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This thesis investigates the variability of ontogenetic maxillary bone modeling patterns in humans 

(Homo sapiens) and chimpanzees (Pan troglodytes). Along with sutural growth, bone modeling is 

the microscopic process by which bones grow in size and model their shape. It results from the 

simultaneous cellular activities of bone formation (produced by the osteoblasts) and bone 

resorption (produced by the osteoclasts) on bone surfaces. The study of these activities can bring 

new insights into our understanding of maxillary, and, more generally, facial ontogeny. However, 

bone modeling variability remains poorly understood. Using surface histology, we developed 

quantitative methods to objectively compare and visualize bone modeling patterns. In parallel, 

geometric morphometric methods were used to capture and quantify maxillary shape changes. 

Both methods were used for the first time together in an integrative approach. A large sample of 

H. sapiens individuals ranging from birth to adulthood, and originating from three geographically 

distinct areas (Greenland, Western Europe and South Africa), was used to infer the variation in 

maxillary bone modeling at the intraspecific level. We found that human populations express 

similar bone modeling patterns, with only subtle differences in the location of bone resorption. 

Moreover, differences in developmental trajectories were identified. This suggests that population 

differences in maxillary morphology stem from changes in timing and/or rates of the osteoblastic 

and osteoclastic activities. Adult individuals show similar maxillary bone modeling patterns to 

subadults, with both cellular activities expressed at reduced intensities. All human populations 

express high amounts of bone resorption throughout ontogeny, and high inter-individual variation. 

In contrast, we find low amounts of bone resorption and a low inter-individual variation in 

chimpanzees, which results in the anterior projection of their maxilla. In chimpanzees, resorption 

is predominant in the premaxilla, which has been found in some species of Australopithecus and 

Paranthropus. Other similarities in the location of bone resorption, mostly close to the sutures, 

suggest the preservation of shared ontogenetic patterns between the humans and chimpanzees. The 

low intraspecific variation in the location of bone resorption found in both species suggests that 

species-specific bone modeling patterns can be inferred from a limited number of individuals. This 

will allow future studies to discuss the bone modeling patterns in fossils for which subadult 

individuals are scarce. 
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SUMMARY 

 

The overarching theme of the present work concerns the evolution and ontogeny of the human 

face, with a specific focus on the maxilla. Theories and questions related to the subject are 

introduced in the following section, as well as the main subject of this thesis: the microscopic 

development of facial features, or bone modeling. Finally, the major outcomes of the present work 

are summarized in the last section. 

 

 

Introduction 

 

The face of present day humans, or Homo sapiens, is unique compared to our extinct Homo 

relatives and can be confidently traced back to skeletal material dated to around 300 ka (thousands 

of years) from the site of Jebel Irhoud in Morocco (Hublin et al., 2017). In particular, the midface 

(the part comprised between the eyebrows and the mandible) is smaller and more vertically 

oriented (or orthognathic; e.g., Day & Stringer, 1982; Franciscus & Trinkaus, 1995; Bastir et al., 

2010; Holton et al., 2011). Among midfacial bones, the maxilla contains important anatomical 

information that is valuable for reconstructing phylogenetic relationships. One key feature is the 

canine fossa, a depression of the maxillary body. This feature, often described as unique to H. 

sapiens, has also been attributed to H. antecessor, a juvenile fossil dated between 949 and 772 ka 

(Duval et al., 2018). This has led some researchers to place this species as a direct ancestor to H. 

sapiens (Bermudez de Castro et al., 1997; Arsuaga et al., 1999). However, due to its complex shape 
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and ambiguous definition, the use of the canine fossa in determining phylogenetic relationships 

has been questioned (e.g., Maureille, 1994; Lahr, 1996; Maddux & Franciscus, 2009).  

Although all members of H. sapiens share the same combination of facial features, their 

midfacial morphology is highly variable (e.g., Howells, 1973), particularly in the maxilla. 

Differences in maxillary morphology can be found in the degree of projection of the premaxilla 

(e.g., Mooney & Siegel, 1986; McCollum, 2008), in the degree of curvature of the canine fossa 

(e.g., Freidline et al., 2015), as well as in variations in height and width of the nasal aperture (e.g., 

Holton, 2012). According to some authors, epigenetic factors such as climate and diet have driven 

facial morphological variability in human populations (e.g., Evteev et al., 2013; Butaric & 

Maddux, 2016; Cui & Leclercq, 2017; Hubbe et al., 2009; Gonzalez -Jose et al., 2005; Noback & 

Harvati, 2015; Stynder et al., 2007; von Cramon-Taubadel, 2011; Brachetta-Aporta, 2019a). 

However, their precise role remains unclear. Studies focusing on facial ontogeny (i.e., growth and 

development) have shown that adult facial features are built through differential, population-

specific patterns of size and shape changes during pre- and post-natal ontogeny, as well as changes 

in rates and timings of development (e.g., O’Higgins & Vidarsdóttir, 1999; Vidarsdóttir et al., 

2002; Bulygina et al., 2006; Freidline et al., 2015). Thus, focusing on the patterns of growth and 

development of facial features will help to clarify the role of genetic and epigenetic factors in 

shaping the human face. 

In the 1960’s, Donald Enlow investigated for the first time human facial bone ontogeny at 

the microscopic level. His work led to the discovery of a fundamental process, called bone 

modeling (first named bone “remodeling”1; Enlow, 1962). Bone modeling results from the 

uncoupled cellular activities of bone formation and resorption that respectively add and remove 

bone on a surface. Along with sutural growth in the cranium (Rice , 2008), it is the process by 

which a bone grows in size and models its shape. Moreover, it is the compensatory mechanism by 

which alignment between bones is maintained during ontogeny. The expression of the cells 

responsible for bone formation and resorption (the osteoblasts and osteoclasts, respectively) is 

regulated by complex cascades of molecular and chemical signals (e.g., Delmas, 1995; Kini &  

Nandeesh, 2012). These are partly monitored by the osteocytes (the cells embedded within the 

cortical bone), which are known to be sensitive to mechanical stimuli (e.g., Huiskes et al., 2000).  

Using histological sections of human maxillae, Enlow and Bang (1965) observed the presence 

of a large resorptive field on the outer bone surface. The authors proposed that this area of bone 

resorption must play an important role in the development of the characteristic face of H. sapiens, 

making the first link between bone modeling and the development of morphological features. 

Expanding their observations to more individuals of various ages, Kurihara and co-authors (1980) 

repeatedly found a similar result. However, they observed that in each individual the size of the 

resorptive field varies (i.e., resorption is more or less extended across the surface). The authors 

                                                           
1 In the present work, we follow Frost’ definition (1987, 1990, 2003) which separates bone modeling and remodeling 

in two different processes. Bone remodeling results from the sequential activities of bone resorption and formation on 

a similar location on a bone layer (either periosteal or endosteal). It is involved in several functions, such as bone 

renewal, repair of damages as well as homeostasis, and does not affect the shape of the bone (e.g., Barak, 2019; Parfitt, 

1984); Hadjidakis & Androulakis, 2006; Schulte et al., 2013). 
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concluded that individual morphological variation must then relate to the location and extent of 

the latter. The analysis of facial ontogeny through the study of bone modeling patterns thus 

represents a promising way to investigate morphological variability among extant species. This 

will in turn improve our knowledge of extinct species’ ontogenetic patterns. Indeed, it might be 

that seemingly homologous adult features develop via distinct ontogenetic trajectories, and instead 

are homoplastic. By representing the interface between genetic and morphological data, the 

analysis of the cellular activity offers new insights into the paleobiology of hominin facial 

evolution and can add valuable phylogenetic information. 

The development of methods such as histology on dry bone surfaces facilitated bone modeling 

studies (Boyde & Hobdell, 1969a, b; Boyde, 1972; Boyde & Jones, 1996; Bromage, 1984, 1985). 

A relatively large body of research has since investigated the bone modeling patterns of different 

extant (Enlow, 1966a; Duterloo & Enlow, 1970; Johnson et al., 1976; Kurihara et al., 1980; 

Walters & O’Higgins, 1992; O’Higgins  & Jones, 1998; O’Higgins et al., 1991, 2001; Wealthall, 

2002; Mowbray, 2005; Kranioti et al., 2009; Martínez-Maza et al., 2013, 2015; Freidline et al., 

2017; Brachetta-Aporta et al., 2014, 2019a, b) and extinct species (Bromage, 1989; McCollum, 

1999, 2008; Martínez-Maza et al., 2011; Brachetta-Aporta et al., 2017; Lacruz et al., 2013, 2015a, 

b). Altogether, these studies suggest that bone modeling patterns are species specific (e.g., Rosas 

& Martínez-Maza, 2010). However, O’Higgins and co-authors (1991) as well as Martínez-Maza 

and co-authors (2015) observed strong similarities in the bone modeling patterns of closely related 

species. This might imply that some developmental processes are conserved and shared among 

taxa, and could reflect canalization, the developmental conservation of morphological traits (e.g., 

Waddington, 1942; Hallgrímsson et al., 2002). It is, however, still unclear which aspects of bone 

modeling patterns are specific and which are shared among closely related species (such as 

between Neanderthals and H. sapiens; although see Rosas and Martínez-Maza (2010) and Lacruz 

et al., 2015a). 

 A new way to investigate these questions is by looking at both bone modeling and 

morphology together in an integrative approach. As new bone is added on a surface (and resorbed 

on the other side), this creates a displacement of this area called “cortical drift” (Enlow, 1962; 

1966b). The combination of all displacements during ontogeny thus results in macro-scale changes 

in morphology (i.e., shape). Although the analysis of bone modeling provides information about 

the location of these displacements on the bone, it does not allow for their visualization. This can, 

however, be achieved with the use of geometric morphometric techniques (e.g., Bookstein, 1997; 

Gunz et al., 2005; Mitteroecker & Gunz, 2009). Geometric morphometric methods have been 

specifically developed for the quantification and visualization of shape changes, and provide 

powerful tools for ontogenetic analyses (e.g., Vidarsdóttir et al., 2002; Mitteroecker et al., 2004, 

2005; Mitteroecker & Bookstein, 2009; Bastir et al., 2006; Freidline et al., 2012, 2013, 2015). In 

a series of studies using both geometric morphometric and surface histology techniques, O’Higgins 

and Dryden (1992), as well as O’Higgins and Jones (1998) and O’Higgins and co-authors (2001), 

showed that the location of bone resorption is largely similar between individuals throughout 

ontogeny in several primate species. As suggested by the authors, this could indicate that 
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intraspecific shape changes mostly result from changes in cellular rates rather than differences in 

bone modeling patterns. Using both techniques in an exploratory investigation of human facial 

bone modeling patterns, Freidline and co-authors (2017) observed that bone modeling patterns 

reflect the variation observed at the morphological level, indicating a direct link between 

microscopic and macroscopic changes. 

Together, these influential studies have brought about new developments in the 

investigation of facial ontogeny. However, as surface histology is a relatively time-consuming 

method, previous studies lack large ontogenetic samples. This has hampered the possibility of 

evaluating inter- and intraspecific variability of bone modeling patterns, as well as our 

understanding of facial development in fossil hominins. In order to gain a better understanding of 

this variability, the need to develop quantitative methods is of primary importance. Moreover, the 

use of quantitative instead of qualitative data will also improve the visualization (and thus, the 

comparison) of the bone modeling patterns, which has long represented a methodological 

challenge. 

 

 

Aims of the thesis 

 

The aims of the present thesis are to analyze and quantify the bone modeling patterns of large 

ontogenetic samples of extant species. This is done by: 

(1) Developing novel methods for the quantification and visualization of bone modeling 

patterns 

(2) Applying these techniques to a large number of H. sapiens individuals from an ontogenetic 

series to infer the intra- and inter-population variability of bone modeling patterns 

(3) Comparing the results obtained for H. sapiens to the bone modeling patterns of 

chimpanzees (Pan troglodytes), a species whose facial projection diverges from humans 

This work will, for the first time, determine which aspects of bone modeling are unique to H. 

sapiens, as well as which are shared with other species. This will in turn represent a framework 

for future studies of fossil hominins. As discussed above, many facial features that distinguish 

species are located in the midface, and more particularly on the maxilla. For example, in 

Neanderthals the maxillary body is inflated and the nasal aperture is more projected than in H. 

sapiens, resulting in their unique midfacial prognathism. We thus concentrated our analyses on the 

latter. 
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Summary of the results 

 

This dissertation comprises three first-authored peer-reviewed research papers. Chapter 1 was 

published in the Journal of Anatomy (Schuh et al., 2019), Chapter 2 in the American Journal of 

Physical Anthropology (Schuh et al., 2020), and Chapter 3 is currently under review in the Journal 

of Human Evolution. 

 

Chapter 1. Ontogeny of the human maxilla: a study of intra-population variability 

combining surface bone histology and geometric morphometrics 

 

In this first chapter, new methods for the quantification and visualization of bone modeling patterns 

are presented and applied to an ontogenetic sample of 47 French individuals of known age (ranging 

from birth to 12 years) and sex. We tested if (1) bone resorption increases with age as stated by 

previous authors (Enlow & Bang, 1965; Kurihara et al., 1980; Martínez-Maza et al., 2013); (2) the 

variability of bone modeling patterns reflects morphological variability (Freidline et al., 2017); (3) 

areas of bone formation face the direction of growth (i.e., anterior displacements) as proposed by 

Enlow (1962) and Enlow and Bang (1965). The strength of the methodological approach relies on 

the direct quantification of bone resorption using images of the bone surface acquired with a digital 

optical microscope (Smart Zoom 5, Zeiss).  

As the bone enlarges in width and length from the first to the twelfth year, the location of bone 

resorption on the maxilla is highly similar in all individuals, which confirms preliminary 

investigations of other primate species (O’Higgins & Jones, 1998; Martínez-Maza et al., 2015). 

This area of bone resorption is present close to the fronto-, zygomatico-, and inter-maxillary 

sutures, as well as on most of the maxillary arcade. This suggests that on the population level, 

differences in maxillary morphology are found in the rates of the cellular activities rather than in 

bone modeling, and that maxillary development is highly constrained from early ontogeny. 

Furthermore, no difference between sexes could be found in our sample; for conclusive results, 

this would have to be tested on a larger sample. The average percentage of bone resorption (%BR) 

increases between birth and 2.5 years (from 23.5 to 43.1%), then stabilizes to about one third of 

the total surface. This indicates that bone resorption is a rather constant process, although it shows 

a high variation among individuals of similar ages. Moreover, we found that regions of high 

morphological variation, such as the frontal process, correspond to areas of predominant bone 

formation. In contrast, less variable areas such as the maxillary arcade show predominant bone 

resorption. This might suggest that regions of higher biomechanical demands are more constrained 

during growth. Finally, confirming Enlow’s findings (1962) we found correspondences between 

the direction of growth (anterior versus posterior displacements), and bone modeling patterns 

(formation and resorption, respectively). This could potentially be used to predict the direction of 

growth in fossil specimens for which bone modeling patterns are unknown. 
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Chapter 2. Intraspecific variability in human maxillary bone modeling patterns during 

ontogeny 

 

This chapter investigates the intraspecific variability of the maxillary bone modeling patterns to 

address whether population differences in maxillary morphology relate to differences in the bone 

modeling patterns during growth. An unprecedentedly large ontogenetic sample of 145 H. sapiens 

individuals (including adults) from three geographically distinct areas (Greenland, Western 

Europe and South Africa) was used. Similar methods as employed in Chapter 1 were applied to 

the sample. The joint analysis, or covariation, of the morphological and bone modeling changes 

was investigated using Partial Least Squares (PLS) analysis (Rohlf & Corti, 2000). This allowed 

for the visualization of both changes in morphology and bone modeling together in an integrative 

approach.  

We found that population differences in maxillary morphology arise from differential degrees of 

shape change throughout ontogeny, leading to divergent developmental trajectories. Greenlandic 

Inuit are more advanced in their development, suggesting differences in the timings and/or rates 

of development during both pre- and postnatal phases. At the microscopic scale, we found that all 

human populations share a similar general bone modeling pattern, with predominant bone 

formation in the frontal process and bone resorption in the maxillary arcade. Only slight 

differences could be observed. The region of highest bone resorption in Western Europeans and 

South Africans is mostly located on top of the canine bulb, while it is found close to the inter-

maxillary suture in the Inuit sample. These results suggest that only minor differences in bone 

modeling result in important shape differences between human populations, and once again 

indicates that the main differences lie in the rates and/or timings of the cellular activities. The PLS 

analysis showed that all human populations share a similar pattern of covariation with, again, slight 

differences in the way maxillary morphology and bone modeling covary, mostly in Inuit. Finally, 

adult individuals show similar bone modeling patterns to subadults, however, expressed at lower 

intensities. This suggests that patterns of bone modeling are maintained throughout life. 

 

Chapter 3. Prognathism versus orthognathism: new insights into the dynamics behind 

maxillary bone modeling 
        

This chapter investigates the interspecific variability of the bone modeling patterns by comparing 

maxillary ontogenetic patterns of chimpanzees (P. troglodytes) and H. sapiens. Both species show 

opposite facial projections (prognathic versus orthognathic, respectively), for which fossil 

hominins show various intermediate degrees (e.g., Bastir et al., 2004). Thus, a better understanding 

of the ontogenetic mechanisms leading to maxillary projection can bring new insights into the 

evolution of the hominin face. 

An ontogenetic sample of 33 chimpanzees (from birth to adulthood) was employed and compared 

to the Western European sample included in Chapter 2. Calendar ages and sexes are known for 
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both species, and similar methods to those in Chapters 1 and 2 were used. We find that the human 

and chimpanzee maxillary bone modeling patterns differ in many aspects. Chimpanzees express 

on average lower amounts of bone resorption than humans throughout ontogeny, as well as less 

variation within age groups. Thus, maxillary prognathism in the chimpanzee mostly develops from 

high amounts of bone formation, such as seen in other non-human primates studied so far (Enlow, 

1966; O’Higgins, et al., 1991; Walter & O’Higgins, 1992; O’Higgins & Jones, 1998; Wealthall, 

2002; Martínez-Maza et al., 2015). In the chimpanzee, bone resorption is found close to the sutures, 

and is predominant in the premaxilla. The postnatal development of the canine eminence in 

chimpanzees is accompanied by an increase in bone formation, which remains predominant in this 

area until adulthood. This represents a key difference between the human and chimpanzee 

maxillary bone modeling pattern. It is thus likely that alterations of the upper canine/premolar 

honing complex, a derived trait shared by all hominins, was concomitant with changes in the bone 

modeling patterns of this area. Using Partial Least Squares analysis, we show that the covariation 

between bone modeling and shape is low in both species, and shows a similar pattern up until 

adolescence. This suggests that during maxillary ontogeny, bone modeling is a highly stable 

process, and that most morphological changes are obtained via changes in rates and/or timing of 

development of the cellular activities. Finally, although both bone modeling patterns differ, some 

similarities in the location of bone resorption suggest the preservation of a shared ontogenetic 

pattern between the two species. 
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ZUSAMMENFASSUNG 

 

Das übergreifende Thema der vorliegenden Arbeit ist die Evolution und Ontogenese des 

menschlichen Gesichts, mit einem besonderen Fokus auf die Maxilla. Neben Theorien und Fragen 

wird im Folgenden das Hauptthema vorgestellt: die Entwicklung von Gesichtszügen auf 

mikroskopischer Ebene, auch als Knochenumbau bezeichnet. Im letzten Abschnitt werden die 

wichtigsten Ergebnisse zusammengefasst. 

 

 

Einleitung 

 

Das Gesicht des heutigen Menschen, des Homo sapiens, ist einzigartig im Vergleich zu unseren 

ausgestorbenen Homo Verwandten und kann zuverlässig bis auf Skelettmaterial von Jebel Irhoud 

in Marokko (etwa 300.000 Jahre alt) zurückverfolgt werden (Hublin et al., 2017). Besonders unser 

Mittelgesicht (der Teil zwischen den Augenbrauen und dem Unterkiefer) ist kleiner und vertikaler 

ausgerichtet (oder orthognath; z.B. Day & Stringer, 1982; Franciscus & Trinkaus, 1995; Bastir et 

al., 2010; Holton et al., 2011). Unter den Mittelgesichtsknochen enthält die Maxilla wichtige 

anatomische Informationen, die für die Rekonstruktion phylogene-tischer Beziehungen wertvoll 

sind. Ein Schlüsselmerkmal ist die Fossa Canina, eine Vertiefung im Oberkieferkörper. Dieses 

Merkmal, das oft als einzigartig für H. sapiens beschrieben wird, wurde auch H. antecessor 

zugeschrieben, einem juvenilen Fossil, welches zwischen 949 und 772 ka v.h. datiert wurde (Duval 

et al., 2018). Einige Forscher fühlten sich veranlasst, diese Art als direkten Vorfahren von H. 

sapiens anzusehen (Bermudez de Castro et al., 1997; Arsuaga et al., 1999). Aufgrund seiner 

komplexen Form und mehrdeutigen Definition wurde jedoch die Verwendung der Fossa Canina 
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bei der Bestimmung stammesgeschichtlicher Beziehungen in Frage gestellt (z. B. Maureille, 1994; 

Lahr, 1996; Maddux & Franciscus, 2009).  

Obwohl jeder H. sapiens die gleiche Kombination von Gesichtszügen aufweist, ist seine 

Mittelgesichtsmorphologie sehr variabel (z.B. Howells, 1973), insbesondere die des Ober-kiefers. 

Unterschiede in der Kiefermorphologie finden sich im Projektionsgrad des Zwischen-kieferbeins 

(z.B. Mooney & Siegel, 1986; McCollum, 2008), im Krümmungsgrad der Fossa Canina (z.B. 

Freidline et al., 2015), sowie in Höhen- und Breitenschwankungen der Nasen-öffnung (z.B. Holton, 

2012). Einigen Autoren zufolge bestimmen epigenetische Faktoren wie Klima und Ernährung die 

morphologische Variabilität der Gesichter in menschlichen Popula-tionen (z.B. Evteev et al., 2013; 

Butaric & Maddux, 2016; Cui & Leclercq, 2017; Hubbe et al., 2009; Gonzalez -Jose et al., 2005; 

Noback & Harvati, 2015; Stynder et al., 2007; von Cramon-Taubadel, 2011; Brachetta-Aporta, 

2019a). Ihre genaue Rolle bleibt jedoch unklar. Studien der Gesichtsontogenese (d. h. Wachstum 

und Entwicklung) haben gezeigt, dass die Gesichtszüge von Erwachsenen auf Grundlage 

bevölkerungsspezifischer Größen- und Formveränderungen während der vor- und postnatalen 

Ontogenese sowie durch Verschiebungen im Entwicklungs-zeitplan entstehen (z.B. O'Higgins & 

Vidarsdóttir, 1999; 2002: Vidarsdóttir et al.; Bulygina et al., 2006; Freidline et al., 2015). Folglich 

wird das Erforschen der Wachstums- und Entwicklungsmuster von Gesichtszügen dazu beitragen 

die Rolle genetischer und epigenetischer Faktoren bei der Gestaltung des menschlichen Gesichts 

zu erkennen.  

In den 1960er Jahren untersuchte Donald Enlow erstmals die Ontogenese menschlicher 

Gesichtsknochen auf mikroskopischer Ebene. Seine Arbeit führte zur Entdeckung eines 

grundlegenden Prozesses, genannt Knochenumbau (zunächst "Knochenremodellierung" genannt1; 

Enlow, 1962). Knochenumbau bezeichnet die voneinander abgekoppelten zellulären Aktivitäten 

der Knochenbildung und Resorption, welche an einer bereits bestehenden Oberfläche 

Knochenmasse hinzufügen bzw. entfernen. Ebenso wie das suturale Schädel-wachstum (Rice, 

2008) bewirkt dieser Prozess ein Größenwachstum des Knochens bei gleich-zeitiger 

Formveränderung. Es ist jedoch auch ein Kompensationsmechanismus, durch den die Ausrichtung 

zwischen den Knochen während der gesamten Entwicklung aufrechterhalten werden kann. Die 

Ausprägung von Zellen, die für die Knochenbildung und Resorption verantwortlich sind 

(Osteoblasten bzw. Osteoklasten), wird durch komplexe Abfolgen molekularer und chemischer 

Signale reguliert (z. B. Delmas, 1995; Kini & Nandeesh, 2012). Diese werden teilweise von den 

Osteozyten (Zellen im kortikalen Knochen) überwacht, die bekanntermaßen empfindlich auf 

mechanische Reize reagieren (z.B. Huiskes et al., 2000).  

Mit Hilfe histologischer Dünnschliffe menschlicher Oberkiefer entdeckten Enlow und Bang 

(1965) einen großen resorptiven Bereich auf der äußeren Knochenoberfläche. Sie vermuteten, dass 

dieser eine wichtige Rolle bei der Entwicklung des charakteristischen Gesichts von H. sapiens 

                                                           
1 In der vorliegenden Arbeit folgen wir Frosts Definition (1987,1990,2003), welche eine Trennung zwischen 

Knochenumbau und –remodellierung vorsieht. Letztere erfolgt durch fortlaufende Knochenresorption und -formation 

an ähnlicher oder gleichbleibender Stelle einer Knochenschicht (entweder periostal oder endostal) Dies hat mehrere 

Funktionen, beispielsweise Knochener-neuerung, -reparatur oder Homöostase, wobei die Knochenform unverändert 

bleibt (Barak, 2019; Parfitt, 1984; Hadjidakis & Androulakis, 2006; Schulte et al., 2013). 
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spielen muss und stellten damit die erste Verbindung zwischen Knochenumbau und der 

Ausprägung morphologischer Merkmale her. Kurihara et al. (1980) weiteten ihre Beobachtungen 

auf mehr Individuen unterschiedlichen Alters aus und gelangten wiederholt zu ähnlichen 

Ergebnissen. Sie stellten jedoch fest, dass bei jedem Einzelnen die Größe des resorptiven Feldes 

variiert (d. h. Resorption dehnt sich mal mehr, mal weniger auf der Oberfläche aus). Die Autoren 

kamen zu dem Schluss, dass die individuelle morphologische Variation deshalb von Lage und 

Ausmaß dieses Feldes abhängen muss. Die Analyse der Gesichtsontogenese durch die 

Untersuchung von Knochenumbaumustern stellt somit eine vielversprechende Möglichkeit dar, die 

morphologische Variabilität bei bestehenden Arten zu untersuchen. Dies wird wiederum unser 

Wissen über die Ontogenese ausgestorbener Arten erweitern. Tatsächlich könnte es sein, dass sich 

scheinbar homologe Erwachsenenmerkmale über unterschiedliche ontogenetische Bahnen 

entwickeln, und stattdessen homoplastisch sind. Als Schnittstelle zwischen genetischen und 

morphologischen Daten bietet die Analyse zellulärer Aktivitäten neue Einblicke in die 

Paläobiologie der homininen Gesichtsevolution und kann wertvolle stammesgeschichtliche 

Informationen beitragen. 

Die Entwicklung von Methoden wie der Histologie auf trockenen Knochenoberflächen 

erleichterte Knochenumbaustudien (Boyde & Hobdell, 1969a, b; Boyde, 1972; Boyde & Jones, 

1996; Bromage, 1984, 1985). Ein relativ großer Teil der Forschung hat seitdem die Knochen-

umbaumuster verschiedener bestehender (Enlow, 1966a; Duterloo & Enlow, 1970; Johnson et al., 

1976; Kurihara et al., 1980; Walters & O'Higgins, 1992; O'Higgins & Jones, 1998; O'Higgins et 

al., 1991, 2001; Wealthall, 2002; Mowbray, 2005; Kranioti et al., 2009; Martínez-Maza et al., 2013, 

2015; Freidline et al., 2017; Brachetta-Aporta et al., 2014, 2019a, b) und ausgestorbener Arten 

(Bromage, 1989; McCollum, 1999, 2008; Martínez-Maza et al., 2011; Brachetta-Aporta et al., 

2017; Lacruz et al., 2013, 2015a, b) untersucht. Insgesamt deuten diese Studien darauf hin, dass 

Knochenumbaumuster artspezifisch sind (z.B. Rosas & Martínez-Maza, 2010). O'Higgins und Co-

Autoren (1991) sowie Martínez-Maza und Co-Autoren (2015) beobachteten jedoch starke 

Ähnlichkeiten zwischen Knochenumbaumustern eng verwandter Arten. Dies könnte bedeuten, 

dass einige Entwicklungsprozesse über Artgrenzen hinweg beibehalten werden, was wiederum auf 

Kanalisierung hindeutet: die Erhaltung morphologischer Merkmale während der Ontogenese (z. B. 

Waddington, 1942; Hallgrímsson et al., 2002). Es ist jedoch noch unklar, welche Aspekte der 

Knochenumbaumuster spezifisch sind und welche eng verwandten Arten gemein sind (z. B. 

zwischen Neandertalern und H. sapiens; jedoch siehe Rosas und Martínez-Maza (2010) und Lacruz 

et al. 2015a). 

Eine neue Möglichkeit, diese Fragen zu untersuchen, besteht darin, sowohl Knochen-

umbau als auch Morphologie in einem integrativen Ansatz gemeinsam zu betrachten. Da neuer 

Knochen auf einer Seite der Oberfläche hinzugefügt wird (und auf der anderen Seite resorbiert 

wird), entsteht eine Verschiebung dieses Bereichs, die als "kortikaler Drift" bezeichnet wird 

(Enlow, 1962; 1966b). Die Kombination aller Verschiebungen während der Ontogenese führt 

somit zu makroskopischen Veränderungen in der Morphologie (d.h. Form). Obwohl die 

Knochenumbauanalyse Informationen über die Lage dieser Verschiebungen auf dem Knochen 

liefert, ist eine Visualisierung nicht möglich. Dies kann jedoch mit der geometrischen 

Morphometrie erreicht werden (z.B. Bookstein, 1997; Gunz et al., 2005; Mitteroecker & Gunz, 
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2009). Dieser Ansatz wurde speziell für die Quantifizierung und Visualisierung von Formän-

derungen entwickelt und bietet leistungsfähige Methoden für ontogenetische Analysen (e.g., 

Vidarsdóttir et al., 2002; Mitteroecker et al., 2004, 2005; Mitteroecker & Bookstein, 2009; Bastir 

et al., 2006; Freidline et al., 2012, 2013, 2015). In einer Reihe von Studien, die sowohl geometrisch 

morphometrische als auch oberflächenhistologische Techniken verwenden, zeigten O'Higgins und 

Dryden (1992), O'Higgins und Jones (1998) als auch O'Higgins und Co-Autoren (2001), dass bei 

mehreren Primatenarten die Lage der Knochenresorption zwischen Individuen während ihrer 

gesamten Ontogenese weitgehend ähnlich ist. Wie von den Autoren vorgeschlagen, könnte dies 

darauf hindeuten, dass intraspezifische Formänderungen meist auf Veränderungen der Zellraten 

und nicht auf Unterschiede in den Knochenumbaumustern zurückzuführen sind. Freidline und Co-

Autoren (2017) zeigten anhand beider Techniken in einer explorativen Untersuchung, dass 

Knochenumbaumuster im menschlichen Gesicht die auf morphologischer Ebene beobachtete 

Variation widerspiegeln, was auf einen direkten Zusammenhang zwischen mikroskopischen und 

makroskopischen Veränderungen hindeutet. 

Zusammen betrachtet, haben diese einflussreichen Studien neue Entwicklungen in der 

Untersuchung der Gesichtsontogenese hervorgebracht. Da die Oberflächenhistologie jedoch eine 

relativ zeitaufwändige Methode ist, fehlen früheren Studien große ontogenetische Proben. Dies hat 

die Möglichkeit, inter- und intraspezifische Variabilität von Knochenumbaumustern sowie die 

Gesichtsentwicklung bei fossilen Homininen zu verstehen, beeinträchtigt. Für ein besseres 

Verständnis dieser Variabilität, ist die Notwendigkeit quantitative Methoden zu entwickeln, von 

vorrangiger Bedeutung. Darüber hinaus wird die Verwendung quantitativer anstelle von 

qualitativer Daten auch die Visualisierung (und damit den Vergleich) von Knochenumbaumustern 

verbessern, was seit langem eine methodische Herausforderung darstellt. 

 

 

Ziele der These 

 

Ziel der vorliegenden Abschlussthese ist es, die Knochenumbaumuster großer ontogenetischer 

Serien bestehender Arten zu analysieren und zu quantifizieren. Dies geschieht durch: 

(1) Entwicklung neuartiger Methoden zur Quantifizierung und Visualisierung von 

Knochenumbaumustern 

(2) Anwendung dieser Techniken an umfangreichen ontogenetischen H. sapiens Reihen, 

um die Intra- und Interpopulationsvariabilität von Knochenumbaumustern abzuleiten 

(3) Vergleich der für H. sapiens erzielten Ergebnisse mit den Knochenumbaumustern von 

Schimpansen (Pan troglodytes), einer Art, deren Gesichtsprojektion vom Menschen 

abweicht 

Diese Arbeit wird erstmalig die Aspekte des Knochenumbaus bestimmen, welche einzigartig für 

H. sapiens sind sowie jene, welche mit anderen Arten übereinstimmen. Dies wird einen geeigneten 

Rahmen für zukünftige Studien fossiler Homininen bieten. Wie oben diskutiert, befinden sich viele 
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artunterscheidende Gesichtszüge im Mittelgesicht und vor allem an der Maxilla. Zum Beispiel 

wirkt der Oberkieferkörper bei Neandertalern im Vergleich zu H. sapiens recht aufgebläht und die 

Nasenöffnung tritt deutlich hervor, was zu ihrer einzigartigen Mittelgesichtsprognathie führt. 

Folglich fokussieren wir unsere Analysen auf Letztere. 

 

 

 

Zusammenfassung der Ergebnisse 

 

Diese Dissertation umfasst drei als Erstautor verfasste Peer-Review-Forschungsarbeiten. Kapitel 1 

wurde im Journal of Anatomy (Schuh et al., 2019), Kapitel 2 im American Journal of Physical 

Anthropology (Schuh et al., 2020) veröffentlicht, und Kapitel 3 wird derzeit durch das Journal of 

Human Evolution geprüft. 

 

 

Kapitel 1. Ontogenese der menschlichen Maxilla: eine Studie über Intrapopulationsva-

riabilität mit Hilfe von Knochenoberflächenhistologie und geometrischer Morphometrie 

 

In diesem ersten Kapitel werden neue Methoden zur Quantifizierung und Visualisierung von 

Knochenumbaumustern vorgestellt und auf eine ontogenetische Stichprobe von 47 französischen 

Personen bekannten Alters (von der Geburt bis zu 12 Jahren) und Geschlecht angewendet. Wir 

haben getestet, ob (1) Knochenresorption mit dem Alter zunimmt, wie von früheren Autoren 

angegeben (Enlow & Bang, 1965; Kurihara et al., 1980; Martínez-Maza et al., 2013); (2) die 

Variabilität der Knochenumbaumuster die morphologische Variabilität widerspiegelt (Freidline et 

al., 2017); (3) Knochenbildungsareale der Wachstumsrichtung (d. h. Verschiebung nach vorn) 

gegenüberliegen, wie von Enlow (1962) sowie Enlow und Bang (1965) vorgeschlagen. Die Stärke 

des methodischen Ansatzes beruht auf der direkten Resorp-tionsquantifizierung anhand von 

Bildern der Knochenoberfläche, die mit einem digitalen optischen Mikroskop (Smart Zoom 5, 

Zeiss) aufgenommen wurden. 

Da sich der Knochen vom ersten bis zum zwölften Lebensjahr in Breite und Länge 

vergrößert, befinden sich Knochenresorptionsareale bei allen Individuen an fast der gleichen Stelle, 

was Voruntersuchungen anderer Primatenarten bestätigt (O'Higgins & Jones, 1998; Martínez-

Maza et al., 2015). Diese Areale sind im Falle der Maxilla in der Nähe der Stirnbein, Jochbein- und 

Zwischenoberkiefernähte sowie auf einem Großteil des Zahnbogens verteilt. Dies deutet darauf 

hin, dass auf der Populationsebene Unterschiede in der Oberkiefer-morphologie eher auf 

unterschiedlichen Zellraten als auf Knochenumbau beruhen und dass maxilläres Wachstum 

maßgeblich durch frühe Entwicklungsphasen vorbestimmt ist. Darüber hinaus konnte in unserer 

Stichprobe kein Unterschied zwischen den Geschlechtern gefunden werden; für schlüssige 

Ergebnisse müsste dies an einer größeren Probe getestet werden. Der durchschnittliche Prozentsatz 
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der Knochenresorption (%BR) steigt zwischen der Geburt und 2,5 Jahren (von 23,5 auf 43,1%), 

stabilisiert sich dann auf etwa ein Drittel der Gesamtfläche. Dies deutet darauf hin, dass 

Knochenresorption ein eher konstanter Prozess ist, welcher jedoch sehr variabel bei Individuen 

ähnlichen Alters sein kann. Darüber hinaus befanden wir Regionen mit hoher morphologischer 

Variation, wie z. B. den Stirnbeinfortsatz, als Hotspots der Knochenbildung. Im Gegensatz dazu 

waren weniger variable Bereiche wie der Zahnbogen eher resorptiv. Dies könnte darauf hindeuten, 

dass hohe biomechanische Anforderungen wachstumsbeschränkend wirken. Schließlich, Enlows 

Befunde (1962) bestätigend, fanden wir Übereinstimmungen zwischen der Wachstumsrichtung 

(Verschiebung nach vorn oder hinten) und Knochenumbaumustern (Bildung bzw. Resorption). 

Dies könnte möglicherweise genutzt werden, um die Wachstumsrichtung fossiler Homininen 

vorherzusagen, für welche Knochenumbaumuster unbekannt sind. 

 

 

Kapitel 2. Intraspezifische Variabilität in menschlichen Oberkieferknochenumbau-mustern 

während der Ontogenese 

 

Dieses Kapitel untersucht die intraspezifische Variabilität der Oberkieferknochenumbaumuster um 

festzustellen, ob Bevölkerungsunterschiede in der Morphologie mit Unterschieden in 

Knochenumbaumustern während des Wachstums zusammenhängen. Es wurde eine nie 

dagewesene Stichprobengröße von 145 H. sapiens Individuen (einschließlich Erwachsener) aus 

drei geografisch unterschiedlichen Gebieten (Grönland, Westeuropa und Südafrika) verwendet, 

wobei ähnliche Methoden wie in Kapitel 1 angewandt wurden. Die gemeinsame Analyse bzw. 

Kovariation der morphologischen und Knochenumbauveränderungen wurde mit der Partiellen 

kleinsten Quadrate (PLS) Methode untersucht (Rohlf & Corti, 2000). Dies ermöglichte deren 

Visualisierung in einem integrativen Ansatz. 

Wir fanden heraus, dass Bevölkerungsunterschiede in der Oberkiefermorphologie durch 

unterschiedlich starke Formveränderungen während der Ontogenese entstehen und damit auf 

unterschiedlichen Entwicklungsbahnen beruhen. Die grönländischen Inuit sind in ihrer 

Entwicklung weiter fortgeschritten, was auf Unterschiede in zeitlichen Abläufen und/oder 

Entwicklungsraten sowohl in prä- als auch postnatalen Phasen hindeutet. Auf mikroskopischer 

Ebene stellten wir ein gleichartiges Knochenumbaumuster bei allen menschlichen Populationen 

fest, mit vorherrschender Knochenbildung im Stirnbeinfortsatz und Knochenresorption im 

Zahnbogen. Es konnten nur geringfügige Unterschiede beobachtet werden. Bei Westeuropäern und 

Südafrikanern befindet sich die Region mit der höchsten Knochenresorption meist direkt über dem 

Eckzahn, während sie bei den Inuit nahe der intermaxillären Naht zu finden ist. Dies lässt vermuten, 

dass bereits geringe Unterschiede im Knochenumbau zu prägnanten Formunterschieden zwischen 

menschlichen Populationen führen, und es wird einmal mehr gezeigt, dass die Hauptunterschiede 

in zeitlichen Abläufen und Zellraten liegen. Die PLS-Analyse zeigte bei allen menschlichen 

Populationen ein ähnliches Muster der Kovariation mit wiederum leichten Unterschieden in der 

Art und Weise wie Oberkiefermorphologie und knochenumbau kovarieren, vor allem bei Inuit. 

Schließlich haben erwachsene Individuen ähnliche Knochenumbaumuster wie Juvenile, jedoch bei 
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geringerer Intensität. Dies lässt darauf schließen, dass Knochenumbaumuster im Laufe des Lebens 

beibehalten werden. 

 

 

Kapitel 3. Prognathie versus Orthognathie: Neue Einblicke in die Dynamik hinter dem 

Oberkieferknochenumbau 

 

Dieses Kapitel untersucht durch den Vergleich der ontogenetischen Muster zwischen Schimpansen 

(Pan troglodytes verus) und Menschenoberkiefer die interspezifische Variabi-lität der 

Knochenumbaumuster. Beide Arten zeigen entgegengesetzte Gesichtsprojektionen (prognath bzw. 

orthognath), für welche fossile Homininen verschiedene Zwischengrade aufweisen (Bastir et al., 

2004). Ein besseres Verständnis der ontogenetischen Mechanismen, die zu einer 

Oberkieferprojektion führen, kann neue Erkenntnisse über die Evolution des Homininengesichts 

bringen. 

Eine ontogenetische Stichprobe von 33 Schimpansen (von der Geburt bis zum Erwach-

senenalter) wurde verwendet und mit den Westeuropäern aus Kapitel 2 verglichen. Kalendarisches 

Alter und Geschlecht sind für beide Arten bekannt, und es wurden ähnliche Methoden wie in den 

Kapiteln 1 und 2 verwendet. Wir stellen fest, dass sich die Umbaumuster des menschlichen und 

Schimpansenoberkieferknochens in vielen Aspekten unterscheiden. Schimpansen weisen während 

ihrer gesamten Ontogenese im Durchschnitt eine geringere Knochenresorption als Menschen auf, 

sowie weniger Variation innerhalb der Altersgruppen. So entwickelt sich Oberkieferprognathie 

beim Schimpansen meist durch verstärkte Knochen-bildung, wie auch schon bei anderen bisher 

untersuchten nichtmenschlichen Primaten beobachtet (Enlow, 1966; O'Higgins, et al., 1991; Walter 

& O'Higgins, 1992; O'Higgins & Jones, 1998; Wealthall, 2002; Martínez-Maza et al., 2015). Beim 

Schimpansen findet Knochenresorption nahe der Nähe statt und besonders im Zwischenkieferbein. 

Die postnatale Entwicklung der Eckzahn-Eminenz bei Schimpansen geht einher mit zunehmender 

Knochenbildung, welche in diesem Bereich bis ins Erwachsenenalter hinein vorherrschend bleibt. 

Dies stellt einen entscheidenden Unterschied zwischen menschlichem Oberkiefer-

knochenumbaumuster und dem des Schimpansen dar. Es ist daher wahrscheinlich, dass 

Veränderungen des oberen Eckzahn/Prämolar-Honen-Komplexes, ein abgeleitetes Merkmal aller 

Homininen, mit Veränderungen im Knochenumbaumuster dieses Bereichs einhergehen. Anhand 

der PLS-Analyse zeigen wir, dass die Kovariation zwischen Knochenumbau und Form bei beiden 

Arten gering ist und ein ähnliches Muster bis zur Pubertät aufweist. Dies deutet darauf hin, dass 

ontogenetischer Knochenumbau ein sehr stabiler Prozess ist und dass die meisten morphologischen 

Veränderungen von Entwicklungsraten und/oder zeitpunkten der zellulären Aktivitäten abhängen. 

Schlussendlich unterscheiden sich Knochenumbaumuster zwischen Schimpansen und Menschen 

zwar, jedoch deutet eine ähnliche Lage von Knochen-resorptionsarealen auf die Erhaltung eines 

gemeinsamen ontogenetischen Musters hin. 
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Abstract 

Bone modeling is the process by which bone grows in size and models its shape via the cellular activities of the osteoblasts 

and osteoclasts that respectively form and remove bone. The patterns of expression of these two activities, visible on bone 

surfaces, are poorly understood during facial ontogeny in Homo sapiens; this is due mainly to small sample sizes and a lack 

of quantitative data. Furthermore, how microscopic activities are related to the development of morphological features, like the 

uniquely human-canine fossa, has been rarely explored. We developed novel techniques for quantifying and visualizing 

variability in bone modeling patterns and applied these methods to the human maxilla to better understand its development at 

the micro- and macroscopic levels. We used a cross-sectional ontogenetic series of 47 skulls of known calendar age, ranging 

from birth to 12 years, from a population of European ancestry. Surface histology was employed to record and quantify 

formation and resorption on the maxilla, and digital maps representing each individual’s bone modeling patterns were created. 

Semilandmark geometric morphometric (GM) methods and multivariate statistics were used to analyze facial growth. Our 

results demonstrate that surface histology and GM methods give complementary results, and can be used as an integrative 

approach in ontogenetic studies. The bone modeling patterns specific to our sample are expressed early in ontogeny, and 

fairly constant through time. Bone resorption varies in the size of its fields, but not in location. Consequently, absence of bone 

resorption in extinct species with small sample sizes should be interpreted with caution. At the macroscopic level, maxillary 

growth is predominant in the top half of the bone where bone formation is mostly present. Our results suggest that maxillary 

growth in humans is highly constrained from early stages in ontogeny, and morphological changes are likely driven by changes 

in osteoblastic and osteoclastic rates of expression rather than differences in the bone modeling patterns (i.e. changes in 

location of formation and resorption). Finally, the results of the micro- and macroscopic analyses suggest that the development 

of the canine fossa results from a combination of bone resorption and bone growth in the surrounding region.  

Key words: bone formation; bone modeling; bone resorption; facial growth; semilandmark geometric 

morphometrics. 

 

 
Introduction  

Bone modeling results from the simultaneous activities of 

osteoblasts and osteoclasts that respectively form and resorb 

bone surfaces (Frost, 1987). It is the main process by  
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which bone grows in size and models its shape. In the human 

maxilla, bone modeling was first described in detail by Enlow & 

Bang (1965), who found bone formation on the posterior and 

superior parts of the bone, whereas the anterio-inferior region 

(mostly represented by the maxillary arcade) was predominantly 

resorptive. Studies of facial growth by Kurihara et al. (1980) and 

later Martinez-Maza et al. (2013) confirmed Enlow & Bang’s 

findings and proposed that as the maxilla increases in size, the 

resorptive field enlarges from the anterior maxillary arcade to the 

zygomatic bone in order to compensate forward  
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displacements. The forward and downward direction of growth, 

combined with a generally resorptive maxilla, is typical of H. 

sapiens and results in the characteristic orthognathic face of our 

species (Enlow & Hans, 2008; Martinez-Maza et al. 2013).The 

analysis of bone modeling patterns is thus particularly relevant for 

ontogenetic studies, as it provides insight into the growth 

processes that occur at the microscopic level and can potentially 

inform us about ontogenetic processes that are either shared 

between or unique to a species. 
In the last decades, an increasing number of studies have 

analyzed the bone modeling patterns of the craniofacial complex 

in extant (Enlow, 1966a,b; Duterloo & Enlow, 1970; Johnson et al. 

1976; Kurihara et al. 1980; O’Higgins & Jones, 1998; O’Higgins et 

al. 1991, 2001; Mowbray, 2005; Kranioti et al. 2009; Martinez-

Maza et al. 2013, 2015; Brachetta-Aporta et al. 2014, 2018) and 

extinct species (Bromage, 1985, 1989; McCollum, 1999, 2008; 

Martinez-Maza et al. 2011; Rosas & Martinez-Maza, 2010; 

Lacruz et al. 2013, 2015). With the improvements in microscopy 

techniques, and as the osteoblastic and osteoclastic activities 

leave specific marks on bone surfaces, it is possible to observe 

bone modeling patterns on dry bones using surface histology 

without employing destructive methods (Boyde & Hobdell, 

1969a,b; Bromage, 1984, 1985; Boyde & Jones, 1996). Bone 

resorption appears to be sparser on the maxillary bone of extant 

species with prognathic faces (such as great apes) compared with 

orthognathic Homo sapiens, and bone modeling patterns seem to 

differ between species (Martinez-Maza et al. 2015; O’Higgins et 

al. 2001). In extinct species, Bromage (1989) and McCollum 

(2008) found different patterns in ‘gracile’ compared with ‘robust’ 

australopiths (Paranthropus), with resorption present in the 

nasomaxillary clivus in robust but not in gracile forms. Lacruz et 

al. (2013) compared the bone modeling patterns in the maxilla 

between Homo antecessor (ATD6-69) and an African Homo 

erectus specimen (KNM-WT 15000). These authors found that 

the bone modeling pattern of KNM-WT 15000 is more similar to 

that of australopiths, whereas ATD6-69 showed a pattern of 

resorption in the subnasal area similar to that seen in H. sapiens. 

Conversely, Lacruz et al. (2015) showed that the bone modeling 

pattern in the Neanderthal maxilla differs from H. sapiens by being 

largely bone forming, explaining their more projecting faces.  
However, bone modeling studies suffer from small sample 

sizes, usually due to poorly preserved bone surfaces and time-

consuming methodologies. Therefore, our understanding of 

intraspecific variability in bone modeling patterns is limited and, 

consequently, interpreting bone modeling patterns in our fossil 

ancestors is difficult. As of now, five studies have looked at facial 

bone modeling patterns in H. sapiens, creating a total sample 

size of fewer than 80 individuals of diverse origin and ranging in 

age from infancy to adulthood (Enlow & Bang, 1965; Kurihara et 

al. 1980; McCollum, 2008; Martinez-Maza et al. 2013). 

 

 
Moreover, age of death is often unknown and approximated 

based on dental development. Finally, bone modeling patterns 

are usually qualitatively assessed and mostly visualized on 

handmade maps (although see Brachetta-Aporta et al. 2017). 

Bone modeling studies thus generally suffer from a lack of 

quantitative data, leaving many questions on how formation and 

resorption are expressed during ontogeny unanswered. For 

example, Freidline et al. (2016) proposed that constant bone 

modeling patterns (i.e. less frequently changing between bone 

formation and resorption) may result in less morphological 

variation; however, this remains to be tested quantitatively. 

Moreover, whether bone modeling is species-specific is still 

unclear, as patterns of variation can be shared between closely 

related species such as great apes (Martinez-Maza et al. 2015). 

Thus, understanding the relationship between bone modeling 

activities and morphological development is essential, as similar 

morphological features shared between species may instead 

develop from distinct rates and patterns of growth. For example, 

the suprainiacfossa, a thinning of the occipital diploic layer found 

in Neanderthals, can be differentiated from suprainiac 

depressions found in other species by its developmental pattern 

(Balzeau & Rougier, 2010).  
One way to improve some of the methodological short-

comings listed above, and better understand the link between 

morphological changes and bone modeling, is by marrying 

surface histology with geometric morphometric (GM) techniques 

(O’Higgins & Jones, 1998; Brachetta-Aporta et al. 2014, 2018; 

Martinez-Maza et al. 2015; Freidline et al. 2016). Geometric 

morphometrics is a set of powerful tools for the quantification of 

shape and form (i.e. size and shape; O’Higgins, 2000; 

Mitteroecker et al. 2004; Bastir & Rosas, 2004; Gunz et al. 2010, 

2012; Freidline et al. 2012). Surface histology provides insights 

into growth processes occurring at the microscopic level, and GM 

methods enable the quantification and visualization of complex 

displacements during ontogeny that are not evident with surface 

histology.  
The goal of this study is to quantify bone modeling vari-  

ability during ontogeny in a large sample of modern human 

maxillae in order to better understand how the expression of 

microscopic processes drives morphological variation. For this 

purpose, we developed novel techniques for quantifying and 

visualizing bone modeling patterns. We use surface histology to 

quantify bone resorption and formation and build digital maps to 

visualize and compare the bone modeling patterns between 

individuals, as well as semilandmark geometric morphometrics 

(GM) to quantify morphological changes. We assessed whether 

the resorptive field located on the anterior maxilla increases in 

size during ontogeny as proposed by former studies (Enlow & 

Bang, 1965; Kurihara et al. 1980; Martinez-Maza et al. 2013) 

(hypothesis 1). Secondly, we test whether frequent changes in 

formation and resorption result in greater morphological 

variability (Freidline et al. 2016) (hypothesis 2). Finally,  
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surface histology and semilandmark GMs are combined in a joint 

analysis in order to better interpret the relationship between bone 

modeling patterns and morphological changes, and we test 

Enlow’s hypothesis (1962a) that formation fields face the 

direction of growth (hypothesis 3).  

 

Materials and methods  

 
Sample  

The sample is composed of 47 right maxillae from a cross-sectional growth 

series of French origin (Anatomical Institute of Strasbourg, France). The 

calendar ages range from birth to 12 years (Table 1; Rampont,1994; Le 

Minor et al.2009). So as to facilitate comparisons with other studies, the 

sample was divided into four age groups (AG) according to dental 

development following AlQahtani et al. (2010) (Table 1). Each specimen 

presents remarkable surface preservation, with very little missing data. 

Following Bromage (1989), negative molds of the right maxilla were made 

using a low-viscosity silicone (President Plus light body, Coltene/Whaledent 

AG, Switzerland) and attached to a silicone base (President microSystem 

regular body, Coltene/Whaledent AG, Switzerland). Each mold was 

delimited with a retaining wall made with an impression material used for 

dentistry (PROVIL novo Putty regular set), and a positive replica was 

generated using a transparent two-component epoxy resin Injektionsharz 

EP (Reckli-Chemiewerkstoff, Herne, Germany). The same individuals used 

for the surface histology analysis were scanned using micro-computed 

tomography (CT) at a resolution of 0.2–0.4 mm (BIR ACTIS  225/300). The 

3D surface models of the scans were acquired using the software AVIZO 

(ThermoFisherScientific).  

 

Analyses  

Surface histology: quantification of bone formation and 

resorption  
Surface histology was used to quantify the resorbing areas. Following 

Martinez-Maza et al. (2010, 2013), a grid of 5 x 5 mm squares was drawn 

on each cast. Bone formation and resorption were observed using an 

automated digital microscope (SmartZoom 5, Zeiss) with a 1.6x objective 

(zoom: 34x), and recorded following Boyde’s criteria (1972). Bone 

formation is characterized by the pres- ence of elongated structures 

corresponding to mineralized collagen  

 

Table 1 Age of the specimens and sample size of each age group 

(AG).  

 
Age group* Age range (years) Number of specimens  

1 [0–0.6]  7 

2 [0.7–2.5] 17 

3 [3–6] 19 

4 [7–12]  4 

Total  47  

*AG 1: No teeth emerged. AG 2: From alveolar emergence of the first 

deciduous tooth to the root completion of the last deciduous tooth to 

emerge. AG 3: Alveolar emergence of the permanent first molar until 

root completion. AG 4: Development of second permanent molar.  
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Table 2 List of homologous landmarks, curve and surface semiland- 

marks shown in Figure 3.  

 
Landmarks Label  

Superolateral nasion sln 

Dacryon d 

Zygoorbitale zyo 

Inferolateral rhinion ilr 

Anterior nasal spine ans 

Alveolare (infradentale  
superius)  

Zygomaxillare zm  
Malar root origin mro  
Maxillo-palatine suture mps  
Curve semilandmarks  Number - definition  
Fronto-maxillary suture FMS 2 – superolateral nasion  

to dacryon  
Naso-maxillary suture NMS 6 – superolateral nasion  

to inferolateral rhinion  
Inferior orbital margin IOM 6 – dacryon to zygoorbitale  
Nasal aperture outline NA 6 – inferolateral rhinion to  

anterior nasal spine  
Subnasal outline SO 3 – nasal spine to alveolar 

Zygomatico-maxillary suture ZMS 5 – zygoorbitale to  
zygomaxillare  

Maxillary contour MC 4 – zygomaxillare to  
malar root origin  

Alveolar outline AO 8 – alveolare to  
maxillo-palatine suture  

Surface semilandmarks 200 – covering the  
whole surface of the bone  

 

 

fiber bundles, as well as osteocyte lacunae, and bone resorption is 

characterized by the presence of multiple cavities known as Howship’s 

lacunae, produced after the digestion of the bone by the osteoclasts (Fig. 

1). Each 5 x 5 mm square was analyzed and the bone modeling activities 

were recorded on maps as follows: squares presenting both activities (i.e. 

bone formation and resorption) were subdivided using another grid of 2.5 

x 2.5 mm so that each ‘sub square’ could be photographed using a higher 

zoom of 101x with a 5x objective (Fig. 2A). Each picture was analyzed in 

the software IMAGEJ 1.46r (Schneider et al. 2012). Areas of bone resorption 

were manually delimited, and the surface areas of the resorptive fields 

were calculated in IMAGEJ. From these calculations, a percentage of bone 

resorption was calculated for each square. Finally, a total percentage of 

bone resorption per specimen was obtained after summing up the results 

at each square and dividing this amount by the total surface of each 

specimen. Additionally, we calculated a mean percentage of resorption for 

each age group. Because of small sample sizes, statistical tests were not 

performed.  

 
Analysis of bone modeling variability  
To compare and visualize the average bone modeling patterns for each 

age group, we first created digital maps for each specimen. The maps 

were computed in RSTUDIO 1.1.383 by associating the percentage of bone 

resorption for each square (calculated above, Fig. 2A) to a color (Fig. 2B). 

A percentage of 0 (red) indicates the absence of resorption, implying the 

presence of bone formation,  

ids  
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Fig. 1 Left: bone formation. Bone formation 

is characterized by the presence of collagen 

fiber bundles (white arrows) produced by the 

osteoblasts. Scale bar: 1 mm. Right: bone  
resorption. The presence of Howship’s  
lacunae (open white arrows) indicates the  
digestion of the bone by the osteoclasts.  
Scale bar: 500 lm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Quantification of bone resorption and design of digital colored maps representing the bone modeling patterns. (A) Selection of the resorptive area 

in sub square b (square K4). This process was repeated in all subsquares where both formation and resorption were present in order to obtain a 

percentage of bone resorption (BR) per square. Scale bar: 1 mm. (B) After obtaining all percentages of BR for each square, each percent- age was 

associated to a color. The color scale goes from red (0% of BR, i.e. bone formation) to blue (100% BR). (C) The 2D grids were warped onto the 3D 

surfaces of the specimen for visualization. 

 
and 100% (blue) denotes full resorption. To compare the maps between 

very young (small) and older (larger) individuals, each map was scaled to 

a standardized grid of 8 9 8 squares in RSTUDIO. More precisely, an ‘empty’ 

grid of 8 9 8 squares was first laid over the original one, such that the left-

, right-, bottom-, and top-most edges matched. The final percentage of 

bone resorption for each cell of the new grid was then calculated as the 

average percentage of the cells of the original grid that intersected with 

those of the 8 9 8squaresgrid.Thecontributionofeachcelloftheoriginalgrid in 

the final percentage of BR was weighted by the area of intersection with 

the cells of the new grid, so that a large overlay between an original and 

a new cell weighs more in the final percentage of BR than a small overlay. 

We thus obtained 47 grids (one for each specimen) of similar size (8 9 8 

squares), with comparable data. From these results, ‘mean bone modeling 

maps’ were computed for each age group using the average percentage 

at each square. To visualize the results on 3D models, the 2D mean maps 

were warped  

 

 
onto the3D surface models of the mean configuration of each age group 

in GEOMAGIC STUDIO□ (Fig. 2C). We used a template of 15 land- marks 

registered on both objects to project the 2D map onto the 3Dmodel.  
The next step was to examine and visualize the variability of the  

patterns. To do so, we calculated the variance of the percentages of bone 

resorption in each square for the whole sample. Each variance was 

transformed to values between 0 and 1 before being associated with a 

shade of gray. Results were visualized on a 3D digital map (‘variability 

map’) using the same method as for the mean maps. Dark gray represent 

regions where bone resorption is highly variable (i.e. areas on the surface 

with frequent changes between formation and resorption) and light gray 

are regions of low variability.  

 
Analyses of form and morphological variability  
To analyze the morphological changes during ontogeny, a 3D template 

of 249 landmarks and semilandmarks was created in VIEWBOX  
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(dHAL software). This template is composed of nine homologous 

landmarks, 40 curve semilandmarks and 200 surface semilandmarks (Fig. 

3 A, B; Table 2). The landmarks and curve semilandmarks were manually 

placed on each specimen. The surface semilandmarks were digitized on 

one reference specimen and automatically warped using a thin plate 

spline (TPS) interpolation and projected onto the surfaces of every 

specimen in the sample. Coordinates of each point were extracted and 

loaded into R to perform the sliding process (Mitteroecker & Gunz, 2009). 

To establish geometric homology, the 240 semilandmarks were allowed to 

slide along tangents to the curves and tangent planes to the surface, 

minimizing the bending energy of the TPS interpolation function between 

each specimen and the Procrustes consensus configuration (Gunz & Mit- 

teroecker, 2013). To compare all configurations and convert the 

coordinates to shape variables, a Generalized Procrustes Analysis (GPA) 

was performed (Rohlf & Slice, 1990; Bookstein, 1991). The GPA is a 

standardization of the position (translation to a common centroid) and 

orientation (rotation that minimizes the squared distances between pairs of 

corresponding landmarks) of each configuration in space, as well as the 

scaling to unit centroid size (computed as the square root of the sum of 

squared Euclidean distances from all landmarks to their centroid; Rohlf & 

Slice, 1990). To analyze maxillary growth, the natural logarithm of the 

centroid size was added as a variable to the matrix of the Procrustes 

coordinates following Mitteroecker et al. (2004). Using these coordinates, 

we performed a principal component analysis (PCA) in form (shape plus 

size) space. A multivariate regression analysis was performed to examine 

how much of the morphological variation in our sample is explained by 

ontogenetic allometry. To do so, we regressed all form variables on centroid 

size.  

 

 
 

To later compare variability in bone modeling patterns to variabil-  
ity in form, the template was divided into two subsets corresponding to 

the upper (frontonasal) and lower (zygomatico-maxillary) parts of the 

maxilla bone (Fig. 3C, D), consisting of respectively 92 and 157 landmarks 

and semilandmarks (see Table 3 for description). The two subsets 

correspond to areas with absence or presence of developing teeth, 

respectively; we were then able to check whether underlying developing 

tissue can affect the variability of the bone modeling patterns. On each 

landmark subset, we performed separate GPAs and added the natural 

logarithm of the centroid size to each Procrustes matrix. Following Zelditch 

et al. (2012), we calculated morphological variance by summing the 

diagonal elements of the Procrustes variance-covariance matrix. To make 

the variances of the landmark subsets comparable, values were divided 

by the total number of landmarks in each subset following Freidline et al. 

(2016).  

Comparison of morphological changes and bone modeling 

patterns  
To visualize changes at both the micro- and macroscales, we combined 

the texture data produced by the surface histology analysis with the 

morphological changes highlighted by the GM analysis using the 

Geometric Morphometric Image Analysis (GMIA) method (Mayer et 

al.2014).This method allows the comparison of morphometric and texture 

data in a joint analysis by performing a two- block Partial Least Squares 

(PLS) analysis (Bookstein, 1994; Rohlf & Corti, 2000) between datasets of 

different lengths and dimensions. After performing a singular value 

decomposition of the two-block covariance matrix, the maximum 

covariation between the linear 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 (A,B) Template of the right maxilla  
(249 landmarks and semilandmarks) in  
fronto-lateral and inferior views, respectively. 

Red dots: landmarks (9); blue dots: curve  
semilandmarks (40); yellow dots: surface  
semilandmarks (200). Names and definitions of 

all points are listed in Table 2. (C,D)  
Landmarks and semilandmarks subsets  
created from the general template. (C) Upper 

part (‘frontonasal’; 92 landmarks and  
semilandmarks); (D) lower part (‘zygomatico- 

maxillary’; 157 landmarks and  
semilandmarks). See Table 3 for the  
description of the subsets.  
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combinations of each block can be visualized. For the texture data, missing 

values (representing less than 0.5% of the data) were first estimated for 

each age group independently in RSTUDIO using a regularized iterative PCA 

algorithm of the missMDA package. The matrix of Procrustes coordinates, 

to which the natural logarithm of the centroid size was added, was used 

for the morphological data. A PLS analysis was then performed on the two 

datasets. Results were visualized by computing extreme forms and 

textures on each axis (+/- 2 standard deviations from the mean). The 

morphological changes were visualized by warping the deformed surfaces 

on a standard 3D model using a TPS deformation (Bookstein, 1991; Mit- 

teroecker & Gunz, 2009), and the extreme textures were warped onto the 

3D models in GEOMAGIC using the same method cited above.  
Finally, to explore how bone modeling activities and local dis- 

placements are linked, we computed distance maps to show how growth 

intake is distributed across the maxilla (Martinez-Maza et al. 2015; 

Freidline et al. 2016). Mean forms were calculated for each age group, 

and warped onto a reference surface. The distances between each mean 

form (e.g. between AG1 and 2, AG2 and 3 and AG3 and 4) were 

calculated and converted to a color value.  

 
Results  

 
Description of the maxillary bone modeling patterns  

To visualize changes in the bone modeling patterns of the 

maxilla, we computed mean bone modeling maps representing 

the average pattern at each age group (Fig. 4). Our analysis 

shows that bone resorption is already present at early stages in 

our sample. It is mainly localized at the fronto-maxillary suture 

and the region above the lateral incisors and canine bulb in age 

group 1 (see mean maps AG1 on Fig. 4). The mean map for age 

group 2 shows an extension of the resorptive area in the maxillary 

arcade and zygomatic process, with increasing values of bone 

resorption (between 60 and 80%). In age group 3, bone 

resorption is mostly absent from the fronto-maxillary suture, and 

the top half of the bone becomes mainly bone formation. Similar 

to age group 3, the highest concentrations of resorption in age 

group 4 are predominantly in the  

 

 

 

 
maxillary arcade and the zygomatic process, mostly present near 

the zygomatico-maxillary suture, the inferior orbital margin and 

the anterior part of the maxillary arcade. All maps show a similar 

pattern throughout ontogeny, with bone resorption mainly 

present in the lower part of the bone, represented by the 

maxillary arcade and the zygomatic process. Younger age 

groups tend to show high concentrations of bone resorption near 

the fronto-maxillary suture.  

 

Quantification of bone resorption  

A total percentage of bone resorption was obtained for each 

individual and plotted against age (Fig. 5, top). Each individual is 

represented by a bar, and individuals of similar ages are 

represented by different shades of gray. Bone resorption first 

increases between birth and the first year (from ~2 to ~40%). 

Between 1 and 2.5 years, values fluctuate between 25 and 62%, 

and around 3 to 3.5 years, percentages decrease to between 5 

and 10%. Values between 3 to 6 years range from 5.9 to 58.6%. 

Between 7 and 12 years, values vary between 17.3 and 50.6%. 

When only specimens of the same age are considered, 

differences in the percentage of bone resorption are variable, 

ranging from 1% (at 1.2 years) to 43% (at 6 years). These differ- 

ences are uncorrelated with age and dental eruption. Box- plots 

representing the distribution and mean bone resorption at each 

age group were computed (Fig. 5, bottom). Age group 2 shows 

the highest mean value of bone resorption (43.1%), followed by 

age groups 4 (35.4%), 3 (32.6%) and 1 (24.2%).  

 

Analysis of variability in bone resorption  

Variability in the expression of bone resorption during growth was 

explored by computing the variance of the percentages of bone 

resorption in each square and represented on a map (Fig. 6). The 

most variable regions highlighted by this analysis are located in 

the top of the 

 

Table 3 Names and number of landmarks, semilandmarks and description of each subset. 

 

Subset  

 

Landmarks  
names*–number  

 

Curve names–number 

of semilandmarks  

 

Surface  
semilandmarks Description 

A d, sln, ilr, ans,  
zyo–5  

 

B zyo, zm, mro,  
ids, ans–5  

 

Frontomaxillary suture (FMS)–2 

Nasomaxillary suture (NMS)–6  
Infero orbital margin (IOM)–6 

Nasal aperture (NA)–6  
Zygomatico-maxillary suture 

(ZMS)–5  
Maxillary contour (MC)–4  
Subnasal outline (SO)–3  
Alveolar outline (AO)–6  

 

67 Upper limit: Frontomaxillary suture (FMS); medial  
limit: Nasomaxillary suture (NMS); distal limit:  
Infero orbital margin (IOM); lower limit: horizontal  
line defined by the lower limit of the nasal aperture  

134 Upper limit: horizontal line defined by the lower  
limit of the nasal aperture; medial limit: subnasal  
outline (SO); distal limit: Zygomatico-maxillary  
suture (ZMS) and maxillary contour (MC); lower  
limit: Alveolar outline (AO) 

 
*For the names of the landmarks, refer to Table 2.  
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frontal process, the maxillary arcade and zygomatic process, with 

higher values close to the sutures. The least variable area is 

located in the nasal area. The map was then compared with the 

analysis of morphological variability within each subset defined 

in Table 3 (upper vs. lower part of the maxilla). The results shown 

in Table 4 suggest a higher morphological variability in the 

frontonasal subset.  

 

Comparison of morphological and surface histology 

analyses  

Joint analysis of form and texture  
 

Morphological variability was analyzed by means of a PCA in 

form space (Fig. 7A). The first two PCs account for 87.2 and 3.2% 

of the total form variance, respectively. In PC 1, the youngest 

specimens fall along the negative values and the older 

specimens along the positive values. The main factor creating 

variability in our sample is size (i.e. ontogenetic allometry) as 

shown by the multivariate regression analysis (R2 = 0.86). All age 

groups are aligned along PC 1 and only AG 4 is distinct from the 

other groups, with AG 1 being the most variable along this axis. 

Morphological changes along PC 1 mainly imply an increase in 

height in the superior–inferior direction. The second PC shows a 

slight rotation of the orbital ridge as well as an increase in the 

height of the bone. A second PCA was performed on the bone 

modeling data (Fig. 7B). The first two PCs account for respectively 

29.6 and 20.2% of the total variance. This analysis shows a large 

overlap between age groups, particularly on PC 1. Changes 

along this axis are represented by an increase in bone resorption 

in the maxillary arcade of the bone and in the frontal process. On 

PC 2, the youngest specimens (AG1) are separated from the 

oldest (AG4). On this axis, changes are represented by an 

increase in bone resorption in the maxillary arcade, with an 

absence of bone resorption in the frontal process on the positive 

end. Figure 7C shows the joint analysis between form and texture 

by means of a PLS analysis. We show that changes in height in 

the superior–inferior direction are associated with an increase of 

BR in the maxillary arcade (correlation coefficient: 0.49). 

Moreover, results of this joint analysis indicate that subtle 

changes in the bone  

 

 
 
modeling patterns (axis 1) result in the form changes observed 

in our sample (axis 2).  

Local displacements and bone modeling activity  
 

To investigate how bone formation and resorption are linked to 

local displacements (and test whether formation fields face the 

forward displacement, cf. hypothesis 3), differences in growth 

between age groups were visualized by computing distance 

maps (Fig. 8). Warm colors represent forward growth between 

two age groups, whereas cold colors represent backward 

growth. Between age groups 1 and 2 (Fig. 8A), growth is 

homogeneous across the bone. Between age groups 2 and 3 

(Fig. 8B), warm colors are present in the frontal process and the 

nasal area, whereas cold colors are seen in the maxillary arcade 

and the zygomatic process, particularly around the inferior part of 

the orbit. This pattern is even more apparent in the third map, 

which shows differences between age groups 3 and 4 (Fig. 8C). 

Cold colors are predominant in the infra-orbital region and the 

anterior part of the maxillary arcade. Again, the frontal process 

and the nasal area are represented by warmer colors. These 

results indicate differences in growth intake (direction and 

magnitude) between the top half of the bone (represented by the 

frontal process and the nasal area) and the bottom half 

(represented by the maxillary arcade and the zygomatic 

process), particularly in the infra-orbital region.  

 

Discussion  

In this study, we investigated bone modeling patterns and 

morphological form changes expressed in the maxilla during 

ontogeny, focusing on the variability of these two processes in a 

population of European ancestry. We quantified for the first time 

the activities of bone formation and resorption with histological 

methods, and improved the visualization of the patterns by 

creating digital rather than handmade maps. The remarkable 

preservation of the bone surfaces, as well as the use of 

semilandmark geometric morphometric techniques as a 

complementary approach, allowed us to analyze and compare 

changes at both the micro-and macroscopic levels at a very high 

resolution. 

 

 

 

 

 

 

 

 
 Fig. 4 Mean bone modeling maps representing the average pattern for each age group. Cold colors indicate high percentages of bone resorption (BR), 

warm colors indicate low percentages. AG1: age group 1; AG2: age group 2; AG3: age group 3; AG4: age group 4.  
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Fig. 5 (Top) Percentages of bone resorption for each individual plotted against age (in years). Each individual is represented by a bar. Individuals  
of similar age are shown in different shades of gray. (Bottom) Box plots representing the distribution of the percentages of bone resorption at each age 

group. Age group means are indicated as red dots.  

 

(frontal process, frontal and nasal bones) and the rest of the skull
Patterns of bone modeling in the human maxilla  

The ontogenetic bone modeling patterns found in this study are 

similar to previous findings in H. sapiens (Enlow & Hans, 2008; 

Kurihara et al. 1980; McCollum, 2008; Martinez-Maza et al. 

2013). In a previous study, Kurihara et al. (1980) found no sign of 

a resorptive activity before the age of 3 months; however, in our 

sample, this activity is already present at birth. The digitization of 

each age groups’ mean map allows the observation of major 

changes in the bone modeling activities throughout ontogeny. 

Areas affected by bone resorption are mainly located in the 

maxillary arcade, in the inferior part of the orbital rim and in the 

zygomatic process (Fig. 4). We show that the top of the frontal 

process (around the fronto-maxillary suture) is predominantly 

resorptive in the youngest individuals, a pattern never reported 

before. However, this activity is later reduced in older specimens, 

becoming mostly bone forming (Fig. 4, AG4). What causes a 

reduction in bone resorption in the top of the frontal process is 

unknown but could indicate a change in the integration pattern 

between this area  
 

as the direction of growth changes from a backward to a forward 

displacement (Enlow & Hans, 2008; see also Fig. 8). The nasal 

area is known to mature later than other craniofacial 

components (Humphrey, 1998), increasing in height into 

adulthood (Martinez-Maza et al. 2013) probably due to its 

association to respiratory requirements (Bastir, 2008; Holton et 

al. 2016). The forward growth observed in this region associated 

with bone formation in our sample may thus reflect this 

expansion. More generally, due to the central position of the 

maxilla in the craniofacial complex and the biological functions it 

supports (vision, mastication, and respiration as mentioned 

above),maxillary growth is likely to be influenced by growth of 

the surrounding bones and soft tissues (Moss & Young, 1960; 

Smith et al. 2014; Goergen et al. 2017), the basicranium (Bastir 

et al. 2008; Bastir & Rosas, 2016) as well as the vertical 

expansion of the maxillary sinus (‘secondary pneumatization’, 

Smith et al. 2005) as its shape has been found to covary with 

the midface (Butaric & Maddux, 2016; although see O’Higgins et 

al. 2006). Therefore, changes in the  
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 Fig. 6 Map representing the variability in bone modeling patterns in 

the whole sample. The variances of the percentages of BR in each  
square are reduced to values between 0 and 1, and represented by a 

shade of gray.  

 

Table 4 Variances of form variables in the upper and lower parts of 

the maxilla.  

 
Total variance  

Frontonasal 5.00E-04 

Zygomatico-maxillary 1.80E-04  

 

Expression of bone modeling patterns are certainly a response 

to the complex integration patterns of the craniofacial 

components.  
Bone resorption is often predominant in areas overlaying the 

developing teeth bulbs in the maxillary arcade, and later near the 

inferior part of the orbital rim. Several studies (Enlow & Bang, 

1965; Kurihara et al. 1980; Martinez-Maza et al. 2013) have 

reported an increase in the resorptive activity throughout 

postnatal ontogeny in the anterior part of the maxilla, presented 

as an enlarging resorptive field from the maxillary arcade to the 

zygomatic process. Our study, based on quantitative data, also 

shows an increase in bone resorption in the maxillary arcade and 

zygomatic regions from early to later stages; however, as the 

resorptive area decreases in the frontal process with time (Fig. 4), 

the total percentage of bone resorption in the whole bone 

stabilizes after 3 years and represents about a third of the total 

surface (Fig. 5). It is likely that in the anterior part of the bone, a 

combination of local (on teeth bulbs) and regional (in the 

zygomatic process and maxillary arcade) fields of bone 

resorption result in the extension of the resorptive field. As  
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the anterior face is developing laterally and vertically (‘forward 

and downward displacement’, Enlow & Hans, 2008), the teeth 

also develop postero-laterally and thus, result in an expansion of 

the resorptive area along the arcade.  

 

Interindividual and intrapopulation variability  

The comparison of the percentages of bone resorption between 

specimens of similar ages (Fig. 5, top) shows a certain degree of 

interindividual variability in the extension of the resorptive fields, 

with differences between two individuals of similar ages reaching 

up to 43%. This suggests that although bone resorption increases 

in the anterior maxilla, this process is not linear (i.e. constantly 

increasing with time) but rather is interrupted by either 

accelerated growth or remodeling phases, with bone formation 

covering the resorptive areas in order to maintain the cortical 

thickness. Although males are known to have slightly larger faces 

at early stages in ontogeny compared with females (Bulygina et 

al. 2006), sexual dimorphism did not affect the bone modeling 

patterns found in our study, as no differences between males and 

females were visible (Supporting Information Fig. S1). McCollum 

(2008) suggested that the differences between individuals in the 

expression of bone resorption observed in her sample may have 

resulted from different ancestries of the specimens. Whether 

ancestry explains differences in bone modeling patterns between 

individuals, or populations, has never been tested. As population 

differences in facial morphology arise early in development 

(Vidarsdottir et al. 2002; Freidline et al. 2015), a comparison of 

specimens from populations with different ancestries will help 

clarify this question. Nicholas (2016) found morphological 

differences between European-Americans and African-

Americans in the maxilla already present before birth; whether 

this translates into different bone modeling patterns is still 

unknown.  
When  considering variability at the population level (Fig. 6), 

we show that the most variable regions are found where bone 

resorption is the most predominant (see Fig. 4); in particular, 

changes between formation and resorption seem higher around 

the fronto-maxillary, zygomatico-maxillary and inter-maxillary 

sutures. Following our hypothesis (2), we expected the upper 

maxilla to be less variable in form than the lower maxilla, as 

bone formation is predominant in this area. This result could not 

be confirmed by our analysis of morphological variability (Table 

4). Several authors (Martinez-Maza et al. 2015; Freidline et al. 

2016) observed that the anterior maxilla and the mandibular 

ramus are morphologically and microscopically more variable in 

great apes, particularly in H. sapiens, and suggested that this was 

due to less functional constraints leadingto greater plasticity in 

these regions. In the present study, average percentages of bone 

resorption seem to stabilize in age groups 3 and 4 once the 

permanent teeth are fully formed and positioned in the occlusal 

plane  
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Fig. 7 (A) PCA in form space showing the morphological changes of the right maxilla during ontogeny. The three first PCs account for 90.4% of the total 

variance. PC 1 accounts for 87.2% and PC 2 for 3.2%. Morphological changes are represented by 3D surfaces computed at each PC extreme. (B) PCA of the 

bone modeling data. PC 1 accounts for 53.4 and PC 2 22.1%. Changes in the maps are represented at each PC extreme. (C) Joint analysis of 

morphological and bone modeling changes: on the x-axis, bone modeling data are represented and on the y-axis, form data are represented. Each age 

group is represented by numbers (1, 2, 3 and 4). Extremes maps and forms at each axis are shown in each plot. 

 

 

 

 

 

 

 

 

 
 Fig. 8 Distance maps representing local displacements (i.e. growth difference/intake) of the growing maxilla. (A) Growth difference between AG 1 and 2. 

(B) Growth difference between AG 2 and 3. (C) Growth difference between AG 3 and 4. Warm color: forward growth; cold colors: back- ward growth. 

Solid black arrows: bone formation; empty black arrows: bone resorption.  
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(see Fig. 5). This corresponds to a reduction in morphological 

variability (Fig. 7A), already observed in former studies (Bulygina 

et al. 2006; Mitteroecker et al. 2012). Developmental canalization 

(Waddington, 1942) is defined as the reduction in variability of a 

trait despite genetic and/or environmental changes  (Hallgrímsson 

et al. 2002). Whether more frequent changes between bone 

resorption and formation result in developmental canalization 

should be further tested with larger samples, and on other regions 

of the face. Our results so far suggest that the maxillary arcade, 

under biomechanical forces induced by the effect of mastication, 

expresses more frequent changes between formation and 

resorption, leading to less morphological variability. This would 

also explain why most changes between formation and resorption 

are found close to the sutures  (Fig. 6), as they ‘diffuse’ mechanical 

loads across the skull (Popowics & Herring, 2007). Areas such as 

the upper face and nasal region that are under fewer functional 

constraints show more consistently forming fields (Martinez-Maza 

et al. 2013) and present higher morphological variability (Evteev 

et al. 2018), especially in older age groups as sexual dimorphism 

is inducing morphological changes in those areas (Freidline et al. 

2016; Holton et al. 2016).  
Although inter individual variability in the percentages of bone 

resorption is high, particularly in younger age groups, overall the 

general patterns of bone modeling remain very similar from age 

groups 2–4 in this European sample (Fig. 7B). The existence of 

a ‘uniform’ bone modeling pattern in post-natal  ontogeny has 

already been observed in former studies by O’Higgins et al.(1991) 

in the mangabey Cercocebus torquatus, as  well as  in the common 

pig (Sus scrofa; Herring & Ochareon, 2016). We thus propose 

that, rather than changes in the bone modeling patterns, 

differences in rates and timings of development (induced by 

differential expressions of the osteoclastic and osteoblastic 

activities) may result in the morphological changes observed in 

our sample.  

 

An integrative approach to studies of facial ontogeny  

Growth appears to be fairly homogeneous in all parts of the bone 

at younger stages (Fig. 8A), although more active in areas close 

to the sutures. This result is in accordance with Enlow & Bang’s 

(1965) hypothesis that sutural growth is predominant in early 

facial development. In the subsequent age groups (Fig. 8 B-D), 

backward growth is found in the lower maxilla (in the maxillary 

arcade and the zygomatic process), whereas forward growth is 

found in the upper maxilla (in the nasal area and the frontal 

process). Compared with the mean maps (Fig. 4), this 

respectively corresponds to areas that are mainly resorptive vs. 

areas predominantly forming bone. In particular, the difference in 

growth is notably low in the infraorbital region as shown by Fig. 

8C. The morphology of the infraorbital plate has often been 

considered an important region differentiating  
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Neanderthals and H. sapiens (Rak, 1986; Harvati et al. 2010). In 

Neanderthals, this region is often described as being flat or 

inflated, whereas a depression, often referred to as a canine 

fossa, is the condition for H. sapiens. According to our bone 

modeling maps (Fig. 4), this area shows intermediate values of 

bone resorption (around 50%) and high variability in the bone 

modeling patterns (Fig. 6). Together, these results suggest that 

the depression observed in modern humans does not result from 

bone being actively broken down only through bone resorption, 

but rather is created by both the growth of the surrounding areas 

coupled with phases of formation and resorption. This supports 

former findings (Maddux, 2011; Maddux & Franciscus, 2009; 

Freidline et al. 2012) that the canine fossa in H. sapiens is a 

byproduct of the development of the sur- rounding structures. In 

Neanderthals, this area is mostly represented by bone formation 

(Lacruz et al. 2015); however, the general pattern of variation in 

bone modeling is still unknown for this species. These results 

confirm our hypothesis (3) that bone formation faces the 

direction of growth, as proposed by Enlow (1963). More 

generally, these results are consistent with several studies (Enlow 

& Hans, 2008; Bjork & Skieller, 1976; Martinez-Maza et al. 2013) 

describing patterns of displacements in the midface in H. sapiens. 

As the whole bone is being pushed forward during development 

(due to the displacement of surrounded bones as well as its own 

growth), the resorptive area extends rapidly in the anterior part 

of the face in early developmental stages to ‘force’ the growth 

vector to follow a vertical direction. This pattern remains until 

later developmental stages, as shown by the stability in resorptive 

activity in all specimens.  

 

Conclusion  

In this study, we present new approaches for the quantification 

and visualization of the bone modeling patterns during ontogeny. 

We show that the typical bone modeling patterns found in our 

sample develop early in ontogeny, already present in the first 

months of postnatal life. The resorptive field located in the 

anterior part of the maxilla rapidly enlarges, attaining around a 

third of the whole sur- face by 3 years of age. This extension is, 

however, variable during an individual’s life, with several phases 

of either growth intake and/or remodeling. Absence of bone 

resorption in isolated fossils may not indicate a unique, species- 

wide bone modeling pattern, as resorptive fields may have been 

present at earlier or later stages in ontogeny. In H. sapiens, the 

anterior resorptive field prevents forward growth of the midface, 

as growth is less predominant in this area than in the other parts 

of the bone. It is the combination of these processes (formation 

in the posterior part of the bone and resorption in the anterior 

part) and the movements of surrounding bones that leads to the 

specific orthognathic H. sapiens face. We show that surface 

histology and GM techniques give complementary results and  
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can be employed together as an integrative approach. Surface 

histology can inform about microstructural growth processes and 

GM techniques allow for the quantification of the ontogenetic 

changes at the macroscopic level. A better knowledge of 

intraspecific variability in bone modeling patterns during 

ontogeny and how this translates to large- scale morphological 

form changes is essential to improve our understanding of the 

evolution of hominin facial morphology.  
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1 | INTRODUCTION  

 

Abstract  

Objectives: This study compares the ontogenetic bone modeling patterns of the 

maxilla to the related morphological changes in three human populations to better 

understand how morphological variability within a species is established during 

ontogeny at both micro- and macroscopic levels.  

Materials and methods: The maxillary bones of an ontogenetic sample of 145 subadult 

and adult individuals from Greenland (Inuit), Western Europe (France, Germany, and Por- 

tugal), and South Africa (Khoekhoe and San) were analyzed. Bone formation and resorp- 

tion were quantified using histological methods to visualize the bone modeling patterns. In 

parallel, semilandmark geometric morphometric techniques were used on 3D models of 

the same individuals to capture the morphological changes. Multivariate statistics were 

applied and shape differences between age groups were visualized through heat maps.  

Results: The three populations show differences in the degree of shape change 

acquired during ontogeny, leading to divergences in the developmental trajectories. 

Only subtle population differences in the bone modeling patterns were found, which 

were maintained throughout ontogeny. Bone resorption in adults mirrors the pattern 

found in subadults, but is expressed at lower intensities.  

Discussion: Our data demonstrate that maxillary morphological differences observed in 

three geographically distinct human populations are also reflected at the microscopic scale. 

However, we suggest that these differences are mostly driven by changes in rates and 

timings of the cellular activities, as only slight discrepancies in the location of bone 

resorption could be observed. The shared general bone modeling pattern is likely 

characteristic of all Homo sapiens, and can be observed throughout ontogeny.  

KEYWORDS  

bone formation, bone resorption, facial ontogeny, semilandmark geometric morphometrics  

 

 

(Hanihara, 1996, 2000; Hennessy & Stringer, 2002; Howells, 1973, 

1989; Lynch, Wood, & Luboga, 1996). In addition to population his- 

Among present day humans, geographic variation in adult facial mor- 

phology has been reported as reflecting population affinities  

 

tory, environmental factors such as climate and subsistence strategies 

contribute to cranial shape variation among human populations. 

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided 

the original work is properly cited.  
© 2020 The Authors. American Journal of Physical Anthropology published by Wiley Periodicals LLC.  
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Adaptation to climate has been observed in facial features (Butaric & 

Maddux, 2016; Cui & Leclercq, 2017; Evteev, Cardini, Morozova, & O'Higgins, 

2013; Harvati & Weaver, 2006; Hubbe, Hanihara, & Harvati, 2009; Nicholson & 

Harvati, 2006; Roseman & Weaver, 2004), particularly in the shape of the nasal 

region (Churchill, Shackelford, Georgi, & Black, 2004; Franciscus & Long, 1991; 

Holton & Franciscus, 2008; Maddux, Yokley, Svoma, & Franciscus, 2016; Yokley, 

2009). Noback, Harvati, and Spoor (2011), as well as Maddux, Butaric, Yokley, 

and Franciscus (2017), found correlations between cold-dry and hot-wet 

environments and the shape of the bony nose (particularly the nasal fossa), 

suggesting that aspects of the nasorespiratory system may be adaptations to 

particular environments. Moreover, according to several studies changes in diet 

across time as observed between hunter-gatherer and agricultural populations 

have been linked to the gracilization of the masticatory apparatus (Deter, 2009; 

Gonzalez-Jose et al., 2005; Noback & Harvati, 2015; Stynder, Ackermann & 

Sealy, 2007; von Cramon-Taubadel, 2011). Stansfield, Evteev, and O'Higgins 

(2018) suggested that a reduction of loadings during ontog- eny explains 

morphological differences in the mandible between prehis- toric and modern 

humans. Thus, in comparison to the rest of the skull, facial components may be 

more plastic being subjected to diverse sources of variation (Smith, 2009; von 

Cramon-Taubadel, 2014). 

One way to understand how morphological variability is established 

within a species is by investigating its ontogenetic pro- cesses. Freidline, Gunz, 

and Hublin (2015) compared the ontogenetic and static allometry (i.e., the 

covariation between shape and size) of several geographically diverse human 

populations using geometric morphometric techniques. Their results support 

previous studies by showing that population differences in facial morphology 

are already present early in ontogeny, possibly prenatally (e.g., Bastir & 

Rosas, 2004; Lieberman, McBratney, & Krovitz, 2002; Mooney & Siegel, 1986; 

Nicholas, 2016; Ponce de Leon & Zollikofer, 2001). They also demonstrated 

subtle differences between populations in the patterns of absolute and 

relative growth and development. Therefore, changes in the patterns of 

ontogenetic allometry generate differences in facial morphology between 

human populations (Bulygina, Mitteroecker, & Aiello, 2006; Rosas & Bastir, 

2002; Sardi & Ramirez- Rozzi, 2012; Vidarsdóttir, O'Higgins, & Stringer, 2002).  

At the cellular level, both the rate of activity as well as the location on 

bone surfaces of the osteoblasts and osteoclasts, the cells responsible for bone 

formation (or apposition; Enlow & Bang, 1965, Enlow, 1966) and resorption, 

cause bone to change in size and shape during ontogeny. This process, visible 

on dry bone, is called bone modeling (Enlow, 1962; Enlow & Bang, 1965; Frost, 

1987). It is of par- ticular interest for ontogenetic studies as it can help us better 

under- stand the development of morphological features (Bromage, 1989; 

McCollum, 1999; McCollum, 2008). A majority of the ontogenetic studies 

published in the past 20years employed geometric morphometric techniques 

as a methodological approach, as it is a powerful tool for the quantification and 

visualization of morphological changes (Gunz & Mitteroecker, 2013; 

Mitteroecker & Gunz, 2009; Mitteroecker, Gunz, Windhager, & Schaefer, 

2013). However, few studies have focused on the relationship between bone 

modeling patterns and morphological changes during ontogeny. This was first 

assessed by O'Higgins and Jones (1998) in the Red-capped mangabey 

Cercocebus torquatus. The authors found that the bone modeling pat- terns  

 

reflect allometric patterns in the face of this species. Several recent 

studies combined surface histology and semilandmark geometric 

morphometric techniques to study facial ontogeny in great apes and 

humans (Freidline, Martinez-Maza, Gunz, & Hublin, 2016; Martinez-

Maza, Freidline, Strauss, & Nieto-Diaz, 2015; Schuh, Kupczik, Gunz, 

Hublin, & Freidline, 2019). Such as O'Higgins and Jones (1998), these 

studies showed a correspondence between the morphological changes 

and the bone modeling patterns. Furthermore, these methods have 

shown to be complementary: while surface histology is informative 

about the microscopic processes underlying bone growth, geometric 

morphometric techniques help to quantify and visualize the 

morphological changes and displacements that cannot be observed 

through bone modeling alone. 

Recently, Schuh et al. (2019) applied both methods on an 

ontogenetic sample of 48 maxillae from French individuals. In line with 

previous studies (Martinez-Maza et al., 2015; O'Higgins & Jones, 1998), 

the authors observed that maxillary bone modeling patterns in humans are 

rather constant through time from early stages on (i.e., the location of bone 

resorption on the surface is similar between age groups). This implies that 

the resorptive process is highly controlled (as discussed by Schulte et al., 

2013), and that morphological differences within a group are likely driven 

by changes in bone formation and resorption rates rather than major 

differences in the bone modeling patterns. Regions of the maxilla showing 

less morphological variation, such as the maxillary arcade, are associated 

mainly to resorptive areas, suggesting that regions of high mechanical 

demands are more constrained and less variable. However, these 

inferences are based on a single population and may not reflect the 

variability within a species. McCollum (2008) proposed that the differences 

in the expression of bone resorption observed in her sample may reflect 

population history; however, like most bone modeling studies the limited 

sample size, as well as the lack of quantitative data, make this interpretation 

difficult.  

In the present study, we quantify the bone modeling patterns in an 

ontogenetic series of three geographically distinct human populations: 

Western European, Greenlandic Inuit, and South African Khoekhoe and 

San descent. We investigate if differences observed at the macroscopic (or 

morphological) scale relate to those at the microscopic level. The Inuit 

facial morphology has long been the focus of many studies (Cruwys, 1988; 

Hawkes, 1916; Hrdlička, 1910; Hylander, 1977; Lynnerup, Homøe, & 

Skovgaard, 1999; Oschinsky, 1962), and different hypotheses have been 

proposed to explain their characteristic facial features, such as adaptation 

to a cold environment (Coon, Garn, & Birdsell, 1950; Wolpoff, 1968) and 

a hard diet (Hrdlička, 1910; Hylander, 1977). They are characterized by an 

elongated, narrow nasal aperture, vertical zygomatic processes, reduced 

nasal bones, and maxillary frontal process width, as well as a generally flat 

infra orbital area (Hylander,1977). South African populations such as 

Khoekhoe and San possess small faces with short and wide nasal 

apertures, anteriorly projecting zygomatic processes, wide orbits, and large 

maxillary frontal processes (Freidline et al., 2015). Europeans have been 

described as  
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showing long noses and retracted zygomatic bones (Hennessy & Stringer, 

2002). Thus, we expect discrepancies in the expression and/or location of 

bone resorption between these populations where shape differences are 

the most pronounced, for example in the nasal area for which population 

differences have been described (Hennessy & Stringer, 2002; Maddux et 

al., 2017; Noback et al., 2011; Sardi & Ramirez-Rozzi, 2012). Moreover, a 

more pronounced canine fossa should be associated with more bone 

resorption, as discussed by Enlow and Bang (1965) and Schuh et al. (2019).  

 

 
2 | MATERIALS AND METHODS  

 
2.1 | Sample  

The cross-sectional ontogenetic sample comprises 145 individuals from 

three different geographic areas (refer to Table 1 for the sample 

composition): Western Europe (Anatomical Institute of Strasbourg, 

France; Anatomical Institute of the University of Leipzig, Germany; 

Anthropological collection of the University of Coimbra, Portugal), 

Greenland (Inuit; Laboratory of Biological Anthropology, University of 

Copenhagen, Denmark) and South Africa (Khoekhoe and San; Iziko South 

African Museum, Cape Town; Anthropological collection of the Department 

of Human Biology, University of Cape Town; McGregor Museum, 

Kimberley, South Africa). Sex and calendar ages are known for some 

Western European individuals only, and were already previously 

investigated (Schuh et al., 2019). Thus, they were not considered in this 

study. We divided our sample into four age groups based on dental 

development, following AlQahtani, Hector, and Liversidge (2010): AG 1, 

developing deciduous dentition; AG 2, first permanent molar (M1) in 

occlusion; AG3, second permanent molar (M2) in occlusion; AG4, third 

permanent molar (M3) erupted, or adults. For the latter, variability in the 

bone modeling patterns is still largely unknown; however, as adult maxillae 

are larger than those of subadults, data collection is more time- consuming. 

Therefore, we were only able to include a limited number of individuals for 

this group. Finally, individuals with extensive tooth loss or surface 

alterations were avoided.  

Negative molds of the maxillary surface (delimited by the sur- 

rounding sutures) were made using a low-viscosity silicone (President 

Plus light body, Coltène/Whaledent AG, Switzerland) following  

 

 

Bromage (1989). A positive replica of each negative mold was gener- 

ated using an epoxy resin (5 Minute Epoxy Epoxidharz 2 K-Kleber 

transparent, Devcon). Only the better-preserved side of the maxilla was 

kept for the analysis (i.e., either left or right). Out of the 145 individuals, 

seven did not yield any data, which reduced the sample size  

 

TABLE 2 Landmarks and semilandmarks numbers and definition 

(total:249)  

Landmarks Label  
Fixed landmarks  

Superolateral nasion sln  

Dacryon d  

Zygoorbitale zyo  

Inferolateral rhinion ilr  

Anterior nasal spine ans  

Alveolare  
(infradentale  
superius)  

Zygomaxillare zm 

Malar root origin mro 

Maxillo-palatine  
suture  

 

 

TABLE 1 Number of individuals for 

each population and age group  

 

 

 
Age group Greenlandic Inuita South Africanb Western Europeanc Total  

1 13 11 24 48  

2 15 8 27 50  

3 15 8 3 19  

4 5 10 6 21  

Total 48 37 60 145  
aLaboratory of Biological Anthropology, University of Copenhagen, Denmark.  
bIziko Museum of Cape Town; University of Cape Town; McGregor Museum of Kimberley, South Africa. 
cStrasbourg Anatomical Collection (Le Minor, Billmann, Sick, Vetter, & Ludes, 2009; Rampont, 1994),  
France; Leipzig University of medicine, Germany; Anthropological Collection of the University of Coim- 

bra, Portugal.  

 
FMS 2—Superolateral nasion to  

dacryon  

Naso-maxillary suture NMS 6—Superolateral nasion to  
inferolateral rhinion  

Inferior orbital margin IOM 6—Dacryon to zygoorbitale  

Nasal aperture outline NA 6—Inferolateral rhinion to  
Anterior nasal spine  

Subnasal outline SO 3—Nasal spine to alveolar  

Zygomatico-maxillary  
suture  

Maxillarycontour MC 4—Zygomaxillare to malar root  
origin  

Alveolar outline AO 8—Alveolare to maxillo-palatine  
suture  

Surface semilandmarks 200—Covering the whole  
surface of the bone  

ids  

mps  

Curve semilandmarks Number—definition  

Fronto-maxillary  
suture  

ZMS 5—Zygoorbitale to zygomaxillare  
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to 138 individuals for the surface histology analysis. Those individuals 

were however kept for the morphological analysis. We used computed 

tomography (CT) scans of all individuals acquired at a resolution of 0.2 to 

0.4mm (BIR ACTIS 225/300) and 0.6mm for the Western 

European/South African individuals  and Greenlandic Inuit, respec- 

tively. For the South African sample, some of the scans were acquired 

using a portable Artec Space Spider (Artec3D, Luxembourg) surface 

scanner. The surface models were generated using the software pack- 

ages Avizo (Thermo Fisher Scientific) and Artec Studio.  

 

 
2.2 | Analyses  

 
2.2.1 | Analysis of developmental changes  

To quantify the morphological changes of the maxilla bone during 

ontogeny, we used a template of 249 landmarks and semilandmarks 

(Table 2) created in Viewbox (dHAL software) from the right maxilla 

(Figure 1a). Fixed landmarks (n = 9) and curve semilandmarks (n = 40) 

were placed manually, and surface semilandmarks (n = 200) were 

automatically projected onto each individual's surface using a thin- plate 

spline (TPS) interpolation function. Estimation of missing data was 

performed in RStudio (RStudio Team, 2020) by deforming the weighted 

estimate configurations that are the most similar to the defective 

configuration using a TPS interpolation (package Morpho;  

 

 

Schlager, 2017). Landmarks taken on left maxillae were mirrored to 

obtain a sample composed of only right configurations. To assure geo- 

metric homology between the landmark configurations, the curve and 

surface semilandmarks were allowed to slide along their respective 

tangent axis and plane, by minimizing the bending energy of the 

deformation between the sample mean and each configuration 

(Bookstein,1997; Gunz, Mitteroecker, & Bookstein, 2005).  

The coordinates were then superimposed using a Generalized Pro-  

crustes Analysis (GPA; Rohlf & Slice, 1990). To first investigate the mor- 

phological variation in the ontogenetic patterns, developmental trajectories 

between populations were explored by using a Principal Component 

Analysis (PCA) in shape space. Shape differences between populations 

were visualized by computing and superimposing the mean shapes of each 

population. Differences and/or similarities in the devel- opmental 

trajectories were assessed with the use of developmental simulations. In a 

given population, the youngest individuals (from AG1) were simulated 

along the trajectory of another population by adding the mean 

developmental trajectory of the latter (computed as the vectors of the 

mean shape differences) to their Procrustes coordinates (Gunz, Neubauer, 

Maureille, & Hublin, 2010; Neubauer, Gunz, & Hublin, 2010; Scott, 

Neubauer, Hublin, & Gunz, 2014). As developmental trajectories are 

nonlinear, and as the number of variables largely exceeds the number of 

individuals in this study, performing linear statistical tests is not 

appropriate. By accounting for the nonlinearity of the trajectories, this 

method thus allows the analysis of ontogenetic  

 

 

 

 

 

 

 

 

 

 

 
FIGURE 1 (a) Template of  
the right maxilla showing  
249 landmarks (red dots)and  
semilandmarks (curve: blue dots; 

surface: orange dots).Names and 

definitions of fixed landmarks and 

curves semilandmarks are given in 

Table2. (b) Examples of bone  
formation (left) and bone  
resorption (right). Formation is  
characterized by collagen fibers  
that are mineralized and visible  
on dry bones as elongated  
structures. Scale bar: 1 mm. Bone 

resorption is detectable by the  
presence of small depressions,  
called Howship's lacunae. Scale bar: 

500 μm  
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FIGURE 2 Developmental simulations. Top: Western European AG 1 individuals simulated along the Greenlandic Inuit (left) and  
South African (right) trajectories; Middle: Greenlandic Inuit AG 1 individuals simulated along the Western European (left) and South African (right) 

trajectories; Bottom: South African AG 1 individuals simulated along the Greenlandic Inuit (left) and Western European (right) trajectories. Each  
individual's trajectory is represented as a dotted line. Simulated individuals are shown as dots in a lined convex hull. Both lines and dots are  
shown in the color of the population for which the trajectory was used (e.g., Western Europeans and South Africans simulated along the  
Greenlandic Inuit trajectory are shown in blue). Each age group is represented by a filled convex hull in the color of the population (orange:  
Western European, blue: Greenlandic Inuit, red: South African). Non-simulated adults are shown in a dark shade convex hull  
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trajectories in a multivariate context. The simulated individuals were 

compared in a PCA to the non-simulated adults, first within one popula- 

tion (the Western European, as it is the most well-represented of the 

sample) to test the method, then between populations. If the simulated 

adults plot close to the non-simulated ones of their own population, then 

the trajectories are interchangeable. In the opposite case, the trajectories 

differ between populations (Neubauer et al., 2010).  

Intra-population developmental differences across age groups 

were then visualized with the use of heat maps (Schlager, Profico, Di 

Vincenzo, & Manzi, 2018). First, independent GPAs were performed on 

each population to ensure that population differences do not influence 

the results. The mean shape of each age group was computed using the 

Procrustes coordinates. A mesh was then warped onto each mean shape 

using a TPS interpolation. Euclidean distances between two meshes of 

subsequent age group means (AG 1 and 2 [AG 1–2]; AG2 and 3 [AG2–

3]; AG3 and 4 [AG3–4]) was calculated using a k- dimensional tree search 

for closest triangles (Schlager, 2017) from the  

 

 

Older to the younger age group. The distances are shown on a map as a 

color scale of maximum and minimum distances between meshes (a 

range of 2 and −2, respectively). Positive distances (from 0 to 2) are 

shown in warm colors, and are interpreted as an anterior displacement 

of the bone. Similarly, negative distances (from −2 to 0) are shown in 

cold colors, and are interpreted as a posterior displacement.  

 

2.2.2 | Quantification and visualization of the bone 

modeling patterns  

For the surface histology analysis, a grid of 5 × 5 mm squares was drawn on 

each cast (Martinez-Maza, Rosas, & Nieto-Diaz, 2013). The observations 

were made using an automated digital microscope (SmartZoom 5, Carl Zeiss 

Microscopy, Jena, Germany) with a 1.6x PlanApo D objective (zoom: ×34). 

Bone formation results from the activity of the osteoblasts that produce 

collagen fibers, identifiable as elongated structures on the  

 

 

 

 

FIGURE 3 Shape differences 

between populations visualized by 

superimpositions of the mean 

shapes. A: Greenlandic Inuit  
(blue) and South African (red);  
Greenlandic Inuit (blue) and  
Western European (orange); C:  
Western European (orange) and 

South African (red)  

 

 

 

FIGURE 4 Heat maps  
showing morphological  
differences between AG1 and  
2 (AG 1–2), AG 2 and 3 (AG 2–3), 

and AG 3 and 4 (AG3–4) for all 

populations. The differences are 

calculated as the closest  
distances between two meshes, 

which were first warped onto  
their corresponding mean  
configuration using a TPS  
interpolation (after independent 

GPA alignments for each  
population). Warm colors indicate 

positive distances, cold colors  
indicate negative distances. The 

color scale was set up on a range 

from −2 (minimum distance) to  
2 (maximum distance).  
Informative data are only  
considered for the surface in  
relation to the template, which  
exclude the teeth  
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surface (Figure 1b, left). Bone resorption is defined by the digestion of the 

bone by the osteoclasts, and results in multiple cavities known as Howship's 

lacunae (Figure 1b, right; Boyde, 1972). We analyzed each square and 

recorded the presence of the two activities on handmade maps. When both 

activities were present, another 2.5 × 2.5 mm grid was drawn within the 5 × 

5 mm squares so that pictures at a higher resolution (×101) could be taken 

with a PlanApo D ×5 objective.  

Following Schuh et al. (2019), areas of bone resorption were man- 

ually selected in order to be quantified using the software ImageJ 1.46r 

(Schneider, Rasband, & Eliceiri, 2012). A percentage of bone resorption 

(%BR) for each square of the grid was calculated, as well as the amount 

of bone resorption per individual by dividing the total %  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WE1 IN1 SA1 WE2 IN2 SA2 WE3 IN3 SA3 WE4 IN4 SA4  

FIGURE 5 Boxplot representing the variation of the percentages 

of bone resorption (%BR) in each age group for all populations.  
Orange: Western European (“WE1”; “WE2”; “WE3”; “WE4”); blue:  
Greenlandic Inuit (“IN1”, “IN2”, “IN3”, “IN4”); red: South African  
(“SA1”; “SA2”; “SA3”; “SA4”). Age groups' sizes equal to or less than five 

individuals were represented by dots in the corresponding  
population color. Each mean %BR  is indicated as a black dot  

 

 

BR by the total surface area of the bone. From these results, mean % 

BR and standard deviation were calculated for each age group. In order 

to compare and visualize the bone modeling patterns between 

populations, digital maps were computed for each individual in 

RStudio. The %BR at each square was associated with a color: low 

values of bone resorption were represented by warm colors, while high 

values were represented by cold colors. Areas with low amounts of bone 

resorption are represented by predominant amounts of bone formation; 

however, this analysis does not distinguish between highly active (as 

seen in young individuals) and quiescent (as seen in adults) bone 

formation. To make the comparison between the maps possible (as size 

differences exist between young and older individuals), scaling to a 

standardized grid of 8×8 squares was performed in R (see Schuh et al., 

2019 for a detailed description of the method). We then computed mean 

bone modeling maps per age group by calculating the average %BR at 

each square, excluding missing values. In order to visualize both changes 

in shape together with the bone modeling patterns, each mean bone 

modeling map was warped onto the 3D surface of its corresponding mean 

shape in Geomagic® Studio (Research Triangle Park, NC). Population 

similarities in the bone modeling patterns were tested for the age groups 

that present a sufficient number of individuals (i.e., AG 1 and 2) using a 

PERMANOVA (1,000 iterations). Moreover, in order to test if population 

differences are found in different areas of the maxilla, we performed a 

MANOVA on each square of the grid, followed by a Bonferroni correction 

of the p-values.  

 

2.2.3 | Joint analysis between bone modeling and 

morphological data  

Although differences and/or similarities in the bone modeling patterns 

might explain the variation observed at the morphological scale, the 

covariation between maxillary morphology and bone modeling might differ 

between human populations. Thus, we carried out two-block Partial Least 

squares (PLS) analyses (Rohlf & Corti, 2000) on the bone modeling data 

and the Procrustes coordinates (see Mayer, Metscher, Müller, and 

Mitteroecker (2014) as well as Schuh et al.(2019) for more details on the 

method). The PLS analysis computes pairs of linear combinations (called 

singular warps, “SW”; Bookstein et al., 2003) that account for the 

maximum of covariance between two blocks using the covariance matrix. 

Different PLS analyses were performed on the pooled sample to 

investigate general trends of covariation, and for each 

 

TABLE 3 Mean percentage and SD for each age group and population, associated to Figure 5  
 

 

1 37.6(24) 13.9 46.5(13) 19.9 39(11) 18  

2 34.2(27) 16.1 39.3(15) 18.7 33.9(8) 10.6 3

 29.8(2) 25.4 35.7(15) 19.1 29.2(2) 4.2  

4 19.6(6) 8.6 11.2(5) 7.4 19.6(10) 12.6  

Note:The number of individuals is given in parenthesis after the mean.  
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population separately (to avoid the influence of a group on the others). 

Missing values were first estimated using a regularized iterative PCA 

algorithm of the missMDA package (Josse & Husson, 2016). After this step, 

only 32 squares (variables) were kept. To correct for the effect of size, we 

computed a multivariate linear regression of the shape coordinates on the 

natural logarithm of the centroid size and performed another two-block 

PLS analysis between the shape residuals and the bone modeling data 

including all populations. The significance of each singular value was 

assessed using a permutation test (1,000 iterations).  

 

 
3 | RESULTS  

3.1 | Developmental trajectories and patterns of 

shape changes  

The developmental simulations are shown in Figure 2 (see also 

Supporting Information S1). Overall, all simulated individuals plot away 

from the non-simulated ones, implying different developmental 

trajectories for each population. In both cases, the simulated Inuit 

individuals from AG 1 result in an elongated trajectory along PC1 (shifted 

toward the positive values), although less elongated when following a 

South African trajectory. Similarly, South African individuals simulated 

along the Western European trajectory are shifted toward the positive 

values along PC 1, while Western Europeans simulated along the South 

African trajectory are shifted toward the negative values along PC 1, 

resulting in a shorter trajectory. Finally, both South Africans and Western 

Europeans, when simulated along the Inuit  

 

 

trajectory, are shifted toward the negative values (implying a shortened 

trajectory) as well as moved toward the negative values on PC2 (implying a 

change in direction). Shape differences between the three populations are 

shown in Figure 3. The Inuit maxilla is consistently shorter mediolaterally, 

both in the maxillary arcade and the frontal process that is more elongated 

superoinferiorly. South Africans are slightly more projected in the anterior 

maxilla, and Western Europeans show a more anteriorly developed 

anterior nasal spine (ANS).  

Figure 4 shows the heat maps computed between age group  

means' Procrustes coordinates, thus showing the developmental (or  

shape) differences between two pairs of age group means (AG 1–2, 2–

3, and 3–4). Overall, in all populations a posterior displacement (cold 

colors) is found in the inferior orbital ridge, the canine area, and in the 

anterior maxilla while a slight anterior dis- placement is found in the 

frontal process (warm colors). This suggests a shared general pattern of 

development between the three populations; however, slight 

differences can be observed. While in Inuit and South Africans the 

differences shown in AG 1–2 are small (the distance is close to 0 mm), 

Western Europeans show a marked  

 

TABLE 4 Degree of freedom (df), coefficient of determination (R2) 

and p-values of the PERMANOVA testing for population similarities in 

the bone modeling patterns at each age group, considered significant  
for p ≤.05  

Age group df R2 p-value  

1 2 0.07 .06  

2 2 0.07 .05  

 

 

 

 

 

 

 

 

 

 

 
FIGURE 6 Maps showing the 

average bone modeling pattern at 

each age group and for each  
population. Cold colors (between 

50 and 100%) indicate high  
amounts of bone resorption  
while warm colors (between  
0 and 50%) indicate low amounts 

of bone resorption  
(i.e., predominant bone  
formation, whether it is in an  
active or quiescent state). Each  
map was projected onto the  
mean shape of the corresponding 

age group  
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posterior displacement in the canine fossa. Most evident shape dif- 

ferences are found in AG 2–3 in all populations, with a posterior dis- 

placement located in the canine fossa. Finally, developmental 

differences between AG 3 and 4 appear very slight in both Inuit and 

Western Europeans. South Africans show a marked anterior dis- 

placement in the infraorbital region.  

 

3.2 | Patterns of bone modeling across human 

populations  

A percentage of bone resorption was obtained for each individual, and 

average %BR were calculated for each age group. Results are rep- 

resented as boxplots in Figure 5, and means and standard deviations are 

shown in Table 3. Overall, a similar pattern is observed in each 

population, showing a progressive decrease in the %BR, with the 

youngest age groups showing higher %BR on average than the adults 

(between 29.2 and 46.5% against 12 and 29.2%). Western Europeans 

show on average 10% less bone resorption than the two other 

populations, except in AG4. The average %BR in South African adults is 

higher than in the two other populations (29.2% against 19.6 and 12%). 

Standard deviations are generally higher in AG 1 and 2 (ranging from 

13.9 to 18.7) compared with AG 4 (ranging from 7.4 to 12.6). The 

Western European and South African AG3 show the highest and lowest 

values (25.4 and 4.2 respectively; n = 2 in each population).  

We computed the average bone modeling maps for each age group 

and projected them onto their corresponding mean shapes (Figure 6). 

We observed a general dichotomy of the bone, with the frontal process 

being mostly represented by bone formation (the %BR ranging from 0 to 

less than 50%), and the zygomatic process and maxillary arcade mostly 

resorptive (with percentages ranging from  

 

 

minimum 50 to 100%). Each population expresses differences in the 

location of bone resorption from early on. Western Europeans and South 

Africans show more resorption on the canine bulb and the canine fossa, 

with South Africans expressing also more resorption around the orbital 

ridge. The Inuit pattern expresses a maximum %BR in the ante- rior part 

of the maxillary arcade (on top of the incisors). Results from the 

PERMANOVA testing for population similarities in the bone modeling 

patterns are given in Table 4. Only AG 2 shows significantly different 

mean values in the %BR (p ≤ .05). In each population, the bone modeling 

pattern expressed in AG 1 is repeated until at least AG 3. The decrease of 

%BR observed in Figure 5 in AG 4 is well represented by the adult bone 

modeling maps that express low amounts of bone resorption. However, 

compared with the two other populations adult South Africans seem to 

maintain the pattern found in the subadults by expressing more resorption 

in the maxillary arcade.  

Figure7 shows the results of the MANOVA, testing for statistical dif-  

ferences in the bone modeling patterns at each square for each age group 

(see also Supporting Information S2). In AG 1, significant differences are 

located mostly at the bottom of the frontal process, along the zygomatico- 

maxillary suture and close to the inter-maxillary suture (in the anterior 

maxilla). In AG 2, the bone modeling pattern at the bottom and top (close 

to the frontomaxillary suture) of the frontal process were significantly 

different between populations, as well as along the zygomaticomaxillary 

suture.  

 

3.3 | Comparison between the micro- and 

macroscopic changes  

Figure 8 shows the PLS analysis between the Procrustes shape coor- 

dinates and the bone modeling data in all populations. The first pair of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 7 Maps showing the results of the MANOVA testing for significant differences between populations at each square of the grid. Gray squares 

show where the results are significant (for p ≤ .05)  
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FIGURE 8 Two-block partial least square (PLS) analysis between the bone modeling and morphological (shape) data (SW1). X-axis: bone  
modeling data; y-axis: morphological data, represented by the Procrustes shape coordinates. Each population is represented by a convex hull  
(blue: Greenlandic Inuit; red: South African; orange: Western European). Age group means are represented by dots and corresponding numbers.  
Solid lines connect the subsequent means 

 

TABLE 5 Percentages of total covariance, correlation coefficient 

and p-value, computed for the first singular warp (SW1) of the PLS 

analysis between Procrustes shape coordinates and the  
corresponding bone modeling patterns on all populations  

%Total covariance Correlation coefficient (R) p-value  

SW1 73 0.42 .001  
 

singular warps (SW 1) explains 75.6% of the total covariance between 

the two blocks (correlation coefficient: 0.42; Table 5). The x-axis 

separates the younger and older individuals (although more variation is 

seen in Western Europeans in the youngest age groups). On the y-axis, 

a shape change of the orbital ridge is observed. Although a high overlap 

is observed, the Inuit AG 1 individuals plot toward the positive values 

while the other two populations AG 1 plot toward the negative values. 

Changes on both axes toward  

 

 

positive values respectively correspond to a decrease in the bone 

resorption associated with an increase in height and width of the bone, 

particularly in the frontal process. Overall, the trajectories show a 

similar pattern of covariation between shape and bone modeling from 

AG 2 (corresponding to the completion of the M1) to AG 4 (adulthood), 

although the Inuit (in blue) show the most different trajectory (more 

constant, implying less shape change). They also show less overlap with 

the other two populations and less overall variability.  

To avoid the influence of each population on the others, separate  

PLS analyses were performed (Figure 9; Table 6). As before, a similar 

pattern is observed in all populations, with the highest variability 

observed in the youngest individuals (AG 1) and the lowest in the adults 

(AG 4). This corresponds to a general decrease in bone resorption in all 

populations, and an increase in height and width of the maxilla. The 

distribution of bone resorption, although overall very similar,  
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FIGURE 9 Two-block partial least square (PLS) analyses between the bone modeling and morphological (shape) data for each population  
(SW1). Left: plots for each population; (a) Greenlandic Inuit, (b) South African, (c) Western European. Age groups are delimited by convex hulls  
within each plot. Age group means are represented by dots and corresponding numbers. Solid lines connect the subsequent means. The Western 

European and South African AG 3 are only represented by two individuals, connected by a solid line and shown in the graph as numbers. Right: 

visualizations of the shape and bone modeling changes corresponding to SW1 positive and negative extremes 

 
TABLE 6 Percentages of total covariance, correlation coefficients 

and p-values, computed for the first singular warp (SW1) of the PLS 

analyses between Procrustes shape coordinates and the  
corresponding bone modeling data for all age groups in each  
population, separately  

p-  
value  

Greenlandic Inuit 73 0.62 .001 

Western  
European  

South African 74.2 0.51 .06  

 

shows slight differences in each population that are linked to shape 

differences, mostly in the frontal process and the projection of the 

anterior maxilla.  
 
 

4 | DISCUSSION  

We investigated the intraspecific variability of the bone modeling pat- 

terns in the maxillae of three human populations, and compared the 

expression of their microscopic patterns to the development of their 

macroscale features during ontogeny.  

%Total  
covariance  

Correlation  
coefficient (R)  

85.2 0.59 .001  
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4.1 | Maxillary morphology and ontogenetic 

patterns  

Previous studies have already shown that population differences in 

facial morphology develop early, possibly prenatally (Bastir, O'Higgins, 

& Rosas, 2007; Bulygina et al., 2006; Freidline et al., 2015; Sardi & 

Ramirez-Rozzi, 2012; Vidarsdóttir et al., 2002; Viðarsdottir & O'Higgins, 

2003); however, the morphological variation in prenatal stages has only 

been investigated in few studies (Mooney & Siegel, 1986; Weinberg, 

2005; Morimoto, Ogihara, Katayama, & Shiota, 2008; Nicholas, 2016). 

Using geometric morphometric techniques, Nicholas (2016) found 

shape differences in the fetal maxilla between African- and European-

Americans as early as the second trimester. The results of our 

morphological analysis further support these findings, as shape 

differences between the three populations can be observed already 

around birth (Figure 2). The developmental simulations performed on 

each population showed that they are not interchangeable, as 

differences in the trajectory sizes, shapes, and magnitudes could be 

observed (Adams & Collyer, 2009). At a similar age group, the Inuit 

maxilla is always larger and more developmentally advanced, and the 

shorter length of their developmental trajectory suggests less postnatal 

shape changes than in the two other populations. When interchanged, 

the South African and Western European trajectories mostly result in a 

displacement of the simulated adults along PC1, suggesting differences 

in the amount of shape change along a largely similar developmental 

trajectory in comparison to the Inuit. All of this suggests differential pre-

, as well as postnatal, rates and/or timings of development as already 

suggested by other studies (Sardi & Ramirez-Rozzi, 2012; Vidarsdóttir et 

al., 2002). Freidline et al. (2015) who analyzed the whole face and 

employed similar populations as in this study, demonstrated as well that 

facial morphological variability arises from differential developmental 

patterns, mostly driven by size differences.  

The heat maps in Figure 4 were computed to compare patterns of 

shape differences between subsequent age groups in the three 

populations. These shape differences were interpreted as the general, 

main displacements of the bone between two subsequent age groups (as 

the bones are continuously growing in all directions; Enlow,1966). All 

populations show a similar general pattern of displacements between 

age groups, with a main anterior displacement in the frontal process and 

most of the posterior displacement observed in the canine fossa. This 

corresponds to areas that are predominantly forming and resorptive 

throughout ontogeny, respectively (although bone resorption is 

expressed on intermediate levels; see the mean bone modeling maps in 

Figure 6). Inuit show less posterior displacement in the canine fossa, 

which can explain their midfacial flatness (Hennessy & Stringer, 2002); 

however, they do not differ from the other populations in the anterior 

maxilla where we expected the most differences (see discussion below). 

Interestingly, the heat maps all indicate a rather late development of the 

canine fossa, except between the Western European AG 1 and 2 that 

already show a mar- ked posterior displacement compared with the two 

other populations. The higher number of very young individuals in this 

population AG  

 

 

1 might explain this difference (such as in the South African AG 3–4 

represented by only two individuals).  

 

 
4.2 | Variability of the bone modeling patterns  

The analysis of bone resorption showed comparable distributions and 

means in the %BR in all populations (Figure 5, Table 3), although Inuit 

possess slightly more resorption on average. We found a shared gen- 

eral bone modeling pattern in all three populations (Figure 6), with 

predominant bone formation in the frontal process and bone resorption 

in the maxillary arcade as shown in former studies (Brachetta-Aporta, 

Gonzalez, & Bernal, 2019a; Enlow & Bang, 1965; Kurihara, Enlow, & 

Rangel, 1980; Martinez-Maza et al., 2013; Schuh et al., 2019). 

However, we did find significant statistical differences in bone modeling 

between the three populations (Table 4). These differences have been 

highlighted in the location of bone resorption (Figures 6 and 7), 

particularly in the Inuit pattern that shows a more anterior area of bone 

resorption (on top of the incisors' roots); this observation can already be 

made from AG 1 as shown by the results of the MANOVA (Figure 7, 

Supporting Information S2). Both Inuit and Western Europeans possess 

taller and narrower nasal regions than South Africans, and our results 

seem to suggest that significant differences in bone modeling exist in this 

region that comprises the frontal process and the anterior maxilla (Figure 

7; also shown at the morphological level in Figure 3); although this would 

have to be tested on more individuals. Moreover, we observed that 

population-specific bone modeling patterns are present since early 

stages, and maintained throughout ontogeny until at least adolescence 

(AG 3 in our sample); however, this could not be tested statistically. Yet 

with this observation, we can still conclude that the expression of bone 

resorption is likely a highly genetically controlled process, and its 

location on bone surfaces underlies the development of a specific form. 

The repetition of a bone modeling pattern within a group/species may 

be indicative of developmental canalization (Hallgrímsson, Willmore, & 

Hall, 2002; Waddington,1942).  

The progressive decrease observed throughout ontogeny in the 

percentages of bone resorption (attaining lower values and less varia- 

tion in adults) implies lowered osteoblastic and osteoclastic activities 

that follow a general decrease in the growth rate of the face in later 

ontogeny (Bastir, Rosas, & O'Higgins, 2006). McCollum (2008) 

described different types of bone resorption, such as “aggressive” and 

“skimming.” Skimming resorption affects the bone less, and according to 

our data, is more predominant in adults, which again suggests dif- 

ferences in cellular rates between the latter and the subadults. Bone 

resorption is also slightly less predictable, and when present as small- 

localized fields, may indicate areas of bone remodeling in response to 

biomechanical demands. Interestingly, adult South Africans in our 

sample show a higher %BR than the two other populations; this might be 

due to the composition of this age group (with younger adults), but 

demonstrates that bone modeling can stay as active as during child- 

hood until at least early adulthood. In a study from 2013, Martinez- Maza 

and colleagues found differences in the bone modeling patterns  
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of subadult and adult Western Europeans. According to the authors, 

resorption in adults is restricted to the posterior canine region. They 

concluded that these differences result in a change of the general facial 

growth vector, from a mainly forward/downward vector found in 

subadults to a unique forward direction in adults. Although a similar 

finding is shown in our adult Western Europeans (n = 6; Figure 6), we 

generally observed that areas affected by bone resorption in adults are 

comparable to those observed in subadults, as discussed by Brachetta-

Aporta, Gonzalez, and Bernal (2019b). It is thus difficult to conclude 

whether a significant change in the general direction of growth occurs 

between the two. Changes in facial size and shape during adulthood have 

been demonstrated by several studies (Behrents, 1985; Behrents, 2008; 

Guagliardo, 1982; Hellman, 1927; Israel, 1968, 1977; Williams & Slice, 

2010). These changes can be found in both the soft tissues (Behrents, 

2008; Windhager et al., 2019) and bones (Albert, Ricanek, & Patterson, 

2007). Williams and Slice (2010) observed a decrease in facial height in 

the supero-inferior direction, as well as a lateral expansion associated 

with age. The authors observed shape changes in the orbital, zygomatic, 

and maxillary alveolar regions, with variations dependent of the sex 

and/or ethnic origin studied. Whether they relate to bone modeling 

changes in elderly individuals remains to be tested.  

 

4.3 | Facial ontogenetic patterns at the micro- and 

macroscopic scale  

Inuit possess distinct external and internal nasal shapes that have been 

linked to an adaptation to cold climates (Maddux et al., 2017), and 

different analyses in this study suggest that bone modeling patterns of 

this area slightly differ between populations(Figures6and7). Apart from 

the nasal region, morphological adaptation to climate has proved 

complex in human populations, as their association can only be 

highlighted in cases of extremely cold environments (Evteev et al., 2013; 

Harvati & Weaver, 2006). South Africans who possess rather short and 

broad frontal processes (Figure 3) express slightly more bone formation 

in this area, while Inuit and Western Europeans who possess more 

elongated frontal processes show resorption until at least AG 3. 

Moreover, the anterior nasal spine (ANS), a unique human morphological 

feature (Ashley-Montagu, 1935), is known to show population 

differences in its development (Mooney & Siegel, 1986). In this study, 

the ANS region is often resorptive in subadults, particularly in Inuit who 

consistently show a reduction in the size of the ANS compared to the 

other two populations (Figure 3). Thus, the forward development of the 

ANS might depend on the ratio between bone formation and resorption 

to which it is subjected during ontogeny. This also shows the importance 

of considering different human groups in the analysis of intraspecific 

variation of the bone modeling patterns, as previous work with reduced 

sample sizes found mostly bone formation in this region (Enlow & Bang, 

1965). Moreover, the location of the maximum %BR (in the anterior 

maxilla) is unique to the Inuit sample of this study (Figure 6). According to 

Hylander (1977), the Inuit face is well adapted to high load demands, as 

many of their  

 

 

facial features facilitate the dissipation of vertical occlusion forces such 

as a more anteriorly positioned postorbital bar, an anterior root of the 

zygomatic bone, and hypertrophied masseter muscles. Coon (1962) also 

noted an anterior displacement of the temporalis (that is on average 

larger than in other populations) and masseter. Toro-Ibacache, Zapata 

Muñoz, and O'Higgins (2016) observed lowered peak strains in more 

vertical faces, which could apply to the Inuit as their facial prognathism 

is reduced compared with other populations. Thus, a more anterior 

resorptive field (on the incisors) as well as a more lateral development 

of the facial components might be linked to their facial flatness, whereas 

a more lateral resorptive field (on the canine fossa) might create a more 

concave maxilla as seen in Western Europeans and South Africans. We 

thus propose that the location of bone resorption on the bone may be 

a response to larger-scale ontogenetic patterns (such as integration 

patterns within the skull), and result from compensatory mechanisms as 

proposed by other authors (Mitteroecker et al., 2020; O'Higgins, 

Bromage, Johnson, Moore, & McPhie, 1991). Finally, the analysis of 

covariation between the shape residuals and the bone modeling 

patterns again highlighted subtle population differences (Figure 8, 

Supporting Information S3 and S4), while overall, a similar general 

pattern is found (Figure 9). This suggests that only slight, but significant 

changes in the location of the bone modeling patterns participate in the 

shape differences observed in human populations.  

 

 
5 | CONCLUSION  

This study investigates for the first time the bone modeling patterns of 

several geographically distinct human populations, and shows the 

importance of considering a large, diverse sample to try to better rep- 

resent the variation at the species level. We showed that although Homo 

sapiens express overall similar general maxillary ontogenetic bone 

modeling patterns and shape changes, population-specific differences 

can be found at both levels. These are expressed in the rates and timing 

of development that occur pre- and post-natally, in the complex 

integration of the face with other cranial components during ontogeny 

as well as in the location of bone resorption (particularly in the nasal 

region). The subtle discrepancies in the bone modeling patterns 

observed in this study suggest that shape differences are merely due to 

differences in rates and/or timings of development (at the cellular level) 

than differences in the location of bone resorption. Inuit are the most 

distinct at both levels, showing more advanced maxillary development 

and a more anteriorly resorptive field, which could explain the 

horizontal development of their midface. Moreover, this study shows 

that population-specific bone modeling patterns in H.sapiens are 

maintained throughout ontogeny; and this may apply as well to other 

hominin species. Although most of the features are established at birth, 

changes in the bone modeling and morphological patterns observed 

here highlight the role of later phases of postnatal ontogeny in shaping 

the human face. Adults show an important reduction in the total 

percentage of bone resorption, but resorbing areas are found at similar 

locations than subadults. These results bring new  
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insights into our knowledge of ontogenetic patterns that lead to 

morphological variability.  

 

ACKNOWLEDGMENTS  

We would like to thank the two anonymous reviewers for their con- 

structive comments, as well as J.-L. Kahn (Anatomical Institute of the 

University of Strasbourg, France), H. Coqueugniot (UMR 5199 PACEA, 

University of Bordeaux, France), C. Feja (University of Leipzig, 

Germany), N. Lynnerup (Department of Forensic Medicine of the Uni- 

versity of Copenhagen, Denmark), the Greenland National Museum 

(Greenland), W. Seconna (Iziko Museum of Cape Town, South Africa) 

and V. Gibbons (University of Cape Town, South Africa), D. Morris 

(McGregor Museum of Kimberley, South Africa), A. Santos (Depart- 

ment of Life Sciences, University of Coimbra, Portugal) and A. Rosas 

(Department of Paleobiology, MNCN, Madrid, Spain) for giving us 

access to the collections. We are also grateful to P. Mitteroecker (Uni- 

versity of Vienna, Austria) and V. Toro-Ibacache (Faculty of Dentistry, 

University of Chile, Santiago) for fruitful discussions, and E. Schulz- 

Kornas (University of Leipzig, Germany) and Heiko Temming (Max 

Planck Institute for Evolutionary Anthropology, Leipzig, Germany) for 

technical assistance. This work was funded by the Max Planck Society, 

and approved by the South African San Council. Open access funding 

enabled and organized by Projekt DEAL.  

AUTHOR CONTRIBUTIONS  

Alexandra Schuh: Conceptualization; formal analysis; investigation; 

methodology; validation; visualization; writing-original draft; writing- 

review and editing. Chiara Villa: Data curation; resources. Kornelius 

Kupczik: Project administration; resources; supervision. Philipp Gunz: 

Formal analysis; supervision; writing-original draft. Jean-Jacques 

Hublin: Funding acquisition. Sarah Freidline: Conceptualization; meth- 

odology; project administration; supervision; validation; writing-original 

draft; writing-review and editing.  

CONFLICT OF INTEREST  

The authors declare no conflict of interest.  

DATA AVAILABILITY STATEMENT  

The data that support the findings of this study are partly available on 

request from the corresponding author. The data are not publicly 

available due to ethical restrictions.  

 

ORCID  

Alexandra Schuh https://orcid.org/0000-0003-1645-1220  
 

REFERENCES  

Adams, D.C., & Collyer, M.L. (2009). A general framework for the analysis  
of phenotypic trajectories in evolutionary studies. Evolution: Interna-  
tional Journal of Organic Evolution, 63(5),1143–1154.  

Albert, A. M., Ricanek, K., & Patterson, E. (2007). A review of the litera-  
ture on the aging adult skull and face: Implications for forensic  
science research and applications. Forensic Science International,  
172(1), 1–9.  

 

 

AlQahtani, S. J., Hector, M. P., & Liversidge, H. M. (2010). Brief communi-  
cation: The London atlas of human tooth development and eruption.  
American Journal of Physical Anthropology, 142(3), 481–490.  

Ashley-Montagu, M. F. (1935). The premaxilla in the primates. The Quar-  
terly Review of Biology, 10(1), 32–59.  

Bastir, M., O'Higgins, P., & Rosas, A. (2007). Facial ontogeny in Neander-  
thals and modern humans. Proceedings of the Biological Sciences, 274 
(1614), 1125–1132.  

Bastir, M., & Rosas, A. (2004). Comparative ontogeny in humans and chim-  
panzees: Similarities, differences and paradoxes in postnatal growth  
and development of the skull. Annals of Anatomy - Anatomischer  
Anzeiger, 186(5), 503–509.  

Bastir, M., Rosas, A., & O'Higgins, P. (2006). Craniofacial levels and the  
morphological maturation of the human skull. Journal of Anatomy, 209 
(5), 637–654.  

Behrents, R. G. (1985). Growth in the aging craniofacial skeleton (2nd ed.  
Vol. Monograph 17). Ann Arbor: University of Michigan.  

Behrents, R. G. (2008). Adult craniofacial growth. In D. H. Enlow & M. G.  
Hans (Eds.), Essentials of facial growth (2nd ed.). USA. Ann Arbor:  
Needham Press.  

Bookstein, F. L. (1997). Landmark methods for forms without landmarks:  
Morphometrics of group differences in outline shape. Medical Image  
Analysis, 1(3), 225–243.  

Bookstein, F. L., Gunz, P., Mitterœcker, P., Prossinger, H., Schæfer, K., &  
Seidler, H. (2003). Cranial integration in Homo: Singular warps analysis  
of the midsagittal plane in ontogeny and evolution. Journal of Human  
Evolution, 44(2), 167–187.  

Boyde, A. (1972). Scanning electron microscope studies of bone. In G. H.  
Bourne (Ed.), The biochemistry and physiology of bone. New York: Aca-  
demic Press.  

Brachetta-Aporta, N., Gonzalez, P. N., & Bernal, V. (2019a). Variation in facial  
bone growth remodeling in prehistoric populations from southern South  
America. American Journal of Physical Anthropology, 169(3), 422–434.  

Brachetta-Aporta, N., Gonzalez, P. N., & Bernal, V. (2019b). Integrating  
data on bone modeling and morphological ontogenetic changes of the  
maxilla in modern humans. Annals of Anatomy - Anatomischer Anzeiger,  
222, 12–20.  

Bromage, T. G. (1989). Ontogeny of the early hominin face. Journal of  
Human Evolution, 18, 751–773.  

Bulygina, E., Mitteroecker, P., & Aiello, L. (2006).Ontogeny of facial dimor-  
phism and patterns of individual development within one human pop-  
ulation. American Journal of Physical Anthropology, 131(3), 432–443.  

Butaric, L.N., & Maddux, S.D. (2016). Morphological Covariation between  
the maxillary sinus and Midfacial skeleton among sub-Saharan and cir-  
cumpolar modern humans. American Journal of Physical Anthropology,  
160(3), 483–497.  

Churchill, S.E., Shackelford, L.L., Georgi, J.N., & Black, M.T. (2004). Morpho- 
logical variation and airflow dynamics in the human nose. American 
Journal of Human Biology: The Official Journal of the Human Biology 
Association 16(6), 625-638.  

Coon, C. (1962). The origin of races. New York: Alfred A. Knopf.  
Coon, C., Garn, S., & Birdsell, J. (1950). Races: A study of the problems of race 

formation in man, Springfield, Illinois: Charles C. Thomas.  
Cruwys, E. (1988). Morphological variation and wear in teeth of Canadian 

and Greenland Inuit. Polar Record, 24(151), 293–298.  

Cui, Y., & Leclercq, S. (2017). Environment-related variation in the human 

mid-face. The Anatomical Record, 300(1), 238–250.  
Deter, C. A. (2009). Gradients of occlusal wear in hunter-gatherers and 

agriculturalists. American Journal of Physical Anthropology, 138(3),  
247–254.  

Enlow, D. H. (1962). A study of the post-natal growth and remodeling of  
bone. American Journal of Anatomy, 110(2), 79–101.  

Enlow, D. H. (1966). A morphogenetic analysis of facial growth. American  
Journal of Orthodontics, 52(4), 283–299.  

Enlow, D. H., & Bang, D. D. S. (1965). Growth and remodeling of the  
human maxilla. American Journal of Orthodontics, 51(6), 446–464.  

55

https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220
https://orcid.org/0000-0003-1645-1220


Chapter 2 
__________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 

Evteev, A., Cardini, A. L., Morozova, I., & O'Higgins, P. (2013). Extreme cli-  
mate, rather than population history, explains mid-facial morphology  
of northern Asians. American Journal of Physical Anthropology, 153(3),  
449–462.  

Franciscus, R. G., & Long, J. C. (1991). Variation in human nasal height  
and breadth. American Journal of Physical Anthropology, 85(4), 419–427.  

Freidline, S. E., Gunz, P., & Hublin, J. J. (2015). Ontogenetic and static  
allometry in the human face: Contrasting Khoisan and Inuit. American  
Journal of Physical Anthropology, 158(1), 116–131.  

Freidline, S. E., Martinez-Maza, C., Gunz, P., & Hublin, J. J. (2017). Explor-  
ing modern human facial growth at the micro- and macroscopic levels.  
Christopher J. Percival & Joan T. Richtsmeier In Buidling bones. Cam-  
bridge: Cambridge University Press.  

Frost, H. M. (1987). Bone “mass” and the “mechanostat”: A proposal. The  
Anatomical Record, 219(1), 1–9.  

Gonzalez-Jose, R., Ramirez-Rozzi, F., Sardi, M., Martinez-Abadias, N.,  
Hernandez, M., & Pucciarelli, H.M. (2005). Functional-cranial  
approach to the influence of economic strategy on skull morphology.  
American Journal of Physical Anthropology, 128(4), 757–771.  

Guagliardo, M. (1982). Craniofacial structure, aging and dental function:  
Their relationships in adult human skeletal series. (doctoral dissertation).  
University of Tennessee, Knoxville. 

Gunz, P., & Mitteroecker, P. (2013). Semilandmarks: A method for quanti-  
fying curves and surfaces. Hystrix, the Italian Journal of Mammalogy, 24 
(1), 103–109.  

Gunz, P., Mitteroecker, P., & Bookstein, F. (2005). Semilandmarks in three  
dimensions. In D.E. Slice (Ed.), Modern Morphometrics in physical  
Anthroplogy. New York: Kluwer Press.  

Gunz, P., Neubauer, S., Maureille, B., & Hublin, J.-J. (2010). Brain develop-  
ment after birth differs between Neanderthals and modern humans.  
Current Biology, 20(21), R921–R922.  

Hallgrímsson, B., Willmore, K., & Hall, B. K. (2002). Canalization, develop-  
mental stability, and morphological integration in primate limbs. Ameri-  
can Journal of Physical Anthropology, Suppl 35, 131–158.  

Hanihara, T. (1996). Comparison of craniofacial features of major human  
groups. American Journal of Physical Anthropology, 99(3), 389–412.  

Hanihara, T. (2000). Frontal and facial flatness of major human populations.  
American Journal of Physical Anthropology, 111(1), 105–134.  

Harvati, K., & Weaver, T.D. (2006). Human cranial anatomy and the differ-  
ential preservation of population history and climate signatures. The  
Anatomical Record. Part A, Discoveries in Molecular, Cellular, and Evolu-  
tionary Biology, 288(12), 1225–1233.  

Hawkes, E. W. (1916). Skeletal measurements and observations on the  
point Barrow Eskimos with comparisons from other Eskimo groups.  
American Anthropologist, 18, 203–234.  

Hellman, M. (1927). Changes in the human face brought about by develop-  
ment. International Journal of Orthodontia, Oral Surgery and Radiogra-  
phy, 13(6), 475–516.  

Hennessy, R.J., & Stringer, C.B. (2002). Geometric morphometric study of  
the regional variation of modern human craniofacial form. American  
Journal of Physical Anthropology, 117(1), 37–48.  

Holton, N.E., & Franciscus, R.G. (2008). The paradox of a wide nasal aper-  
ture in cold-adapted Neandertals: A causal assessment. Journal of  
Human Evolution, 55(6), 942–951.  

Howells, W. (1973). Cranial variation in man: A study by multivariate analysis  
of patterns of difference among recent human populations. Cambridge:  
MA: Harvard University Press.  

Howells, W. (1989). Skull shapes and the map: Craniometric analyses in the  
dispersion of modern homo. Cambridge: MA: Harvard University Press.  
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Highlights 

 

 Overall, chimpanzees and humans express different patterns of maxillary bone modeling 

 Some similarities in the location of bone resorption suggest that some aspects of the ontogenetic 

patterns are shared between the two species 

 Chimpanzees show lower amounts of bone resorption than humans, and express a different 

pattern of variation 

 The development of the canine eminence in chimpanzees, and the corresponding changes in bone 

modeling associated to this feature, is a major factor driving the differences in maxillary 

development between the two species 
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Abstract 

 

The study of bone modeling (the simultaneous activities of bone formation and resorption during 

ontogeny) can help determine whether similar features in different species develop via similar or distinct 

ontogenetic patterns. Facial orientation (projection and degree of prognathism) in hominins is highly 

variable, and little is known about the dynamics behind the expression of the bone modeling patterns that 

lead to this variation. In this study, quantitative methods were applied to a cross-sectional ontogenetic 

sample of 33 chimpanzees (Pan troglodytes verus) and 59 Homo sapiens in order to compare the 

development of maxillary prognathism to orthognathism at both micro- and macroscopic (or 

morphological) scales. We find that the two species possess different bone modeling patterns. 

Chimpanzees express on average lower amounts of bone resorption than humans throughout ontogeny, 

as well as less variation within age group. Using Partial Least Squares analyses, we show that the 

covariation between bone modeling and shape is low in both species. This suggests that bone modeling 

is a highly stable process, and that most morphological changes are obtained via changes in cellular rates 

and/or timing of development. Moreover, although both patterns differ, some similarities in the location 

of bone resorption suggest the preservation of shared ontogenetic patterns. 

 

Key words: bone modeling; bone resorption; facial ontogeny; premaxilla 

 

 

Introduction 

 

A general trend in hominin evolution relates to changes in position of the face in relation to the 

neurocranium. These changes have occurred in a complex, mosaic fashion, thus showing a high variability 

within and between species (Bastir and Rosas, 2004a). Early hominins such as Australopithecus and 

Paranthropus possess anteriorly projected and prognathic faces while in Homo, the face is less projected 

(Lacruz et al., 2019). It has long been proposed that these adjustments in orientation were concomitant 

with increases in brain size and basicranial flexion due to the morphological integration of the craniofacial 
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elements (e.g., Gould, 1977; Ross and Ravosa, 1993; Enlow and Hans, 1996; Lieberman et al., 2000a; 

Mitteroecker and Bookstein, 2008; Neaux, 2013a, 2018;). Several studies have pointed to the role of 

basicranial flexion and its influence on the positioning of the face during ontogeny, and vice versa 

(Lieberman et al., 2000b; Bastir and Rosas, 2005, 2006, 2016; Bastir et al., 2004,  2010; Scott et al., 2018). 

Recent findings have refined this view, and showed the complexity of the relationship between the two 

modules when considered on a larger evolutionary time scale (Hublin et al., 2017; Neubauer et al., 2018). 

Moreover, modifications of the degree of maxillary prognathism as well as in the shape of the maxillary 

and mandibular arcades (from a “U” to a more parabolic shape) have also been observed (e.g., Ward et 

al., 1999; Asfaw et al., 1999; Clarke, 2012; Spoor et al., 2015; Neaux et al., 2013b; Stelzer et al., 2017). 

However, the mechanisms leading to the aforementioned changes are still largely unknown. 

Complex processes orchestrate developmental changes in shape and orientation of the 

craniofacial elements. The shape of a bone is driven by multiple pleiotropic genes (Hallgrímsson et al., 

2019; Katz et al., 2019). As bones enlarge through local signaling between sutures (Rice, 2008) they are 

subjected to new developmental constraints due to the physical limitation imposed by the surrounding 

bones and soft tissues (Moss and Young, 1960). Consequently, responses from the osteogenic and 

osteoclastic cellular activities will be triggered, and modify and/or readjust the shape of the bone 

accordingly. This process is called bone modeling (Enlow, 1962; Frost, 1990). It is represented by bone 

formation, the apposition of new collagen fibers at the surface of the bone, and bone resorption, the 

reverse mechanism that removes bone. Along with sutural growth, bone modeling is thus the process by 

which a bone acquires its adult form. Previous studies have shown that the unique, orthognathic face of 

H. sapiens results from the presence of a large resorptive field in the maxilla from early to late ontogenetic 

stages (Enlow and Bang, 1965; Kurihara et al., 1980; Martinez-Maza et al., 2013; Brachetta-Aporta et al., 

2017; Schuh et al., 2019). Thus, the study of facial bone modeling patterns can refine our understanding 

of the cellular mechanisms that drive macroscopic (or morphological) changes during facial ontogeny. 

Bromage (1989) and McCollum (2008) analyzed the facial bone modeling patterns of several 

Australopithecus, as well as Paranthropus specimens. Both authors showed that differences in the 

expression of bone resorption exist between the two genera, mostly located in the maxilla. While 

Paranthropus consistently show a resorptive field in the premaxilla from early stages, this area is 

predominantly forming in Australopithecus, which suggests important differences regarding the 

development of their midfacial prognathism. Bromage (1989) proposed that this resorptive pattern, 

together with an extreme rotation of the maxilla in Paranthropus, explain their unique, derived facial 
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orientation. However, recent studies have shown that Australopithecus sediba (Berger et al., 2010) as well 

as Homo antecessor (Bermudez de Castro et al., 1997) also express resorption in the premaxillary region 

(Lacruz et al., 2013, 2015). This might suggest that, as showed by Martinez-Maza et al. (2015) on 

chimpanzees and gorillas, some aspects of the bone modeling patterns can be shared between species 

although they express specific facial features and orientations (Bromage, 1992). Thus, questions remain 

about the relationship between bone modeling and shape within and between species presenting 

different degrees of maxillary prognathism, and which of those aspects relate to primitive or derived 

conditions. 

A new way to investigate these questions is by investigating the patterns of morphological 

changes together with the study of bone modeling in an integrative approach. The quantification and 

visualization of shape changes can be addressed via the use of geometric morphometric techniques (e.g., 

Bookstein, 1997; Gunz et al., 2005; Mitteroecker and Gunz, 2009), while surface histology allows for the 

study of the microscopic processes at the surface of dry bones (e.g., Boyde, 1972; Bromage, 1985). 

Previous studies using both methods have shown their complementarity for the analysis of facial 

ontogenetic processes, as it allows for a more global approach of the ontogenetic processes at the macro- 

and microscopic levels (O’Higgins and Jones, 1998; Martinez-Maza et al., 2015; Freidline et al., 2017). 

Moreover, the recent development of new methods for the quantification and visualization of the bone 

modeling patterns has improved our knowledge of these microscopic processes (Brachetta-Aporta et al., 

2017; Schuh et al., 2019, 2020). Schuh et al. (2019) have shown that in humans, bone resorption covers 

about a third of the total surface of the maxilla throughout ontogeny, with only a slight increase observed 

between birth and the first months of life. Similarly, the location of bone resorption, and the patterns of 

covariation between bone modeling and maxillary shape show little variation across several diverse 

human populations with distinct maxillary morphologies (Schuh et al., 2020). Altogether, this suggests 

that bone resorption in the maxilla is a highly controlled process at all stages of life. 

While intra-specific variation in human facial bone modeling has been reasonably explored, this 

is not the case for non-human great apes. In particular, the chimpanzee facial bone modeling pattern has 

been investigated in only a few studies (Johnson et al., 1976: the mandible; Bromage, 1989: the midface; 

McCollum, 2008: the maxilla; Martinez-Maza et al., 2015: the entire face) with somewhat contradicting 

results. McCollum (2008) showed that in the maxilla, resorptive areas are mostly located near the fronto-

maxillary and zygo-maxillary sutures, in the premaxilla and posterior to the canine, as well as in the 

posterior maxilla. However, Bromage (1989) and Martinez-Maza et al. (2015) found little resorption in the 
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premaxilla. This stresses the need to further investigate the bone modeling patterns of this species, as it 

can represent a proxy for other species with comparable degrees of maxillary prognathism. 

The objectives of the present study are to (1) refine our knowledge of the chimpanzee maxillary 

bone modeling pattern by using a sample with maximal preservation of the bone surface. As so far, studies 

of the chimpanzee bone modeling pattern have remained qualitative, the variability of this process is still 

unknown for that species. Moreover, it is still unclear which aspects of the bone modeling patterns are 

specific to or shared between species. Martinez-Maza and colleagues (2015) found similarities in the 

location of variable and constant bone modeling patterns between chimpanzees, gorillas and humans, 

which could suggest that some aspects of the bone modeling patterns are shared between great apes.  

Schuh et al. (2019) showed that maxillary bone resorption slightly increases between birth and the first 

months of life, and then stabilizes to about a third of the total surface area until adolescence. We thus 

test whether this pattern is found as well in chimpanzees. In doing so, we (2) quantify for the first time 

bone resorption in the chimpanzee maxilla. We predict that, in addition to possessing a different bone 

modeling pattern (Bromage, 1989; McCollum, 2008; Martinez-Maza et al., 2015), prognathism of the 

chimpanzee maxilla arises from lower amounts of bone resorption than in humans who possess vertically 

oriented (orthognathic) maxillae and high amounts of bone resorption (Schuh et al., 2019, 2020). As the 

chimpanzee’s premaxilla follows an upward rotation during post-natal ontogeny (McCollum, 1999; 

Martinez-Maza et al., 2015), this displacement should be associated with predominant bone formation 

following Enlow (1965). We also (3) investigate if changes in size and shape induce changes in the bone 

modeling patterns. Indeed, most shape changes during ontogeny are due to ontogenetic allometry, the 

covariation between shape and size (Cheverud, 1982), and changes in this covariation pattern generates 

variation in adult forms (Vidarsdóttir et al., 2002; Freidline et al., 2015). However, some changes might be 

linked to other factors than growth of the bone itself, such as the development of the teeth. Chimpanzees 

develop large upper canines that together with the lower third premolars form a honing complex that has 

progressively been lost during the course of hominin evolution (Delson et al., 1977; Manthi et al., 2012; 

Delezene, 2015). We predict that a key difference between the human and chimpanzee bone modeling 

pattern relates to the development of the canine eminence in the latter. Finally, we (4) examine the 

covariation between the morphological shape and bone modeling changes.  
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Materials and Methods  

 

Sample 

 

Our sample comprises 59 H. sapiens of Western European origin (Anatomical Institute of the University 

of Strasbourg, France; Anatomical Institute of the University of Leipzig, Germany; Coimbra 

Anthropological collection, Portugal), and 33 chimpanzees (Pan troglodytes verus) from the Taï National 

Park, Côte d’Ivoire (housed at the Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; 

Table 1). Calendar ages and sexes are known for most of the individuals (SI 1). They were classified into 

five age groups according to dental development (AlQahtani et al., 2010; Smith et al., 2010): no teeth 

erupted (AG 1); developing deciduous dentition, until completion (AG 2); first permanent molar (M1) fully 

erupted (AG 3); second permanent molar (M2) fully erupted (AG 4); third permanent molar (M3) fully 

erupted (or adult; AG 5). In order to obtain negative molds of the right and left maxillae, a low-viscosity 

silicone (President Plus light body, Coltene/Whaledent AG, Switzerland) was applied onto the bone 

surface following Bromage (1989). High-resolution positive replicas were then obtained by applying a 

transparent 5 Minute epoxy resin (Epoxidharz 2K-Kleber transparent, Devcon) on the molds. Only the 

best-preserved side (left or right maxilla) was kept for the analysis. Individuals with obvious pathologies 

or important surface alterations were avoided. Computed tomography (CT) scans were acquired for each 

individual at a resolution between 0.06 to 0.2 mm (BIR ACTIS 225/300), and surface models were 

generated using the software Avizo (Thermo Fisher Scientific). 

 

Table 1   Sample composition. 

 Age groups  Sex  

  1 2 3 4 5  Females Males Unknown Total 

 H. sapiens 7 36 8 2 6  32 27 / 59 

 P. troglodytes 2 7 8 7 9  15 14 4 33 
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Analyses 

Microscopic analysis: surface histology Following Schuh et al. (2019), the surface analysis was performed 

using a digital optical microscope (Smart Zoom 5, Zeiss, Jena, Germany) with a 5x PlanApo D objective 

(zoom: 101x). A 5 x 5 mm grid was drawn on each cast, and pictures of the surfaces of interest (where 

both formation and resorption were seen in one square; see Fig. 1) were taken with the same objective 

after dividing the 5x5 mm squares into four 2.5 x 2.5 mm squares. All pictures were loaded into the 

software ImageJ 1.46r (Schneider et al., 2012) to be analyzed. As bone formation represents the 

predominant process, only areas of bone resorption were manually selected on each picture and 

transformed into percentages (for each square of the 5 x 5 mm grid, and then per specimen) to be 

quantified. From the obtained percentages of bone resorption (%BR), digital bone modeling maps of each 

individual were generated in R Studio (R Studio Team , 2016; see Schuh et al. (2019) for the details on the 

method). To visualize general trends in the bone modeling patterns in each species, mean bone modeling 

maps were computed for each age group and projected onto their respective mean forms (see below) in 

Geomagic Studio®. 

 

 

Fig. 1: Example of a subsquare showing both bone formation and resorption in Pan 

troglodytes verus. Bone formation is characterized by the presence of mineralized 

collagen fibers (black arrows), as well as small osteocytes lacunaes (white arrow). Bone 

resorption is identified by the presence of Howship‘s lacunaes that spread over the 

surface (delimited by the orange line). Scale bar: 1 mm. 
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Macroscopic analysis: geometric morphometrics A template of 249 semilandmarks (9 fixed landmarks, 40 

curve semilandmarks and 200 surface semilandmarks) was applied on each individual (SI 2 and 3) in the 

software Viewbox (dHAL software). Missing data were estimated in R Studio (R Studio Team, 2016) using 

a TPS interpolation (package Morpho; Schlager, 2017). When applied on the left maxilla, the set of 

landmarks was mirrored to obtain only right configurations. In order to assure geometric homology, the 

curve and surface semilandmarks were allowed to slide along tangents to the curves, and planes to the 

surface, respectively. This step minimizes the bending energy of the TPS interpolation function between 

all configurations and the consensus (Gunz and Mitteroecker, 2013). Finally, a Generalized Procrustes 

Analysis (GPA) was performed (Rohlf and Slice, 1990; Bookstein, 1991) in order to standardize the 

position, orientation and scaling to a unit centroid size. Mean configurations were computed for each age 

group and species. As we were interested in visualizing both the changes in shape and size (i.e., form) 

together with bone modeling changes, the Procrustes shape coordinates were multiplied by their 

corresponding centroid size. A chimpanzee or human mesh was then warped onto each corresponding 

mean landmark configuration using a TPS interpolation. As described above, the corresponding mean 

bone modeling maps were then projected onto each mean form.   

In order to investigate if changes in bone modeling relate to size increases and/or shape changes, 

the relative amounts of size and shape between birth and adulthood were calculated for each species. 

The mean centroid sizes and shapes were calculated for each age group, and differences between each 

subsequent age groups’ means were computed. The adult means were considered as representing the 

total amount of changes (i.e., 100%) for both size and shape. Furthermore, the patterns of maxillary shape 

changes within each species were visualized. The shape differences were computed after calculating the 

Procrustes distances between AG 1 and 3, and AG 3 and 5 mean shapes only (so as to increase the 

differences for a better visualization). Prior to this step, independent GPAs were performed on each 

species to avoid any influence of the sample composition on the results. For the visualization, deformation 

grids were also computed using the thin plate spline method (Bookstein, 1998).  

 

Joint analysis between morphological and bone modeling data To assess the covariation patterns between 

the morphological and microscopic changes in the two species, a two-block Partial Last square (PLS) 

analysis (Rohlf and Corti, 2000) between the Procrustes shape coordinates and the bone modeling data 

was performed on the pooled sample (see Mayer et al., 2014 as well as Schuh et al., 2019). To correct for 

species’ differences in shape, the coordinates were mean-centered by removing each age group’s mean 
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to all individuals in each species (Mitteroecker and Bookstein, 2008; Scott et al., 2018). Separate PLS 

analyses were performed as well on each species. Missing values in the bone modeling data were first 

estimated for each age group of each species in R Studio (R Studio Team) using a regularized iterative PCA 

algorithm of the missMDA package (Josse and Husson, 2016). Results were visualized by computing 

extreme shapes and bone modeling maps on each axis (+/- 2 standard deviations from the mean).  

 

Results 

 

Surface histology analysis 

Visualization of the bone modeling patterns Figure 2 shows the mean bone modeling maps at each age 

group. In both species, the patterns are similar between all age groups, with the first age group differing 

the most from the others. In humans, the maximum %BR is found on the canine bulb and at the tip of the 

frontal process in AG 1. Similarly, AG 2 expresses a comparable pattern; however, resorption is distributed 

across the whole maxillary arcade and in higher percentages. The third and fourth age groups express 

similar patterns, with a reduction in %BR in the frontal process and comparable percentages in the 

maxillary arcade. In adults (AG 5), the maximum %BR is reduced and localized posteriorly in the canine 

fossa and zygomatic process.  
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Fig. 2: Mean bone modeling maps for each age group and species. A: H. sapiens; B: Pan troglodytes. 

The color scale represents the percentages of bone resorption (blue tones: high %BR, red tones: 

low %BR). A low %BR indicate predominant bone formation. 

 

In the chimpanzee AG 1, the highest %BR is found in the premaxilla while the rest of the bone is 

forming. In AG 2, the maximum %BR is found in the entire anterior maxilla, as well as in the zygomatic 

process. In the subsequent age groups, this pattern is repeated, although the canine eminence becomes 

predominantly forming in AG 3 and until adulthood, and resorption increases in the post canine region. 

Some resorption can be found as well near the fronto-maxillary suture and along the naso-maxillary suture 

up until AG 4. 

 

Quantification of the bone modeling patterns The boxplot in Figure 3 shows the variation of the 

percentages of bone resorption in each age group in each species. Humans (in blue) already express high 

%BR in the first age group (mean: 23.5 %). This increases in AG 2 (mean: 37.7 %), and stabilizes in AG 3 

AG3 

% BR 

10
0 

0 

A. 

B. 

AG5 AG4 AG2 AG1 
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(mean: 37 %). A progressive decrease is observed in the following age groups (mean AG 4: 29.2 %; mean 

AG 5: 19.6 %). The variation observed at each age group is high, mostly in AG 2 and 3. 

Fig. 3: Boxplots showing the variation of individual %BR, in H. sapiens (blue boxes) and Pan 

troglodytes (green boxes). Mean %BR values are indicated and represented as black dots. As the 

chimpanzee AG 1 and the human AG 4 are only represented by two individuals, they were only 

represented by dots. 

 

 Chimpanzees show a different pattern than humans, with on average lower values in each age 

group. An increase in resorption is found between AG 1 and 2 (from 4 to 15.5 %). A decrease is observed 
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at AG 3, showing an average value comparable to AG 1 (5.8 %). A slight increase is then found in AG 4 

(mean: 11.9 %) and 5 (13.2 %). Compared to humans, the variability within each age group is lower, except 

in AG 2 that shows a comparably large distribution. 

 

Morphological analysis 

 

Relative amounts of growth and development Figure 4 shows the relative amounts of growth (inner circle) 

and development (outer circle) in each species and between age groups. In chimpanzees, a progressive 

decrease in growth is observed from AG 1 to 4 (from 31.7 to 19.2 %), followed by a slight increase between 

AG 4 and 5 (from 19.2 to 22.8 %). The largest amount of development in chimpanzees is found between 

the first two age groups (50.1%), which then progressively decreases (AG 2-3: 18.9%; AG 3-4: 17.1%; AG 

4-5: 13.9%). In humans, most of the growth is acquired between AG 2 and 3 (41.7 %), after which it 

decreases to 8.5 %. An increase is then observed between AG 4 and 5 (19.4 %). The amounts of relative 

development between age groups is almost equally distributed (AG 1-2: 27%; AG 2-3: 25.9%; AG 3-4: 

22.6%; AG 4-5: 24.5%). 

 

 

Fig. 4: Pie charts showing the relative amounts of growth (inner circles) and development (outer 

circles) in Pan troglodytes verus (left, green) and Homo sapiens (right, blue). Percentages indicate the 

amount of growth and developmental change between subsequent age groups. 
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Maxillary shape differences between age groups In order to visualize the patterns of shape changes in the 

two species, differences between age groups 1 and 3, and 3 and 5 are shown in Figure 5. In both species, 

differences between AG 1 and 3 are the largest, and highly similar. They are mostly present in the frontal 

and zygomatic process, as well as in the premaxilla. The slight difference between the two species lies in 

the area of the canine (see also the TPS grid, lateral view); arrows point to a more backward direction in 

the human compared to the more forward direction in the chimpanzee. In the comparison between AG 3 

and 5, shape differences are also found in similar areas in both species, although more differences are 

found in the human AG 3-5. They are largely reduced compared to AG 1-3, and concern similar areas. The 

slight difference between the two species is found in the lower maxillary arcade in the human AG 3-5, 

which points to a more backward direction.   
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Fig. 5: Shape differences between the human (left, blue) and chimpanzee (right, green) age group 

means 1 and 3, and 3 and 5. Center: the largest differences are represented by longer arrows. On 

each side: TPS grids in the coronal plane are shown in frontal and lateral view, and represent shape 

differences between AG 1 and 3 (top) and AG 3 and 5 (bottom). 

 

 

Covariation between maxillary bone modeling patterns and shape changes 

 

A PLS analysis was computed between the bone modeling data and the Procrustes shape coordinates on 

the pooled sample. The first three singular warps represent 73.8 % of the total covariation (Table 2). The 

AG 1-3 

AG 3-5 

Frontal Frontal Lateral Lateral 
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first singular warp (SW1; Fig. 6) accounts for 36.2 % of the total covariance (R = 0.29). On the x-axis, 

humans (in blue) are slightly shifted towards higher values, especially in age groups 2, 3 and 4. The 

corresponding changes along this axis are associated to an increase in bone resorption in the maxillary 

arcade, and a slight decrease of the latter in the frontal process. The y-axis, represented by the shape 

data, separates the individuals along their ontogenetic sequence in both species. Changes are mostly 

associated with an increase in height of the maxilla. Overall, both species follow similar covariation 

patterns up until AG4, after which the direction of the covariation pattern changes. Human adults plot 

toward lower values, which corresponds to a general decrease in bone resorption while adult 

chimpanzees plot toward higher values which corresponds to an increase in bone resorption. The main 

differences observed between the two species are mostly due to the degrees of shape changes between 

age groups, as well as in the amounts of bone resorption. Humans are generally more variable in their 

bone modeling patterns than chimpanzees. In both species, only subtle changes in bone modeling are 

observed. 
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Fig. 6: Two-block partial least square (PLS) analysis between the bone modeling and morphological 

data (first singular warp; SW 1). X axis: bone modeling data. Y axis: Procrustes shape coordinates. 

Blue: Homo sapiens, green: Pan troglodytes verus. Convex hulls delimit each age group. The two 

individuals in the chimpanzee AG 1 and the human AG 4 are connected by a line. Age group means 

are represented by dots. Solid lines connect the subsequent means. Changes in bone modeling 

and shape along the axes are represented by bone modeling maps (x-axis) and warps (y-axis) with 

a standard deviation of +/- 2. In the bone modeling maps, cold colors indicate high percentages of 

bone resorption, and warm colors, low percentages of bone resorption. 
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Independent PLS analyses were performed on each species (Fig. 7 and 8). Figure 7 shows the 

results for the patterns of covariation between bone modeling data and shape changes in the chimpanzee 

(SW 1 and 2; Table 3). The first singular warp (SW 1) represents 59.3 % of the total covariance (R = 0.63). 

Both axes separate the young and the older individuals along the ontogenetic sequence. Changes along 

the x-axis (from negative to positive values) are associated to an increase in bone resorption in the 

zygomatic process and canine fossa, as well as along the inferior orbital margin and in the anterior maxilla. 

On the y-axis, an increase in height of the bone and an increase in width of the frontal process are 

observed. Moreover, the formation of a canine eminence and a deep canine fossa are found in positive 

values towards which older age groups plot. The second singular warp (SW 2) represents 19 % of the total 

covariance (R = 0.7). On the x-axis, AG 1 and 3 means are separated from AG 2, 4 and 5 (although a lot of 

overlap is found). This corresponds to an increase in bone resorption in the anterior part of the maxilla 

and in the zygomatic process, as well as a slight decrease in the frontal process. On the y-axis, AG 1, 2 and 

3 means are separated from AG 4 and 5. Changes associated with this axis mostly concern the shape of 

the frontal process, which is enlarged at its base (from negative to positive values), as well as a slight 

decrease in prognathism.  

 

Table 2   Percentages of total covariance, correlation coefficients and p-values, computed for the three first singular 

warps (SW 1, 2 and 3) of the PLS analysis between the Procrustes shape coordinates and the bone modeling patterns 

on the pooled sample. 

 

 % Total covariance Correlation coefficient (R) 

SW1 36.2 0.29 

SW2 27.1 0.28 

SW3 10.5 0.44 
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Fig. 7: Two-block partial least square (PLS) analysis between the chimpanzee bone modeling and 

morphological data on the first two singular warps (SW 1 and 2). Top: x axis: bone modeling data; 

y axis: Procrustes shape coordinates. Convex hulls delimit each age group. The two individuals in 

AG 1 are connected by a line. Means are represented by squares and connected by dark green 

solid lines. Similarly, males (triangles) and females (stars) means are connected by light green solid 

lines. The male’s AG3 and AG5 means are connected by a dashed line as only one male is found in 

AG4. Bottom: bone modeling and shape changes associated to SW 1 and 2 (sd +/- 2). In the bone 

modeling maps, cold colors indicate high percentages of bone resorption, and warm colors, low 

percentages of bone resorption. 
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 Figure 8 shows the results of the PLS analysis between bone modeling and shape data in humans 

(SW 1 and 2; Table 4). The first singular warp corresponds to 79.3 % of the total covariance (R = 0.56). 

Similar to the chimpanzees, both axes separate the individuals along the ontogenetic sequence. Changes 

along the x-axis from negative to positive values correspond to a decrease in bone resorption in the whole 

bone, which separates adults from subadults. Corresponding morphological shape changes are associated 

to an increase in height of the bone, as well as in width of the frontal process. In the latter, shape changes 

can also be observed. The second singular warp (SW 2) represents 11.2 % of the total covariance (R = 

0.55). On the x-axis, AG 1 and 5 are separated from the other age groups that plot more towards negative 

values. This corresponds to a general decrease in bone resorption in the maxillary arcade and zygomatic 

process, as well as a slight increase at the tip of the frontal process. On the y-axis, AG 1 is separated from 

the other age groups. Associated shape changes (from negative to positive values) mostly correspond to 

a decrease in width of the frontal process. 

 

Table 3   Percentages of total covariance, correlation coefficients and p-values, computed for the first two singular 

warps (SW 1 and 2) of the PLS analysis between the Procrustes shape coordinates and the bone modeling patterns 

in chimpanzees. 

 

 % Total covariance Correlation coefficient (R) 

SW1 59.3 0.63 

SW2 19 0.7 
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Fig. 8: Two-block partial least square (PLS) analysis between the human bone modeling and 
morphological data on the first two singular warps (SW 1 and 2). Top: x axis: bone modeling data; 
y axis: Procrustes shape coordinates. Convex hulls delimit each age group. The two individuals in 
AG 4 are connected by a line.  Means are represented by squares and connected by dark green 
solid lines. Similarly, males (triangles) and females (stars) means are connected by light green solid 
lines. The male’s AG3 and AG5 means are connected by a dashed line. Bottom: bone modeling and 
shape changes associated to SW 1 and 2 (sd +/- 2). In the bone modeling maps, cold colors indicate 
high percentages of bone resorption, and warm colors, low percentages of bone resorption. 
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Table 4   Percentages of total covariance, correlation coefficients and p-values, computed for the first two singular 

warps (SW 1 and 2) of the PLS analysis between the Procrustes shape coordinates and the bone modeling patterns 

in humans. 

 

 % Total covariance Correlation coefficient (R) 

SW1 79.3 0.56 

SW2 11.2 0.55 

 

 

Discussion 

 

This study sets out to quantify for the first time the bone modeling patterns of the chimpanzee 

maxilla during ontogeny in order to better understand how maxillary prognathism is established from a 

microscopic point of view in comparison to the orthognathic maxilla of Homo sapiens. The chimpanzee 

maxillary pattern was quantified, and investigated at both morphological and microscopic scales. 

 

Prognathic or orthognathic: a microscopic point of view 

 

As already showed in previous studies, the human and chimpanzee maxillary bone modeling patterns 

differ in the location of bone resorption (Fig. 2). While bone resorption is predominant in the human 

maxilla, chimpanzees possess low amounts of bone resorption, mostly restricted to the premaxilla and 

the zygomatic process. Thus, as expected prognathic faces are built via a majority of bone formation, 

which is seen in other primate species as well (Enlow, 1966; O’Higgins et al., 1991; Walters and O’Higgins, 

1992; O’Higgins and Jones, 1998; Wealthall, 2002; Martinez-Maza et al., 2015). According to some of these 

aforementioned studies, cercopithecids seem to show less bone resorption on the maxilla than hominids, 

although this assumption is based on qualitative observations. Future studies applying quantitative 
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methods on a wider range of primate species will help refining which ontogenetic processes are specific 

to each family. 

We also show for the first time that humans and chimpanzees possess different patterns of 

variation in their percentages of bone resorption (Fig. 3). Indeed, chimpanzees possess on average less 

bone resorption, and their expression of the osteoclastic activity during ontogeny differs. In humans, the 

mean %BR increases between AG 1 and 2 and then decreases, whereas in chimpanzees, changes are more 

variable (increasing between AG 1 and 2, then decreasing in AG 3, then slightly increasing again). In the 

chimpanzee AG 3, the variability within each age group is substantially reduced. Humans on the other 

hand, show a surprisingly high variability at each age group (as well as between individuals of similar ages; 

see Schuh et al., 2019). Interestingly, the chimpanzee AG 2 shows a similar distribution in the %BR than 

seen in humans, which corresponds to the highest amounts of bone resorption as well as the phase for 

which resorption is the most spread out in that species (Fig. 2). A high variability in the %BR indicates a 

rapid turnover between resorption and formation, which could be related to the maintenance of a stable 

cortical thickness. Indeed, the increased resorbing activity such as found in humans may have represented 

an evolutionary challenge, as the cortical thickness of the maxilla is almost constantly being resorbed; this 

must have been outweighed by compensatory mechanisms (such as a rapid replacement with bone 

formation) to prevent the bone from being destroyed. 

Although we found that the human and chimpanzee bone modeling patterns differ, the results of 

the present study are in agreement with Martinez-Maza and Freidline (2015) who proposed that great 

apes share some aspects of their bone modelling pattern during ontogeny. In our data, both humans and 

chimpanzees are resorptive in the fronto-, zygomatico- and inter-maxillary sutures, although some 

differences exist in the expression of bone resorption at these sutures. This can be linked to a shared 

general pattern of facial integration, which has already been demonstrated by several studies 

(Ackermann, 2002; Bastir and Rosas, 2004; Mitteroecker and Bookstein, 2008; Singh, 2012; Neaux et al., 

2018; Stelzer et al., 2017). Future studies should analyze the bone modeling patterns of other species to 

investigate which aspects of the bone modeling patterns are shared between all hominids. Another 

common aspect shared by both species is the similarity of the bone modeling patterns throughout 

ontogeny. Both humans and chimpanzees acquire their bone modeling pattern early (in the first year of 

life), and this pattern stays relatively constant until adulthood. This observation has already been made 

by several authors (O’Higgins et al., 1991; Martinez-Maza et al., 2015; Schuh et al., 2019, 2020), indicating 

that the maxilla is subjected to strong developmental constraints in both species. Moreover, the few 
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changes in location of bone resorption suggest that shape changes mostly stem from modifications of the 

rates and/or number of the cells (cellular differentiation) responsible for the two activities. 

Our chimpanzee sample is unfortunately too unbalanced to further assess whether males and 

females differ in the expression of bone resorption. A preliminary investigation of males and females 

mean bone modeling patterns suggests no difference between sexes (SI 4; see also Schuh et al. (2019) for 

a similar discussion on humans), although differences in prognathism have been reported (Schultz, 1969; 

Mooney and Siegel, 1991). This will have to be tested on more individuals in the future. In the chimpanzee 

AG 3, which is mostly represented by males, the average %BR is particularly low. Although the sample size 

of this age group limits our interpretation, this could correspond to a growth phase of the canine, which 

is known as sexually dimorphic in chimpanzees (Leutenegger, 1982; Schwartz and Dean, 2001). The canine 

root completion occurs around 12 years of age, thus showing a rather late post-natal development 

(Kuykendall, 1996; Zihlman et al., 2007). Interestingly, McCollum (2008) also showed that individuals of a 

similar dental stage (M1 fully erupted) express overall less bone resorption, while Bromage (1989) only 

found forming areas in the premaxilla of specimens of a similar dental stage. It might thus be that the 

decrease in bone resorption highlighted by our study in AG 3 corresponds to a growth phase of the canine 

eminence rather than a sampling artefact. Moreover, it is likely that the reduction and progressive loss of 

the canine honing complex such as seen in hominins (Delezene, 2015) resulted as well in modifications of 

the corresponding bone modeling patterns. 

 

Maxillary morphogenesis at the macroscopic scale 

 

Due to their shorter life span, chimpanzees have faster post-natal ontogenetic rates than humans (Gavan, 

1953; Hamada, 1996). When looking at the growth and development of the two species separately (Fig. 

4), we can observe differences gained between each age group. Both species show the high amount of 

development between the first two age groups, which is linked to the highest amount of growth in 

chimpanzees. This is associated with a general increase in bone resorption in the whole bone in both 

species. However, in humans the amount of growth is largest between AG 2 and 3, which does not affect 

the total %BR of the bone. In this phase, resorption is replaced by formation in the frontal process, which 

implies potential changes in shape or a readjustment in position of this area. Similarly, the amount of 

shape (i.e., development) change between the human AG 3 and 4 is associated to a low amount of growth. 
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Although these results might be dependent on sample size, dissociations between shape and size suggest 

that not all shape changes are associated to size increases (i.e., allometry) as discussed by Bastir and Rosas 

(2004a). In chimpanzees, the amount of development decreases between each subsequent age group, 

while in humans this pattern remains rather constant, which could explain the maintenance of high 

percentages of bone resorption until late stages in the latter group (Fig. 4). 

We found a similar overall patterns of shape change in the two species (Fig. 5). Both indicate a 

general forward/downward movement of the maxilla, which corresponds to the general growth vector of 

the whole face observed in great apes by different authors (Krogman, 1931 a,b,c; Todd, 1932; Enlow and 

Bang, 1965; Bromage, 1992; Bastir and Rosas, 2004a; Martinez-Maza et al., 2015). Moreover, we could 

observe each species’ specific features such as a more backward displacement of the canine fossa in 

humans (Fig. 5, AG 1-3), and a more forward displacement of the anterior maxilla in chimpanzees 

(especially at later stages; see TPS grids and AG 3-5 in Fig. 5). In humans, this displacement is associated 

to high amounts of bone resorption in the canine fossa (Fig. 2), which, as mentioned above, has already 

been shown by several studies (Enlow and Bang, 1965; Kurihara, 1980; Martinez-Maza et al., 2013; 

Brachetta-Aporta et al., 2017; Schuh et al., 2019, 2020). Similarly, in chimpanzees the post canine region 

becomes progressively more concave, which is associated to an increase in bone resorption in this area in 

later age groups (Fig.2). In the meantime, the forward development of the canine eminence is associated 

to increased bone formation. Thus, bone modeling responds to both global as well as local factors. 

The covariation patterns between bone modelling and morphology were assessed via the use of 

PLS analyses (Fig. 6, 7 and 8). We show that when considering the highest amount of covariance (SW 1), 

in both species changes in maxillary shape are mostly driven by ontogenetic allometry, and shows similar 

covariation patterns except between adolescent (AG 4) and adults (Fig. 7 and 8; see also SI 5). Overall, in 

both species this covariation is low, which implies few changes in the bone modeling patterns throughout 

ontogeny within each species, as already discussed above and showed by several authors (O’Higgins et 

al., 1998; Schuh et al., 2019, 2020). Again, this suggests that differences in shape are acquired through 

changes in rates and/or timing of the cellular activities during ontogeny. The second singular warp (SW 2) 

indicates divergent covariation patterns (Fig. 3 and 4); however, in both species the main change 

associated to SW 2 is found in the shape of the frontal process, which is likely associated to shape changes 

of the orbit (as described in Mitteroecker et al., 2004). This area is always predominantly associated to 

bone formation, which suggests that more plastic (i.e., variable) areas are found in regions of low bone 

resorption, as discussed by Schuh et al. (2019). As it seems that facial region that show high amounts of 
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bone resorption are more constrained during ontogeny, this might imply that these are also more 

informative on the phylogenetic level. In the present case, this corresponds to the shape of the maxillary 

arcade, often described as phylogenetically informative (Rak, 1983; McCollum, 1999; Spoor et al., 2015; 

Stelzer et al., 2018). Overall, these results suggest that the shape of the upper maxilla is highly dependent 

on the development of the surrounding bones (particularly in the upper part, or frontal process), which is 

due to its central position within the craniofacial complex. Finally, humans seem more variable in maxillary 

shape than chimpanzees, although this could be related to the small sample size of the latter. Including 

other subspecies of chimpanzees could increase the variation observed in this study on both micro- and 

macroscopic levels.   

 

Premaxillary development in extant and extinct species 

 

Bromage (1989) and McCollum (2008) both found that Paranthropus shows bone resorption in 

the premaxilla (or clivus) early in ontogeny (corresponding to AG 2 in our study). Bromage (1989) proposed 

that this resorptive represents a derived condition in comparison to the Australopithecus and 

chimpanzees used in the study, which consistently showed predominant bone formation in this area. 

Using a larger comparative sample of both humans and chimpanzees, McCollum (2008) refined this view 

by showing the presence of bone resorption in the chimpanzee premaxilla. However, the author could 

only observe resorption in late maxillary ontogenetic stages. In contrast, our results show that such as in 

Homo sapiens, resorption is already present around birth in chimpanzees, and covers the premaxilla 

during developing decidual dentition (Fig. 2). Moreover, other species such as A. sediba and Homo 

antecessor also express bone resorption in this area, as showed by Lacruz et al. (2013, 2015). Thus, it is 

still unclear whether bone resorption in the premaxilla represents a pattern shared by all hominins, or if 

the shape and orientation of this area resulted from multiple convergences.   

As discussed by Villmoare et al. (2014), the hominin premaxilla is highly variable in morphology 

and orientation, which relates to its modularity. Such as in humans, an early closure of the premaxillary 

suture (connecting the maxilla to the premaxilla) occurs in Paranthropus, which, together with a reduction 

in size of the incisors, affected the orientation of the premaxilla (described as less prognathic; Wallace , 

1978; Simpson et al., 1990; Braga , 1998; Maureille and Braga, 2002; Villmoare et al., 2014). In contrast, 

chimpanzees possess anteriorly projected premaxilla, large upper incisors and a long patency of the 
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premaxillary suture. On the individual scale, higher %BR are found closer to the nasal aperture in 

chimpanzees. This might be a continuation of the resorptive area found in the nasal cavity floor, which 

creates an upward rotation of the premaxilla found in all great apes (McCollum and Ward, 1997). Although 

we expected this displacement to be associated to predominant bone formation (H2), we propose that 

this rotation must be achieved via differential rates of the cellular activities between outer (periosteal) 

and inner (endosteal) surfaces. The resorptive activity on the periost might not be as active and/or rapid 

as the formation on the endost. Altogether, these results suggest that the premaxillary bone modeling 

pattern responds to more local rather general ontogenetic patterns as suggested by Martinez-Maza et al. 

(2013). Moreover, we show that similarities in the location of bone resorption such as seen in the 

premaxilla can result in various orientations of the concerned area. This implies that changes targeting 

the rates and modes of expression of the cellular activities are more easily accomplished in comparison 

to those implying their relocation on the bone surface. Moreover, premaxillary orientation seems highly 

dependent of the sutural activity and growth of inner elements (such as the vomer, hard palate, teeth and 

nasal septum; McCollum and Ward, 1997; Villmoare et al., 2014).      

 

Conclusion 

 

We have shown that in the growing human and chimpanzee maxilla, prognathism and orthognathism are 

established via different processes. These are found in the amounts of growth and development acquired 

throughout ontogeny between age groups in each species, which can be dissociated (i.e., not exclusively 

linked to allometric patterns). On the microscopic scale, differences in the amount of bone resorption can 

be found from birth on. Humans possess high amounts of bone resorption early and throughout ontogeny. 

Moreover, they express a tendency to more rapid turnovers between the two cellular activities, as seen 

by the high variation in the percentages of bone resorption. Our results also suggest that the development 

of the chimpanzee canine eminence, which implies an increase in bone formation on the periosteal 

surface, is a major factor driving the differences between the two species. It is likely that the mosaic 

evolution of the canine honing complex during hominin evolution was accompanied by changes in the 

bone modeling pattern of this area. However, some similarities in the location of bone resorption (such 

as found near the sutures) indicate that aspects of the ontogenetic patterns are shared between the two 

species. Moreover, resorption in the premaxilla is found in some species of Australopithecus and 
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Paranthropus. This suggests that similar patterns of bone modeling can result in different shapes and 

orientation. These results emphasize the need to investigate both macro- and microscopic scales together 

in an integrated approach. 
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Conclusion 
 

 

The primary aims of this thesis were to improve our understanding of ontogenetic variation in 

facial bone modeling patterns within and between extant species, and establish a solid framework 

for future bone modeling studies of fossil hominins via the development of objective methods for 

the quantification of facial bone modeling patterns. The Homo sapiens midface (in particular, the 

maxilla) exhibits unique features that are used to define us as a species and our phylogenetic 

relationships to other hominins. Among those features, the canine fossa is often cited as 

characterizing H. sapiens. However, its use in phylogenetic studies has been debated, as it might 

represent a secondary character acquired along with facial size reduction observed in Homo 

(Maddux & Franciscus, 2009; Freidline et al., 2013). Understanding the development of facial 

features is thus of crucial importance, as similar traits expressed in different species might follow 

distinct developmental pathways. This thesis investigated the variability of bone modeling patterns 

in three different chapters. Chapter 1 explored the ontogenetic maxillary bone modeling patterns 

in a single population of H. sapiens individuals in order to quantify their variability at the 

population level, and described the novel methodological approach. In Chapter 2, maxillary bone 

modeling patterns and shape changes during ontogeny were established in a larger ontogenetic 

sample of three geographically diverse human populations to infer intraspecific variability in 

maxillary bone modeling patterns. Finally, Chapter 3 compared the results obtained for H. sapiens 

in Chapters 1 and 2 to an ontogenetic sample of chimpanzees (Pan troglodytes) to evaluate 

maxillary bone modeling patterns in these two taxa with differing maxillary projections 

(orthognathic versus prognathic, respectively). 

Previous studies of facial bone modeling patterns have mainly relied on qualitative instead 

of quantitative data, which has long represented a limitation to the interpretation of this ontogenetic 

process (although see Brachetta-Aporta et al., 2017). Moreover, visual representations of bone 

modeling patterns have so far been conducted using hand-drawn 2D maps, which could have 

hampered objective comparisons of the bone modeling patterns. To address these limitations, I 

developed a novel method that integrates bone modeling with morphological data (Chapter 1). 

Using optical microscopy and digital imaging (SmartZoom 5, Zeiss), I was able to collect data on 

an unprecedentedly large sample of individuals in a significantly lower amount of time. The 

quantification of bone resorption was directly performed on the images taken on the bone surface, 

and digital maps representing each individual’s bone modeling pattern were created. These maps 

were projected onto 3D models of the growing maxilla, allowing for a dynamic vision of the 

changes in bone modeling throughout ontogeny. The analysis of bone modeling patterns included 

the observation and quantification of two critical parameters, which are discussed below: (1) the 

location of bone resorption on the bone surface, and (2) the amount of bone resorption calculated 

for each individual. 
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In Chapter 2, the variability of bone modeling and shape changes was assessed during 

growth in three human populations. The results demonstrated that there is actually a low 

intraspecific variation in the location of bone resorption throughout ontogeny, despite population 

differences in maxillary shape. It has been proposed that differences in diet found in human groups 

induce variation in facial morphology (González-José et al., 2005; Menéndez et al., 2014) and 

thus, in bone modeling (Brachetta-Aporta et al., 2017). To the contrary, the results of this thesis 

suggest a limited influence of such epigenetic factors on maxillary bone modeling patterns. 

Similarities in the location of bone resorption on the maxillary surface between human groups 

rather result from a process that is highly controlled throughout ontogeny. Moreover, a preliminary 

investigation of the variation in adult bone modeling patterns suggests a continuation of similar 

processes into at least early adulthood, although at reduced intensities (Chapter 2). Altogether, 

these results show that intraspecific variation in maxillary morphology among humans mostly 

stems from changes in rates and timings of bone formation and resorption instead of modifications 

of the location of these activities on the bone. Looking at the bone modeling patterns in a different 

primate (the sooty mangabey), O’Higgins and collaborators (1991) proposed a similar conclusion. 

Moreover, as these results were found as well in chimpanzees (Chapter 3), the stability in the 

location of bone resorption may apply to all primate species. Thus, bone modeling patterns can be 

inferred from a limited number of individuals, which will be beneficial to discuss the bone 

modeling patterns of extinct species for which sample sizes are generally low and subadult 

individuals are scarce. 

 Moreover, I show that the use of quantitative data, rather than previously qualitative 

methods, helped to refine which aspects of bone modeling are species-specific. Chimpanzees 

possess low amounts of bone resorption in the maxilla, which indicates that bone formation 

participates in the anterior projection of their face. In contrast, the human maxillary arcade shows 

high amounts of bone resorption. This constrains the forward direction of growth and results in a 

vertical face (see Chapters 1 and 3; Enlow , 1965, 1966a, b; Martínez-Maza et al., 2013). Another 

human specificity that is not found in chimpanzees, relates to the high variation in the amounts of 

bone resorption. It was found that individuals of similar ages can express drastically different 

amounts of bone resorption throughout ontogeny, varying up to 40 percent (Chapter 1). Such a 

high variation might indicate rapid turnover rates between bone formation and resorption. I 

propose that the frequent replacement of bone resorption by bone formation represents a protective 

mechanism, avoiding damage to the cortical bone, which is thin in human maxillae. Indeed, high 

amounts of bone resorption might be harmful for the maxillary arcade that contains the teeth. 

Altogether, these results demonstrate that changes in developmental factors affecting the 

regulation of osteoclasts and/or their precursor cells are likely to have occurred, to account for the 

specific maxillary morphology of H. sapiens. 

Although humans and chimpanzees express different maxillary bone modeling patterns, 

some aspects of these patterns are shared between the two species. More generally, similarities in 

facial bone modeling patterns between species have already been highlighted in other studies. 

These mostly relate to the location of bone resorption, such as in the coronoid process of the 
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mandible (Johnson et al., 1976; Rosas & Martínez-Maza, 2010; Martínez-Maza et al., 2015). In 

Chapter 3, I showed that this applies to the maxilla as well, as bone resorption is present along all 

maxillary sutures in both chimpanzees and humans throughout ontogeny. Moreover, although the 

amount of bone resorption differs between humans and chimpanzees, in both taxa the region of 

highest bone resorption is expressed in the anterior maxilla (or premaxilla; the region that 

comprises the upper incisors) and the zygomatic process (along the zygomatico-maxillary suture). 

These results tentatively support previous studies showing that some aspects of growth and 

development are highly conserved within primates, and, more generally, within the mammalian 

skull (e.g., Krogman, 1931a,b,c; Todd, 1932; Hallgrímsson et al., 2007; Martínez-Abadías et al., 

2012). Indeed, during embryonic development similar homeotic genes are found in a wide range 

of mammalian species (Martin et al., 1995; Xu et al., 2019). These genes are known to have 

pleiotropic effects (i.e., one gene is involved in the development of multiple phenotypic traits), 

which results in developmental covariation, or integration, of the craniofacial elements (Cheverud, 

1996; Hallgrímsson et al., 2009). In the skull, patterns of developmental integration have been 

found to be shared among great apes (e.g., Ackermann, 2002; Bastir & Rosas, 2004; Mitteroecker 

& Bookstein, 2008; Coquerelle et al., 2013; Scott et al., 2018). Thus, the findings of this research 

demonstrate that similarities in bone modeling patterns are likely to result from conserved, shared 

patterns of growth and development in the hominid1 skull. 

 
 

Future directions 

 

The findings of this thesis demonstrate the potential of bone modeling studies to investigate 

maxillary development, as well as other regions of the face and cranium. Additional future research 

avenues would improve our ability to understand the evolution of the face in humans as well as 

our extinct relatives. These include several research areas that are in their infancy, including the 

study of prenatal development, variability across primates, the relationship between genetics and 

morphology, as well as differences in the rates of development, such as in cellular activity and 

angiogenesis. These are discussed below. 

The role of prenatal development in establishing species-specific features has been 

highlighted by numerous studies (e.g., Richtsmeier et al., 1993; Mooney & Siegel, 1986; Ponce de 

León & Zollikofer, 2001; Viðarsdóttir et al., 2002; Viðarsdóttir & O'Higgins, 2003; Weinberg, 

2005; Bulygina et al., 2006; Bastir et al., 2007; Morimoto et al., 2008; Sardi & Ramirez-Rozzi, 

2012; Freidline et al., 2015; Nicholas, 2016); however, prenatal bone modeling patterns remain 

poorly understood. A small number of preliminary investigations of the human fetal mandibular 

bone modeling patterns have been conducted (Enlow, 1975; Mauser et al., 1975; Radlanski et al., 

2001, 2003), and remain to be performed on other facial bones and elements of the cranium. The 

analysis of young individuals (around birth) suggested that the human maxillary bone modeling 

pattern is already present in the first few months of life (Chapter 1). Investigating prenatal 

                                                           
1 The family comprising the common ancestor of all hominins and great apes, and their descendants (Cartmill, 2018). 
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maxillary bone modeling patterns will establish at which stage of fetal development the conserved 

pattern of bone modeling can be found. Furthermore, as this thesis focused on the ontogenetic 

processes of the maxilla, postnatal bone modeling patterns of other facial bones remain to be 

examined. Some bones might show greater variation in bone modeling than the maxilla. For 

example, sex-specific craniofacial patterns of growth and development have been highlighted in 

humans, which relate to changes in rates and/or timings of development (Bulygina et al., 2006). 

Thus, sex-specific bone modeling patterns could be found in sexually dimorphic facial regions 

(such as the supraorbital margin, nasal and zygomatic bones), particularly around the growth peak 

occurring at puberty in humans (e.g., Björk & Skieller, 1976; Rosas & Bastir, 2002; Bulygina, 

2006; Maddux, 2011). However, the preliminary results of this thesis could not find differences 

between male and female bone modeling patterns in both humans and chimpanzees, which might 

again indicate differences in cellular rates rather than in the location of the bone modeling patterns.  

Investigating the latter point will thus be of major interest for future ontogenetic studies. 

In a study employing synchrotron X-ray imaging techniques on dry bones of fishes, Davesne and 

co-authors (2020) observed a relationship between large osteocytes lacunae and fast growing bone, 

suggesting that osteocytes might play a key role in bone formation rate. Future explorations of 

osteocytes lacunae in mammals could be facilitated by the use of non-destructive methods such as 

Nano-Computed tomography and synchrotron imaging (Sanchez et al., 2012), and bring new 

insights into the study of cellular rates. Furthermore, the analysis of angiogenesis (i.e., the 

development of new blood vessels) could act as a proxy for the rate and timing of bone 

development as proposed by some authors (Percival & Richtsmeier, 2013; Percival et al., 2017). 

In a preliminary examination of maxillary vascularization carried out during this thesis, I found a 

correlation between the number of vascular foramina and age (i.e., high number of foramina were 

associated to young individuals, while low number of foramina were associated to older 

individuals) in different parts of the bone (Schuh et al., 2017). 

Moreover, bone modeling studies should be extended to a wider range of primate species. 

Indeed, non-human primates show various degrees of facial projections, from the highly anteriorly 

projected Papionin face to the more vertically oriented face of the squirrel monkey (Saimiri 

sciureus; Schultz, 1955; Corner & Richtsmeier, 1992; Neaux et al., 2018). The analysis of non-

human primate bone modeling patterns will allow future studies to build stronger hypotheses on 

the relationship between bone modeling and facial orientation. Furthermore, it is still unclear if 

differences in bone modeling patterns can be found in closely related species, such as chimpanzees 

and bonobos. This will also help to refine which aspects of bone modeling are specific to hominins, 

and which are shared between all hominids. According to the results of Chapter 3, the chimpanzee 

bone modeling pattern displays some similarities with the reported maxillary pattern of the 

Pliocene hominin species Paranthropus, as they both express resorption in the premaxilla from 

early ontogenetic stages (Bromage, 1989; McCollum, 2008). Moreover, Lacruz et al. (2015a) 

found bone resorption in the premaxilla of Australopithecus sediba. This could suggest that 

resorption in the premaxilla is a plesiomorphic condition. However, contradicting results have 

been raised by Bromage (1989) and McCollum (2008) who only found bone formation in the 
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premaxilla of some specimens of Australopithecus africanus and afarensis (n = 13). Future work 

should seek to address bone modeling variability in other species of great apes, as well as on larger 

samples of early hominins. This will help to distinguish which facial traits are primitive versus 

derived in these taxa. 

Similar questions apply to other hominins. Unlike humans, Neanderthals have an inflated 

maxilla (Rak, 1986; Arsuaga et al., 1997, 1999; Bermúdez de Castro et al., 1997; Rightmire , 1998; 

Maddux & Franciscus, 2009). Preliminary investigations of the midfacial and mandibular bone 

modeling patterns in Neanderthals and their ancestors found differences in bone modeling patterns 

compared to H. sapiens (Rosas & Martínez-Maza, 2010; Martínez-Maza et al., 2011; Lacruz et al., 

2015b). This supports previous work showing that Neanderthals possess a different facial 

ontogenetic trajectory (Krovitz , 2003; Cobb & O’Higgins, 2004; Williams & Krovitz, 2004; Bastir 

et al., 2007). However, the relationship between the development of Neanderthal facial features 

and their respective bone modeling patterns remains largely unclear. Applying the methods of this 

thesis on a large sample of Neanderthal specimens (including newborn and young individuals for 

which data were collected during this thesis) will help clarify the ontogenetic process underlying 

Neanderthal facial morphology. Additionally, future studies focusing on older fossils (such as from 

the Early and Middle Pleistocene) will shed light on the origins of both the Neanderthal and H. 

sapiens face. Lacruz and co-authors (2013) analyzed the facial bone modeling patterns of the 

juvenile fossil H. antecessor (Bermudez de Castro et al., 1997). This specimen has been described 

as having a maxillary morphology similar to H. sapiens, and consequently, led some authors to 

place H. antecessor as a direct ancestor to the H. sapiens lineage (Bermudez de Castro et al., 1997; 

Arsuaga et al., 1999). The results of Lacruz and co-authors (2013) showed resorptive areas that 

are, according to the results of Chapter 3, more similar to the chimpanzee pattern (with bone 

resorption present in the premaxilla and posteriorly along the alveolar ridge). This could suggest 

that the H. antecessor maxillary bone modeling pattern is primitive in some aspects, and that a 

concave midface could have appeared multiple times during facial evolution through different 

ontogenetic patterns, as suggested by Freidline and co-authors (2013).   

Lastly, a relatively novel approach in paleoanthropological studies concerns the analysis 

of the intricate relationship between genetic and phenotypic variation (e.g, Cheverud, 1982, 1988; 

Hallgrímsson et al., 2005; Szabo-Rogers et al., 2010; Mitteroecker et al., 2016; Percival et al., 

2018; Gunz et al., 2019; Katz et al., 2020). To date, such research has been mostly carried in the 

case of syndromic facial development associated to genetic disorders, such as cleft lip and/or 

palate, Down, Apert and Hadju-Cheney syndromes (Boehringer et al., 2011; Heuzé et al., 2014; 

Canalis & Zanotti, 2016). More recently, genome-wide association studies (GWAS) allowed the 

discovery of new candidate genes involved in non-syndromic facial development and phenotypic 

variation (Adhikari et al., 2016; Liu et al., 2012; Young et al., 2010; Paternoster et al., 2012; 

Crouch et al., 2018; Richmond et al., 2018). Among the genes directly involved in osteoblasto- 

and osteoclastogenesis, NOTCH2 (Zanotti & Canalis, 2010) and RUNX2 (which has also been 

linked to variation in facial length and orientation in several species of mammals; Ritzman et al. 

2017) might represent promising avenues to the study of facial development. This could be 
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addressed by applying geometric morphometric methods on mouse models who carry mutated 

versions of these genes, such as what has been recently conducted in collaboration with the 

Department of Evolutionary Genetics (MPI-EVA). More generally, future comparisons of DNA 

between present day humans and archaic species such as Neanderthals and Denisovans (Meyer et 

al., 2012; Green et al., 2010; Prüfer et al., 2014; Kuhlwilm & Boeckx, 2019), will greatly improve 

our understanding of the role of genetic factors in the evolutionary processes that led to the 

development of species-specific bony facial morphology. Aiming to adopt a holistic approach by 

linking large-scale changes in facial growth with microscopic changes will offer a new, dynamic 

vision to future facial ontogenetic studies. 
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S1 Percentages of bone resorption for males (M) and females (F) plotted against age (in years). 
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SI 1 Developmental simulations of ontogenetic shape trajectories. The method is tested on the Western 

Europeans following their own trajectory. Each simulated individual’s trajectory is represented as a dotted 

line. Simulated individuals are shown as dots and delimited by a lined convex hull. Each age group is 

represented by a colored convex hull (blue: Greenlandic Inuit; orange: Western Europeans; red: South 

Africans). The Western European AG 4 (adults) convex hulls is shown in dark orange.  
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SI 2 Degree of freedom (Df), F statistics, p-values and corrected p-values (Bonferroni method) for each 

square of the grid after performing a MANOVA testing for population differences in the bone modeling 

patterns. Significant p-values are highlighted in bold. 

 

            

   AG 1   AG 2  

 Square Df F value p-value Corrected   Df F value p-value Corrected  

 1 2 0.97 0.38 1.14  2 1.6 0.19 0.57  

 2 2 0.41 0.66 1.98  2 0.4 0.66 1.98  

 3 2 1.2 0.3 0.9  2 1.66 0.2 0.6  

 4 2 0.56 0.57 1.71  2 1.66 2 6  

 5 2 0.8 0.46 1.38  2 0.07 0.9 2.7  

 6 2 1.2 0.3 0.9  2 2.15 0.12 0.36  

 7 2 3.7 0.03 0.09  2 1.7 0.2 0.6  

 8 2 0.2 0.8 2.4  2 1.1 0.33 0.99  

 9 2 0.001 0.99 2.97  2 0.6 0.56 1.68  

 10 2 1.34 0.27 0.81  2 0.13 0.8 2.4  

 11 2 0.53 0.59 1.77  2 0.44 0.64 1.92  

 12 2 0.35 0.7 2.1  2 1.16 0.32 0.96  

 13 2 1.2 0.3 0.9  2 1.33 0.27 0.81  

 14 2 5.1 0.01 0.03  2 0.66 0.52 1.56  

 15 2 0.21 0.8 2.4  2 1.7 0.18 0.54  

 16 2 0.91 0.4 1.2  2 3.2 0.05 0.15  

 17 2 3.2 0.05 0.15  2 0.98 0.38 1.14  

 18 2 2.3 0.1 0.3  2 0.82 0.44 1.32  

 19 2 1.55 0.22 0.66  2 2.07 0.13 0.39  

 20 2 9.34 0.0004 0.0012  2 1.4 0.3 0.9  

 21 2 7.22 0.002 0.006  2 1.3 0.3 0.9  

 22 2 3.5 0.04 0.12  2 6.5 0.003 0.009  

 23 2 2.8 0.07 0.21  2 4.61 0.01 0.03  

 24 2 1.55 0.22 0.66  2 0.33 0.7 2.1  

 25 2 0.13 0.88 2.64  2 1.8 0.17 0.51  

 26 2 4.7 0.01 0.03  2 0.03 0.96 2.88  

 27 2 1.57 0.22 0.66  2 22.5 1.40E-07 4.20E-07  

 28 2 0.89 0.41 1.23  2 3.03 0.06 0.18  

 29 2 1.96 0.15 0.45  2 1.22 0.3 0.9  

 30 2 2.27 0.11 0.33  2 7.9 0.001 0.003  

 31 2 0.73 0.48 1.44  2 1.7 0.19 0.57  

 32 2 2.2 0.12 0.36   2 1.34 0.27 0.81  
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SI 3   Two-block partial least square (PLS) analysis between the bone modeling and the shape residuals 

(SW 1). X axis: bone modeling data. Y axis: shape residuals. Variability in each population is represented 

by convex hulls. Blue: Greenlandic Inuit, red: South African, orange: Western European. Age group means 

are represented at each age group by dots and numbers following the same color code. Solid lines connect 

the subsequent means. 

 

 

 

SI 4 Percentage of total covariance, correlation coefficient and p-value, computed for the first singular 

warp (SW 1) of the PLS analysis between the Procrustes shape residuals and the bone modeling data on all 

populations. 

 

 % Total covariance Correlation coefficient (R) p-value 

Shape residuals 56.1 0.37 0.02 
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SI 1 Reference numbers, age, sex (M: males; F: females; NA: unknown) and location of individuals 

used in the study. 

       

 

  Reference number 
Age 

(years)  
Sex Location  

 

 H. sapiens 100 7 M a  

 
 100A 11 M a  

 
 101 12 F a  

 
 126 8 M a  

  199 13 F a  

  201 12 M a  

 
 1879-73-121 5 F b  

 
 1886-87-99 6 M b  

 
 1890-91-21 10 M b  

 
 1891-92-49 6 M b  

 
 1892-93-285 10 F b  

 
 1892-93-286_180 0.83 F b  

 
 1892-93-307 0.5 M b  

 
 1892-93-308_199 1 F b  

 
 1892-93-320 3.58 M b  

 
 1892-93-321_202 3.5 F b  

 
 1893-94-5 5 M b  

 
 1893-94-8_210 4.5 F b  

 
 1893-94-9 3 F b  

 
 1893-94-10_212 5 F b  

 
 1893-94-11 2.5 M b  

 
 1893-94-52_222 1.42 F b  

 
 1893-94-58 0.29 M b  

 
 1893-94-74 6 M b  

 
 1893-94-86 4 M b  

 
 1893-94-113_248 1.17 F b  

 
 1894-95-25 2 F b  

 
 1894-95-142_277 0.5 M b  

 
 1894-95-159_281 1.83 F b  

 
 1895-96-127_308 0.17 F b  

 
 1896-97-6_314 1.17 M b  

 
 1896-97-15_319 4 F b  

 
 1896-97-16 4.58 F b  

 
 1896-97-17_321 0.67 M b  

 
 1896-97-77_325 0 M b  

 
 1896-97-78_328 1.5 F b  
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 1897-98-164_388 1 M b  

 
 1898-99-156 4.25 F b  

 
 1898-99-231 2 F b  

 
 1898-99-232_476 0.83 F b  

 
 1899-288-512 4.5 M b  

 
 1899-299-513 0.58 F b  

 
 1900-109-542 0.25 F b  

 
 1900-123-544 0.67 M b  

 
 1900-156-551 4 F b  

 
 1901-51-562 2 F b  

 
 1902-03-46_574 5.33 F b  

 
 1902-03-53_577 1.25 F b  

 
 1902-144-594 12 M b  

 
 1903-20-599 3 F b  

 
 1904-89-616 2.25 M b  

 
 1906-07-37 7 M b  

 
 1919-14 4 M b  

 
 218 10 F c  

 
 284 17 F c  

 
 342 28 F c  

 
 46 38 M c  

 
 52 38 F c   
 92 27 M c   

P. 
troglodytes 

verus 

11776 11 F d 
 

 11777 2 M d  

  11780 25 F d  

 
 11783 5 F d  

 
 11787 0.06 M d  

 
 11788 3.75 F d  

 
 11789 14 M d  

 
 11790 9 F d  

 
 11791 6.41 NA d  

 
 11792 12 F d  

 
 11796 NA M d  

 
 11903 19 M d  

 
 12175 5 M d  

 
 13432 2 M d  

 
 13433 7.6 M d  

 
 13437 11.4 F d  

 
 13438 NA M d  

 
 14991 8 F d  

 
 14992 NA M d  
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 14993 NA F d  

 
 14994 NA F d  

 
 15000 NA NA d  

 
 15002 NA F d  

 
 15003 NA NA d  

 
 15005 6 M d  

 
 15011 7 M d  

 
 15013 NA F d  

 
 15015 0.17 NA d  

 
 15019 14 M d  

 
 15020 10 F d  

 
 15030 0.67 M d  

 
 15040 NA F d  

   15041 NA F d  

 
 

     
a. Anatomical Institute, Leipzig (Germany); b. Anatomical Institute, Strasbourg (France); c. Anthropological 

collection of the University of Coimbra, Portugal; d. Max Planck Institute for Evolutionary Anthropology, 

Leipzig (Germany) 

 

 

 

SI 2 Landmarks and semilandmarks numbers, labels and definitions (total: 249) used in the template (SI 

3). 

 

Landmarks Labels  

 

Fixed  

Superolateral nasion 

      

    1 
 

Dacryon 2  

Zygoorbitale 3  

Inferolateral rhinion 4  

Anterior nasal spine 5  

Alveolare (infradentale superius) 6  

Zygomaxillare 7  

Malar root origin 8  

Maxillo‐palatine suture 9  

117



 

 

Curve semilandmarks  Number - definition 

Fronto-maxillary suture Fms 2 – superolateral nasion to dacryon 

Naso-maxillary suture Nms 6 – superolateral nasion to inferolateral rhinion 

Inferior orbital margin Iom 6 – dacryon to zygoorbitale 

Nasal aperture outline Nao 6 – inferolateral rhinion to anterior nasal spine 

Subnasal outline So 3 – nasal spine to alveolar 

Zygomatico-maxillary suture Zms 5 – zygoorbitale to zygomaxillare 

Maxillary contour Mc 4 – zygomaxillare to malar root origin 

Alveolar outline Ao 8 – alveolare to maxillo-palatine suture 

 

Surface semilandmarks  200 – covering the whole surface of the bone 

 

 

 

 

SI 3 Template of the right maxilla (see SI 2 for the description of the labels). 

 

 

View 1       View 2 
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SI 4  Mean bone modeling maps at each age group for males and females chimpanzees. 
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SI 5  Two-block partial least square (PLS) analysis between the bone modeling and morphological data 

(second and third singular warps; SW 2 and 3). X axis: bone modeling data. Y axis: Procrustes shape 

coordinates. Blue: Homo sapiens, green: Pan troglodytes verus. Convex hulls delimit each age group. Age 

group means are represented by dots. The two individuals in the chimpanzee AG 1 and the human AG 4 

are connected by a line. Solid lines connect the subsequent means. 
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