this thesis/dissertation in 
whole or part should be addressed to: 

 

Head of the Department of Civil, Geological and Environmental Engineering 

University of Saskatchewan 

57 Campus Drive 

Saskatoon, Saskatchewan, S7N 5A9, Canada 

 

OR 

 

Dean 

College of Graduate and Postdoctoral Studies 

University of Saskatchewan 

116 Thorvaldson Building, 110 Science Place 

Saskatoon, Saskatchewan, S7N 5C9  Canada 

 

 

  



 

ii 
 

ABSTRACT 
Large volumes of often saline formation water are both produced from and injected into 

sedimentary basins as a by-product of oil and gas production. Despite this, the distribution and 

interactions of water production and injection wells have not been studied in detail, and the 

effects of long-term water injection on reservoir pressures and groundwater quality remain 

uncertain. Even where injection and production volumes are equal at the basin scale, local 

changes in hydraulic head can occur due to the distribution of production and injection wells. 

These changes in hydraulic head are important in understanding induced seismicity and can 

potentially act as drivers of saline fluid flow, possibly leading to contamination of overlying 

potable groundwater resources where high permeability pathways are present. Across the 

Western Canada Sedimentary Basin (WCSB), approximately 29 km3 of water has been co-

produced with oil and gas, and 30 km3 of water has been injected into the subsurface for 

saltwater disposal or enhanced oil recovery (EOR). This study evaluates the effects of production 

and injection wells on deep groundwater resources by examining wells within the southeastern 

WCSB. A comprehensive fluid budget was created for each formation, as well as maps of the 

spatial distribution of produced and injected water within each formation. By comparing spatial 

distributions and formation fluid budgets, it was possible to locate areas where high levels of 

injection pose the most substantial risk of contamination. In the Midale Member, areas with high 

injection volumes were found to be injecting at rates up to 6,000 times that of the estimated 

natural formational flow rate. Modelled pressures changes in the Midale Member were found to 

exceed >8 MPa at up to 250 m away from the injection well, and 2 MPa at up to 1.5 km away, 

which translates to hydraulic head values above the ground surface and may potentially lead to 

upward leakage of fluids in the presence of permeable pathways. Increased formation pressures 

due to injection are not unique to the southeastern WCSB and have been recorded in several 

other regions including Oklahoma, Texas, and Kansas, in some cases leading to induced 

seismicity. While many of these settings have small changes in the overall fluid budgets, the 

distribution of production and injection wells can cause substantial changes to fluid pressures 

locally. 
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1. Introduction 
The continuing rise of oil and gas production has intensified water usage (Horner et al. 2016; 

Kondash et al. 2018), leading to an increase in discussion of related water management issues, 

including growing volumes of produced water (Scanlon et al. 2017; Tiedeman et al. 2016; Lutz 

et al. 2013), and groundwater contamination concerns due to hydraulic fracturing and saltwater 

disposal (Vengosh et al. 2014; Warner et al. 2013). Produced water represents the largest by-

product of oil and gas production, and in 2017 the total volume of produced water in the US 

exceeded 3.8 billion m3 (Veil 2020). These large volumes of produced water have prompted 

several studies over the last decade into water intensity (Scanlon et al. 2014, 2017; Ferguson 

2015; McIntosh and Ferguson 2019). It is estimated that 91.5% of this produced water is 

managed by subsurface injection (Veil 2020) via saltwater disposal or for enhanced oil recovery 

(EOR). In addition, substantial volumes of surface water or shallow groundwater are reinjected 

into the subsurface leading to a surplus of water in several basins (Scanlon et al. 2017; Veil 

2020; McIntosh and Ferguson 2019; Murray 2013). A surplus of water due to extensive injection 

can lead to increased reservoir pressures driving solute transport (McIntosh and Ferguson 2019) 

and, in some cases, induced seismicity (Keranen and Weingarten 2018). 

Despite the shifting focus to produced water volumes within the oil and gas industry, there has 

been little discussion into the spatial distributions of fluids that are being produced and injected. 

Previous studies have found injected and produced volumes to be similar (Ferguson 2015; 

McIntosh and Ferguson 2019; Clark and Veil 2009), but injection and production locations have 

not been studied in detail. Even where injection and production volumes are equal at the basin 

scale, local changes in the hydraulic head will occur due to the distribution of production and 

injection wells. These changes are potentially important drivers of fluid flow and could lead to 

contamination of overlying freshwater resources where high permeability pathways are present 

(McIntosh and Ferguson 2019). The distribution of production and injection wells, associated 

changes in local fluid budget, and effect on porewater pressure are also important in 

understanding induced seismicity (National Research Council 2013; Rubinstein and Mahani 

2015; Keranen and Weingarten 2018). Additionally, changes in subsurface pressures can affect 

groundwater flow direction, lower solute transport times, and increase the potential for 

contamination through leaking or abandoned wells (Birdsell et al. 2015; McIntosh et al. 2019). 
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The Williston Basin is one of the largest oil and gas producing regions in North America. It 

makes up the southeastern section of the Western Canadian Sedimentary Basin and contains a 

total of ~95,000 oil and gas wells (IHS Markit 2020; North Dakota State Industrial Commission 

2020). Water injection and disposal have been historically used in the Williston Basin for oil and 

gas production. However, there has been a substantial increase in production and, in turn, 

produced and injected water volumes in the last 30 years (Ferguson 2015). With the introduction 

of The Waterflood Development Program that incentivizes the conversion of producing wells 

into injection wells in Saskatchewan in 2019, it is expected that produced and injected water 

volumes will continue to increase in the Williston Basin.  This continued growth in produced and 

injected water usage, coupled with a growing number of inactive or abandoned wells, has made 

it increasingly challenging to determine the effect of oil and gas production on the basin 

subsurface pressures, and the solute transport methods that lead to the potential contamination of 

surrounding aquifers.  

1.1   Research Objectives 
Many studies have examined the volumes of produced and injected water used for oil and gas 

production, and the effect of water injection and saltwater disposal on induced seismicity. 

However, there has been little discussion into the spatial distributions of these fluids and 

produced and injected volumes within the Williston Basin remain unclear. By examining the role 

of water usage in oil and gas production in the Williston Basin, this thesis aims to establish 

whether there have been significant enough changes in local fluid budgets or fluid budgets at the 

formation level to influence hydraulic gradients and associated reservoir pressures, even if 

injection volumes equal production volumes at the regional scale. 

Specifically, the objectives of this thesis research are to: 

1. Create a comprehensive fluid budget for each geologic formation within the study area, 

including total and monthly volumes. 

2. Analyze representative formations to expand the understanding of production and 

injection rates over time, as well as current and historic production patterns. 

3. Determine spatial fluid budget changes to identify regions of maximum fluid volume 

change. 

4. Estimate potential pressure changes within selected formations using analytical models. 
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1.2   Thesis Structure 
This thesis will cover and address all objectives throughout its six chapters. Chapter 2 provides 

an overview of the chosen study area and summarizes the relevant geology, hydrogeology, and 

geochemistry of the Williston Basin. Chapter 3 examines the use of water resources in the oil 

and gas industry and reviews the water usage of various production methods, as well as the 

potential effects of injection on formation pressures and the risk of groundwater contamination.  

Chapter 4 covers the methodology and data collection used in the study. Chapter 5 summarizes 

well volumes and the total basin fluid budget, as well as comparing the spatial variability of well 

densities and produced and injected water volumes for the entire basin and individual formations. 

Chapters 6 covers the modelling done to predict the changes in reservoir pressure influenced by 

the rates of production and injection. Chapter 7 contains the discussion that synthesizes and 

draws interpretations from empirical data and model predictions found in the previous chapters. 

Finally, a summary of the main conclusions and recommendations can be found in Chapter 8.  



 

4 
 

2. Study Area, Geology and Hydrogeology 

2.1   Study Area 
The project study area encompasses the majority of oil and gas wells present in southeastern 

Saskatchewan and western Manitoba. It covers an area of roughly 100,000 km2, extending from 

longitude 106°W to 100°W and is bounded to the south by the 49th parallel, and to the north by 

latitude 51°N (Figure 2-1). The producing formations that the study area focuses on are part of 

the Williston Basin, which extends into regions of Saskatchewan, Manitoba, Montana, North 

Dakota, and South Dakota (Figure 2-1).  

Hydrocarbon production on the Canadian side of the Williston Basin primarily occurs in the 

center of the basin and extends to the eastern margins. The study area contains 58,000 wells or 

roughly two-thirds of the total wells in the Williston Basin with over half of that number of wells 

being active in 2019. These wells are primarily production wells used for oil and gas production, 

along with a small mix of injection and saltwater disposal wells.  

 

Figure 2-1: Location of the study area and the Williston Basin (Modified from Kuhn et al.,2011) 
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2.2   Geological Overview  
The Williston Basin has undergone significant geologic assessment and mapping due to the 

presence of oil and gas (Gerhard et al. 1982; Peterson and MacCary 1987; Kent and Christopher 

1994). Past studies have primarily focused on the geologic framework of the basin to determine 

potential source rocks, as well as the timing and formation of structures. Due to extensive oil and 

gas production, more than 95,000 wells have been completed in the Williston Basin, with more 

than four-fifths of the wells drilled on the Canadian side of the basin (North Dakota Mineral 

Resources 2019; IHS Markit 2020). However, studies of the basin's hydrogeology have been less 

frequent and have been conducted more recently (Bachu and Hitchon 1996; Hannon 1987; 

Palombi 2008). 

 

2.3   Regional Geologic Setting 
The Williston Basin is an intracratonic sedimentary basin made up of alternating layers of 

sandstone, carbonate, and shale dominated formations (Figure 2-3). It forms the southeastern 

extremity of the larger Western Canadian Sedimentary Basin and extends into parts of 

Saskatchewan, Manitoba, Montana, North Dakota, and South Dakota. The basin has an area of 

around 250,000 km² with topographic highs in Montana and lows in Manitoba and a maximum 

stratal thickness of 4900 m (Kent and Christopher 1994, 2008).  

 

Figure 2-2: Cross section of the Williston Basin. Vertical Exaggeration = 5 

E W 
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The formation of the Williston Basin began during the Late Cambrian to Early Ordovician and 

lasted until the Late Cretaceous (Kent and Christopher 1994). The Williston Basin is structurally 

simple and contains a near-continuous sedimentary succession since the beginning of the Middle 

Cambrian until the late Cretaceous period. The basin’s geologic characteristics can be attributed 

to its complex history of stratal thickening, thinning and truncation, caused by varying 

mechanisms of subsidence and controls on the basins geographic position (Ahern and Mrkvicka 

1984; Kent and Christopher 2008).    

The basin is bordered by a series of arches, domes, and uplifts. It is bordered to the west by the 

Sweetgrass Arch, which separates it from the Alberta basin, as well as the Black Hills uplift 

located further south (Kent and Christopher 1994). To the east, the basin is bordered by the 

Sioux uplift, and pinches out, forming the Manitoba Escarpment. These series of arches and 

uplifts cause the basin to plunge northeast from the southwestern outcrops reaching its maximum 

depth of 3,200 m near the Canada/US border then rises towards northwestern edge before 

outcropping in Manitoba. 

 

2.4   Hydrogeology 
Previous work in the Williston Basin has shown that the regional flow system is topographically 

driven. New meteoric waters are recharged in the southwest topographic highs of the Black Hills 

and flow towards the center of the basin before travelling northeast into the eastern erosional 

edge of the basin in Manitoba (Downey et al. 1987; Hannon 1987; Bachu and Hitchon 1996; 

Grasby et al. 2000; Weyer and Ellis 2013). Formation waters tend to flow laterally through 

aquifers with minimal cross formational flow due to a series of interspersed shale aquitards 

(Bachu and Hitchon 1996). 

Both local and regional flow systems are present within the Williston Basin. Groundwater transit 

times in local flow systems range from <1000 to >30,000 years, while transit times in the 

regional flow systems are magnitudes longer (McMahon et al. 2011). The Williston Basin, along 

with numerous other sedimentary basins, also contain high density saline brines at depth. Due to 

the high density of these brines, the normal topographic drive is not sufficient to flush them from 

the basin (Palombi 2008; Ferguson et al. 2018). This lack of driving forces can trap brines within 
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the basin for long periods of time, brines in similarly structured sedimentary basins have been 

found to be tens of thousands to hundreds of millions of years old (Carpenter 1978; Hanor 1994; 

Schlegel et al. 2011; Darrah et al. 2015).  

 

2.4.1 Hydrostratigraphic Units 
Using the stratigraphic framework completed by previous studies, it is possible to categorize 

hydrostratigraphic units in the study area that represent aquifers, aquitards, or aquicludes. These 

divisions are defined at a local scale and comprise one or more geological units that exhibit 

similar properties, mainly permeability. Due to the disconnect between research occurring in 

Canada and the United States, the regional scale hydrostratigraphic system of the basin has yet to 

be fully developed. Instead, only major basin-scale systems based on rock lithologies and 

hydrogeological properties have been proposed. These major regional aquifers in the Williston 

Basin include the 1) Lower Paleozoic Aquifers and Aquitards 2) Mississippian Aquifers and 

Aquitards, and 3) Mesozoic Aquifers and Aquitards (Figure 2-4) (Palombi 2008).  
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Figure 2-3: Williston Hydrostratigraphy (after Palombi, 2008) 
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Lower Paleozoic Aquifers and Aquitards 

The Lower Paleozoic consists of eight separate aquifer groups split by confining aquitards. These 

aquifers include the: Cambro-Ordovician Aquifer, Yeoman Aquifer, Ordo-Silurian Aquifer, 

Winnipegosis Aquifer, Manitoba Aquifer, Duperow Aquifer, Birdbear Aquifer and, Bakken 

Aquifer. 

The Cambro-Ordovician Aquifer is a basal clastic sequence composed of the Deadwood and the 

Winnipeg formations. The aquifer thickness varies throughout the basin, but at the centre of the 

basin, it forms one of the largest aquifers with an approximate total thickness of 300 m at the 

center of the basin (Palombi 2008). While hydraulic testing data is limited due to the lack of the 

wells, hydraulic conductivities between 1.0 x 10-6 to 1.1 x 10-3 m/s have been reported for this 

aquifer (Hutchence et al. 1986; Betcher et al. 1995; Ferguson et al. 2006). These aquifers are 

bound by the underlying Precambrian basement and by the overlying Icebox Member shales of 

the Winnipeg Aquitard. The Deadwood Formation has primarily been used for brine disposal 

from potash mining. In addition to saltwater disposal, there has been interest in developing this 

basal system for geothermal energy production due to its high temperature and heat flow rates or 

utilizing it as a large-scale carbon sequestration unit (Ferguson and Grasby 2014; Whittaker and 

Worth 2011). 

The Yeoman Aquifer consists of the fossiliferous dolomite and dolomitized sandstone of the 

Yeoman and Red River formations. (Norford et al., 1994). It is bounded by the overlying Stony 

Mountain Aquitard, a uniform 22 m (maximum) thick formation made of mixed carbonates and 

shales (Palombi 2008).  

The Ordo-Silurian Aquifer contains the Stonewall and Interlake formations. Together these 

formations form a homogenous dolomite sequence with thin sandy argillaceous markers (Bezys 

and Conley 1998). The Ordo-Silurian Aquifer is confined by the overlying Ashern Aquitard, a 

low permeability argillaceous and dolomitic shale formation (Palombi 2008). Both formations 

have the potential for petroleum production; however, within the study area, these formations are 

used primarily for saltwater disposal for potash mines. Despite the size of these carbonate 

aquifers and use for saltwater disposal, they are not the primary focus of this study due to their 

depth and separation from any fresh water-bearing aquifer.  
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The Winnipegosis Aquifer is a carbonate aquifer made up of limestone and dolomite. The 

aquifer exhibits heterogeneous permeability due to varying zones of high permeability fractures 

and inter-granular reefs, and low permeability zones made up of shale layers. The Winnipegosis 

Aquifer is confined by the overlying Prairie Evaporite Formation. The Prairie Evaporite 

primarily consists of halite with minor interbedded anhydrite and varies in thickness from 210 m 

to 0 m along the salt-dissolution edge of the formation (Nicolas 2015).  

The Manitoba Aquifer includes the Dawson Bay and Souris River formations. The formations 

are both carbonates consisting of primarily limestone with some dolomite and anhydrite 

(Palombi 2008). It ranges in thickness from 115 m in Manitoba to 244 m in central 

Saskatchewan. It is overlain by the Souris River Aquitard, which consists of lower permeability 

calcareous shales and carbonates. 

The Duperow Aquifer is a carbonate aquifer comprised of limestones and dolostones. It varies in 

thickness from 150 m in North Dakota to 215 m in Saskatchewan (Hoganson 1978). The 

Duperow Aquifer is overlain by the Seward Aquitard. A confining aquitard consisting of micro-

crystalline limestone and capped by an anhydrite layer (Wilson 1967). 

The Birdbear Aquifer consists of both lower and upper members of the Birdbear formation. The 

lower member is made up of limestones and dolostones, and the upper member consists of 

permeable dolostone, dolomitic limestone and anhydrite. It is confined by the overlying Three 

Forks Aquitard, which includes the Torquay and Big Valley formations. Both formations consist 

of low permeable carbonates and shales and have an average thickness between 45 to 50 m. 

The Bakken Aquifer is an interbedded siltstone and sandstone aquifer that is sandwiched 

between two confining organic-rich shale aquitards. The Bakken Formation has a variable 

thickness across the basin with thicknesses between zero and a maximum of 47 m in North 

Dakota (Kreis et al, 2006). The Bakken aquifer is a significant oil-producing formation in 

Saskatchewan utilizing hydraulic fracturing since 2005.  

Mississippian Aquifers and Aquitards 

While the Mississippian Aquifer system is often classified as a single aquifer, it can be split into 

seven individual formations. These formations are often considered one aquifer due to difficulty 

in differentiating aquifers from the large amounts of chemistry and pressure data available for the 
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Mississippian aquifers, and due to the similarity of chemistry and hydraulic head measurements 

on the basinal-scale. Mississippian aquifers examined in this study include the Lodgepole, 

Tilston, Alida, Kisbey, Frobisher, Midale, Ratcliffe, and Poplar Beds. These aquifers are 

primarily permeable carbonate units. Hydraulic conductivities in the Mississippian aquifer 

system are estimated to be around 1.4 x 10-7 m/s (IHS Markit 2020).The Mississippian aquifers 

are host to large quantities of hydrocarbons, with nearly 50% of the wells in the study area 

producing from the Mississippian aquifers. 

The Lodgepole Aquifer varies in lithology from mudstone to non-argillaceous carbonate rock 

and overlies the Bakken shale aquitard. It reaches thicknesses of up to 225 m in parts of North 

Dakota, and 70 m along its northeastern edge (Christopher and Yurkowski 2004).   

The Tilston Beds overlies the Lodgepole aquifer and consists of argillaceous dolomicrite 

interlaminated with claystone. It ranges in thickness from 100 m in North Dakota to 0 m along 

the outcrop edge in the northeast (Christopher and Yurkowski 2004). 

The Alida Beds is a carbonate unit that overlies the Tilston Aquifer. The thickness of the Alida 

Aquifer varies greatly across the basin, between 25 and 100 m depending on the region 

(Christopher and Yurkowski 2004).  

The Kisbey Beds is a thin layer of siliciclastics between the underlying Alida Beds and overlying 

Frobisher Beds. The presence of siliciclastics within the Mississippian Group is unique to the 

Kisbey Beds. The stratigraphic thickness of the Kisbey Beds ranges between 1 and 10 m, with 

some regions northeast of Estevan reaching thicknesses of 34 m (Christopher and Yurkowski 

2004). 

The Frobisher Beds are primarily carbonate rocks, ranging from lime mudstones to dolostones. 

The carbonate layer is overlain by the Frobisher Evaporite, an isolated anhydrite layer. The 

thickness of the Frobisher Beds ranges from 5 to 105 m, reaching its thickest along the 

northeastern edge before pinching out (Christopher and Yurkowski 2004). 

The Midale Beds consists of two varying carbonate units, the Marly and Vuggy. The upper 

Marly unit is a variably fractured dolostone layer with argillaceous laminations. The lower 

Vuggy layer is primarily limestone with mineralized vugs. In some areas these two units can be 

overlain by a low permeability third unit; the Midale Evaporite (Pendrigh 2005). The total 
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thickness of the Midale Aquifer ranges from 22 m in along the U.S.-Canada border to 0 m along 

the edge of the formation to the northeast (TGI Williston Basin Working Group 2008). 

The Ratcliffe Beds overlies the Midale Beds and is dominantly lime mudstones and wackestones. 

Thickness ranges between 6 to 21 m, with maximum thickness occurring in eastern Montana 

(Christopher and Yurkowski 2004).  

The Poplar Beds overlies the Ratcliffe Beds and is the uppermost unit in the Mississippian 

Group. Its lithology consists of alternating lime mudstones, dolomicrites, dolostones and 

anhydrite. It has a max stratigraphic thickness of 260 m in Montana and North Dakota, thinning 

to 0 m along its northern border. It is the thickest formation in the Mississippian group of 

aquifers (Christopher and Yurkowski 2004). 

Mesozoic Aquifers and Aquitards 

The Jurassic Aquifer includes the Gravelbourg and Shaunavon formations. Both formations are 

primarily carbonate formations that together range in thickness from 80 to 100 m. They are 

confined by the overlying Vangaurd Aquitard, a 100 m thick shale formation. 

The Mannville Aquifer is made up of interbedded sandstones and shales and is the highest 

permeability aquifer within the Mesozoic group of aquifers. The permeability is estimated to be 

as high as 10-8 m2 (Khan and Rostron 2005), and it has a thickness of up to a maximum of 150 

m. The hydraulic conductivity is reported to be between 7 x 10-6 to 7 x 10-7 m/s (MDH 

Engineered Solutions 2011). The Mannville Aquifer is confined by the Colorado-Lea Park 

Aquitard. This aquitard is comprised of a 300 m thick layer of dark low permeability shales. The 

Mannville has historically been a major source of water for use in oil and gas production but has 

primarily been used for saltwater disposal since the 1990s. 

The Judith River Aquifer is a clastic aquifer comprised of primarily sandstones and siltstones. 

The formation can exceed 360 m in thickness in Alberta but becomes thinner in Saskatchewan 

(Christopher 2003). It is confined by the Bearpaw Aquitard. The Bearpaw Aquitard is a thick 

shale aquitard like that Colorado-Lea Park Aquitard, with thicknesses exceeding 425 m in 

southern Saskatchewan (Maathuis 2008). 
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2.4.2 Geochemistry 
Oil and gas production within the basin has led to the development of a substantial database of 

formation water data. While the samples collected do not necessarily allow for a detailed 

analysis of each formation, they can be used to create a regional assessment of total dissolved 

solids and bulk geochemistry values. From these databases, we can see that formation waters in 

the Williston Basin are dominantly Na–Cl waters and range widely from 2,000 to 350,000 mg/L 

total dissolved solids (TDS) (Grasby et al. 2000). TDS values show little trend in relation to 

depth but jump significantly below the Prairie Evaporite (Figure 2-5). Past studies of fluid 

chemistry and isotopes have suggested this increase in TDS is due to the presence of a residual 

paleo evaporated seawater-derived brine (Hitchon et al. 1971; Spencer 1987; Connolly et al. 

1990; Simpson et al. 1987; Hendry et al. 2013). This mass of brine remains at depth as the 

topographic flow is not enough to drive the flow of this dense fluid out of the basin (Palombi and 

Rostron 2006; Ferguson et al. 2018). 

 

Figure 2-4: Total Dissolved Solids for each formation descending with depth. The boxes 
represent the first and third quartiles (25th and 75th percentiles), the line represents the median, 
the whiskers represent the minimum and maximum of the data (1.5 * IQR), and a circle indicates 
an outlier. 
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3. Oil and Gas Production and Impacts on Water Resources 
Oil and gas have been produced in Saskatchewan since the first commercial crude oil discovery 

was made in the province in 1944. Since then, Saskatchewan has become Canada's second-

largest oil and gas producer (Alberta Energy 2015). Despite a lengthy history of oil and gas 

production in Saskatchewan, there are still large knowledge gaps on the effects of oil and gas 

production on subsurface hydrogeology.  

3.1   Production Methods in the Williston Basin 
The first commercial gas well in the Williston Basin was established in 1913 in Montana, and the 

first commercial oil well was established in 1951 in North Dakota (Anna et al. 2010). This 

marked the beginning of consistent oil and gas production in the US, with Canada to follow 

shortly after with several wells drilled in 1953 (IHS Markit 2020). Since then, oil and gas 

production has increased as new fields are discovered, and new technologies are developed.  

As oil and gas production has progressed in the Williston Basin it has utilized primary, 

secondary, and tertiary recovery. Primary recovery methods utilize the natural drive of pressured 

reservoirs or artificial lift produced by pumping devices to bring hydrocarbons to the surface. 

Secondary recovery methods use the injection of water or gas to either displace the oil from pore 

spaces or to maintain reservoir pressure. Tertiary recovery or enhanced oil recovery (EOR) 

methods use the injection of water or gas to alter the properties of the reservoir making it easier 

to produce, this includes methods such as thermal recovery, CO2 injection, or chemical injection. 

Between the 1950s and 1990s, oil and gas production was completed solely through vertically 

drilled wells in conventional plays using primary and secondary recovery methods. During this 

time, oil production underwent several cycles, a peak in the mid-1960s before a dip in the 1980s, 

then a steady rise in production until the mid-2010s. This increase in production after the 1980s 

can be attributed to the expansion into unconventional oil reserves that relied on the development 

and utilization of horizontal drilling. Horizontal drilling provided more contact with the reservoir 

reducing the number of wells required and immensely increased well productivity. By 2008 oil 

producers in the Williston Basin were drilling twice as many horizontal wells than vertical wells, 

with that number reaching 13 times more in 2016.  
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In 2005, the use of  high volume hydraulic fracturing (HVHF) in North America rose greatly due 

to high natural gas and oil prices, the availability of lease positions, and the economical 

application of new drilling and stimulation technologies (Soeder 2018). The newly accessible 

unconventional reserves were largely shale plays containing a mix of oil and natural gas. This 

included the Canadian-U.S. shared Bakken oil-bearing shale (Soeder 2018). The use of HVHF 

has been a controversial topic in academic literature and public opinion since its inception, 

creating debates on water quality, environmental impacts and fugitive methane in overlying 

aquifers. Despite the discussions, HVHF only represents <5% of contamination cases in the US 

(Brantley et al. 2014; Llewellyn et al. 2015; Sherwood et al. 2016). 

3.2   Water Use in the Oil and Gas Industry 
Conventional and unconventional oil and gas plays can vary drastically in both the volumes of 

water used in production, and volumes of water produced per unit of oil. As the number of wells 

in unconventional plays grow and new plays begin to be produced, it is important to assess the 

role of water in oil and gas production. Several studies have already compared the volume of 

water used for conventional versus unconventional oil. Conventional wells in the Permian Basin 

had water-oil ratios (WORs) of 14, which is significantly more than the WOR of 2.6 associated 

with unconventional wells (Scanlon et al., 2019). In the Bakken WORs were lower, 5 for 

conventional wells and 0.7 for unconventional wells (Scanlon et al. 2019). Oil recovery methods 

in conventional plays had been found to have WORs of 0.1−5, while unconventional plays 

utilizing HVHF were 0.2−1.4 (Scanlon et al. 2014). Primary recovery methods are relatively less 

water demanding having a WOR of ~0.2. Secondary recovery methods that involve the injection 

of water or gas to displace the oil, can be as high as WOR: ~8.6 over the lifespan of the well 

(Scanlon et al. 2014). Studies have shown that this secondary recovery can account for 80% of 

all water used for oil recovery (Wu et al. 2009), and has been shown to reach up to 90% in places 

such as the Permian Basin (Scanlon et al. 2017) 

Studies have shown that HVHF methods use large quantities of water. In 2014 it was estimated 

that wells in the US used a median of 15,275 to 19,425 m3, of fracturing water per well. This is 

up significantly from an estimated 670 m3 per well in 2000. Conventional wells in the Midland 

Basin comparatively used an estimated 9,450 to 17,715 m3 of water over the well's lifespan. 

(Gallegos et al. 2016). 
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Between 2005 and 2015, the total produced water in the Permian Basin was 7.0 x 109 m3. 

Conventional wells accounted for 90% of the produced water, with unconventional wells 

producing the remaining amount. During the same time, injected or disposed of water was 

roughly 16% higher than produced waters (Scanlon et al. 2017). 

3.3   Effect on Formation Pressures 
The effects of injection on reservoir pressures are often overlooked compared to those induced 

by HVHF, but they can impose their own variety of complications within a reservoir. The over-

pressuring of deep aquifers may drive injected waters into neighbouring potable water-bearing 

formations, damage well integrity (Kiran et al. 2017), and lead to induced seismicity in some 

cases (Rubinstein et al. 2015). Due to the lengthy time of increased pressure from water or gas 

injection in secondary production methods (up to 50 years), it is hypothesized that this could lead 

to more issues than the higher pressure but shorter period of HVHF (McIntosh and Ferguson 

2019). 

The increased reservoir pressure due to water or gas injection in secondary production methods 

can lead to contamination of neighbouring fresh water-bearing formations due to subsurface 

leaks from imperfectly cemented oil and gas wells or decaying legacy wells. The increased 

pressure can reverse the hydraulic gradient causing fluid to flow up wells and can increase the 

distance of solute transport. Even though the increased pressure of sustained water and gas 

injection is less than HVHF, the duration of injection can cause the solute distance to increase 

100 fold ( McIntosh and Ferguson, 2019). This can happen in both naturally-present faults and in 

compromised wells.   
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4. Methodology 

4.1   Data Collection 
To evaluate whether the fluid flow has been rearranged at the basin scale due to production and 

injection activities, a database of 57,624 oil and gas wells was created for the entire study area. 

This database was created by utilizing well data provided through AccuMap (IHS Markit 2020), 

a data management and analysis software produced by IHS Markit.  Supplementary data was 

also referenced from the Integrated Resource Information System (IRIS) 

(www.saskatchewan.ca/iris), an online database managed by the Government of Saskatchewan's 

Ministry of Energy and Resources. 

AccuMap compiles and digitizes private and governmental oil and gas data from across the 

WCSB into one integrated dataset. Querying this dataset by formation, area, time, etc. provides a 

way to create a meaningful collection of data specific to the study area. The primary data 

collected from AccuMap for use in this study included; well locations, producing zones, well 

types, well modes, cumulative and monthly production and injection volumes, well operation 

dates, and fluid chemistry values. 

IRIS acts as a portal for industry members to submit applications, permits, and required data 

applying to oil and gas processes. It stores all submitted data and reports, making them available 

to search and view. IRIS was used in this study for individual well specific data, including 

original reports and data records. 

4.2   Data Analysis 
To improve the quality and useability of the study area well dataset, the numerous classifications 

for a single producing zone provided by drilling logs were sorted and grouped into a single 

formation classification based on stratigraphic columns created by the Saskatchewan Ministry of 

Economy. This reduced the number from 147 formation classifications provided by drilling logs 

to 36 classifications used in the dataset. In cases where multiple formations were provided in the 

producing zone classification, the formation list first was used. Formations that exist under 

different names in Manitoba were also reclassified with the respective Saskatchewan specific 

formation name. 
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To fully understand the spatial complexity and spacing of oil and gas wells, maps were created 

using Geographic Information System (GIS) software. Two sets of maps were created, showing 

the distribution of wells and the distribution of fluid volume changes, highlighting areas with 

high densities of wells and regional variations in production and injection volumes. To do this, 

the study area was broken down into a grid of 5 km x 5 km cells. The number of wells present 

within each cell was then calculated, and production and injection volumes for every well in the 

cell were combined. To make it easier to comprehend volumes of these fluids, they are presented 

as a total millimetre change per square metre area. 

 

4.3    Background Flow Rates 
To quantify the volume of fluid being injected into reservoirs, the yearly injection rate was 

compared to the yearly background flow rate for each formation. The background flow rate is the 

annual volume of new water entering a grid cell naturally. The flow rates occurring in each 

formation were estimated using Darcy's Law for fluid flow through a porous media: 

 
𝑄𝑄 = −𝑘𝑘𝑘𝑘 ∙

∆ℎ
𝐿𝐿

 

 
(4.1) 

Where 𝑄𝑄 (m3/s) is the volumetric flow rate, 𝑘𝑘 is the hydraulic conductivity of the reservoir (m/s), 

𝐴𝐴 (m2) is the cross-sectional area of the reservoir, ∆ℎ (m) is the change in pressure head, and 𝐿𝐿 

(m) is the length. Reservoir parameters are consistent with those used to calculate reservoir 

pressure changes. 

The area was calculated by multiplying the width of the modelled cell by the total thickness of 

the reservoir. Hydraulic gradients ( ∆ℎ 
𝐿𝐿

) were calculated from hydraulic head maps published by 

Palombi in 2008, and are based on earlier, pre-development data. Background flow rates were 

then compared to the anthropogenic flow rate caused by oil and gas production. The 

anthropogenic flow rate is the annual volume of excess water being introduced into a grid cell 

due to oil and gas production.  
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4.4   Modelling Reservoir Pressure Changes 
The response in reservoir pressure due to the influence of injection and producing wells was 

modelled analytically using Aqtesolv (HydroSOLVE Inc. 2016) and Surfer® (Golden Software 

LLC 2020). Aqtesolv is commonly used to simulate changes in the hydraulic head due to the 

influence of surrounding pumping wells. Since Aqtesolv is only capable of simulating pumping 

rates, two different models were created for injection and production rates, and then 

superimposed over each other using Surfer. 

For each model, the monthly injection and production rates for each well were obtained using 

AccuMap and were converted into daily rates input into the model. An average total aquifer 

thickness for each model was based on reported thicknesses provided by well logs in the model 

area.  

For the reservoir pressure models of the Mannville Group and the Midale Member it was 

assumed that each aquifer is a uniform thickness, is isotropic, the wells are fully penetrating, and 

fluid flow is single phase. While it is clear that the formational fluid will not be a single-phase 

due to the presence of oil and gas, it is assumed that the much smaller volume of oil will not 

have a significant impact on the overall formational pressures created by the injection of waters. 

Horizontal wells have also been treated as producing or injecting from a single point instead of 

along the entire length of the horizontal screen. While modelling horizontal wells is possible, the 

computational time needed to calculate pressures was significantly higher, with only minimal 

variations in modelled pressure changes. Differences in modelled pressure changes between 

horizontal and vertical wells varied by 20% at the wellhead, 5% at 150 meters, with pressures 

being identical past 500m. Visualizations of modelled pressure differences caused by using 

vertical wells instead of horizontal wells can be found in Figure A-1.  

The hydraulic response in the reservoir caused by the wells was estimated in Aqtesolv using the 

Theis equation as follows: 

 𝑠𝑠(𝑡𝑡) =
𝑄𝑄

4𝜋𝜋𝜋𝜋
�

𝑒𝑒−𝑦𝑦

𝑦𝑦
𝑑𝑑𝑑𝑑

∞

𝑢𝑢
 (4.2) 

where 𝑢𝑢 =
𝑟𝑟2𝑆𝑆
4𝑇𝑇𝑇𝑇

 (4.3) 
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s(t) (m) is the drawdown over time, Q (m3/s) is the well pumping or injection rate, r (m) is the 

radial distance from the well, S (dimensionless) is the storativity of the reservoir, and T (m2/s) is 

the transmissivity of the reservoir. The Theis equation assumes a fully penetrating well pumping 

at a constant rate from a homogenous, isotropic, nonleaky confined aquifer of infinite extent. 

Due to the nature of deposition of the Williston Basin, most formations are confined units of 

uniform thickness with relatively homogeneous lithologies and extend across the entire basin, 

meeting the assumptions required by the Theis equation. The only assumption of the Theis 

equation that is not met is the nonleaky boundaries, as there is often cross-formational flow 

between the units. Additionally, while the fluids present in the formation have a much lower 

density than freshwater, it was deemed acceptable to use a head-based formulation as fluid 

density is considered uniform across the aquifer and flow is primarily horizontal in this analysis. 

To calculate the hydraulic response by using the Theis equation, it was necessary first to 

determine the required reservoir hydraulic properties. Reservoir thickness was obtained from 

drilling records provided by IRIS of a well within the modelled area. A representative value of 

permeability and porosity data was found in previous literature and calculated from data 

provided by AccuMap (Beliveau 1989; IHS Markit 2020; MDH Engineered Solutions 2011).  

The storativity of an aquifer is the volume of water that is released from storage per unit surface 

area of the aquifer per decline in the hydraulic head. Within a confined aquifer, storativity can be 

calculated with the following equation:  

 𝑆𝑆 = 𝑆𝑆𝑠𝑠𝑏𝑏 (4.4) 

Where S (dimensionless) is storativity, Ss (m-1) is the specific storage, and b (m) is the thickness.  

The specific storage (Ss) (m-1) is the volume of water removed from a unit volume of a confined 

aquifer per unit drop in hydraulic head. It is related to the compressibilities of the aquifer and the 

fluid. 

 𝑆𝑆𝑠𝑠 = 𝜌𝜌𝑤𝑤𝑔𝑔(𝛼𝛼 + 𝑛𝑛𝑛𝑛) (4.5) 

Where 𝜌𝜌𝑤𝑤 (kg/m3) is the density of the reservoir fluid, and 𝑔𝑔 (9.81 m/s2) is the gravitational 

acceleration constant, 𝛼𝛼 is the aquifer compressibility (Pa-1), 𝑛𝑛 (dimensionless) is the aquifer 

porosity, and 𝛽𝛽 is the compressibility of the reservoir water. The aquifer compressibility was 
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based on values presented in related literature on the characteristics of target formations 

(Beliveau 1989).  

Transmissivity is the rate of flow through a unit width of an aquifer. Transmissivity can be 

calculated by converting permeability data into a hydraulic conductivity using an equation (4.6) 

developed by Muskat (1937) that relates Darcy's permeability and the weight of a fluid: 

 𝑘𝑘 = 𝐾𝐾
𝜇𝜇
𝜌𝜌𝑤𝑤𝑔𝑔

 (4.6) 

where 𝑘𝑘 (m2) is the permeability, 𝐾𝐾 (m/s) is the hydraulic conductivity, 𝜇𝜇 (Pa∙s) is the dynamic 

viscosity of the fluid, 𝜌𝜌𝑤𝑤 (kg/m3) is the density of the fluid, and 𝑔𝑔 (9.81 m/s2) is the gravitational 

acceleration constant. Once a hydraulic conductivity has been calculated, it is possible to 

calculate transmissivity using the following equation: 

 𝑇𝑇 = 𝐾𝐾𝐾𝐾 (4.7) 

Where T (m2/s) is the transmissivity of the reservoir, K (m/s) is the hydraulic conductivity of the 

reservoir, and b (m) is the thickness. 

Once all the reservoir parameters were characterized, and input into the Aqtesolv, two models 

were created to simulate the change in the hydraulic head. One model used well production rates 

and one that used well injection rates. Individual contour maps of hydraulic head changes for 

each production and injection model were then created using Surfer®. To combine the 

production and injection rate models into a single contour surface the values of the production 

contour were multiplied by -1. The contour surfaces were then summed at each grid point using 

the Grid Math function in Surfer®. This created a contour of the difference in hydraulic head 

changes due to production and injection wells. To convert the change in the hydraulic head (∆ψ) 

to simulated reservoir pressure (∆𝑃𝑃)(Pa) changes, the following equation was used: 

 ∆𝑃𝑃 =  ∆ψgρw (4.8) 

where 𝑔𝑔 (9.81 m/s2) is the gravitational acceleration constant and 𝜌𝜌𝑤𝑤 (kg/m3) is the density of the 

reservoir fluid. This function was also performed using the Grid Math function in Surfer®. 
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5. Temporal and Spatial Distribution of Wells and Produced and Injected 

Fluids 
The mix of conventional and unconventional reservoirs in the Williston Basin and large 

quantities of produced and injected water make it difficult to understand whether the fluid flow 

has been rearranged at the basin scale due to oil and gas production. To better explain the role of 

oil and gas in basin fluid budgets and fluid flow, this study analyzed the volumes of produced 

and injected water, and number of wells within the study area. In addition, the spatial 

distributions of production and injection wells, and produced and injected water was compared 

across the entire basin and multiple formations. 

5.1   Well Inventory 
The study area covers multiple overlapping oil and gas pools and plays. These pools and plays 

exist in formations of differing lithologies, which require different production methods. Within 

the study area, there are more than 57,000 total wells, with over half of that number being active 

in 2019. This includes 28,100 active wells, 2,890 injection and disposal wells, and 15,339 

abandoned wells. A total breakdown of well modes for the study area can be found in the 

Appendix (Table 3). Of the 36 recognized formations within the Williston Basin, a total of 18 

formations are considered to be producing. Four formations contain the majority of the wells, led 

by the Midale with 8,428, the Bakken with 6,718, the Frobisher with 6,763, and the Tilston with 

2,703 wells. 

While historically conventional vertical wells were common, the use of HVHF and horizontal 

wells has become prevalent, beginning in 2005, as the rapid adoption of new technologies made 

it possible to produce from once uneconomical formations (Fig. 5-1). Within the study area there 

are 28,651 vertical wells, 22,214 horizontal wells, and 1,153 directional/deviated (dir/dev) wells 

(Figure 5-1). Due to current trends, it is expected that horizontal wells will soon outnumber 

vertical wells. 
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Figure 5-1: Type of well compared to the volume of fluid within the study area. 

5.2   Total Fluid Budget 
To create a comprehensive fluid budget of the study area and improve the understanding of 

formational volumes of produced and injected water, a database of total production volumes for 

each well, as well as monthly production volumes was created. This provided the ability to 

analyze trends in large-scale oil and gas fields to improve the understanding of the cumulative 

volumes represented. While a percentage of the water produced from a formation may have 

come from a connected overlying or underlying formation, all volumes are assumed to have 

originated from the single formation for ease of analysis. 

Over the last 60 years within the study area, a total of 540 x 106 m³ of oil, and 51 x 109 standard 

m³ of gas have been produced, the quantity of produced water is nearly ten times this amount. In 

total, nearly 4.6 x 109 m³ of water have been produced from within the study area. In turn, 



 

24 
 

another 5.5 x 109 m³ of water was injected back into formations for use in water flooding or as 

saltwater disposal. In addition to these values, there are much smaller quantities of produced CO2 

and injected oil, gas, and CO2. 

When fluid volumes are dissected into individual formations, it highlights the grouping of 

formations that contain the most fluid movement. As seen in Figure 5-2, the bulk of fluid 

movement occurs within the Mannville Group, the Madison Group (Poplar Ratcliffe, Midale, 

Frobisher, Kisbey, Alida, Tilston and Lodgepole) and the Bakken Formation. Considerable 

quantities of water are also being injected into the Interlake, Stonewall, and Deadwood 

formations via saltwater disposal for potash mines.  

 
Figure 5-2: Difference in produced fluid (red) and injected water (blue) within formations in 
the Williston Basin. The difference (grey) represents the difference in produced fluid and 
injected water. Only formations with wells completions were included, and any formations 
missing from the figure are assumed to have unchanged volumes. 
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The study identified the Mannville Group, the Midale Member, and the Bakken Formation as 

key units for analyzing fluid movement patterns. The Mannville Group was selected due to 

having the largest surplus of injected fluid volume, excluding formations used for potash 

saltwater disposal. The Midale Member (of the Madison Group) was selected as it had the largest 

cumulative volume of produced and injected fluids while exhibiting almost no change of fluid 

volume within the formation. Due to the similar lithologies of members within the Madison 

group, it can be assumed that the observed changes in fluid budgets and associated reservoir 

pressures within the Midale Member, can also occur to some extent in other formations within 

the Madison Group. The Bakken Formation was selected due to its relatively recent production 

history and its use of HVHF as a primary extraction method.  

 

Figure 5-3: Cumulative fluid volumes (106 m3) and Monthly fluid rates (106 m3) for the 
Mannville Group, Midale Member, and Bakken Formation. The Mannville Group has produced 
the most water and has the lowest monthly injection rate. The Midale Member has similar 
production and injection rates, due to primarily utilizing waterflooding for production. The 
Bakken Formation uses the lowest volume of water and the most recently produced unit. 
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As of mid-2019, the Mannville Group has produced a total of 6.1 x 106 m3 of oil, 376 x 106 m3 of 

water and a negligible volume of gas. Additionally, there have been 726 x 106 m3 of produced 

water injected into the formation, creating a surplus of 344 million m3 of fluid (Figure 5-3).  

Despite the widespread use of the Mannville Group as a disposal reservoir not beginning until 

the late 1990s, it only took a short period of time for injected water volumes to surpass monthly 

produced water rates. Within ten years of injecting, the cumulative volume of injected water 

began to exceed the volume of produced water. The volume of produced water from the 

Mannville has stayed relatively constant over the active lifetime of the formation.  

The Midale Member has produced a total of 215 x 106 m3 of oil, 860 x 106 n m3 of water and 26 

x 109 m3 of gas. Additionally, there have been 1.05 x 109 m3 of water injected, resulting in a loss 

of 25 million m3 of fluid within the formation (Figure 5-3). Oil production rates in the Midale 

have remained relatively stable since the beginning of production in the 1950s. While there was 

significantly more water injected than produced between the 1960s to 1980s, after this period, 

these rates become comparable and follow a similar trend. The flattening of injection and 

production rates in the Midale that occurs around 2010, correlates to a similar timeframe where 

production in the Bakken began.  

The Bakken Formation has produced a total of 50 x 106 m3 of oil, 110 x 106 m3 of water and 6.4 

x 109 m3 of gas. Additionally, there have been 22 x 106 m3 of produced water injected into the 

formation, resulting in a loss of 140 x 106 m3 of fluid within the formation (Figure 5-3). The 

volumes of produced and injected water within the Bakken are significantly lower than those 

found in the Mannville and the Midale, however, produced oil rates are comparable to rates 

found in conventional formations like the Midale.  This difference in produced water volumes 

between the Midale Member and the Bakken Formation while producing a similar volume of oil 

can be attributed to the type of production methods. Conventional wells typically produce ~13 

times more water than oil (water to oil ratio, WOR) when compared to unconventional oil wells 

(Scanlon et al. 2014). The Midale Member, which primarily utilizes waterflooding methods for 

oil production, exhibits a WOR of ~10, while the Bakken formation has a WOR of ~3. 

Formations with similar hydrogeologic properties to the Midale have even higher WORs, 

reaching as high as ~40 in the Mission Canyon Group.  
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5.3   Spatial Variability 

5.3.1 Well Densities 
Examining the location of wells and well densities can provide greater insights into regions that 

are more likely to experience effects due to oil and gas production. While considering all wells 

within the study area is important to highlight regions with the highest density of wells, it is also 

important to examine well densities on an individual formation basis. Currently there are 

~58,000 wells within the study area. Well fields focused on higher densities in the small region 

that stretches from the centre of the study area along the Canada–US border to the eastern edge 

of the Williston Basin. Wells can be found sporadically across the rest of southern Saskatchewan 

up to the western border, where well densities sharply increase (Figure 5-4).  

Wells within the Mannville Group are fairly spread out when compared to well densities in other 

formations (Figure 5-4). The average well density per cell across the study area is only 2.8 wells 

per 25 km2, while the maximum density is 147 wells per 25 km2. The sparseness of wells can be 

attributed to the fact that 40% of these wells are disposal wells. These disposal wells often 

service many surrounding production wells requiring a lower volume of wells in larger spacing.  

Wells in the Midale Member are tightly grouped within the middle of the study area and extend 

toward the Canada–US border (Figure 5-4). The Midale Member has the highest average density 

of wells of the formations, at 31.1 wells per 25 km², as well as the highest number of wells in one 

cell at 299 wells. This high density of wells is due to the use of water flooding within the 

formation. These water flooding patterns extend across the entire oil and gas play, causing the 

well density map to appear solid with few gaps due to lack of wells. 

The wells in the Bakken Formation primarily split into three main groupings, one along the 

bottom of the study area, one in the center, and one towards the eastern edge extending into 

Manitoba (Figure 5-4). The average well density in the Bakken is 17.3 wells per 25 km2, with a 

maximum of 191 wells. Wells are primarily focused in the center of each one of these groupings, 

with the density of wells decreasing outwards. 

 



 

28 
 

5.3.2 Fluid Distribution 
To compare the fluid volume distribution across the study area, injected and produced water 

volumes (m3) were divided by the area of the 5 x 5 km cells (25 km2) to present the volume 

change in mm. While injected water will not necessarily stay within the confines of the cell it is 

injected in, this method helps highlight areas of above average amounts of injected or produced 

fluids. In study area (Figure 5-5), the total maximum increase in fluid volume per 25 km2 cell 

was 8,995 mm. The maximum decrease in fluid volume was 3,315 mm, and the average change 

across all cells was 3.9 mm. The Mannville Group had a maximum increase in fluid volume of 

1,026 mm, and a maximum decrease of 3,851 mm. The average change across all cells in the 

Mannville Group was 3.4 mm. The Midale Member had a maximum increase in fluid volume of 

497 mm, and a maximum decrease of 529 mm. The average change across all cells in the Midale 

Member was -0.3 mm. The Bakken Formation had a maximum increase in fluid volume of 32 

mm, and a maximum decrease of 126 mm. The average change across all cells in the Bakken 

Formation was -1.4 mm. 
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5.4   Injection compared to regional flow rates  
To quantify the volume of fluid being injected into reservoirs, the annual net fluid budget 

increase for individual cells was compared to the estimated natural flow rates for each formation. 

The flow rates occurring in each formation were estimated using Darcy's Law as discussed in 

Section 4.3. Hydraulic gradients were calculated from hydraulic head maps published by 

Palombi in 2008, and are based on earlier, pre-development data. The hydraulic gradient in the 

Midale Member was 0.08 m/km, and the 0.2 m/km in the Midale Group. IRIS 

(www.saskatchewan.ca/iris) was used to provide thicknesses for each formation. The Midale had 

a thickness of 18 m, and the Mannville had a thickness of 140 m. A hydraulic conductivity of 

1.4 x 10-7 m/s was assumed for the Midale, and an average of 8 x 10-6 m/s was used for the 

Mannville (MDH Engineered Solutions 2011). 

The estimated natural flow rates for each cell in the Midale Member was ~30 m3/yr, while the 

Mannville Group was estimated at ~ 35,000 m3/yr. The significantly larger value for the 

Mannville compared to the Midale is due to it having a higher permeability and being ten times 

thicker.  The five cells with the injected rates were calculated for both units. Injection volumes 

ranged from 80,000 to 195,000 m3/yr in the Midale, and between 240,000 to 1,050,000 m3/yr in 

the Mannville. These equate to 2,500 to 6,000 times the background natural flow rates in the 

Midale, and 7 to 30 times in the Mannville.  
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6. Modelling Reservoir Pressure 
Reservoir pressure models were created for both the Mannville Group and the Midale Member. 

A model of the Bakken Formation was not created due to its primary method of production being 

HVHF and its lack of wells with long-term sustained injection rates. Modelling low permeability 

hydraulically fractured reservoirs and the fluid flow in such environments is too complex for 

Aqtesolv.  

Midale Member 

The model for the Midale Member was centered on the injection well with the largest injection 

volume within the Midale. The chosen well had injected a total of 6.6 x 106 m3 of water between 

1963 and 2019 at an average rate of 320 m3/day. An area of 5 km by 5 km was chosen to allow 

for an adequate number of wells to interact with the primary injection well. Within the modelled 

area, there was a total of 124 wells, 110 are used primarily for production, and 14 are used 

primarily for injection. Since 1957 a total of 50.2 x 106 m3 of fluid was produced, and 42.4 x 106 

m3 of fluid was injected in the modelled area. While the total volume of fluid produced is greater 

than the volume injected, the daily rates follow similar trends (Figure 6-1).  

 

Figure 6-1: Combined daily production (red) and injection (blue) rates (m3) in the Aqtesolv 
model area for the Midale Member   

To accurately model the reservoir response to production and injection, transmissivity and 

storativity values were calculated from found compressibility, permeability and thickness values 

(Table 1). The compressibility and permeability of the reservoir came from literature on the 
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pressure characterizations of the Midale Unit (Beliveau 1989). The thickness was pulled from the 

drilling records for the primary injection well. From these values, a transmissivity of 2.5 x 10-6 

m2/s, and a storativity of 1.6 x 10-5 were calculated. 

Table 6-1: Model parameters for estimating reservoir pressure changes in the Midale Member 

Parameter Value Reference 
Compressibility  𝛼𝛼 1.5 x 10-6 kPa-1 Beliveau, 1989 

Permeability k 15 md Beliveau, 1989 

Gross Thickness b 18 m IRIS, 2020 

Water Density pw 1076 kg/m3 IHS Markit, 2020 

Dynamic Viscosity  𝜇𝜇 0.001052 Pa‧s Beliveau, 1989 

Porosity n 0.12 IHS Markit, 2020 

Hydraulic Conductivity K 1.4 x 10-7 m/s MDH, 2011 

Transmissivity T 2.5 x 10-6 m2/s Eq 6 

Storativity S 1.6 x 10-5 Eq 3, 4 

 

Injection wells in the modelled area were arranged in a grid pattern along lines that ran NW-SE 

and SW-NE (Figure 6-2). Spread amongst these injection wells are production wells that follow 

no organized pattern. Towards the SW corner of the modelled area is the outer edge of the oil 

field; due to this, there are no injection wells in this area.  
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Figure 6-2: Changes in simulated reservoir pressure (∆P) in the Midale Member. Blue shading 
represents areas of increased pressure, and red shading represents areas of decreased pressure. 
T = 2.5 x 10-6 m2/s, S = 1.6 x 10-5, b = 18 m. 

Pressure changes are elevated around areas where injection wells are present but decline along 

the edge of the oil field where only production wells remain. Pressures in the model area maxed 

at 16.8 MPa at the wellhead and dropped to -14.4 MPa along the outer edge. Pressures greater 

than 8 MPa extended up to 250 m away from the well, but the pressure is greater than 4 MPa 

extended up to 700 m away. This increase in pressure can increase the rate of fluid transport 

raising the risk of contamination.  

While the models used reported variables (K, T, S, thickness) to attempt to accurately predict 

conditions occurring within the formation, such variables can be highly heterogeneous. To assess 

the impact of changes in these variables a sensitivity analysis was conducted to assess the 
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performance of the model. Results of the analysis showed that the model was sensitive to 

changes in S and specifically T. A magnitude change in T resulted in a similar magnitude change 

in pressures across the formation (Figure A-2). 

Mannville Group 

The model for the Mannville Group was centered on the injection well with the largest injection 

volume within the Mannville. The chosen well had injected a total of 9.4 x 106 m3 of water 

between 1997 and 2019 at an average rate of 1172 m3/day. An area of 25 km by 25 km was 

chosen to allow for an adequate number of wells to interact with the primary injection well. 

Within the modelled area, there was a total of 47 wells, two being used primarily for production, 

and 45 used primarily for injection. Since 1997 a total of 0.3 x 106 m3 of fluid was produced, and 

82.3 x 106 m3 of fluid was injected in the modelled area. There was zero produced fluid in the 

study area until late 2018 (Figure 6-3).  

 

Figure 6-3: Combined daily production (red) and injection (blue) rates (m3) in the Aqtesolv 
model area for the Mannville Group   

Transmissivity and storativity values were calculated from existing hydraulic conductivity, 

compressibility, permeability and thickness values (Table 2). The reservoir parameters came 

from a report on a proposed injection well pattern into the Mannville Group (MDH Engineered 

Solutions 2011); the thickness was pulled from the drilling records for the primary injection well. 

From these values, a transmissivity of between 1 x 10-3 and 1 x 10-4 m2/s, and a storativity of 

between 1 x 10-3 and 1 x 10-4 were used. 
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Table 6-2: Model parameters for estimating reservoir pressure changes in the Mannville Group 

Parameter Value Reference 
Compressibility  𝛼𝛼 

  

Permeability k 45 md IHS Energy, 2020 

Gross Thickness b 140 m IRIS, 2020 

Water Density pw 1022 kg/m3 IHS Markit, 2020 

Dynamic Viscosity  𝜇𝜇 0.001052 Pa‧s Beliveau, 1989 

Porosity n 0.23 IHS Markit, 2020 

Hydraulic Conductivity K 7 x 10-6  to 7 x 10-7 m/s MDH, 2011 

Transmissivity T 1 x 10-3 to 1 x 10-4 m2/s MDH, 2011 

Storativity S 1 x 10-3 to 1 x 10-4 MDH, 2011 

 

Wells in the Mannville Group are much more spread out in the Midale, and wells are commonly 

spread up to 5 km apart compared to just a few hundred meters. While wells in the Mannville 

injected fluid at a much higher rate than those in the Midale, the transmissivity and storativity are 

much higher, leading to a lower change in pressure across the formation. By using a 

transmissivity of 1 x 10-4 m2/s, and a storativity of 1 x 10-4, we find a max pressure change of 4.4 

MPa. At the wellhead with the minimum increase of 1.25 MPa. Using a transmissivity of 1 x 10-3 

m2/s, and a storativity of 1 x 10-3, we find a max pressure change of 0.44 MPa. At the wellhead 

with the minimum increase of 0.13 MPa (Figure 6-4). The injection wells in the Manville have a 

much larger area of influence compared to that of the Midale. Significant pressure changes of up 

to two MPa can be found at up to 15 km away from the centre cluster wells. Modelled 

sensitivities to changes in S and T can be found in the appendix (Figure A-3). 
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Figure 6-4: Changes in simulated reservoir pressure (∆P) in the Mannville Group. Blue shading 
represents areas of increased pressure. T = 1 x 10-3 m2/s, S = 1 x 10-3, b = 120 m.  
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7. Discussion 

7.1   Formational Fluid Volume Change  
It is difficult to determine any pattern in fluid volume changes when considering all formations, 

due to the seemingly random nature of fluid volume distributions (Figure 5-5). Cells with 

substantial increases in fluid volume can exist directly next to cells with large decreases in fluid 

volume. To fully understand the effects that oil and gas activities are having on deep 

groundwater, it is necessary to examine these volumes for individual stratigraphic units. 

Since the Mannville Group is used primarily for saltwater disposal, the map in Figure 5-5 mainly 

shows substantial increases in fluid volumes for most of the cells. Areas where the Mannville 

Group is used as source water for water flooding, can be seen on the map as a sizeable orange-

red area towards the bottom of the Mannville wells. This area of decreased fluid coincides with 

an area of the Midale Member that has increased in fluid volume, suggesting that within this 

area, water from the Mannville Group is extensively used for water flooding in the Midale. This 

provides an example of the formational movement of water that is likely occurring in many other 

regions across the study area. 

Although the difference in the Midale Member between produced and injected fluids is 

insignificant, (<0.05% of injected volume) it is still possible to see regions of increased fluid 

volumes as well as decreased fluid volumes. This is due to water flooding, as some cells see 

more water injected into them to drive oil into the neighbouring cell, as well as cases where 

water from the Mannville Group is injected into the Midale Member increasing fluid volumes. 

The majority of cells have a minor amount of fluid volume change, suggesting that in most cases 

the amount of water injected for water flooding is similar to the amount of water produced, 

effectively cancelling out the net effect of either. 

Oil and gas production in the Bakken Formation is primarily conducted using HVHF which uses 

substantially less water for production compared to more conventional methods such as water 

flooding occurring in the Midale Member. This is created a decrease in fluid volume for every 

cell within the Bakken Formation. Fluid decreases are lower and more consistent than those 

found in the Mannville Group and the Midale Member. 
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7.2   The Effect of Oil and Gas on Reservoir Pressures 
While assessing produced and injected water volumes on a formational basis is important, it is 

also imperative to understand how the spatial distribution of production and injection wells 

affects the subsurface flow and formation pressures. Formations that have total neutral fluid 

budgets (volumes of produced water equal injected water) can still have regions where there is a 

significant difference in produced and injected volumes. These differences can be caused by 

areas where only conventional production is occurring, and no water is being injected, areas 

where there is no oil present and saltwater disposal is being utilized, and during waterflooding 

where patterns of injection wells are used to push water and oil towards a series of producing 

wells. These localized differences in fluid budgets can be seen in the Midale. It is a reservoir 

with a negligible difference in produced and injected water, yet it has a grid cell with a water 

surplus of 416 mm/m2 directly next to a grid cell with a deficit of -255 mm/m2 (Figure 5-5). 

With changes in fluid volume comes changes in formation pressure. Areas with extensive 

injection will see increases in formation pressures, while areas with more production will see a 

decrease in pressure. The pressure will fluctuate with the distribution of production and injection 

wells, sometimes over as little as 100 m. These pressure changes can potentially act as drivers of 

fluid flow and could lead to contamination of overlying freshwater resources where high 

permeability pathways are present (McIntosh and Ferguson 2019). Modelled pressures in the 

Midale showed an increase of >8 MPa up to 250 m away from the injection well, and 2 MPa 

increases at up to 1.5 km away (Figure 6-2). Due to the variability in hydrogeologic properties, 

these actual pressure increases may vary within approximately an order of magnitude, although 

larger pressure increases are unlikely because they would result in hydraulic fracturing. 

Simulated pressure increases are enough to drive the hydraulic head in the Midale far above the 

ground surface, causing a risk of near-surface groundwater contamination (Figure 7-1). Unlike 

hydraulic fracturing, which only increases formation pressures for a few days, pressures due to 

injection and saltwater disposal can persist for >10 years even after considerable reductions in 

injection rates (Pollyea et al. 2019). 
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Figure 7-1: Cross-section of hydraulic heads in the Midale. The solid blue line is the modelled 
hydraulic head due to injection and production, and the dashed blue line is an estimated natural 
hydraulic head. 

The variation in production and injection locations and associated changes in pressure influence 

the hydraulic gradient of the reservoir, making it difficult to predict groundwater flow direction 

and velocity. Increased hydraulic gradients will also increase contaminant transport distances 

where high permeability pathways are present. In areas where natural fractures or faults are 

absent, leaking abandoned oil and gas wells may act as conduits for contaminant transport. 

Contamination from leaking wells is not a new phenomenon (Lavasani et al. 2015; Boothroyd et 

al. 2016), and potential increases in contaminant transport distances will only exacerbate the 

problems. 
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7.3   The Role of Pressure in Induced Seismicity 
Over the last decade, discussions about induced seismicity have primarily focused on hydraulic 

fracturing. While induced seismicity can be directly tied to several hydraulic fracturing 

operations, most induced seismicity in the United States is due to saltwater disposal into deep 

reservoirs (Rubinstein and Mahani 2015). Several studies have shown that it is possible to induce 

seismicity via saltwater disposal, and a substantial change in the net fluid budget is the largest 

influence of seismicity (National Research Council 2013). It is estimated that an increase of as 

little as 0.01 to 0.2 MPa along faults or tectonically stressed features can induce seismicity 

(Keranen and Weingarten 2018; Hornbach et al. 2016).  

Induced seismicity as a result of large-scale saltwater disposal has been extensively studied in 

Kansas and Oklahoma. In this region, high volumes are injected into the Arbuckle Group, a thick 

sedimentary reservoir overlying the crystalline basement. An annual total of 16 million m3 of 

wastewater was injected into the Arbuckle in 2015, leading to recorded reservoir pressure 

increases of up to 0.4 MPa by 2016 (Peterie et al. 2018). This pressure led to a record number of 

Magnitude 3 earthquakes recorded by the US Geological Survey (USGS) in 2014.  Similarities 

can be found in the Mannville group reservoir, which is primarily used for saltwater disposal. In 

the Mannville in 2015, there were more than 43 million m3 of wastewater injected, nearly three 

times more than in the Arbuckle. This led to modelled increases in the pressure of up to 0.4 MPa 

around injection wells in the Mannville. Despite these similarities, there are no recorded events 

of induced seismicity associated with injection into the Mannville.   

Reservoirs like the Mannville Group are unlikely to exhibit induced seismicity due to several 

factors. (1) aquifers properties allow for large influxes of wastewater without a significant 

increase in reservoir pressure, (2) lack of faults and low shear stress, and (3) distance from the 

crystalline basement rocks.  

The reservoir's response to saltwater disposal depends on several geological constraints, such as 

thickness, permeability and porosity. Thick, high permeability formations, such as the Manville 

group, will have high storativity and transmissivity values allowing for a large change in the 

volume of water storage per unit change in hydraulic head in the aquifer. A smaller change in the 

hydraulic head will reduce the associated changes in reservoir pressure limiting the chance of 

induced seismicity. 
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As wastewater is injected into the reservoir it can propagate down networks of pre-existing 

fractures and faults. This can modify the state of the stress by increasing the porewater pressure 

in the fault (Hsieh 1996; National Research Council and Geophysics Study Committee 1990). 

This reduces the effective stress present on the fault bringing it closer to the conditions required 

for initiating a slip. This method of induced seismicity can create earthquakes up to magnitude 

M3.4 (National Research Council 2013). 

Wastewater injection into formations that are closer to the crystalline basement of the basin is 

more likely to induce earthquakes than injection in shallower reservoirs for enhanced oil 

recovery or hydraulic fracturing (Zhang et al. 2013; Shirzaei et al. 2016). This is caused by the 

propagation of increased reservoir pressures into the crystalline basement through faults and 

fracture networks that act as permeable pathways. The increased stresses and frictions found in 

faults in the crystalline basement will increase the energy released during induced seismicity, 

resulting in larger earthquakes. Due to the lack of saltwater disposal close to the crystalline 

basement in the Williston basin, there is no significant induced seismicity recorded. 

7.4   Anthropogenic Evolution of Flow 
Maps of hydraulic heads exist for nearly every formation. However, most maps are based on 

natural hydraulic heads, and often remove data that is considered influenced by injection and 

production wells (Tóth and Corbet 1987). As the results of this study show, production and 

injection wells will have a significant effect on the hydraulic gradients of reservoirs and will 

affect groundwater flow estimates and calculations. In addition to changing hydraulic gradients, 

a surplus produced water is being reinjected into reservoirs at rates significantly higher than 

natural flow rates, with rates as high as 6,000 times natural flow rates present in the Midale, and 

up to 30 times in the Mannville.  It can no longer be assumed that the subsurface remains in a 

natural state.  

The shift in fluid pressures will make it difficult for projects, such as carbon sequestration, that 

rely on hydraulic head maps to estimate flow volumes and velocities. To accurately predict 

reservoir conditions modelling will need to be conducted at each project site, or new basin-wide 

hydraulic head maps will need to be created with the effect of oil production included. To create 

basin-wide models of potentiometric surfaces, it will be necessary to model every oil and gas 

well in the basin. To accurately predict and model long-term forecasting of these potentiometric 
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surfaces, increases in the reporting of well pressures and volumes must occur. Currently, 

reservoir pressure measurements only occur before production starts creating a sparse dataset.   
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8. Conclusion & Recommendations 
The continuing rise of oil and gas production has increased the volumes of produced and injected 

water associated with the oil and gas industry. While it is assumed that most produced water is 

reinjected into its original source formations, water can often be produced from one formation as 

source water for injection into a different reservoir to maintain reservoir pressure. It can also be 

produced as a by-product of production and injected via saltwater disposal into another 

formation, rather than be injected back into the same formation. This can cause surpluses or 

deficits in the formation's fluid budget leading to changes in reservoir pressure, increased solute 

transport and, in some cases, induced seismicity. This study has shown that despite there being 

negligible differences in produced and injected water volumes in the Williston Basin, there are 

several formations with large differences in water volumes. In addition to individual formations, 

the distribution of production and injection wells can lead to local changes in the hydraulic head. 

Changes in the hydraulic head can act as important drivers of fluid flow, leading to 

contamination of overlying freshwater resources where high permeability pathways are present.  

Several studies have shown that it is possible to induce seismicity due to increases in the 

hydraulic head via saltwater disposal and that a substantial change in the net fluid budget is the 

largest influence of seismicity. By modelling pressure changes in the Midale and Mannville, 

changes in the local hydraulic head were quantified. In the Midale pressure changes were found 

to exceed >8 MPa at up to 250 m away from the injection well, and 2 MPa at up to 1.5 km away. 

Increased formation pressures of a similar magnitude have been recorded in other oil and gas 

producing regions, including Oklahoma, Texas, and Kansas, in some cases leading to induced 

seismicity. The lack of induced seismicity in the Midale Member and Mannville Group can 

likely be attributed to a shallower injection distant from the basement.  

To further improve the understanding of the rearrangement of fluid flow systems at the basin 

scale due to oil and gas production, it is recommended that additional data needs to be collected 

to supplement currently available data. Increasing the required number of fluid pressure 

measurements for each well and requiring the reporting of the source of injected waters will 

improve the ability to predict changes in subsurface pressures.  Expanding the number of 

available hydrogeological measurements (permeability, compressibility, porosity, etc) can 

increase the accuracy of hydraulic head and associated pressure models. Implementing the 
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collection of multiple fluid chemistry measurements over a well’s lifespan instead of only at the 

time of completion could be useful in tracking the movement of injected fluids. 
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Appendix 

 

Figure A-1: Variations in modelled pressure due to using vertical wells versus using horizontal 
wells. Figure uses data from a well present in the Midale study area with a lateral length of 492.1 
m. All other variables are consistent with the previous pressure change modelling conducted in 
the study area. Differences between the two models are primarily focused on 200 meters of the 
center of the well. 
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Figure A-2: Sensitivity analysis of variation in Storativity and Transmissivity in the Midale 
Member 
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Figure A-3: Sensitivity analysis of variation in Storativity and Transmissivity in the Mannville 
Group 
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