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______________________________________________________________________ 

The present cumulative dissertation compiles investigations on the soil microbiomes 

associated to clonal pedunculate oak phytometer. This tree clone was generated by the 

project TrophinOak-PhytOakmeter of the Soil Ecology Department at the Helmholtz 

Centre for Environmental Research (UFZ) and out-planted in grassland, forest and urban 

field sites. This PhD research applied PCR-based Illumina MiSeq amplicon sequencing 

approach to analyze distribution patterns of bacterial and fungal communities in soils from 

different zones around roots of the pedunculate oak trees in grasslands of Europe at 

spatial and temporal scales. 

After an introductory Chapter 1 which describes the whole research work, the study in 

Chapter 2 assessed concurrent impact of homogeneous climatic conditions and similar 

genetic identity of the host trees on bacterial and fungal communities in four grassland 

field sites of Central Germany. As it was expected, the findings indicated similar microbial 

diversity among the sites, but the community structure was site-specific for both bacteria 

and fungi. The results also demonstrated the capacity of the pedunculate oak tree 

phytometer to recruit beneficial microbial taxa from local microbial pools shortly after its  
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out-plant. This early recruitment of the microbial partners was assumed to be one of the 

mechanisms the tree used to acclimate to local conditions.  

Chapter 3 explored variability of soil microbiome around soil zones of the pedunculate 

oak clone phytometer in four sites along a European North-South transect which is 

characterized by a wide range of climatic and soil physico-chemical parameters. Here, 

three categories of soil microbiomes were defined according to the soil zones around the 

host tree and the level of interactions between this tree and the soil microbiome. These 

are the tree root-free zone total microbiome, tree root zone total microbiome, and tree 

root zone affine microbiome. The latter includes the most actively tree-interacting soil 

bacteria and fungi. The results demonstrated an interplay among geographic, soil 

physico-chemical, and host tree parameters in shaping soil bacterial and fungal 

communities of the tree root zone, but the affine microbiome revealed an increased 

impact of tree-related parameters compared to the abiotic parameters, especially for 

fungi. The tree root zone affine microbial OTUs were revealed mostly common to all sites 

despite their spatial distance, which might be one element enabling broad latitudinal 

distribution of the oak. 

Chapter 4 investigated temporal changes on the total microbiomes of the root and root-

free soil zones of the clonal pedunculate oak phytometer along a vegetation period. The 

results showed a directional change over time for the bacterial communities. The fungal 

communities did not show such successional changes; they rather displayed a fine spatial 

scale partitioning closely linked to host plant individuals. 
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ZUSAMMENFASSUNG 
 

Böden beherbergen eine große Vielfalt an Mikroorganismen, die von Bakterien und Pilzen 

dominiert werden. Diese Bodenmikroben, die zusammenfassend als Bodenmikrobiom 

bezeichnet werden, tragen wesentlich zur Biodiversität des Bodens bei und spielen eine 

wichtige Rolle bei essentiellen Bodenfunktionen (z.B. Bodenfruchtbarkeit, 

Pflanzenernährung, Abbau organischer Substanzen, Nährstoffkreisläufen und 

Bodenbildung). Viele Studien haben in den letzten Jahrzehnten die mikrobielle 

Gemeinschaft in Böden untersucht, um die treibenden Kräfte für die Bodendiversität zu 

entschlüsseln. Innerhalb dieser Doktorarbeit wurden nun räumliche und zeitliche 

Variationen des Bodenmikrobioms in Abhängigkeit verschiedener Standortspezifika wie 

dem lokalen Klima, der Bodenphysik und -chemie sowie den Wirtsbaumparametern 

untersucht.   

Um Effekte intraspezifischer genetischer Variationen zu vermeiden, wurde der 

Stieleichenklon DF159 (Quercus robur L.) aus dem Projekt TrophinOak-PhytOakmeter 

des Departments Bodenökologie am Helmholtz-Zentrum für Umweltforschung (UFZ) als 

Phytometer-System verwendet. Im Projekt PhytOakmeter, von dem diese Arbeit ein Teil 

ist, wurden aus Mikrostecklingen von DF159 regenerierten Setzlingen auf Grünland-, 

Wald- und urbanen Feldstandorten in Mitteldeutschland und entlang eines europäischen 

Nord-Süd-Transekts ausgepflanzt. Das übergeordnete Ziel des Projektes ist es, zu 

analysieren, wie sich der Klon an regional unterschiedliche, klimatische Bedingungen und 

wechselnde Umweltbedingungen anpasst und, wie er sich dort verhält. Die Stieleiche 

wurde als Modellbaumart gewählt, weil sie in hochkomplexe und vielfältige  
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multitrophische Interaktionen, auch mit Bodenmikroorganismen, eingebunden ist. Q. 

robur zeigt ein endogenes, rhythmisches Wachstum mit abwechselnden 

Wachstumsschüben von Spross und Wurzel, die sich zwei- bis viermal innerhalb einer 

Vegetationsperiode wiederholen können. Diese abwechselnden Wachstumsschübe 

haben nachweislich Auswirkungen auf die biologischen Aktivitäten in den wurzelnahen 

Bodenzonen.  

Basierend auf dem oben beschriebenen Hintergrund untersuchte die vorliegende 

Dissertation Veränderungen in den mikrobiellen Bodengemeinschaften um die 

Stieleichen-Phytometer in Grünlandstandorten auf zwei verschiedenen räumlichen 

Skalen: (1) auf der lokalen Skala wurden die Phytometer-assoziierten Bodenmikrobiome 

an vier Standorten, die sich innerhalb eines engen geographischen Raums mit ähnlichen 

klimatischen Bedingungen in Mitteldeutschland befinden, verglichen; und (2) auf der 

kontinentalen Skala wurde ein ähnlicher Vergleich zwischen Standorten entlang eines 

europäischen Nord-Süd-Transekts, der eine große Bandbreite an klimatischen und 

physikochemischen Bedingungen umfasst, durchgeführt. Auch die zeitliche Skala wurde 

berücksichtigt, indem die Variabilität des Mikrobioms innerhalb eines Jahres entlang einer 

Vegetationsperiode analysiert wurde. Bodenproben wurden nicht nur in der 

Baumwurzelzone (RZ – „root zone“) genommen, d.h. in der Bodenzone, die lebende 

Baumwurzeln enthält, sondern auch in der baumwurzelfreien Zone (RFZ – „root-free 

zone“), d.h. in der Bodenzone, die zwar frei von Baumwurzeln ist, aber innerhalb 

desselben Untersuchungsstandort liegt, um auch den lokalen mikrobiellen Pool zu 

erfassen. Für die molekularen Analysen wurden PCR-basierte Illumina MiSeq Amplikon-

Sequenzierungen durchgeführt, um die bakterielle und pilzliche Diversität, 
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Gemeinschaftsstruktur und Funktionalität nach Zuordnung ihrer OTUs zu funktionellen 

Gruppen zu bewerten.  

Zusätzlich zu Kapitel 1, das die gesamte Arbeit dieser Doktorarbeit vorstellt, werden die 

Ergebnisse in den Kapiteln 2-4 präsentiert, von denen zwei Studien bereits in 

internationalen, von Experten begutachteten Zeitschriften veröffentlicht wurden, während 

ein weiteres Kapitel als Konferenzbeitrag publiziert wurde. Die Dissertation wird durch ein 

zusammenfassendes Kapitel 5 abgeschlossen, das die Diskussion aller 

Veröffentlichungskapitel zusammen mit einem Ausblick integriert.  

Kapitel 2, "Tree root zone microbiome: exploring the magnitude of environmental 

conditions and host tree impact", veröffentlicht in „Frontiers in Microbiology“, untersucht 

die jeweiligen Beiträge von abiotischen Umwelt- und Wirtsbaumparametern an vier 

Standorten, die durch homogene klimatische Bedingungen in Mitteldeutschland 

gekennzeichnet sind, zwei Jahre nach der Baumauspflanzung. Wir verglichen zunächst 

an jedem Feldstandort die Zusammensetzung der Bakterien- und Pilzgemeinschaften 

zwischen der RZ des Eichenklons, in diesem Kapitel PhytOakmeter genannt, und der 

RFZ des Baumes. Im weiteren Verlauf des Kapitels wird die Diversität und Struktur der 

mikrobiellen Gemeinschaften innerhalb der Baum-RZ zwischen den Standorten 

ausgewertet. Die Ergebnisse zeigten unterschiedliche mikrobielle Zusammensetzungen 

zwischen der Baum-RZ und der RFZ, wobei das mit der Baum-RZ assoziierte Mikrobiom 

zahlreiche Ektomykorrhizapilze der Gattungen Hebeloma, Exophiala, Scleroderma, 

Tomentella, Trichophaea und Tuber aufwies. Diese schnelle Rekrutierung speziell 

nützlicher mikrobieller Taxa aus dem lokalen mikrobiellen Pool scheint zu den 

standortspezifischen Akklimatisierungsstrategien der Bäume zu gehören. Der 
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Gesamtbeitrag der Bäume zur Gestaltung der mikrobiellen Bodengemeinschaften war 

jedoch geringer als der Einfluss der abiotischen Umweltparameter. Die Ergebnisse 

zeigten sowohl für die Bakterien als auch für die Pilze eine ähnliche mikrobielle Diversität 

innerhalb der Baum-RZ zwischen den Standorten. Ein Ergebnis, das auf die homogenen 

klimatischen Bedingungen innerhalb der Standorte und die gemeinsame genetische 

Identität der Wirtsbäume zurückgeführt werden kann. Im Gegensatz dazu war die Struktur 

der mikrobiellen Gemeinschaften standortspezifisch. 

Kapitel 3, "Balance between geographic, soil, and host tree parameters to shape soil 

microbiomes associated to clonal oak varies across soil zones along a European North-

South transect" veröffentlicht in „Environmental Microbiology“, untersucht ebenfalls den 

relativen Einfluss von Geografie, Bodenphysikochemie und dem Stieleichenklon auf die 

Variabilität des Bodenmikrobioms, jedoch auf einer größeren räumlichen Skala von 

Lapinjärvi (Finnland) bis Bordeaux (Südwestfrankreich), die durch eine breite Palette 

variabler Umweltbedingungen gekennzeichnet ist. Zusätzlich zum Baum-RFZ-

Gesamtmikrobiom und dem Baum-RZ-Gesamtmikrobiom wird in diesem Kapitel ein 

neues Submikrobiom eingeführt, das Baum-RZ-affine Mikrobiom. Letzteres wurde als die 

Teilmenge der RZ-Bakterien und -Pilze definiert, die in dieser Zone im Vergleich zur 

Baum-RFZ signifikant angereichert sind. Die Ergebnisse zeigten ein Zusammenspiel 

zwischen abiotischen Umwelt- und Wirtsbaumparametern bei der Gestaltung der 

Bakterien- und Pilzgemeinschaften der Baum-RZ entlang des europäischen Transekts. 

Dabei konnte der abnehmende Einfluss von Geografie, Bodenphysikochemie und 

Wirtsbaum auf das Gesamtmikrobiom der Baum-RZ festgestellt werden. Für die 

Variabilität des RZ-affinen Mikrobioms allein nahm der Einfluss der abiotischen 
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Umweltparameter ab, während der Baumeinfluss stark zunahm, insbesondere auf die 

Pilze. Ein weiteres wichtiges Ergebnis war der hohe Anteil an Baum-RZ-affinen 

mikrobiellen OTUs, die an allen vier Standorten vorkamen. Dieses sogenannte „Kern"-

Mikrobiom bezeichnet ubiquitäre Bakterien und Pilze mit signifikanter Affinität zum 

Wirtsbaum und ist in der Lage, mit den unterschiedlichen Umweltbedingungen entlang 

des Transekts zurechtzukommen. Möglicherweise spielen gerade diese Mikroben eine 

entscheidende Rolle bei der weiten Verbreitung von Q. robur in Europa. 

Interessanterweise konnten keine Mitglieder des RZ-affinen Mikrobioms, die nur an 

einem bestimmten Standort vorkommen, gefunden werden. 

Kapitel 4, "Temporal changes and alternating host tree root and shoot growth affect soil 

microbiomes", veröffentlicht in der Online-Zeitschrift „Proceedings“ und als 

Konferenzbetrag im Rahmen der „1st International Electronic Conference on 

Microbiology“, analysierte die zeitliche Variabilität der Baum-RZ- und RFZ-

Gesamtmikrobiome entlang einer Vegetationsperiode an zwei Standorten in 

Mitteldeutschland. Der Boden wurde zu verschiedenen Zeitpunkten beprobt, die mit dem 

abwechselnden Wurzel- und Sprosswachstum der Bäume und der Herbstseneszenz, die 

die Vegetationsperiode abschließt, zusammenfallen. Die Ergebnisse zeigen für die 

bakteriellen Gemeinschaften eine zeitliche Veränderung entlang der Vegetationsperiode. 

Die Pilzgemeinschaften zeigten jedoch keine derartigen zeitlichen Veränderungen; sie 

wiesen vielmehr eine feine räumliche Aufteilung, die eng an die individuellen 

Wirtspflanzen gekoppelt war, auf. Zusätzlich zum Effekt der zeitlichen Sukzession werden 

tiefergehende zukünftige Analysen des generierten Datensatzes, den Einfluss des 

abwechselnden Wurzel- und Sprosswachstums, das für das endogene rhythmische 
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Wachstum des Baumes charakteristisch ist, beleuchten. Diese weiterführenden Analysen 

werden z.B. das Baum-RZ-affine Mikrobiom und in einzelne mikrobielle 

Funktionsgruppen berücksichtigen.  

Die in dieser Arbeit vorgestellten Ergebnisse belegen den schnellen Einfluss des 

Stieleichenklons auf das Bodenmikrobiom bereits zwei Jahre nach dem Auspflanzen des 

Baumes. Außerdem prägen geographische, bodenphysikochemische Faktoren und der 

Wirtsbaum in unterschiedlichem Ausmaß die bakteriellen und pilzlichen Gemeinschaften 

im Boden. Diese Arbeit zeigt unterschiedliche räumliche und zeitliche Reaktionen der 

bakteriellen und pilzlichen Bodengemeinschaften auf die variablen Umweltbedingungen.  

Die Verwendung von Baumklon-Phytometern zur Untersuchung der baumbezogenen 

Parameter auf das Bodenmikrobiom hat sich als vielversprechendes Werkzeug erwiesen, 

um Hierarchien der verschiedenen abiotischen und biotischen Faktoren bei der 

Gestaltung des Bodenmikrobioms in Verbindung mit langlebigen Bäumen zu enträtseln. 

Schließlich stellt diese Arbeit einen ersten Schritt zur Etablierung einer langfristigen 

Überwachung der Dynamik von Bodenmikrobiomen in Verbindung mit Bäumen dar. Mit 

dieser Entschlüsselungsstrategie können Zusammenhänge zwischen langfristiger 

Akklimatisierung langlebiger Pflanzen, Mikroorganismen und sich verändernde 

Umgebungen perspektivisch verstanden werden.  
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SUMMARY 
 

Soils harbor a huge diversity of microorganisms, which are dominated by bacteria and 

fungi. These soil microorganisms, collectively termed as the soil microbiome, are major 

contributors to soil biodiversity and play essential roles in soil functions (e.g. soil fertility 

and plant nutrition, organic matter degradation and nutrient cycling, and soil formation). 

Therefore, many studies in recent decades have explored soil microbial diversity in order 

to unravel driving forces of its variations. Hence, this thesis reports on spatial and 

temporal variations of the soil microbiome in response to site specificities, i.e. local 

climate as well as soil physico-chemistry, and host tree parameters.   

To avoid effects of intraspecific genetic variations, the pedunculate oak clone DF159 

(Quercus robur L.) generated by the project TrophinOak-PhytOakmeter of the Soil 

Ecology Department at the Helmholtz Centre for Environmental Research (UFZ) was 

used as phytometer system. In the PhytOakmeter project of which this thesis is a part, 

saplings regenerated from microcuttings of DF159 were out-planted in grassland, forest 

and urban field sites in Central Germany and along a European North-South transect. 

The overall goal of the project is to analyze how the clone adapts to and performs under 

different regional climatic contexts and changing environment conditions. Pedunculate 

oak was chosen as a model tree species because it is engaged in highly complex and 

diverse multitrophic interactions, including soil microorganisms. Q. robur displays an 

endogenous rhythmic growth with alternating growing flushes in shoot and root, which 

can be repeated two to four times along a vegetation period. These alternating flushes 

have been shown to impact on variations of biological activities in soil zones close to the 

tree roots.  
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Based on the above-described background, the current PhD study investigated changes 

in the soil microbial communities associated to the pedunculate oak phytometer out-

planted in grassland sites at two different spatial scales: (1) the local scale by comparing 

the soil microbiomes associated to the phytometer in sites located within a close 

geographic space of Central Germany with similar climatic conditions; and (2) continental 

scale by making a similar comparison among sites along a European North-South 

transect, which encompasses a wide range of climatic and soil physico-chemical 

conditions. Moreover, temporal scale was considered, whereby the variability of the 

microbiomes intra-annually along a vegetation period was analyzed. Soil samples were 

taken not only in the tree root zone (RZ), i.e. soil zone containing living roots of the tree, 

but also in the tree root-free zone (RFZ), i.e. soil zone out of reach of any tree roots, but 

within the same field plot, to access also the local microbial pools. The analyses used a 

PCR-based Illumina MiSeq amplicon sequencing approach targeting bacteria and fungi, 

to assess their diversity, community structure and functionality after assignment of their 

OTUs to functional groups.  

In addition to Chapter 1, which introduces the whole work of this PhD research, the 

findings are presented within Chapters 2-4, of which two studies were already published 

in international peer-reviewed journals, while another study was published as a 

conference paper. The thesis is closed by the synopsis Chapter 5 that integrates 

discussion of all the publication chapters together with an outlook section.  

Chapter 2 “Tree root zone microbiome: exploring the magnitude of environmental 

conditions and host tree impact” published in Frontiers in Microbiology investigates the 

relative contribution of abiotic environmental and host tree parameters among four sites 
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characterized by homogeneous climatic conditions in Central Germany, two years after 

the tree out-plant. We first compared at each field site the composition of the bacterial 

and fungal communities between the RZ of the oak clone, called PhytOakmeter in this 

chapter, and the tree RFZ. The chapter further evaluates the diversity and structure of the 

microbial communities within the tree RZ among the sites. The results revealed different 

microbial compositions between the tree RZ and RFZ, whereby the tree RZ-associated 

microbiome included numerous ectomycorrhizal fungi of the genera Hebeloma, 

Exophiala, Scleroderma, Tomentella, Trichophaea, and Tuber. This quick recruitment of 

specific beneficial microbial taxa from the local microbial pool seems to be among the 

tree strategies to acclimate to local site conditions. However, the overall tree contribution 

to shape soil microbial communities was lower than the impact of abiotic environmental 

parameters. The results revealed also a similar level of microbial diversity within the tree 

RZ among the sites for both the bacteria and fungi, an outcome attributed to the 

homogeneous climatic conditions within the sites and the common genetic identity of the 

host trees. In contrast, structure of the microbial communities was site-specific.   

Chapter 3 “Balance between geographic, soil, and host tree parameters to shape soil 

microbiomes associated to clonal oak varies across soil zones along a European North-

South transect” published in Environmental Microbiology, also examines the relative 

impact of geographic, soil physico-chemical, and pedunculate oak clone parameters on 

the variability of the soil microbiome, but at a larger spatial scale from Lapinjärvi (Finland) 

to Bordeaux (Southwestern France), which is characterized by a broad range of 

geographic and soil physico-chemical conditions. In addition to the tree RFZ total 

microbiome and the tree RZ total microbiome, this chapter introduces a new sub-
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microbiome called tree RZ affine microbiome. The latter was defined as a subset of the 

RZ bacteria and fungi, significantly enriched in this zone compared to the tree RFZ. The 

results demonstrated an interplay among abiotic environmental and host tree parameters 

in shaping bacterial and fungal communities of the tree RZ along the European transect. 

These parameters showed a descending order of magnitude of their impact on the tree 

RZ total microbiome: geographic > soil physico-chemical > host tree parameters. 

However, for the variability of the RZ affine microbiome alone, the impact of the abiotic 

environmental parameters decreased, while the tree influence was strongly increased, 

particularly for fungi. Another important result was the highest proportion of the tree RZ 

affine microbial OTUs shared among all four sites, which was here designated as the tree 

“core” microbiome. These bacteria and fungi with significant affinity to the host tree, and 

shared by all the sites because of their ability to cope with diverging environmental 

conditions across the transect, may be playing a crucial role in supporting the wide 

distribution of Q. robur across Europe. Interestingly, we found no members of the RZ 

affine microbiome to be exclusive of only one particular site. 

Chapter 4 “Temporal changes and alternating host tree root and shoot growth affect soil 

microbiomes” published in Proceedings as conference paper after “The 1st International 

Electronic Conference on Microbiology”, considers a temporal scale, and here the 

variability of the tree RZ and RFZ total microbiomes was analyzed along a vegetation 

period in two sites of Central Germany. The soil was sampled at different time points 

coinciding with the tree alternating root and shoot growth, and the fall senescence that 

concludes the vegetation period. The results show a directional change over time along 

a vegetation period for the bacterial communities. However, the fungal communities did 
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not show such temporal changes; they rather displayed a fine spatial scale partitioning 

closely linked to host plant individuals. In addition to the effect of temporal succession, 

deeper analyses of the generated data set will enable us to specify the impact of the 

alternating root and shoot growth characteristic of the tree endogenous rhythmic growth 

in the near future. These further analyses will include for example zooming in the tree RZ 

affine microbiome and in individual microbial functional groups.  

The results presented in this thesis evidence the quick impact of pedunculate oak tree 

clone on the soil microbiome within a two-year time span after the tree out-plant. Also, to 

different extents, geographic, soil physico-chemical, and host tree concurrently shape the 

soil bacterial and fungal communities. This thesis shows different spatial and temporal 

responses to the abiotic environmental and tree parameters between the soil bacterial 

and fungal communities.  

The use of tree clonal phytometer to study the tree-related parameters on soil 

microbiomes was proved to be a promising tool, to unravel the hierarchy of different 

abiotic and biotic factors in shaping the soil microbiome associated to long live trees. 

Finally, this work represents a first step toward establishing a long term monitoring of the 

dynamics of soil microbiomes associated to trees, as a strategy to unravel how these 

microorganisms participate to the long term acclimation of these long live plants to diverse 

and changing environments. 
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Soils harbor an immense biodiversity because they represent extremely heterogeneous 

and changing habitats both spatially and temporally, thus providing myriads of 

microniches, which enable habitat specialization or coexistence of species (Bardgett, 

2002). Soil microorganisms, collectively termed the soil microbiome (Hartman and Tringe, 

2019), and in particular bacteria and fungi are major contributors to soil biodiversity and 

perform critical roles in soil ecosystem functions and services (soil fertility and plant 

nutrition, organic matter degradation and nutrient cycling, and soil formation) (Bardgett, 

2002; Hines et al., 2006; Vogel et al., 2009; Philippot et al., 2013; Saccá et al., 2017; Xue 

et al., 2018; He et al., 2020; Jansson and Hofmockel, 2020). For this reason, there is an 

increasing interest to characterize soil microbiomes and to unravel driving forces of their 

variations. The main factors that shape soil microbiomes are soil physico-chemical 

parameters (Lauber et al., 2008; Rousk et al., 2010; Wilpiszeski et al., 2019), geographic 

location (Gourmelon et al., 2016; Sun et al., 2017), and vegetation (Han et al., 2007; Wu 

et al., 2018; Tajik et al., 2020). These abiotic environmental and plant parameters act via 

complex interactions (Singh et al., 2009; de Vries et al., 2012), thus challenging the 

attempts to unravel their individual contribution. One of the possible approaches to cope 

with this challenge consists of generating a context in which at least one driving factor is 

constant or varies less. Thus, the use of genetically identical host plants, here designated 

as clonal phytometers, to analyze spatial and temporal variations in soil microbiome was 

the foundation idea of the research presented in this thesis.    
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1.1. Different dependence levels on the abiotic and biotic environmental 
parameters between bacterial and fungal communities 

Bacterial and fungal communities respond differently to changes in abiotic and biotic 

environmental parameters because the two microbial groups differ broadly in growth rate, 

stress tolerance, and substrate utilization (Sun et al., 2017). Precisely, soil bacterial 

growth rate is much higher than that of soil fungi, which tend to have higher tolerance for 

dry soils and low temperatures (Rousk and Bååth, 2007; Kirchman, 2012). Also, fungi 

mainly degrade complex organic matter and are thus mediators of slower carbon cycling 

pathways in soil, while bacteria are degraders of simple organic molecules and typical 

regulators of the fast carbon cycling (Rinnan and Bååth, 2009). As consequence to the above 

mentioned differences, influence of changes in abiotic environmental conditions is overall 

higher for bacterial communities than for fungal communities (Singh et al., 2009; Rousk 

et al., 2010). Additionally, even though host plants impact both soil bacterial and fungal 

communities, especially via their organic carbon inputs to the soil through rhizodeposits 

and litter (Van Der Heijden et al., 2008; de Vries et al., 2012; Prescott and Grayston, 

2013), their impact is higher on fungi than on bacteria (Sugiyama et al., 2008; Millard and 

Singh, 2010; Lange et al., 2014).  

1.2. The pivotal role of trees in supporting various soil microorganisms versus 
other plant categories and effectiveness of grasslands to analyze a tree-
associated microbiome 

Plants growing in soil establish close associations with a large variety of soil 

microorganisms, which live in areas around, on, and inside plant roots (Hartman and 

Tringe, 2019). A wide range of those plant root-associated microorganisms is neutral to 

the plant but highly important in the biodegradation of C compounds that plants release 

into the soil, including the rhizodeposits (Raaijmakers et al., 2009). The plant root-
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associated microbial community also harbors detrimental and beneficial microorganisms, 

the latter include for example nitrogen-fixing bacteria, plant growth-promoting bacteria 

and fungi, as well as endo- and ectomycorrhizal fungi known to improve fitness of their 

plant associates (Pozo et al., 2004; Raaijmakers et al., 2009; Hrynkiewicz and Baum, 

2012; Lee et al., 2020). Plant rhizodeposits enriched in exudates are the major source of 

readily available organic nutrients (sugars, amino acids, and organic acids) to all the 

mentioned microbial groups (Loranger-Merciris et al., 2006; Rodríguez-Loinaz et al., 

2008; Jones et al., 2009; Jacoby et al., 2017). These plant-derived soil nutrients vary 

among plant species and even among plant genotypes within the same species, reflecting 

a significant impact of plant identity on the soil microbial community (Broeckling et al., 

2008; Berg and Smalla, 2009). Plant exudation is also positively correlated with and 

depends on plant biomass (Aulakh et al., 2001). Because trees are larger than 

herbaceous plants, they provide more and highly heterogeneous resources to the soil 

(Aulakh et al., 2001; Herz et al., 2018), supporting therefore multiple belowground trophic 

interactions (Hooper et al., 2000). Furthermore, as immobile organisms and long-lived 

plants, trees constantly restructure intra- and inter-annually the assembly of their root 

microbial partners as one of their strategies to persist in the face of a wide range of abiotic 

and biotic threats along their lifespan (Pennanen et al., 1999; Wallander et al., 2010; 

Kyaschenko et al., 2017; Averill et al., 2019). Thus, trees are very crucial in sustaining 

belowground biodiversity, and are suitable hosts to analyze the impact of a plant on 

spatial and temporal variations of the soil microbial communities.  

In addition to production of the exudates which are readily decomposed by the soil 

microbes, trees act as long-term carbon pool to soil via litterfall (Dixon et al., 1994; 
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Vesterdal et al., 2012). Decomposition of litter is very slow because it proceeds through 

numerous cascading mechanisms (Krishna and Mohan, 2017), resulting in the gradual 

accumulation of organic matter especially in the forest soils (Isaac and Achuthan Nair, 

2005). In this regards, the use of grasslands to investigate the impact of a specific tree 

on its roots-associated microbiome enables to avoid confounding effects resulting from 

the complex processes of litter decomposition.  

1.3. DF159 oak phytometer for microbial host tree and soil sampling strategy  

Oaks, which are common foundation tree species in temperate forests (Eaton et al., 

2016), also grow as solitary trees in agricultural systems or grasslands (MacDougall et 

al., 2004; Löf et al., 2016; Bobiec et al., 2018; Parmain and Bouget, 2018). The trees are 

hosts for a wide variety of organisms, including microbes (Valencia-Cuevas and Tovar-

Sánchez, 2015). Furthermore, growth of oaks via alternating root and shoot flushes (RF 

and SF) which are paralleled by shifts in resource allocations between the above and 

below plant parts, was shown to impact the biological soil activity since the early age of 

the trees (Herrmann et al., 2015; Ferlian et al., 2018).  

This PhD research used the pedunculate oak clone DF159 (Quercus robur L.) out-planted 

as phytometer (Herrmann et al., 2016; Ferlian et al., 2018). The oak phytometer approach 

was developed by the TrophinOak-PhytOakmeter project of the Soil Ecology Department 

at the Helmholtz Centre for Environmental Research (UFZ) with an overall goal to 

understand how trees deal with multitrophic interactions and adapt to different climatic 

and environmental conditions (Herrmann et al., 2016). To achieve this, field plots were 

prepared in grassland, forest, and urban sites. The oak phytometer trees used in this PhD 

research were produced via in vitro propagation during winter 2012/2013 followed by a 
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two-step acclimatization in a greenhouse during summer 2013 and in an outfield nursery 

during summer 2014. In November 2014, the trees were out-planted in grassland field 

sites in Central Germany and along a European North-South transect. The choice of 

grasslands for the experimental set-up in this PhD research was motivated by two main 

reasons: (1) intolerance of young oaks to shade of closed woody vegetation (Bobiec et 

al., 2011) versus their favored growth in grasslands and other open or semi-open habitats 

(Jensen and Löf, 2017; Bobiec et al., 2018), and (2) avoiding the confounding effects from 

other trees and from complex litter and organic layers.   

The general objective of this PhD research was to analyze spatial and temporal variations 

in the microbiomes of different soil zones around clonal pedunculate oak trees, and to 

reveal the respective impacts of the abiotic environmental and host tree parameters 

(Figure1A). Previously, numerous studies on plant root-associated microbial 

communities focused on the rhizosphere (Grayston et al., 1998; Fang et al., 2001; 

Hartmann et al., 2009; Haldar and Sengupta, 2015), which is defined as the narrow soil 

zone directly surrounding and often attached to plant roots (Hinsinger et al., 2009; 

Mendes et al., 2013). According to this definition, the rhizosphere microbial community is 

most directly controlled by the selective forces exerted by host plants (Kowalchuk et al., 

2002), and the rhizosphere-focused studies do not give enough weight to the direct 

contribution of abiotic environmental factors in shaping the tree-associated soil 

microbiome. Therefore, investigating soil of the tree root zone (Figure 1A), i.e. soil 

containing living roots of the tree (Steven et al., 2014), by discarding the rhizosphere soil 

senso stricto enables to analyze more rationally the respective impacts of plant and 

environmental parameters in shaping the plant root microbiome (Weißbecker et al., 
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2018). To distinguish between the impacts of tree-mediated recruitment and local 

environmental parameters on the microbiome, the tree root and root-free soil zones were 

sampled (Figures 1B & C) to compare their microbial composition and community 

structure.  

 

Figure 1. (A) Recruitment of soil microorganisms from the local microbial pool by a host 
tree using root exudates. Abiotic environmental and biotic parameters influencing a tree 
root zone microbiome. *Parameters that are analyzed in this research. (B) Bordeaux site 
illustration to summarize soil sampling design in our field plots: green cycles indicate 
investigated oak phytometers, and red dots mark the sampling positions of the three 
subsamples that were taken and pooled to obtain the tree root-free soil samples (RFZ1, 
RFZ2, and RFZ3). (C) Sampling positions, i.e. three subsamples illustrated as black dots 
around the trunk of investigated oak phytometers.  
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1.4. Methods to characterize microbial communities 

Because the majority of soil microorganisms cannot yet be cultured in the laboratory, 

culture-based methods are inadequate to analyze microbial communities in 

environmental samples. The use of high-throughput, culture-independent surveys which 

utilize soil-extracted microbial community DNA is therefore the preferred approach 

nowadays (Kent and Triplett, 2002). One of such approaches is the DNA metabarcoding, 

which is based on the amplification of the 16S rRNA gene and the internal transcribed 

spacer (ITS) region of the rDNA gene, the barcode regions of bacteria and fungi, 

respectively. With the Illumina’s MiSeq platform, a large number of DNA sequences are 

generated and amplicon libraries from various samples can be pooled in one sequencing 

run (Caporaso et al., 2012). To allow this multiplexing of the samples, amplicons from 

each sample are indexed with barcoded PCR primers appended with a unique 

oligonucleotide sequence (Binladen et al., 2007). After sequencing, reads of the 

sequences are de-multiplexed and assigned back to their respective original samples. 

The sequencing results together with subsequent bioinformatics provide a list of the 

recovered microbial operational taxonomic units (OTUs) and attribute them to taxonomic 

and functional groups, while adequate statistical analyses give insight into microbial 

communities' changes across space, time, or in response to experimental treatments 

(Barberán et al., 2012).  

1.5. Thesis outline 

This PhD work aimed to analyze the spatial and temporal variations in the microbiomes 

of different soil zones around clonal pedunculate oak trees out-planted as phytometers 

across grasslands in Europe. After this introductory Chapter 1, the main findings 
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published in three independent manuscripts are documented in the Chapters 2-4 of this 

thesis.  

Manuscript 1 (Habiyaremye, J. D. D., Goldmann, K., Reitz, T., Herrmann, S., & Buscot, 

F. (2020). Tree root zone microbiome: exploring the magnitude of environmental 

conditions and host tree impact. Frontiers in Microbiology, 11, 749) reported in Chapter 2 

used the mentioned clonal oak phytometer out-planted in field sites with similar climate 

but different soil physico-chemistry. This design with similar climatic variables enabled to 

assess the effect of different sites only based on their different soil physico-chemical 

properties and to capture the capability of the DF159 clone to trap microbial partners from 

different soils. The studied field sites were Harsleben, Pfeiffhausen, Greifenhagen, and 

Bad Lauchstädt, located in a close geographic space in Central Germany (Figure 2A).  

In this Chapter 2, we were specifically guided by the following main questions: 

1. Do the common genetic identity of the clonal oak trees and the homogeneity in 

climate conditions induce similar microbial diversity and community structure within 

the tree root zone among the sites?  

2. Are some particular soil microbial taxa already enriched in the tree root zone two 

years after the out-planting of the trees?  

Manuscript 2 (Habiyaremye, J. D. D., Herrmann, S., Reitz, T., Buscot, F., & Goldmann, 

K. (2021). Balance between geographic, soil, and host tree parameters to shape soil 

microbiomes associated to clonal oak varies across soil zones along a European North‐

South transect. Environmental Microbiology) is reported in Chapter 3. Here, the study 

examined soil microbiomes in the oak phytometer root zone along a European North-

South transect, from Finland to France, with four field sites in total: Lapinjärvi (Southern 
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Finland), Bad Lauchstädt (Central Germany), Fontain (Eastern France), and Bordeaux 

(Southern-West France) (Figure 2B). The sites are highly different from each other in 

terms of geographic location, climate, and soil physico-chemistry. As the tree root zone 

inherently contains a mix of actively tree-interacting microorganisms and those that 

diffuse passively from the surrounding tree root-free soil zone, the tree root zone 

microbiome was split into two sub-sets: the tree root zone total microbiome and the tree 

root zone affine microbiome. The latter is the part of the tree root zone total microbiome 

and only comprises bacteria and fungi significantly enriched in this zone compared to the 

tree root-free zone. The two root zone microbiomes were considered in addition to the 

tree root-free zone total microbiome, which represents the local microbial pools of the 

sites. Considering the three soil microbiomes around the clonal oak tree was adequate to 

rationally investigate the changes in soil microbiomes along a North-South gradient at a 

continental scale, and compare the host tree influence between the total microbiome 

inhabiting the root zone and the actively tree-interacting microbiome.  

The following central questions guided Chapter 3: 

3. Do the clonal oak trees shape an interacting soil microbiome from very different 

local soil communities, which might support their acclimation to a broad range of 

environmental conditions? 

4. Does the clonal oak phytometer contribute more than the geographic and soil 

physico-chemical parameters in shaping the tree root soil zone microbiome across 

a larger spatial scale with gradient in these abiotic environmental conditions? 

Manuscript 3 (Habiyaremye, J. D. D., Herrmann, S., Buscot, F., & Goldmann, K. (2021). 

Temporal changes and alternating host tree root and shoot growth affect soil 
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microbiomes. In Multidisciplinary Digital Publishing Institute Proceedings (Vol. 66, No. 1, 

p. 35) is reported in Chapter 4. Indeed, the tree alternation of root and shoot growth is 

paralleled with high and low concentrations of photoassimilates into roots during the RFs 

and SFs, respectively (Angay et al., 2014). According to the “push” hypothesis, the more 

C ‘pushed’ into the roots, the more C ought to be exuded from roots (Karst et al., 2016). 

The study was conducted on the clonal oak phytometer out-planted at Bad Lauchstädt 

and Harsleben grassland sites of Central Germany (Figure 2A). Soil sampling took place 

during 2018 and sampling times coincided with the tree alternating root and shoot flushes, 

which were determined based on the tree bud developmental stages (Herrmann et al., 

2016). The tree rhythmic growth starts with a root flush (RF) followed by a shoot flush 

(SF) to make a complete rhythmic growth cycle. Over a vegetation period until autumnal 

leaf senescence, the tree can go through one growth cycle (i.e. one RF and one SF), two 

cycles (i.e. RF1, SF1, RF2, and SF2), or even more cycles, up to four, depending on 

environmental conditions. During the vegetation period 2018, the trees had two growth 

cycles, which induced five consecutive sampling times, i.e. at the end of RF1, SF1, RF2, 

SF2, and at the fall senescence which concludes the vegetation period.  

The central question to answer in Chapter 4 was: 

5. Does the alternation of tree root and shoot flushes induce any changes on the 

expected temporal succession of the tree-associated microbial communities? 
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Figure 2. Study sites individually indicated by black dots. (A) Four field sites of Central 
Germany investigated in Chapter 2; two out of those sites, i.e. Bad Lauchstädt and 
Harsleben are also investigated in Chapter 4. (B) Four field sites along a European North-
South transect investigated in Chapter 3: grey sections represent the study countries 
which are, from North to South, Finland, Germany, and France. Chapter 1 introduces the 
whole work while Chapter 5 connects results from the preceding chapters.  

 

This thesis ends with a concluding synopsis - Chapter 5 - which connects results from the 

preceding three chapters. The synopsis also compares microbial communities of the Bad 

Lauchstädt site between September 2016 and September 2018, i.e. two and four years 

after the trees out-plant, respectively. Overall, the results presented in this thesis 

demonstrated an interplay among geographic-climatic, soil hysico-chemical, and host 
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tree parameters in driving soil microbial communities, but the host tree influence 

increased from the total root zone inhabiting microbiome to the actively tree-interacting 

microbiome. The results also showed different spatial, temporal, and host plant-derived 

microbial patterns between the bacterial and fungal communities, which suggest different 

mechanisms shaping these two microbial groups.  
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Tree roots attract their associated microbial partners from the local soil community.
Accordingly, tree root-associated microbial communities are shaped by both the
host tree and local environmental variables. To rationally compare the magnitude of
environmental conditions and host tree impact, the “PhytOakmeter” project planted
clonal oak saplings (Quercus robur L., clone DF159) as phytometers into different
field sites that are within a close geographic space across the Central German
lowland region. The PhytOakmeters were produced via micro-propagation to maintain
their genetic identity. The current study analyzed the microbial communities in the
PhytOakmeter root zone vs. the tree root-free zone of soil two years after out-planting
the trees. Soil DNA was extracted, 16S and ITS2 genes were respectively amplified
for bacteria and fungi, and sequenced using Illumina MiSeq technology. The obtained
microbial communities were analyzed in relation to soil chemistry and weather data
as environmental conditions, and the host tree growth. Although microbial diversity in
soils of the tree root zone was similar among the field sites, the community structure
was site-specific. Likewise, within respective sites, the microbial diversity between
PhytOakmeter root and root-free zones was comparable. The number of microbial
species exclusive to either zone, however, was higher in the host tree root zone
than in the tree root-free zone. PhytOakmeter “core” and “site-specific” microbiomes
were identified and attributed to the host tree selection effect and/or to the ambient
conditions of the sites, respectively. The identified PhytOakmeter root zone-associated
microbiome predominantly included ectomycorrhizal fungi, yeasts and saprotrophs.
Soil pH, soil organic matter, and soil temperature were significantly correlated with
the microbial diversity and/or community structure. Although the host tree contributed
to shape the soil microbial communities, its effect was surpassed by the impact of
environmental factors. The current study helps to understand site-specific microbe
recruitment processes by young host trees.

Keywords: PhytOakmeter, microbial recruitment, microbial diversity, environmental conditions, core and site-
specific microbiomes
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INTRODUCTION

The soil microbiome, the community of soil microorganisms
and their genomes (Scher and Abramson, 2011), steers many
ecological processes in soils and determines plant health (Aislabie
et al., 2013) and productivity (Berg, 2009). Impacts of soil
microorganisms on plants include increased nutrient availability
and uptake (Lugtenberg et al., 2002; Morrissey et al., 2004),
disease suppression (Mendes et al., 2011), as well as increased
tolerance against abiotic (Zolla et al., 2013) and biotic stressors
(Zamioudis and Pieterse, 2011). Microorganisms have abilities
to rapidly adapt to changing environmental conditions (Gehring
et al., 2017; Lau et al., 2017). Therefore, the “plant root
microbiome” can be considered as “the powerhouse of plant
adjustment to local conditions” (Vandenkoornhuyse et al., 2015).

The “plant root microbiome” originates from the local soil
microbial community, and is shaped by the root exudate
composition (Bais et al., 2006; Lareen et al., 2016). On the
one hand, the composition of plant root-associated microbial
communities across various ecosystems has been reported to
highly depend on environmental parameters (Bulgarelli et al.,
2012; Lundberg et al., 2012) such as climate and weather
(Brockett et al., 2012; Lladó et al., 2018), but also on soil
chemistry, especially pH and organic matter content (Zhou et al.,
2002; Rousk et al., 2010; Lareen et al., 2016). However, in soils
with similar edaphic parameters and climatic conditions, there
can be significant local heterogeneity in the composition of soil
bacterial and fungal communities even within the same region
(Bokulich et al., 2014; Gourmelon et al., 2016). This may partly
result from variations of unmeasured environmental parameters
across the sampled field sites (Landesman et al., 2014) or from
dispersal limitation among members of the microbial community
(Bissett et al., 2010). On the other hand, the constituents of
plant root exudates (sugars, vitamins, nucleotides, flavones,
auxins, and stimulators), which differ between plant species
and even among plant genotypes within a species (Broeckling
et al., 2008), are also considered as important drivers structuring
soil microbial communities proliferating in the plant root zone
(Dotaniya and Meena, 2015). However, separating the effects of
heterogeneity in environmental conditions within a region from
those induced by variability of exudates between plant individuals
is largely unexplored.

Oak, a foundation tree species, displays among the highest
levels of below and aboveground biotic interactions in European
forests (Plomion et al., 2018). More than 20 years ago, numerous
investigations have been made on how oak trees harmonize
their own development, biotic interaction and adaptation
to the environment. These studies were through microcosm
experiments using micro-cuttings of the oak clone DF159
(Quercus robur L.) with different analytic approaches including
transcriptomics (Herrmann et al., 1998, 2015, 2016; Tarkka
et al., 2013). More recently, clonal saplings regenerated from
DF159 were planted in TERENO1 field sites as “phytometers”
(Herrmann et al., 2016; Ferlian et al., 2018), i.e., standardized
plants transplanted into different environments to serve as

1www.tereno.net

environmental measuring “instruments” (Dietrich, 2013).
The tree phytometer system using clone DF159 is called
“PhytOakmeter” (Ferlian et al., 2018). A few years after outplant
in the field, the PhytOakmeter saplings have been shown to
exert an impact on the biological activity in their surrounding
soil (Eisenhauer et al., 2018). Therefore, PhytOakmeter has the
potential to help unraveling the tree-related factors that shape
the root microbiome.

Previous investigations on soil microorganisms associated
with plant roots focused on rhizospheric soil microbial
communities (Grayston et al., 1998; Fang et al., 2001; Nunan
et al., 2005; Hartmann et al., 2009; Haldar and Sengupta,
2015). However, as a shared environment between plant roots
and microbes (Jacoby et al., 2017), the rhizosphere is most
directly controlled by the selective forces exerted by host plants
(Kowalchuk et al., 2002). Some studies reported an enhanced
microbial species richness and diversity in the rhizosphere due
to its enrichment in resources (Novello et al., 2017). However,
there is an opposite view that, due to selection property of
root exudates, the rhizosphere may comprise a strongly reduced
proportion of the soil microorganisms (Philippot et al., 2013).
In any case, rhizosphere-focused studies do not give enough
weight to the contribution of environmental factors in shaping
the microbiome of the root zone of soil. Therefore, investigating
soil of the root zone by discarding the rhizosphere soil senso
stricto enables to rationally analyze the respective impacts of plant
and environment factors in shaping the plant root microbiome
(Weißbecker et al., 2018).

Using PhytOakmeters planted in plots within the same central
German region and under comparable climate conditions, the
current study aimed to distinguish between the impacts of
tree-mediated recruitment and local environmental factors on
microbial diversity and community structure by comparing
the tree root zone vs. the tree root-free zone of the soils.
The study was performed using Illumina pair-end amplicon
sequencing targeting the small subunit (SSU) of the 16S and
the internal transcribed spacer (ITS) region of the 18S rDNA to
gain bacteria and fungi, respectively. As result of the common
genetic identity of the clonal saplings and of the homogeneity
in climate conditions, we hypothesized a high similarity in
microbial diversity and community structure within root zones of
PhytOakmeters planted in Central German TERENO grassland
field sites. Due to an extended rhizosphere mediated selection
effect of the host tree, we expected a lower microbial diversity
in the PhytOakmeter root zone than in the tree root-free zone
within respective field sites. In comparison to the tree root-free
zone, we expected to find higher abundance of some particular
soil microbial taxa, due to creation in the PhytOakmeter root
zone of a particular niche which selects specific microbial taxa.

MATERIALS AND METHODS

Field Sites and PhytOakmeter
The PhytOakmeter experiment was carried out in central
Germany at four TERENO grassland field sites: Harsleben
(51◦51′43.43′′ N, 11◦04′58.73′′ W, 138 m), Pfeiffhausen
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(51◦37′47.68′′ N, 11◦42′19.95′′ W, 137 m), Greifenhagen
(51◦37′20.80′′ N, 11◦24′59.62′′ W, 292 m) and Bad Lauchstädt
(51◦23′29.65′′ N, 11◦52′32.14′′ W, 119 m). Because of their
geographic proximity, the PhytOakmeter field sites share
comparable weather conditions (Supplementary Table S1).
Due to the continental climate, flatness and position in the
rain shadow of the Harz Mountains, this region is warm
and dry with annual precipitations usually less than 500 mm
(Wollschläger et al., 2016).

The DF159 oak tree saplings were produced via
micropropagation which warrants their common genetic
identity (Herrmann et al., 2016), and in November 2014, 2-year
PhytOakmeter trees were outplanted in grassland sites. The
distance between trees ranges from 6 to 10 m according to
individual field plots. Beside the oaks, the entire soil surface of
all field sites was covered by herbaceous plants as illustrated by
Harsleben field site in Supplementary Figure S1. In September
2016, six core trees per site were randomly selected for this
study. To determine tree performance and, later on, correlate
it with soil microbial community structure, tree height at
outplanting as well as tree percentage height increases in 2015
and 2016 were measured using a meter ruler. Moreover, number
of shoot flushes produced by main stems of the core trees
during the 2016 vegetation period were counted, and, as a
proxy reflecting biomass production in each flush, five leaves
were taken from every shoot flush of each tree. As core trees of
all the sites had grown at least one shoot flush (SF1), we only
considered the leaf biomass of the first shoot flushes during
subsequent analyses.

Soil Sampling
In total, 38 soil samples were taken in September 2016: 24
samples in the tree root zone (6 trees per site × 4 sites = 24
soil samples) and 14 samples in the tree root-free zone that were
used to analyze local soil microbial pools (4 samples per site in
Harsleben and Pfeiffhausen, 3 samples per site in Greifenhagen
and Bad Lauchstädt). At each field site, PhytOakmeter root zone
and the tree root-free zone soil samples were taken within the
same plot. Each soil sample consisted of three subsamples which
were mixed to constitute a composite sample as illustrated by
Harsleben plot sampling design in Supplementary Figure S2.
All samples were collected using a 2 cm diameter soil auger to
a 10 cm soil depth.

The soil samples were sieved using 2 mm mesh size to
remove debris and homogenize the soil sample before being
packed into sampling bags. From each sieved sample, one aliquot
(±50 g) was kept for soil chemical analyses and another aliquot
(±10 g) for molecular analyses, and both were stored at -20◦C
directly after sampling.

Soil Chemical Analysis
Sixteen soil chemical parameters were analyzed (Table 1). Soil
pH was determined with a glass electrode after 1 h in a
suspension 1:2.5 mixture of soil and 0.01 M CaCl2 as in Moche
et al. (2015) and Goldmann et al. (2015). Total soil carbon
(TC) and nitrogen (TN) were determined in triplicate by dry
combustion using a Vario EL III C/H/N analyzer (Elementar,

Hanau, Germany). Due to negligible carbonate concentration of
the soil samples (<2%), the obtained total carbon was taken to
represent soil organic carbon, SOC (Francioli et al., 2016). To
have an idea on the content of soluble soil organic matter, hot
water extractable C (HWC) was measured as in Francioli et al.
(2016) and N (HWN) as in Schulz et al. (2011). Cold water
extraction of organic matter content was performed to measure
the amount of labile and easily available organic carbon and
nitrogen, representing the nutritional pool for these elements
at the sampling time (Zsolnay, 1996). Cold water extractable
carbon (CWC) and nitrogen (CWN) were then determined as in
Schmidt et al. (2017). Mineral nitrogen contents (NH4

+-N and
NO3

−-N) were measured as in Francioli et al. (2016). Available
P and K were extracted from soil with calcium acetate lactate
(1:20 w/v, pH 4.2, 1.5 h) (Schüller, 1969). After filtration of the
suspension (filter type: Whatman Schleicher and Schuell 595 1/5
Ø 270 mm), P and K were quantified in 1:10 diluted extracts
by inductively coupled plasma optical emission at emission
lines 766.49 nm (K) and 178.287 nm (P) using a SPECTRO
ARCOS spectrometer (Spectro Analytical Instruments GmbH,
Kleve, Germany).

DNA Extraction, Amplification, and
Sequencing
Total microbial DNA was extracted from 0.4 g of each soil
composite sample using the Power Soil DNA Isolation Kit
(Qiagen, Hilden, Germany), following the manufacturer’s
instructions. The concentrations of DNA extracts were
determined with a NanoDrop-8000 spectrophotometer (Thermo
Fisher Scientific, Dreieich, Germany). DNA extracts were
stored at −20◦C, and adjusted to 10–15 ng/µl prior to PCR
amplification. PCR genomic DNA amplicon libraries of the
targeted microorganisms (bacteria and fungi) were produced
from the genomic DNA templates. The bacterial 16S and fungal
ITS2 within the rDNA region were amplified using a modified
primer mix: P5_8N_515F + P5_7N_515F (forward) together
with P7_2N_806R + P7_1N_806R (Caporaso et al., 2012; Moll
et al., 2018) for the bacteria, and P5-5N-ITS4 (Gardes and Bruns,
1993; Leonhardt et al., 2019)/P7-4N-fITS7 (Ihrmark et al., 2012;
Leonhardt et al., 2019) for the fungi, all containing the Illumina
adapter sequences (see Supplementary Table S2 for an overview
of the utilized primer sequences according to Hendgen et al.,
2018). All PCRs were conducted using the proofreading KAPA
Hifi polymerase (Kapa Biosystems, Boston, MA, United States).
Each PCR reaction was carried out in a total volume of 15 µl
containing 1 µl template DNA, 0.3 µl forward primer, 0.3 µl
reverse primer, 7.5 µl 2x KAPA HiFi HotStar ReadyMix, and
5.9 µl nuclease free water; under the following thermocycling
steps. 16S rDNA amplification: initial denaturation at 95◦C
for 3 min, followed by 25 cycles of denaturation at 98◦C for
20 sec, annealing at 55◦C for 15 sec, elongation at 72◦C for 15 s,
followed by a final extension at 72◦C for 5 min. Fungal ITS2
amplification: initial denaturation at 95◦C for 3 min, followed
by 30 cycles of denaturation at 98◦C for 20 s, annealing at
56◦C for 20 s, elongation at 72◦C for 20 s, followed by a final
extension at 72◦C for 5 min. Every sample was amplified in three
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TABLE 1 | Chemical parameters of the soil samples: pH, soil organic carbon (SOC), total soil nitrogen (TN), carbon-to-nitrogen ratio (C/N), Cold water extractable carbon
(CWC) and nitrogen (CWN), CWC-to-CWN ratio (CWC/CWN), hot water extractable carbon (HWC) and N (HWN), HWC-to-HWN ratio (HWC/HWN), soil moisture,
ammonium and nitrate-bound nitrogen (NH4

+-N and NO3
−-N), total mineral nitrogen (min.N), potassium (K), and phosphorous (P).

Parameter Harsleben Pfeiffhausen Greifenhagen Bad Lauchstädt

pH 7.6 (± 0.3)a 7.5 (± 0.4)a 7.5 (± 0.5)a 6.3 (± 0.2)b

SOC (%) 2.6 (± 0.4)a 2.9 (± 0.4)a 1.3 (± 0.2)c 2.1 (± 0.1)b

TN (%) 0.15 (± 0.03)b 0.18 (± 0.01)a 0.11 (± 0.03)c 0.14 (± 0.01)b

C/N 18.0 (± 4.5)a 15.9 (± 1.2)a 12.0 (± 4.2)b 14.9 (± 0.4)ab

CWC (mg/kg) 79.9 (± 14.8)b 96.8 (± 13.7)a 58.4 (± 10.6)c 97.7 (± 14.4)a

CWN (mg/kg) 5.3 (± 0.9)c 7.7 (± 1.1)a 5.7 (± 1.1)b 7.6 (± 1.4)a

CWC/CWN 15.4 (± 3.3)a 12.6 (± 1.2)b 10.5 (± 2.8)c 13.3 (± 3.2)abc

HWC (mg/kg) 1065.7 (± 166.6)b 1437.0 (± 164.3)a 627.8 (± 139.4)c 616.8 (± 61.3)c

HWN (mg/kg) 101.7 (± 19.9)b 142.5 (± 18.3)a 62.7 (± 14.7)c 60.8 (± 7.3)c

HWC/HWN 10.5 (± 0.6) 10.1 (± 0.6) 10.1 (± 0.4) 10.2 (± 0.8)

Soil moisture (%) 6.9 (± 1.1)a 5.5 (± 1.4)b 7.5 (0.7)a 7.6 (0.6)a

NH4
+-N (mg/kg) 3.2 (± 0.5)ab 3.7 (± 0.7)a 2.5 (± 0.9)b 2.6 (± 1.1)b

NO3
−-N (mg/kg) 1.0 (± 0.8) 1.0 (± 0.5) 0.5 (± 0.4) 0.9 (± 1.4)

min.N (mg/kg) 4.2 (± 1.2)a 4.6 (± 1.1)a 3.1 (± 1.1)b 3.1 (± 2.1)ab

K (mg/kg) 156.1 (± 87.0) 153.9 (± 39.9) 199.3 (± 82.4) 148.2 (± 52.3)

P (mg/kg) 54.5 (± 47.3)ab 51.8 (± 9.9)a 33.1 (± 21.5)b 24.0 (± 6.9)b

Values represent means (± standard deviation). Different superscript letters after standard deviations in a row mean statistically different (p < 0.05) according a one-way
ANOVA and Tukeys’ HSD test.

replicates, resulting sample PCR products were checked by gel
electrophoresis. The three replicates were pooled and cleaned-
up using the Agencourt AMPure XP kit (Beckman Coulter,
High Wycombe, United Kingdom). Subsequently, cleaned
products were used as templates in an additional PCR, where
Illumina Nextera XT indices and sequencing adaptors were
attached according to the Illumina MiSeq protocol for amplicon
preparation (Illumina Inc., San Diego, CA, United States). The
amplifications followed these conditions: initial denaturation
at 95◦C for 3 min, 8 cycles of denaturation at 98◦C for 30 s,
annealing at 55◦C for 30 s, followed by elongation at 72◦C for
30 s, and a final extension at 72◦C for 5 min. Resulting PCR
products were purified again with AMPure beads. The libraries
were then quantified by PicoGreen assays (Molecular Probes,
Eugene, OR, United States) and pooled to provide equimolar
representation. Fragment sizes and quality of DNA sequencing
libraries were checked using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, United States). The pool was used
for paired-end sequencing of 2 × 300 bp with a MiSeq Reagent
kit v3 on an Illumina MiSeq platform (Illumina Inc., San Diego,
CA, United States) and was carried out at the Department of Soil
Ecology of the Helmholtz-Centre for Environmental Research –
UFZ in Halle (Saale), Germany.

Bioinformatics Analysis
The raw reads were de-multiplexed by the Illumina MiSeq
Reporter software package v2.5.1.3 with default settings. Retained
fastq files without Illumina adaptors, sequencing primers and
indices were analyzed using the pipeline DeltaMP (v0.2)2 by
following the workflow presented in Schöps et al. (2018). In brief,
soil-based Illumina sequences of 16S and ITS were processed and

2https://github.com/lentendu/DeltaMP/

sequentially quality-filtered using mainly MOTHUR (v1.39.5-2,
Schloss et al., 2009). Pair-end reads were merged with a
minimum overlap of 20 bp using PandaSeq (v2.11, Masella et al.,
2012). Sequences with any ambiguous base, more than four bp
differences in the primer sequence, as well as homo-polymers
with up to 20 bp differences were removed. Simultaneously,
sequences, shorter than 50 or longer than 600 bp were discarded.
Potential chimers were removed using UCHIME (Edgar et al.,
2011) as implemented in MOTHUR (Schloss et al., 2009).
Remaining sequences were pooled, de-replicated and sorted
according to their abundance using OBITools (v1.2.11, Boyer
et al., 2016). Unique sequences were clustered into operational
taxonomic units (OTUs) with 97% sequence similarity using
VSEARCH (v2.10.4, Rognes et al., 2016). By means of the
Bayesian classifier as implemented in MOTHUR (Schloss et al.,
2009), bacteria and fungi taxonomy was initially assigned using
the SILVA reference database (v128, Quast et al., 2013) and
UNITE (v8.0, Nilsson et al., 2018), respectively. The output
was manually checked using Basic Local Alignment Search
Tool (BLAST) of the National Center for Biotechnology (NCBI)
(O’Leary et al., 2015). Plant derived 16S sequences assigned to
chloroplasts or mitochondria were removed from the bacterial
OTU table. Reads of samples were normalized at rarefaction
depth of 96,167 and 26,578 reads per sample for bacteria and
fungi, respectively, by using the function “rarefy_even_depth”
from the phyloseq package 1.19.1 (McMurdie and Holmes, 2013)
in R version 3.4.2 (R Development Core Team, 2017). The
derived OTUs were assigned to their functional groups mainly
based on FAPROTAX database (v1.1, Louca et al., 2016) and
FUNGuild tool (v1.1, Nguyen et al., 2016) for bacteria and fungi,
respectively. Raw sequences were deposited at the European
Nucleotide Archive (ENA) and can be found under accession
number PRJEB35688.
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Statistical Analyses
The statistical analyses were carried out using R, v3.4.2
(R Development Core Team, 2017). The microbial Shannon
diversity index (Shannon, 1948) was calculated using the diversity
function of the vegan package (Oksanen et al., 2017), and
results were visualized via overlaid boxplots and stripcharts
using the ggplot2 package (Wickham, 2016). We used a two-
way analysis of variance (ANOVA) to compare the microbial
diversity of PhytOakmeter root and root-free zones within
and among the field sites. We then used Tukey HSD test to
determine at which sites the tree root zone and root-free zone
revealed significant difference (p < 0.05). In the same way,
significant differences in microbial Shannon diversity among
the sites’ tree root zones were analyzed. To explore how soil
chemistry and weather parameters are correlated to the microbial
Shannon diversity, multiple linear regression was done. We
first removed auto-correlated parameters using the variance
inflation factor (VIF < 5) (Akinwande et al., 2015), and the
remaining parameters were differently combined into various
models. The obtained regression models were then evaluated
to choose the best approximating model by using Akaike’s
Information Criterion (AIC) (Johnson and Omland, 2004).
Subsequently, to determine whether the field sites contained
significantly different microbial communities, the analysis of
similarities (ANOSIM) permutation test (999 permutations)
was used together with a non-metric multidimensional scaling
(NMDS) based on the Bray-Curtis dissimilarity matrices (Clarke,
1993). We then applied the envfit function of the vegan package
(Oksanen et al., 2017) to analyze correlation between structure
of soil microbial communities and soil chemical parameters.
Goodness-of-fit statistics (R2) were calculated based on 999
permutations. NMDS was also used to compare microbial
community structure between PhytOakmeter root and root-free
zones within respective sites, and ANOSIM was as well applied
to test the statistical significance. Moreover, the overlap analysis
of bacterial and fungal OTUs among different locations was
done using the online tool venny (Oliveros, 2007/2015). Using
DEseq2 (v1.24.0) via phyloseq (McMurdie and Holmes, 2013;
Love et al., 2014), we distinguished which genera significantly
increased presence in PhytOakmeter root zone over the tree
root-free zone (p < 0.05). The results were then plotted using
the graphical library ggplot2 (Wickham, 2016). By using all
the OTUs found within the host tree root zone, we performed
variance partitioning (varpart function in vegan) to assess the
relative contribution of the environmental parameters and the
host tree performance in explaining variation of the bacterial and
fungal communities.

RESULTS

Weather Data and Soil Chemical
Parameters of the Field Sites
Details on weather data are summarized in Supplementary
Table S1. The weather variables include precipitations as well
as atmospheric and soil temperatures. There was no significant

difference in any of the analyzed weather variables among
the field sites.

The measured chemical parameters were mostly in similar
ranges among the different field sites, even though some
values differed significantly with, however, moderate difference
amplitudes (Table 1). In particular, the soil of Greifenhagen and
Bad Lauchstädt had lower values in SOC, hot and cold water
extractable C and N.

The similarities among the soil parameters allowed
repartition of the field sites into distinct groups. In this
regard, concurrent similarity in pH and SOC grouped together
Harsleben and Pfeiffhausen; C/N, HWC, and HWN put together
Greifenhagen and Bad Lauchstädt; TN and C/N linked Bad
Lauchstädt and Harsleben.

PhytOakmeter Growth Performance
Among the Field Sites
PhytOakmeter growth parameters within the respective field sites
are summarized in Table 2. The PhytOakmeters outplanted in the
four field sites had similar initial height. Also, among the field
sites, there was no difference in percentage increase of the tree
height during 2015 and 2016 vegetation periods. The number of
shoot flushes produced by the trees during 2016 was comparable
among the sites, but the first shoot flushes were significantly
longer in Bad Lauchstädt than in the other sites.

Overall Composition of Microbial
Communities Among the Field Sites
For bacterial communities, a total of 5,092,013 reads representing
18,140 OTUs were obtained from the 38 samples from all
four field sites. Removal of reads ascribed to chloroplasts and
mitochondria gave a total of 5,066,965 reads corresponding to
17,890 OTUs, with a minimum of 96,167 and a maximum of
199,411 reads. Rarefaction to 96,167 reads per sample resulted
in a total of 17,630 OTUs. For fungal community, the analysis
availed a sum of 4,033 OTUs represented in a total of 1,545,424
reads; with minimum reads of 26,580 and a maximum of 56,794.
Rarefaction to 26,578 reads per sample resulted in a sum of
3,970 OTUs. All rarefaction curves for both bacteria and fungi
tended to approach the saturation plateau, an indication that
the communities were almost exhaustively sampled and the data
volume of sequenced reads was sufficient (see rarefaction curves
in Supplementary Figure S3).

Overall, the rarefied bacterial OTUs were assigned to
42 different identifiable phyla, 126 classes, 169 orders, 319
families, and 582 genera. Bacterial communities were dominated
by 13 phyla, with an individual relative abundance of at
least 1%, all totaling up to 93% of the whole community.
The five predominant phyla Proteobacteria, Actinobacteria,
Planctomycetes, Acidobacteria and Chloroflexi covered more
than 74% of the total community (Figure 1A). Unclassified
OTUs at phylum level occupied 2.2%. All the bacteria phyla were
similarly represented among all four field sites.

The rarefied fungal OTUs were classified into six different
recognized phyla, 23 classes, 82 orders, 159 families, and
388 genera. The fungal phyla altogether were represented
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TABLE 2 | Tested growth parameters on the investigated PhytOakmeters within respective field sites.

Tree parameters Harsleben Pfeiffhausen Greifenhagen Bad Lauchstädt

Height at the outplanting time (cm) 65.8 (± 16.5) 71.7 (± 8.8) 78.8 (± 2.5) 75.3 (± 5.9)

Height percentage increase in 2015 26.5 (± 15.2) 34.7 (± 27.6) 31.9 (± 11.9) 64.4 (± 39.3)

Height percentage increase in 2016 32.6 (± 34.2) 17.8 (± 17.6) 33.2 (± 12.5) 38.1 (± 31.4)

Mean SF number in 2016 1.8 (± 0.4) 1.5 (± 0.5) 2.0 (± 0.0) 2.0 (± 0.9)

Mean first SF length in 2016 11.4 (± 10.7)b 10.0 (± 9.2)b 7.6 (± 4.4)b 27.3 (± 6.3)a

Leaf dry weight (g) 0.6 (± 0.3) 0.8 (± 0.4) 1.0 (± 0.3) 0.9 (± 0.3)

Ratio leaf dry weight to fresh weight 0.5 (± 0.1)ab 0.6 (± 0.1)a 0.5 (± 0.0)a 0.4 (± 0.0)b

Values represent means of six selected trees (± standard deviation). Fresh and dry leaf weights represent total weights for five leaves of the main stem first shoot flush
(SF1). Different superscript letters after standard deviations in a row mean statistically different (p < 0.05) according to a one-way ANOVA and Tukeys’ HSD test.

in the following order: Ascomycota (56.0%), Basidiomycota
(26.2%), Glomeromycota (10.5%), former Zygomycota (4.0%),
and Chytridiomycota (3.0%), with 14.6% unclassified. The fungal
phyla were shared and also similarly represented among all the
four field sites (Figure 1A).

Microbial Shannon Diversity Associated
With PhytOakmeter Root Zone, Field
Sites and Environmental Parameters
Species diversity of both bacteria and fungi within PhytOakmeter
root and root-free zones at each field site was determined by
using the Shannon diversity index and results presented by
boxplots (Figure 1B). The Shannon diversity values within the
host tree root zones were similar among the sites for both bacteria
and fungi. As well, species diversity of the host tree root-free
zones was similar among the sites for both bacteria and fungi,
except a significantly lower bacterial diversity value noticed at
Pfeiffhausen. At each field site, the microbial species diversity
values were also comparable between the host tree root and root-
free zones. However, the species diversity of the host tree root
zone tended to always be higher for the bacteria and, on the
contrary, lower for the fungi.

As indicated by the lowest AIC values of the tested models
(Supplementary Table S3), the best model to predict the
microbial Shannon diversity included CWC, P, soil moisture and
soil temperature for bacteria (p < 0.001 and adjusted R2 = 0.47),
while it included CWC and soil temperature for fungi (p < 0.05,
adjusted R2 = 0.12) (bold in Supplementary Table S3).

Structure of Microbial Communities
Among the Field Sites
ANOSIM showed that the structure of soil microbial
communities was significantly site-specific for both bacteria
(p < 0.001, R = 0.91) and fungi (p < 0.001, R = 0.82). This
was visually supported by NMDS plots in which samples were
ordinated in separate clusters according to the respective field
sites (Figure 2). The NMDS plot displayed that the soil microbial
communities of Harsleben and Pfeiffhausen were close to each
other especially for bacteria (Figure 2). The figure also shows
the significant impacts of soil pH, SOC, C/N, and CWC on the
microbial community structure for both bacteria and fungi, plus
soil moisture for only bacteria.

When we separately plotted samples of the respective sites, we
visually found start of separation between microbial communities
of PhytOakmeter root and root-free zones in one site (Bad
Lauchstädt) for the bacteria and in three sites (Harsleben,
Pfeiffhausen, and Bad Lauchstädt) for the fungi (Figure 3),
indicating a beginning of the host tree effect on microbial
community structure. However, ANOSIM only confirmed this
host tree effect on fungal community in the field sites of
Pfeiffhausen (p < 0.05, R = 0.37) and Bad Lauchstädt (p < 0.05,
R = 0.57).

Microbial Community Composition
Within PhytOakmeter Root Zone in
Comparison to the Tree Root-Free Zone
Composition of the soil microbial communities deduced from the
OTUs overlap analysis between PhytOakmeter root zone and the
tree root-free zone revealed significant differences (Figure 4). The
highly abundant microbial OTUs tended to be generally shared
between the two zones (55.7 and 51.2% for bacteria and fungi,
respectively) while the least abundant tended to be uniquely
detected within either zone. In this view, 29.6% bacterial OTUs
and 32.7% fungal OTUs were exclusively detected within soil
samples of the PhytOakmeter root zone, while 14.7% bacterial
OTUs and 16.1% fungal OTUs were uniquely identified within
the root free zone soil.

Further overlap analysis separated the microbial OTUs
exclusive to the tree root zone into those commonly found in all
the field sites and those exclusive to either site (Figure 5). The
common ones were considered as the putative “core microbiome”
of the rooting zone of the DF159 clone. The detected core
microbiome consisted of 37 and 25 OTUs for bacteria and
fungi, respectively (Figure 5). The number of PhytOakmeter site-
specific microbial OTUs ranged from 369 (Pfeiffhausen) to 410
(Greifenhagen) for bacteria, and from 100 (Bad Lauchstädt) to
190 (Greifenhagen) for fungi, and was always much higher than
the number of the “core” OTUs.

At the genus level, significant differences were also found
between PhytOakmeter root and the tree root-free soil zones, as
27 bacterial and 48 fungal genera (including both the identified
and unidentified) showed significant differential abundance
between the two soil compartments (Figure 6, p < 0.05).

Specifically, Figure 6 shows, for bacteria, higher abundance
of six identifiable genera and lower abundance of seven
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FIGURE 1 | (A) Distribution overview of bacterial and fungal phyla between PhytOakmeter root and root-free zones within and among the field sites, (B) Shannon
diversity index for bacteria and fungi within soils from PhytOakmeter root zone and the tree root-free zone of the respective field sites. Different letters above boxplots
indicate significant differences (p < 0.05) according to Tukey-HSD post hoc test. n.s., not significantly different.

recognizable genera in the PhytOakmeter root zone compared
to the tree root-free zone. The bacterial genera highly abundant
within PhytOakmeter root zone in comparison to the tree
root-free zone included Bryocella, Endobacter, Mucilaginibacter,
Mycobacterium, Methylotenara, and Holophaga. Always in

comparison to the tree root-free zone, we clearly noticed higher
abundance of 23 identifiable fungal genera in the PhytOakmeter
root zone. These consisted of, among others, Piriformospora,
Typhula, Claviceps, Cyathus, Tomentella, Tuber, Trichophaea,
Scleroderma, Exophiala, and Hebeloma. Eight recognizable fungal
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FIGURE 2 | Non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity displaying bacterial (stress = 0.07) and fungal (stress = 0.09)
communities’ structure within field sites, and significantly correlated soil chemical parameters (p < 0.05).

genera showed higher abundance in the tree root-free zone.
To summarize, more differentially abundant genera were in
the PhytOakmeter root zone compared to the tree root-free
zone. Furthermore, among the highly abundant microbial genera
within PhytOakmeter root zone, we noticed more fungal than
bacterial genera.

Compared Impacts of Soil Chemistry,
Weather Parameters, and Host Tree
Performance on Microbial Community
Variation
Variance partitioning (Figure 7) showed that host tree
performance traits alone could not explain any part of variation
within the bacterial community while they accounted for 6.0%
for the fungi. Similarly, the soil chemistry effect was only
detectable for the fungi and explained 8.4%. Also, weather alone
explained about 5.3% of the variance in bacteria and 9.7% in
the fungi. The three types of factors had notably higher impacts

when cumulating their single and combined effects derived from
interactions with the other factors, whereby weather remained
the strongest determinant followed by soil chemistry and, largely
behind, tree performance. Even though this observation was
similar in the two microbial groups, the explained variation was
higher for bacteria than for fungi (Figure 7).

DISCUSSION

The current study revealed similar diversity levels of the
microbiomes within PhytOakmeter root zone among the field
sites and between the soil compartments (host tree root and
root-free zones) within the individual sites. Our design was also
adequate to detect specific changes in the community structure
among the field sites. We also revealed different microbial
composition between the PhytOakmeter root and root-free zones
within respective sites. We were able to detect variations within
the PhytOakmeter root zones amongst the sites and to separate
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FIGURE 3 | Non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity displaying bacterial and fungal communities’ structure within respective
field sites, and differentiating between the samples of PhytOakmeter root and root-free zones. p and statistic R values within respective sites are given by the
analysis of similarities (ANOSIM) permutation test (999 permutations).

the change fraction explained by the host tree from the one
accounted for by the environmental parameters.

Factors Equalizing the Microbial
Diversity of PhytOakmeter Root and
Root-Free Zones Within and Among the
Field Sites
In our study, we partly confirmed our first hypothesis about
microbial diversity levels in PhytOakmeter root zones among
the field sites. However, we rejected the second hypothesis as we
found no difference between the tree root and root-free zones
within the individual sites. Despite small variations amongst
the sites, this similar microbial diversity might mainly reflect
comparable vegetation features and weather parameters among
all the sites and between soil compartments (host tree root and
root-free zones), which tended to equalize their microbiomes.

The first constant factor susceptible to homogenize the soil
microbiomes of the field sites is the common genetic identity

of the PhytOakmeters. As evidence to this PhytOakmeter clonal
effect, microbial diversity within the tree root zones was similar
among all the sites. Additionally and most importantly, bacterial
diversity of the host tree root zone at Pfeiffhausen remained
comparable to the tree root zones of the other sites in spite of
its host tree root-free zone which was significantly different from
most of its counterparts. According to previous reports, trees,
especially through root exudates, provide specific carbon and
energy sources to soil microorganisms. As a central source of
nutrients, root exudates create therefore a niche for growth of
microorganisms (Hassan et al., 2019), thus highly contributing
to shaping the soil microbiome (Wieland et al., 2001; Garbeva
et al., 2004; Nunan et al., 2005). Similar studies pointed out
that variations in plant root exudates influence the diversity
of the plant root microbiome (Grayston et al., 1998; El Zahar
Haichar et al., 2008). As quantity and composition of root
exudates are plant species-specific (Gransee and Wittenmayer,
2000; Gargallo-Garriga et al., 2018), each plant can shape its
specific soil microbiome (Berg and Smalla, 2009). We can thus
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FIGURE 4 | Overlap of bacterial and fungal OTUs between PhytOakmeter root zone and the tree root-free zone.

FIGURE 5 | Venn diagrams showing an overlap of OTUs exclusive to PhytOakmeter root zone among the field sites.

infer that genetically identical plants create within their root
zones comparable microbial niches, resulting in similar diversity
of their root-associated microbiomes.

Second, all the study sites share a similar climate with
parallel weather variations. Temperature, the most important
variable in defining the climate of a region, is one of the main
factors influencing the occurrence, richness, stability, and
activity of soil microorganisms (Borowik and Wyszkowska,
2016). Both atmospheric and soil temperatures were reported
to impact on the soil microbiome (Alkorta et al., 2017).
Atmospheric temperature has direct effect on soil temperature

and indirectly affects host plant productivity as well as availability
of carbon sources for microbial growth (Anderson, 1992;
Bardgett et al., 1999). Also, both directly and indirectly,
soil temperature significantly shapes the conditions for
growth and development of microorganisms (Borowik and
Wyszkowska, 2016). Directly, soil temperature influences
microbial metabolism while the indirect effects are noticed via its
impacts on plant productivity (Jefferies et al., 2010). Comparable
atmospheric and soil temperatures amongst the study field sites
may have also had an important contribution to the similar
microbial diversity.
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FIGURE 6 | Differential abundance test for bacterial and fungal genera using Phyloseq and DESeq2. The graphs represents log2_fold change of the microbial genera
with significantly different abundance (p < 0.05) in the PhytOakmeter root zone compared to the tree root-free zone. A positive value signifies higher abundance
while a negative value means lower abundance of the respective genera within the PhytOakmeter root zone compared to the tree root-free zone.
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FIGURE 7 | Variance partitioning analysis of the respective impacts of soil chemistry, weather, and host tree growth parameters on variations within bacterial and
fungal communities. Soil chemistry included pH and soil organic matter content (SOC, TN, C/N, CWC, CWN, CWC/CWN, HWC, and HWN). Weather data included
annual precipitations as well as monthly mean atmospheric and soil temperatures in the period of January 2014–September 2016. Tree growth-related parameters
were height at the outplanting time, height increases in 2015 and 2016, shoot flushes produced in 2016 vegetative period, height of 2016 first shoot flush (SF1) as
well as fresh and dry matter weight of SF1 leaves produced in 2016. Each circle represents the portion of variation accounted by each factor. Shared variance is
represented by the intersecting portions of the circles. Values ≤ 0 are not shown. The calculations were done by using all the OTUs found within the host tree root
zone.

Lastly, all the sites are grassland. As roots of herbaceous
plants highly impact soil microbial communities (Burke et al.,
2009), herbaceous plant cover may have contributed a lot to
the noticed similar microbial Shannon diversity between host
tree root and root-free zones within individual sites. This
assumption is supported by Christie et al. (1978) who reported
that one plant root-associated microbiome can be influenced
by neighboring plants. Therefore, herbaceous plant cover may
have extended their effect to the PhytOakmeter root zone and,
thus, contributed to homogenize microbial diversity between the
host tree root and root-free zones at the individual grassland
field sites.

Differences in Microbial Community
Structure Among the Field Sites
As indicated by NMDS plots and ANOSIM, structure of
the microbial communities was in fact revealed different
from site to site in spite of their similar microbial diversity
levels. With this, we rejected the second part of our first
hypothesis which predicts high similarity in microbial
community structure among the field sites. In general, the
noticed difference might reflect the micro-heterogeneity of
soil habitat (Buscot, 2005) among the sites in addition to
their land use history. Besides, spatial isolation among the
field sites may have also contributed to their differences
in microbial community structure. According to various
reports, spatial isolation leads to microbial species endemic
to specific field sites (Zhou et al., 2002) and, therefore, to
variations in soil microbial community, even within a single

region (Bokulich et al., 2014; Zarraonaindia et al., 2015;
Gourmelon et al., 2016).

Differences in soil pH and organic matter content can also
be used to further explain the different microbial communities
among the sites. This is supported by previous reports such
as Eiland et al. (2001), Fierer and Jackson (2006), Medeiros
et al. (2006), Zhalnina et al. (2015), and Xue et al. (2018).
From this view, repartition of the sites into distinct groups, as
shown by our NMDS plot analyses, can be explained relying on
similarities in soil pH and organic matter content. Comparable
pH, SOC, and C/N between Harsleben and Pfeiffhausen matched
with the NMDS plot results where their soil microbiomes were
found to be more similar. Comparable C/N and TN content
between Bad Lauchstädt and Harsleben are also consistent with
the similarity level of their respective microbial communities. In
the same way, similar level of C/N, HWC, and HWN between
Greifenhagen and Bad Lauchstädt relate to their comparable
microbial community structure.

On the contrary, all the sites had the same microbial phyla with
similar proportion. Proteobacteria and Ascomycota dominated
the overall bacterial and fungal communities, respectively. High
abundance of Proteobacteria was previously reported within
numerous types of ecosystems, such as in grasslands (Singh
et al., 2007), croplands (Tian and Gao, 2014), forest-grass
ecosystems (Zeng et al., 2016), and natural hardwood forest
soils (Lin et al., 2011). Ascomycota were reported dominant
in soil fungal communities of semi-arid (Porras-Alfaro et al.,
2011) and temperate (Prober et al., 2015; Chen et al., 2017)
grasslands, oppositely to forest soils dominated by Basidiomycota
(Goldmann et al., 2015; Terhonen et al., 2019).
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Differences in Microbial Community
Composition Between Soils of
PhytOakmeter Root and the Root-Free
Zones
Comparison between the PhytOakmeter root and root-free soil
compartments confirmed our third initial hypothesis about
higher abundance of some particular soil microbial taxa in
the PhytOakmeter root zone. We found more microbial OTUs
exclusive to the host tree root zone than the OTUs uniquely
detected within the tree root-free zone. This indicates that,
after two years of their field outplant, PhytOakmeter trees had
already exerted significant effect on local microbial communities
regardless of legacy effects of previously existing vegetation.
This opposes Elgersma et al. (2011) who reported soil microbial
structure to be not affected by the current vegetation two
years after transplantation, rather largely determined by the
legacy effect of the previous vegetation type. Examination of
the PhytOakmeter root-associated microbial OTUs showed a
PhytOakmeter “core” microbiome as well as a PhytOakmeter
“site-specific” microbiome. Following the definition by Shade
and Handelsman (2012), the PhytOakmeter “core” microbiome
referred to bacterial and fungal OTUs exclusively found within
the tree root zone in all the sites. Such a core microbiome has
been estimated to likely play a key role in the plant soil systems
among variable sites (Shade and Handelsman, 2012; Shakya et al.,
2013). In the current study, however, all the PhytOakmeter “core”
microbial OTUs were not identified for specific functions to the
host tree itself, neither to the whole ecosystem. We also revealed
PhytOakmeter site-specific microbial species, and this supported
the view that plants recruit root-associated microorganisms from
surrounding soil microbial reservoirs (Compant et al., 2019). The
microbial recruitment by host plant roots was reported to depend
on composition of the local microbial pool and microbial-
host plant affinities designated as microbial host fidelity and
preference (Bonito et al., 2014; Compant et al., 2019). In
herbaceous plants, this process was shown to be promoted by
nutrients and signaling molecules present in the plant exudates
(Marschner et al., 2004; Prescott and Grayston, 2013; Jacoby et al.,
2017). Similar processes were also observed for trees (Landeweert
et al., 2001; Gahan and Schmalenberger, 2014). Metabolites
exuded by the host tree serve to recruit and subsequently support
or inhibit multiplication of particular microbial taxa within the
tree root zone (Garbeva et al., 2004; Bais et al., 2006; Lareen
et al., 2016). In line with these previous findings, our current
study also revealed some highly abundant bacterial and fungal
genera in the PhytOakmeter root zone compared to the tree
root-free zone of soils.

Plant roots can attract beneficial microorganisms from
surrounding soil, and those play important roles in plant
performance especially by improving plant mineral nutrition.
Even though there is still limited knowledge on which particular
microbes are good partners for boosting plant nutrition, it has
been postulated that plants have evolved specific recognition
mechanisms to discriminate beneficial microorganisms from
those that need to be repelled (Jacoby et al., 2017). In the
current study, none of the differentially abundant bacterial

genera between PhytOakmeter root and root-free zones could be
identified for their potential function. Contrarily, we were able to
annotate ecological functions to a certain number of the highly
abundant fungal genera within the PhytOakmeter root zone.
They included Tomentella, Tuber, Trichophaea, Scleroderma,
Exophiala, and Hebeloma which are ectomycorrhizal (Tedersoo
et al., 2010). The ectomycorrhizal fungi assist their associated
plants to draw more nutrients and water from the soil as well as
to increase the plant tolerance to different environmental stresses
(Tedersoo et al., 2010). In recruiting the ectomycorrhizal fungal
genera, the PhytOakmeter trees may have been targeting such
an important contribution to the host plant health. Compared
to the tree root-free zone, PhytOakmeter root zone was also
enriched in yeast genera Phaeococcomyces (Butler et al., 2004),
Sporobolomyces (Wang et al., 2015), Cystobasidium (Ramos-
Garza et al., 2015; Yurkov et al., 2015), and Cyphellophora
(Feng et al., 2014). Yeasts are essential in ecological processes
involving mineralization of organic matter (Botha, 2011). The
tree root zone incorporated as well Marchandiomyces whose
several species are lignicolous (DePriest et al., 2005; Lawrey et al.,
2008), and saprotrophic genera such as Ochroconis (Gams, 2015)
and Typhula (Shiryaev and Kotiranta, 2007) which participate
in breaking down of complex organic molecules. Our findings
agree with the previously reported ectomycorrhizal status of oaks
(Herrmann and Buscot, 2007) and the tree ability to interact with
large microbial communities which assist in nutrients acquisition
(Jumpponen and Jones, 2009; Tarkka et al., 2013). The tree root-
associated microorganisms are well-known to serve in improving
tree health and nutrition, preventing establishment of pathogens,
and adapting to specific local environmental conditions (Uroz
et al., 2016; Gehring et al., 2017; Lau et al., 2017).

Microbial Communities in the Host Tree
Root Zone Are Shaped More by
Environmental Parameters Than by the
Host
Contribution of the environmental parameters to variations
within bacterial and fungal communities of the PhytOakmerer
root zone soil was found to be higher than contribution of the
tree growth-related parameters. This finding might be due to
two main reasons: (1) Host trees were still very young (only two
years, i.e., two vegetation periods, in the field). Even more, the
first vegetation period for trees after field release corresponds to
a transplant shock. This period consists of acclimation to local
soil environment and regeneration of the root system (Hargrave
et al., 2002). After the transplant shock period, PhytOakmeters
had practically only one single vegetation period to impact on
surroundings and, apparently, this was not enough to exert a
huge effect on local soil microbial community. The dependency
of soil microbial community on the host tree age seems to be high.
As previously proved, soil microbial communities associated
with roots of perennial plant change in both richness and
composition over the host’s lifetime. After out-planting, the
plants replace a common soil microbial community they were
exposed to as saplings with local communities of their respective
field sites. From there on, the host plants continue to shape
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their respective root-associated microbial communities. These
development dynamics were previously reported by Wagner
et al. (2016) and Goldmann et al. (2020). (2) The soil was
sampled in the tree root zone rather than rhizosphere where
high tree effect on microbial community could be expected. As
previously reported, the rhizosphere is known as a nutrient-
rich compartment in the soil influenced by the plant. In the
rhizosphere, carbon compounds, which serve as the main food
and energy source for soil microbes, are continuously introduced
via rhizodeposition and sloughed-off cells (Breidenbach et al.,
2016). Sampling the host PhytOakmeter root zone rather than
the rhizosphere led to dilute the host tree influence on the
soil inhabiting microorganisms. However, even though tiny, the
impact revealed at this young age of the trees is remarkable
especially in the context of a temperate climate that does not
promote rapid tree growth. Until now such quick effects of tree
planting on soil microbial communities had been reported in the
subtropics (Weißbecker et al., 2018).

CONCLUSION AND FUTURE
PERSPECTIVES

In conclusion, there is a high similarity in microbial biodiversity
among the field sites but their microbial community structure
is different. Even though still young, the capability of
PhytOakmeters to recruit a specific beneficial microbiome
in their root zone from surrounding microbial reservoirs
was evidenced. The study revealed concurrent impact of
environmental parameters and the host PhytOakmeter in shaping
soil microbiome of the host tree root zone, but the magnitude of
environmental parameters was higher than the impact of the host
tree. Since this finding is likely based on the age of the trees,
a similar study with older host trees is needed. For this, further
measures of soil properties, such as information on texture, might
even explain more microbial variance. Ideally, the investigation of
the root endophytic compartment and/or the rhizosphere would
be beneficial to unravel the PhytOakmeter-microbe interaction
further. Moreover, the analysis of PhytOakmeter effects on soil
microbiome at a large-scale is also required to move toward
a comprehensive understanding of the tree root microbiome
assemblage, and to have a better overview on mutual impacts
between host tree and environmental variables in shaping the
tree root zone microbiome. Nevertheless, our presented approach
is an important step toward more integrative studies using
clonal trees, and provides an opportunity to perform long-term
interaction biomonitoring.
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Supplementary material  

 

Supplementary figures 

 

Supplementary Figure S1. Harsleben field site at sampling time in November 2016. 
Harsleben and the other field sites are grasslands with plot soil surface entirely covered 
by herbaceous plants. (A) General overview of the field plot. (B) Zoomed-in PhytOakmeter 
tree within the field plot.  
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Supplementary Figure S2. (A) Plot sampling design overview, case of Harsleben field 
site. In total, ten samples were taken (six samples were taken within root zone of six core 
trees and four samples were taken in the tree root-free zone). The three subsamples of 
each tree root-free zone were taken in positions illustrated by green dots, and pooled to 
respectively make composite samples K1, K2, K3 and K4. (B) Sampling positions within 
PhytOakmeter root zone. As indicated by three black balls, the three subsamples of every 
tree root zone were taken at 120° angle around a selected tree, 15 cm horizontal distance 
from the tree trunk, and pooled together.  
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Supplementary Figure S3. Individual rarefaction curves of bacterial and fungal OTUs at 
a 97% similarity level of all 38 soil samples.  
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Supplementary tables 

Supplementary Table S1. Weather data among the study field sites. The parameters were measured at the weather stations 
of the Helmholtz Centre for Environmental Research-UFZ. Atmospheric temperatures were measured at 200 cm above soil 
surface, while soil temperatures represent an average of the upper 20 cm calculated from single measurements at 5, 10, and 
20 cm soil depth. The here presented weather data encompass the period of January 2014 (year of host trees out-planting) to 
December 2016, but the ones used for further analysis go up to September 2016 (time of soil sampling). According to one-
way ANOVA, no significant differences were observed amongst the sites’ mean values. 
 

Weather 
variables 

Parameter Harsleben Pfeiffhausen Greifenhagen Bad Lauchstädt 

 
 
Precipitation 
[mm] 

Annual total 2014 555.2 540.5 612.4 452.6 
Annual total 2015 516.9 439.6 488.2 399.9 
Annual total 2016 365.9 333.2 407.4                  437.2 
January-September 2016 274.8 248.8 298.5                  337.1 
Grand total 2014-Sep 
2016 

1,346.9 1,228.9 1,399.1 1,189.6 

      
 
Atmospheric 
temperature 
[°C] 

Annual mean 2014(+SD) 11.1 (±5.9) 10.8 (±6.2) 10.1 (±6.0) 11.0 (±6.2) 
Annual mean 2015(+SD) 10.6 (±6.1) 10.3 (±6.2) 9.7 (±6.3) 10.7 (±6.5) 
Annual mean 2016(+SD) 12.3 (±7.2) 11.9 (±7.6) 11.0 (±7.5) 12.1 (±7.6) 
Overall mean (+SD) 11.2 (±6.2) 10.9 (±6.4) 10.2 (±6.3) 11.2 (±6.5) 
Maximum monthly mean 20.7 20.6 20.2 21.2 
Minimum monthly mean 1.7 0.5 0.2 1.0 

      
Soil 
temperature 
[°C] 

Annual mean 2014(+SD) 11.6 (±6.2) 11.4 (±6.5) 10.7 (±5.7) 11.9 (±6.9) 
Annual mean 2015(+SD) 11.1 (±6.5) 10.6 (±6.7) 10.0 (±6.0) 11.4 (±7.3) 
Annual mean 2016(+SD) 13.0 (±7.4) 12.3 (±7.5) 11.7 (±6.9) 13.1 (±8.0) 
Overall mean (+SD) 11.9 (±6.7) 11.4 (±6.9) 10.7 (±6.2) 12.1 (±7.2) 
Maximum monthly mean 21.3 20.9 19.5 22.3 
Minimum monthly mean 2.0  1.3 1.6 1.7 

 

Data source: Meteorological data, Helmholtz Centre for Environmental Research – UFZ
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Supplementary Table S2. Overview of the used bacterial 16S rDNA and fungal ITS2 primers (Hendgen et al., 2018). 
Abbreviations according to IUPAC Ambiguity Code: A - adenine, C - cytosine, G - guanine, T -tyrosine, N - “aNy” base, ie A, 
C, G or T/U (Johnson, 2010)  

 

Primer name Primer sequence 5’-3’ 

P5-8N-515F ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNNGTGCCAGCMGCCGCGGTAA 

P5-7N-515F ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNNGTGCCAGCMGCCGCGGTAA 

P7-2N-806R GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNGGACTACHVGGGTWTCTAAT 

P7-1N-806R GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNGGACTACHVGGGTWTCTAAT 

P5-5N-ITS4 ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNTCCTCCGCTTATTGATATGC 

P7-4N-fITS7 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNGTGARTCATCGAATCTTTG 
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Supplementary Table S3: Results of linear model analysis testing the correlation between 
environmental parameters and the microbial Shannon diversity index results. We first 
removed auto-correlated parameters using the variance inflation factor (VIF < 5); then the 
remaining parameters were differently combined into various models and tested against 
the microbial Shannon diversity index results. The obtained regression models were then 
evaluated to choose the best approximating model by using Akaike’s Information Criterion 
(AIC). Based on AIC values and significant correlation to the microbial Shannon diversity, 
the best model included CWC, P, soil moisture and soil temperature for bacteria (p < 0.001 
and adjusted R2 = 0.47), while it included CWC and soil temperature for fungi (p < 0.05, 
adjusted R2 = 0.12).  

 

 Bacteria Fungi 

Model 
parameters/components 
 

 
AIC 

 
p 

 
Adjusted R2 

 
AIC 

 
p 

 
Adjusted R2 

pH, TN, C/N, CWC, 
NO3-N, total mineral N, 
K, P, soil moisture and 
soil temperature 
 

 
-93.0 

 
<0.01 

 
0.44  

 
53.6 

 
0.08 

 
0.22  

TN, C/N, CWC, K, P, soil 
moisture and soil 
temperature 
 

-105.1 <0.001 0.49  50.3 0.21 0.09  

CWC, K, P, soil moisture 
and soil temperature 
 

-111.9 <0.001 0.49  42.9 0.12 0.11 

CWC, P, soil moisture 
and soil temperature 
 

-112.6 <0.001 0.47  41.9 0.13 0.09  

CWC, soil moisture and 
soil temperature  
 

-111.3 <0.001 0.43  39.5 0.08 0.11  

CWC and soil 
temperature  
 

-111.9 <0.001 0.41  37.4 0.04 0.12  
 

CWC, P and soil 
temperature 

-112.9 <0.001 0.45  39.5 0.08 0.11  
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Summary

Tree root-associated microbiomes are shaped by
geographic, soil physico-chemical, and host tree
parameters. However, their respective impacts on
microbiome variations in soils across larger spatial
scales remain weakly studied. We out-planted sap-
lings of oak clone DF159 (Quercus robur L.) as
phytometer in four grassland field sites along a
European North–South transect. After four years, we
first compared the soil microbiomes of the tree root
zone (RZ) and the tree root-free zone (RFZ). Then, we
separately considered the total microbiomes of both
zones, besides the microbiome with significant affin-
ity to the RZ and compared their variability along the
transect. Variations within the microbiome of the tree
RFZ were shaped by geographic and soil physico-
chemical changes, whereby bacteria responded more
than fungi. Variations within both microbiomes of the
tree RZ depended on the host tree and abiotic param-
eters. Based on perMANOVA and Mantel correlation
tests, impacts of site specificities and geographic
distance strongly decreased for the tree RZ affine
microbiome. This pattern was more pronounced for
fungi than bacteria. Shaping the microbiome of the

soil zones in root proximity might be a mechanism
mediating the acclimation of oaks to a wide range of
environmental conditions across geographic regions.

Introduction

Two decades ago, soil microbial taxa were assumed to
be ubiquitously distributed (Finlay, 2002). But soon after,
the importance of environmental filtering in shaping soil
microbial communities was highlighted (Green and
Bohannan, 2006; Martiny et al., 2011; Tedersoo
et al., 2014; Deakin et al., 2018). Accordingly, environ-
mental heterogeneity potentially induces variations in the
spatial distribution of soil microorganisms (Green
et al., 2004; Green and Bohannan, 2006). Thereby, abi-
otic soil parameters are known as the major drivers of soil
microbial communities, and they act within individual soil
aggregates (Trivedi et al., 2017; Wilpiszeski et al., 2019)
up to broad spatial scales (Fierer and Jackson, 2006;
Lauber et al., 2008; Jesus et al., 2009; Rousk
et al., 2010). Climate also significantly impacts soil micro-
bial communities at regional and continental scales
(Fierer et al., 2009). Likewise, soil microbial communities
vary with land-use types (Schöps et al., 2018; Xue
et al., 2018; Plassart et al., 2019) and vegetation (Carney
and Matson, 2006). Such biotic filtering is strongly linked
to the fact that plant roots establish close associations
with specific groups of soil microorganisms, especially
those with plant-beneficial properties (Hartman and
Tringe, 2019), for instance, the ones involved in plant
nutrition as well as resistance to abiotic and biotic
stresses (Lugtenberg et al., 2002; Vandenkoornhuyse
et al., 2015).

The ‘plant–soil microbe’ interaction starts when plants
recruit microbial partners from local soil communities
(Hartman and Tringe, 2019) using signal molecules or
rhizodeposits, which include exudates, sloughed-off root
cells or tissues and mucilage (Berg and Smalla, 2009;
Jones et al., 2009; Dennis et al., 2010). Rhizodeposits,
especially root exudates represent a readily available
carbon source for soil microorganisms (van Hees
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et al., 2005). Consequently, the plant root environment is
potentially enriched in saprotrophic microorganisms due
to this nutrient source (Baldrian and Kohout, 2017). As
composition and quantity of root exudates differ among
plant species and even between plant genotypes
(Broeckling et al., 2008), plant identity is also a strong
driver of the soil microbial communities in the vicinity of
roots (Somers et al., 2004; Dotaniya and Meena, 2015;
Prada-Salcedo et al., 2020; Prada-Salcedo et al., 2021).
The exudate quality and quantity depend on the photo-
synthesis level, which does not only vary according to
plant identity but is also related to local parameters
including climate and soil properties (Haichar et al., 2008;
Yamaguchi et al., 2019).
Plant species with wide geographic distributions accli-

mate and adapt to local conditions, and thereby impact
specifically their soil microbiome (Savolainen et al., 2013).
These plant-driven changes in soil microbial communities
are confoundable with those directly resulting from local
abiotic factors. Phytometers, i.e. plants homogenous in
age and genetic origin planted in sites under variable envi-
ronmental conditions (Clements and Goldsmith, 1924), can
bypass such confounding effects (Schöps et al., 2020).
Tree-based approaches to investigate soil bacterial and
fungal communities previously used poplar clones
(Gamalero et al., 2012; Foulon et al., 2016; Karli�nski
et al., 2020). However, phytometers remain underused in
ecology research (Dietrich et al., 2013) and not exploited in
studies trying to unravel the concurrent and congruent
effects of geographic location, soil physico-chemistry and
host plant traits on soil microbial communities across large
spatial scales (de Souza et al., 2015). Besides, large-scale
studies on the respective strength of these three sources
of soil microbial community variability rarely consider differ-
ences between the plant rooted and the non-rooted soil
zones (Goldmann et al., 2016).
Here we present a study on variations of bacterial and

fungal soil communities along a European North–South
transect by comparing systematically the root zone
(RZ) and root-free zone (RFZ) soil of clonal oak trees
(Quercus robur L., clone DF159, Herrmann et al. (2016)).
In 2014, saplings were out-planted as phytometer in dif-
ferent grassland field sites. Quercus spp. are foundation
tree species in European forests with a broad geographic
distribution (Plomion et al., 2018). Besides in forests,
Quercus spp. also grow as solitary trees in agricultural
systems or grasslands, and their contribution to regener-
ate cultural landscape is high (MacDougall et al., 2004;
Löf et al., 2016; Bobiec et al., 2018; Parmain and
Bouget, 2018). Thereby, oak trees establish strong inter-
actions with soil bacteria and fungi (Herrmann and
Buscot, 2007; Jumpponen and Jones, 2009; Meaden
et al., 2016; Lasa et al., 2019). For instance, DF159 oak

phytometers recruit specific microbial partners from local
soil microbial pools (Habiyaremye et al., 2020a). The
characteristic rhythmic growth of clone DF159 paralleled
by shifts in resource allocations between the above and
below-ground plant parts (Herrmann et al., 2015) was
shown to have an impact on the biological soil activity
(Eisenhauer et al., 2018) and to induce changes in the
root-associated microbiome (Habiyaremye et al., 2020b).
Therefore, this clonal phytometer system appeared suit-
able to analyse the balance between tree-related and abi-
otic environmental parameters in driving soil microbial
communities along a broad European geographical tran-
sect. We analysed soil microbial variability at two different
scales: at the plot scale, we analysed the oak phytometer
microbiomes, i.e. the microbial communities of the tree
RZ versus its RFZ. Furthermore, along the European
transect, we compared these different microbiomes
among the investigated sites. The RZ microbial commu-
nity is directly impacted by not only the plant but also by
local abiotic conditions. Therefore, a specific tree effect is
better captured by considering the RZ affine microorgan-
isms separately. This subset of the RZ microbiome refers
to bacteria and fungi, significantly enriched in this zone
compared with the RFZ. Hence, our analyses individually
considered three groups of soil microbiomes: (i) the tree
RFZ total microbiome, (ii) the tree RZ total microbiome,
and (iii) the tree RZ affine microbiome.

To characterize these soil microbiomes, we performed
high-throughput amplicon sequencing of the bacterial
16S rRNA and fungal ITS2 rDNA. The microbial commu-
nities were analysed in relation to geographic, soil
physico-chemical, and host tree parameters. Due to crea-
tion of a particular niche in the oak RZ, which promotes
the enrichment of specific microbial taxa, we hypothe-
sized (i) different microbial community compositions
between the tree RZ and RFZ. Due to the general
increase of biodiversity towards the Equator and concom-
itant enhanced oak performance at lower latitudes, we
predicted within the tree RZ (ii) a southward increase of
microbial Shannon diversity and different microbial com-
munities among the studied sites. As root exudates are
an important resource for root-associated microorgan-
isms, we anticipated within the tree RZ soil (iii) a higher
impact of parameters related to the oak phytometer than
those of geographic and soil physico-chemical parame-
ters, in particular for the RZ affine communities.

Results

Overview on soil physico-chemical and oak phytometer
parameters among the field sites

We observed variability in all the analysed soil physico-
chemical parameters among the field sites. Concretely,
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pH consistently changed from acidic soil at the northern-
most site Lapinjärvi in Finland to neutral soil at the south-
ernmost site Bordeaux in France. Soil nitrate content and
total mineral nitrogen showed a steady southwards
increase as well. For the other soil parameters we mea-
sured, site-to-site variations were not consistent (see
Table 1).

Regarding tree parameters, we found significantly taller
trees at lower latitude sites (Table 1). For example, by
the end of the vegetation period 2018, the trees were
more than two times taller and branches more than four
times longer at Bordeaux than at Lapinjärvi. Additionally,
oak phytometers at Lapinjärvi had higher specific leaf

area (SLA) but lower leaf dry matter content (LDMC) than
the trees at the other sites, indicating a short leaf lifespan
coupled with low photosynthesis rate. However, during
2018, some growth parameters at Fontain in Eastern
France did not follow this general latitudinal performance
gradient. At this site, the relative yearly elongation of the
tree trunks and lateral branches (LB), and LDMC were
similar or by trend even lower than at more northern sites
during the vegetation period 2018 (Table 1).

Results of the Spearman rank correlation tests of the
tree growth with soil physico-chemical parameters, as
well as geographic location and attributes among the
sites are shown in Table 2. Specifically, site-to-site

Table 1. Geographic location and attributes of the field sites, soil physico-chemical, and oak phytometer parameters among the sites.

Parameter Lapinjärvi Bad Lauchstädt Fontain Bordeaux

Geography and climate
Latitude (N) 60.61590 51.39133 47.18503 44.58046
Longitude (W) 26.14303 11.87556 6.029146 0.279746
Elevation (m) 29 119 351 8
MAT (�C) 5.3(±0.7)c 10.1(±0.7)b 10.1(±0.6)b 13.7(±0.5)a

MAP (mm) 661(±91)d 495(±83)c 1142(±152)a 793(±92)b

Soil physico-chemistry
pHCaCl2 5.5(±0.1)d 6.4(±0.2)c 6.7(±0.2)b 7.2(±0.1)a

Moisture (%, wt./wt.) 20.0(±1.9)a 6.0(±0.6)c 14.6(±1.2)b 6.7(±1.1)c

TC (%) 2.7(±0.3)b 2.1(0.2)c 3.2(±0.3)a 2.0(±0.1)c

TN (%) 0.20(±0.02)b 0.15(±0.01)c 0.30(±0.03)a 0.14(±0.02)c

TC/TN 13.7(±1.2)a 13.8(±0.8)a 10.9(±0.3)b 14.9(±2.1)a

HWC (mg kg−1) 959(±135)a 660(±73)b 1069(±104)a 745(±103)b

HWN (mg kg−1) 60.6(±6.9)b 53.8(±4.5)b 84.0(±9.0)a 74.9(±12.1)a

HWC/HWN 15.8(±1.3)a 12.2(±0.5)b 12.7(±0.4)b 10.0(±0.6)c

CWC (mg kg−1) 159(±25)a 113(±9)b 172(±31)a 110(±15)b

CWN (mg kg−1) 11.8(±1.4)b 10.9(±0.9)b 17.9(±4.7)a 21.6(±7.9)a

CWC/CWN 13.5(±1.6)a 10.5(±0.9)b 9.9(±1.8)b 5.7(±1.9)c

NH4
+-N (mg kg−1) 4.4(±0.8)a 3.6(±1.3)a 3.6(±0.6)a 2.0(±0.8)b

NO3
−-N (mg kg−1) 2.1(±0.6)c 4.6(±1.6)b 7.7(±6.3)b 18.1(±13.9)a

Nmin (mg kg−1) 6.5(±1.2)b 8.2(±2.2)b 11.3(±6.8)ab 20.1(±13.8)a

KCAL (mg kg−1) 212.2(±44.9)a 116.4(±43.7)b 4.5(±1.2)c 178.1(±48.4)a

PCAL (mg kg−1) 72.3(±12.5)a 24.8(±6.7)c 12.2(±2.4)d 36.5(±5.4)b

Oak phytometer growth and performance
Height at outplanting (cm) 62.8(±6.8)b 75.3(±5.8)a 64.8(±6.3)b 57.0(±7.0)b

Tree height in 2018 (cm) 142.2(±25.4)c 240.5(±24.8)b 285.8(±57.2)ab 309.7(±49.2)a

Tree height increase since outplanting (%) 129.0(±49.2)c 219.1(±20.8)b 348.0(±106.3)a 451.5(±125.8)a

Tree height increase in 2018 (%) 12.2(±5.5)b 24.9(±17.5)ab 15.3(±9.1)b 44.6(±23.9)a

LB with SF1 4.0(±0.0) 4.0(±0.0) 3.3(±0.8) 3.8(±0.4)
LB with SF2 0.2(±0.4)b 1.0(±1.3)b 3.0(±0.9)a 3.8(±0.4)a

LB with SF3 0.0b 0.0b 0.0b 2.5(±1.4)a

SF1 length (cm) 8.0(±1.8)b 11.9(±2.5)a 6.9(±4.0)b 7.8(±5.5)ab

LB total length (cm) 18.2 (±2.8)c 47.0(±20.9)b 106.7(±17.3)a 83.6(±14.9)a

LB % length increase in 2018 88.9 (±55.4)ab 71.8(±44.2)ab 37.9(±19.0)b 82.2(±22.0)a

Leaves’ number on SF1 of LB 7.9(±2.5)b 11.2(±1.4)a 8.2(±1.8)b 8.7(±2.0)b

LDMCSF1 0.44(±0.01)c 0.51(±0.01)b 0.50(±0.01) b 0.56(±0.03)a

SLASF1 (cm
2 mg−1) 9.9(±0.7)a 8.1(±0.5)b 7.4(±1.3)b 7.7(±0.7)b

Geographic coordinates (latitude, longitude, and elevation) were provided by Google Earth. MAT (monthly average temperature, from January
2000 to December 2019) and MAP (Mean annual precipitations, from January 2000 to December 2019) were calculated using meteorological
data retrieved from CRU TS (Climatic Research Unit gridded Time Series) v4.0.4 (Harris et al., 2020).
Physico-chemical parameters of the soil samples: pH, total carbon (TC), total soil nitrogen (TN), carbon-to-nitrogen ratio (C/N), cold-water extract-
able carbon (CWC) and nitrogen (CWN), CWC-to-CWN ratio (CWC/CWN), hot water extractable carbon (HWC) and N (HWN), HWC-to-HWN
ratio (HWC/HWN), soil moisture, ammonium and nitrate-bound nitrogen (NH4

+-N and NO3
−-N), total mineral nitrogen (Nmin), plant-available potas-

sium (KCAL), and phosphorous (PCAL). LB represents the first four lateral branches; SF1, SF2 and SF3 mean the first, second and third shoot
flushes during the vegetation period 2018. LDMC means leaf dry matter content and SLA is the specific leaf area. Mean (±standard deviation),
display of ANOVA (with Tukey-HSD post-hoc test) results. Different superscript letters after standard deviations mean statistically different
(p < 0.05) in a row.
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variability in soil pH, moisture, and total mineral nitrogen
content was significantly correlated with most of the tree
parameters. The same analysis also revealed significant
correlations of the tree growth with latitude and mean
annual precipitation (MAP) for geography-related
parameters.

Microbiome variations between the tree RZ and RFZ
along the European transect

Across all samples, we obtained a total of 3 087 776
high-quality 16S rRNA gene sequences. The sequences
were clustered into 12 770 bacterial operational taxo-
nomic units (OTUs), and rarefaction to a minimum of
60 989 sequences per sample to normalize sequencing
depth among all samples resulted in a total of 12 638
bacterial OTUs. For fungi, we gained a total of 1 112 637
ITS2 rDNA sequences, which were clustered into 2867
fungal OTUs. Rarefaction to a minimum of 14 968
sequences per sample resulted in a total of 2809
fungal OTUs.

Proteobacteria (25.8%), Planctomycetes (16.7%) and
Actinobacteria (11.0%) predominated the recovered bacte-
rial phyla, while the fungi were dominated by Ascomycota
(69.8%), Basidiomycota (17.8%) and Glomeromycota
(5.4%). An overview of the taxonomic composition at the
order level showed variabilities of the relative abundance
among the sites but only very few differences between the
root and RFZs of the individual sites (Fig. 1).

To determine the soil microbial OTUs with preference
to oak RZ designated as the RZ affine bacterial and fun-
gal OTUs or RZ affine microbiome, we applied an indica-
tor species analysis. This analysis showed a total of
209 soil bacterial OTUs with significant habitat prefer-
ence (p < 0.05) between the tree RZ and RFZ, out of
which 70 OTUs (i.e. 33.5%) were found in the RZ, while
139 OTUs (i.e. 66.5%) were found in the RFZ. Similarly,
we found a total of 40 soil fungal OTUs with significant
preference (p < 0.05) to either zone, out of which
10 OTUs (i.e. 25.0%) were preferentially associated to
the RZ and 30 OTUs (i.e. 75.0%) to the RFZ. Some of
the tree RZ affine bacterial OTUs could be identified at
the genus level and belong to the genera Arenimonas,
Candidatus Solibacter, Caulobacter, Conexibacter,
Gemmatimonas, Haliangium, Methylobacterium, Micro-
bacterium, Mucilaginibacter, Nitrospira, Peredibacter,
Pirellula, Reyranella, and Sphingobium. Some tree RZ
affine fungal OTUs were also identified at the genus level
and assigned to the genera Ascobolus, Cyphellophora,
Hebeloma, Myrmecridium, Podospora, Purpureocillium,
Sarocladium, and Scleroderma.

According to overlap analysis of the soil microbial
OTUs among the sites, the highest proportion of OTUs
shared among all four sites was found in the RZ affineT
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microbial communities, in which we observed no site-
specific OTU (Fig. 2). For the tree RFZ total microbiome
and the RZ total microbiome, however, we noticed site-
specific microbial OTUs, which even outnumbered the
core OTUs for the fungi (Fig. S1).

According to non-metric multidimensional scaling
(NMDS) and permutational multivariate analysis of vari-
ance (perMANOVA), soil microbial communities in the
tree RZ and RFZ at the northernmost site Lapinjärvi
were similar for both the bacteria and fungi. The two soil
zones had different bacterial communities at Bad

Lauchstädt, Fontain and Bordeaux, and different fungal
communities at Bad Lauchstädt and Bordeaux (Fig. 3).
Overall, Bray-Curtis dissimilarities between the soil
microbiomes of the RZ and RFZ (Table S1) were posi-
tively correlated with the total tree height in 2018 for
both, bacteria (R = 0.48, p = 0.017) and fungi (R = 0.43,
p = 0.037). Moreover, the bacterial community dissimi-
larities additionally correlated with the percentage of
tree height increase in 2018 (R = 0.68, p < 0.001), while
dissimilarity of the fungal communities correlated with
LDMC (R = 0.52, p = 0.011).

Fig 1. Compared distribution of soil bacterial and fungal orders between the tree root and root-free zones (RZ and RFZ respectively), and among
field sites. Letters within the figures’ rectangles indicate significant differences (p < 0.05) for one respective order, and this significant difference
was only shown for the seven most abundant bacterial and fungal orders.

© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology

Oak soil microbiomes across Europe 5



Respective impacts of geographic, soil physico-
chemical, and host tree parameters on the soil
microbiomes associated to the oak phytometer along the
European transect

Analysis of the Shannon diversity (Fig. 4) revealed a sim-
ilar pattern of increasing diversity of the total bacterial
microbiomes with decreasing latitude in the tree RZ

(R = -0.94, p = 0.004) and RFZ (R = -0.76, p < 0.001).
Fungal Shannon diversity was comparable among all
sites for the RZ total microbiome, while it was significantly
lower at Bordeaux than at the other sites for the RFZ total
microbiome. For the RZ affine bacterial and fungal
microbiomes, the Shannon diversity was similar among
Bad Lauchstädt, Fontain and Bordeaux but significantly
lower at Lapinjärvi. According to the results from the
Spearman rank correlation test (Table 3), soil pH and
total mineral nitrogen content correlated with bacterial
and fungal diversity of the tree RFZ. For the RZ total
microbiomes, the fungal Shannon diversity correlated
with none of the soil physico-chemical parameters, while
for bacteria, it correlated with pH, moisture, and total min-
eral nitrogen. For the RZ affine microbiome, only soil pH
and moisture correlated with the bacterial and fungal
Shannon diversity.

As indicated by NMDS results (Fig. 5), structure of the
microbial communities was different among the field sites
of the European North–South transect. This site effect
was demonstrated for all microbiome groups and con-
firmed by perMANOVA (bacterial community: p < 0.001,
R2 = 0.87 for the tree RFZ total microbiome; p < 0.001,
R2 = 0.80 for the tree RZ total microbiome; and
p < 0.001, R2 = 0.47 for the tree RZ affine microbiome;
fungal community: p < 0.001, R2 = 0.80 for the tree RFZ
total microbiome; p < 0.001, R2 = 0.57 for the RZ total
microbiome and p < 0.001, R2 = 0.40 for the RZ affine
microbiome). Noteworthy, for both, bacteria and fungi,
the magnitude of site effects decreased from the tree
RFZ total microbiomes (highest R2 values), over the RZ
total microbiomes, to the RZ affine microbiomes (smallest
R2 values). Figure 5 also shows the strength and direc-
tion of geographic (latitude, monthly average temperature
(MAT), and MAP), soil physico-chemical (pH, moisture,
TC, and TN), and oak phytometer parameters (tree
height, LB length, and LDMC), which significantly
impacted the structure of the microbial communities
along the European transect. With Mantel correlation
tests to evaluate the impact of geographic distance, a
positive correlation was observed for the three

Fig 3. Non-metric multidimensional scaling (NMDS) based on Bray-
Curtis dissimilarity displaying the soil bacterial and fungal communi-
ties: comparison between the tree root and root-free zones at individ-
ual field sites.

Fig 2. Overlap of the tree root zone affine microbial OTUs among the field sites.

© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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considered microbiomes (Fig. 6), indicating that more dis-
tant sites harboured more distinct microbial communities.
For bacterial communities, the similarly high correlations
were observed for the tree RZ and RFZ total
microbiomes, while a lower correlation was observed for
the RZ affine microbiome. For the fungi, the observed
correlation was highest for the tree RFZ total microbiome
followed by RZ total microbiome and the RZ affine
microbiome.

Hierarchical impacts of geographic, soil physico-
chemical, and oak phytometer parameters on microbial
community variations

Without considering interactions, the tested soil physico-
chemical, tree, and geographic parameters explained
3.7%, 2.8% and 1.6% of variations in the tree RZ total
bacterial microbiome respectively (Fig. 7A), while none of
these parameter groups showed pure impacts on the tree

Fig 4. Soil microbial Shannon diversity along a European North–South transect. Cross comparison was done among three categories of the
microbiome: (1) tree root-free zone total microbiome, (2) tree root zone total microbiome, and (3) tree root zone affine microbiome. The y-axes
are not equally scaled for the root affine microbiomes. Different letters in each panel indicate significant differences (p < 0.05) according to
Tukey-HSD post-hoc test; n.s. means no significant difference.

Table 3. Spearman rank correlation test results between the site conditions (soil physico-chemical and geographic parameters) and the microbial
Shannon diversity within the oak RFZ and RZ soil.

Site conditions

Tree RFZ total microbiome Tree RZ total microbiome Tree RZ affine microbiome

Bacteria Fungi Bacteria Fungi Bacteria Fungi

R p-value R p-value R p-value R p-value R p-value R p-value

Soil physico-chemistry
pH 0.71 0.01 −0.72 0.01 0.89 <0.001 −0.03 0.91 0.51 0.01 0.43 0.04
Moisture 0.04 0.96 0.14 0.67 −0.46 0.03 0.01 0.98 −0.47 0.02 −0.56 0.005
TC −0.26 0.42 0.47 0.13 −0.27 0.20 0.04 0.87 −0.07 0.76 −0.07 0.74
TN −0.08 0.80 0.3 0.34 −0.27 0.21 0.07 0.76 −0.17 0.44 −0.07 0.76
TC/TN −0.23 0.47 0.09 0.78 −0.01 0.96 0.01 0.99 −0.07 0.74 −0.12 0.58
Nmin 0.66 0.02 −0.88 <0.001 0.49 0.02 −0.01 0.96 0.25 0.23 0.19 0.38
Geographic and climatic parameters
Latitude −0.76 0.004 0.67 0.02 −0.94 <0.001 0.15 0.48 −0.47 0.02 −0.43 0.04
MAP 0.63 0.03 −0.37 0.24 0.61 0.002 −0.24 0.27 0.17 0.42 0.22 0.31

TC and TN represent total carbon and nitrogen respectively, while Nmin represents the total mineral nitrogen. MAP indicates the mean annual pre-
cipitation in the period of September 2014 to August 2018. Significant correlations (p < 0.05) are highlighted in bold.
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RZ total fungal microbiome. When cumulating the pure
and combined impacts derived from interactions with
other sources of variability, we found for the RZ total
microbiomes a descending order of magnitude: geo-
graphic (68.6% of bacterial, 51.9% of fungal variations);
soil physico-chemical (66.5% of bacterial, 44.6% of fun-
gal variations); oak tree parameters (60.7% of bacterial,
38.4% of fungal variations). Overall, the tested parame-
ters could explain 75.1% and 55.5% of variations in the
total bacterial and fungal communities of the RZ respec-
tively (Fig. 7A). For the RZ affine microbiomes, we
observed no pure impact of the tested sources of the var-
iability for the bacteria, while for the fungi, we had 32.3%
purely explained by the tree parameters and 14.8% indi-
vidually explained by soil physico-chemical and geo-
graphic parameters. Considering their pure and
combined impacts altogether for the RZ affine bacteria,
geographic parameters remained the main driver of com-
munity variability (49.8%), followed by soil physico-
chemical parameters (40.2%), and the tree parameters
(34.7%). For the RZ affine fungi, the tree parameters

explained the highest variations (58.1%), followed by the
geographic and soil physico-chemical parameters with
equal explained variations (43.7% per each). Overall,
56.1% and 90.8% of variations in the respective RZ affine
bacterial and fungal communities could be explained by
the tested parameters (Fig. 7B).

Discussion

The current study revealed different soil microbial com-
munity structures in the RZ and RFZ of clonal oak trees
out-planted as phytometer in four sites along a European
North–South transect. Because microbiomes of the tree
RZ and RFZ partially overlap due to their proximity, we
sharpened the comparison between the respective
impacts of the tree and abiotic environment parameters
by considering the RZ affine microbiomes. We defined
these RZ affine microbiomes as sub-communities of the
soil bacteria and fungi significantly enriched in the RZ
compared with the tree RFZ. Indeed, while we observed
different site-specific patterns between the bacteria and
fungi Shannon diversity along the transect when consid-
ering the total microbiomes of the tree RZ and RFZ,
these patterns were highly similar when zooming into the
RZ affine bacterial and fungal microbiomes. The total and
affine bacterial and fungal communities of the RZ were
impacted by the interplay among the considered geo-
graphic, soil physico-chemical, and tree parameters.
However, the RZ affine microbiomes showed a
decreased impact on the abiotic environmental

Fig 5. Non-metric multidimensional scaling (NMDS) based on Bray-
Curtis dissimilarity displaying bacterial and fungal communities’
structure among the field sites. Cross comparison was done among
the tree root-free zone total microbiome, the tree root zone total
microbiome, and the tree root zone affine microbiome. p-values and
R2 are results of perMANOVA. Significantly correlated abiotic envi-
ronmental and oak phytometer parameters (p ≤ 0.05). Abbreviations:
TC (total carbon), TN (total nitrogen), MAT (monthly average temper-
ature, from September 2014 to August 2018), MAP (mean annual
precipitation, from September 2014 to August 2018), LB (lateral
branches-the first four branches on each targeted oak tree), LDMC
(leaf dry matter content of the first shoot flush of lateral branches),
TH (main tree trunk height), and TH incr. (total height increase).

Fig 6. Correlation of Bray-Curtis dissimilarity with geographical dis-
tance among the study field sites for the soil bacterial and fungal
communities. Cross comparison was done among the tree root-free
zone total microbiome, tree root zone total microbiome, and the tree
root zone affine microbiome.

© 2021 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
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parameters, while the tree influence was strongly
increased, particularly for fungi.

Oak phytometer growth and performance versus site
specificities along a European North–South transect and
implication to the root-associated microbiome

Spanned sampling sites along the European North–
South transect differed in climate and soil physico-chem-
istry. This had an impact on the growth and performance

of the oaks. As previously demonstrated, the warmer cli-
mate at lower latitudes accelerates the decomposition of
organic matter to enhance the availability of nutrients for
the trees, whereas soils of colder regions at higher lati-
tudes often accumulate undecomposed organic matter
(Vancampenhout et al., 2009). Moreover, better tree
growth was previously noticed under nearly neutral soil
pH (6.5–7.5), since the mineral nutrients are available
within this pH range (Pausas and Austin, 2001; Soti
et al., 2015). This direct effect of soil pH on the soil nutri-
ent availability is coupled with the activity of soil

Fig 7. Variance partitioning analysis of the respective impacts of geographic, soil physico-chemical, and oak phytometer parameters on variations
within the soil bacterial and fungal communities; A) Tree root zone total microbiome; B) Tree root zone affine microbiome; Geographic parame-
ters included latitude, elevation and MAPSep 2014–Aug 2018. Soil physico-chemical parameters included pH, moisture, CWN, Nmin, TC, TN and
TC/TN. Oak phytometer parameters were the main trunk height at sampling time in September 2018; tree trunk height increase during vegetation
period of 2018; length of lateral branches; number of lateral branches with first, second and third shoot flushes (SF1, SF2 and SF3); length of
SF1 of the lateral branches; leaf dry matter content and specific leaf area of the first shoot flush of lateral branches (LDMCSF1 and SLASF1

respectively). Each circle represents the ratio of variation accounted for by each category. Shared variance is represented by the intersecting por-
tions of the circles.
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microorganisms, responsible for nutrient transformations
(Rorison, 1980; Alam et al., 1999; De Boer and
Kowalchuk, 2001; Nicol et al., 2008). Thus, good tree
growth and performance as we noticed at our lower lati-
tude sites like Bordeaux versus minor growth at the
higher latitude site Lapinjärvi coincided with their respec-
tive climatic conditions and soil pH.
Increased tree biomass implies an increased amount

of root exudates (Aulakh et al., 2001), which strongly
impacts the root-associated microbiomes (Haichar
et al., 2008). Thus, the observed variations in the oak
tree growth and performance along the European tran-
sect were expected to impact microbial communities of
the RZ among the studied sites.

Microbial community composition of the oak RZ versus
RFZ and the tree effect on structure of the soil microbial
community

Even though the majority of soil bacterial and fungal taxa
of the RZ were also detected in the tree RFZ, some gen-
era and OTUs showed preference to either zone as rev-
ealed by their detection frequency. Some of the particular
taxa enriched in the RZ are saprotrophic bacteria and
fungi, and symbiotrophic fungi. The identified RZ affine
bacteria included members of the Nitrospira, a genus
including important nitrifiers in soil (Daims and
Wagner, 2018), as well as Caulobacter spp. and Micro-
bacterium spp., which can degrade complex polysaccha-
rides and potentially promote the growth of their host
plants (Madhaiyan et al., 2010; Berrios and Ely, 2020).
For the RZ affine fungi, we detected the ectomycorrhizal
fungi Hebeloma spp. and Scleroderma spp. (Tedersoo
et al., 2010; Tedersoo and Smith, 2013); the saprotrophs
Purpureocillium spp. (Luangsa-ard et al., 2011) and
Ascobolus spp. (Melo et al., 2014); and the yeast
Cyphellophora sp. (Feng et al., 2014). As trees release
higher amounts of exudates in comparison to herbaceous
plants (Aulakh et al., 2001; Herz et al., 2018), enrichment
of the listed microbial functional guilds in the RZ is con-
sistent with their high dependence on rhizodeposits as
their main source of carbon and nutrients (de Boer
et al., 2015; Baldrian and Kohout, 2017).
Effect of the trees on soil microbial community was

also demonstrated by our NMDS analyses of the micro-
bial community structure between the tree RZ and RFZ
within the individual field sites. Lack of separation
between the two zones, which we noticed at Lapinjärvi
for both bacterial and fungal communities, might result
from the reduced tree performance with minor growth
and low LDMC at this northernmost site of the transect.
Since LDMC can serve as a proxy for photosynthesis
(Shipley and Vu, 2002), low values often suggest a
reduced rhizodeposition. Similarly, the minor tree growth

and reduced LDMC during the sampling year 2018 at
Fontain may have resulted in decreased assimilate sup-
ply to the tree roots, negatively affecting the quality and
quantity of C available in the tree RZ for fungi, which
tightly depend on recently assimilated plant C (Denef
et al., 2009; Fuchslueger et al., 2014). Based on our
data, we could not identify the reason behind the reduced
tree growth and performance at Fontain in 2018, which is
in contrast with the otherwise good performance at this
site. But together with the pattern in Finland at the margin
of the oak distribution zone in Europe, the reduced tree
performance in 2018 in Fontain validated both, our oper-
ating with a clonal phytometer system and our first
hypothesis of different microbial community compositions
in soils of the tree RZ and RFZ.

Relative contribution of the abiotic environmental
parameters

In the current study, pure and cumulative impact of geo-
graphic and soil physico-chemical parameters was
observed on both, soil microbial diversity and community
structure. Variations in those abiotic environmental
parameters resulted in site specificities along the transect
and generally displayed higher effects on soil bacteria
than on fungi. This strong site effect on soil bacterial
diversity and community structure seems to be mainly
linked to the high dependence of bacteria on soil pH and
climate parameters, as previously demonstrated by other
studies (Fierer and Jackson, 2006; Lauber et al., 2009;
Griffiths et al., 2011). In our study, the fungal community
structure was also impacted by soil pH, corroborating the
report from Bahram et al. (2018). Furthermore, as a result
of consistently increasing differences in soil pH and cli-
mate conditions along our European North–South tran-
sect, the greater the geographic distance among the
sites, the more dissimilar microbial communities are. A
significant positive correlation between geographic dis-
tance and dissimilarities among the microbial communi-
ties, also called distance decay, was previously reported
for bacteria (Wang et al., 2015) and fungi (Shi
et al., 2014; Goldmann et al., 2016). In our study, how-
ever, we revealed different spatial patterns between the
bacterial and fungal communities, which suggests distinct
mechanisms for shaping the two microbiomes.

Soil total carbon, total nitrogen, and moisture were also
among the strongest parameters that determined the
microbial community structure along the transect. These
findings are in line with studies that revealed impacts of
soil organic matter and water content on soil microbial
communities at local and global scales (Wardle, 2002).
As soil microorganisms feed on organic substrates, soil
microbial community structure depends on the amount
and type of organic substrate available in the soil
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(Rodríguez-Zaragoza et al., 2008; Mohammadi
et al., 2011). Furthermore, soil organic substrates result
from plant primary production, which is climate-related
(Haichar et al., 2008; Yamaguchi et al., 2019). In this line,
reports at regional and continental scales showed that cli-
mate parameters have more impact on soil microbiomes
than soil physico-chemical parameters (Tedersoo
et al., 2012; Bardgett and van der Putten, 2014). Poten-
tially, also the divergent land-use history of our study
sites, e.g. previously arable land or frequently flooded,
might have impacted the found soil microbial patterns, as
previously reported (Suleiman et al., 2013; Bauer
et al., 2017; Goss-Souza et al., 2017).

According to our results, part of our second hypothesis
about a southward increase of the microbial Shannon
diversity was confirmed for bacteria but rejected for the
tree RZ total fungal microbiome. The second part of this
hypothesis about dissimilar microbial communities of the
RZ among the studied sites was confirmed for both bac-
teria and fungi.

Relative contribution of the oak phytometer

In comparison to the tree RZ and RFZ total microbiomes,
the RZ affine microbiome was considerably less
impacted by site specificities and geographic distance.
This is mostly linked to the close connection of the RZ
affine microbiome to the host tree. Our results suggest
that this host stabilizing effect, which was previously
described for rhizosphere microbial communities (Costa
et al., 2006; Raaijmakers et al., 2009; Novello
et al., 2017), is more relevant for the fungi than for the
bacteria. This, in turn, likely results from the higher
dependence of fungi on their host plants (Uroz
et al., 2016; Chen et al., 2018; Roy et al., 2018; Wang
et al., 2020) compared with that of bacteria, which are
usually more affected by abiotic environmental parame-
ters (Millard and Singh, 2010; Lange et al., 2014; Uroz
et al., 2016). Our third hypothesis about the contribution
of the trees in explaining the highest microbial variations
across the European transect was therefore only con-
firmed for the RZ affine fungi.

Overlap analysis of the bacterial and fungal OTUs
affine to the tree RZ among the field sites revealed a
microbiome fraction, which can be considered as the
‘core microbiome’ of the oak clone DF159. In our case,
and according to the definition of Shade and Hand-
elsman (2012) and Toju et al. (2018), the tree core micro-
biome refers to the bacterial and fungal OTUs enriched in
the RZ because of their affinity to the host tree, and gen-
eralists in all the sites because of their ability to cope with
diverging environmental conditions along the transect.
The tree core microbiome contained mainly the bacterial
genera Arenimonas, Caulobacter, Conexibacter,

Gemmatimonas, Haliangium, Methylobacterium,
Pirellula, and Sphingobium, and the fungal genera Pod-
ospora and Sarocladium. As the core plant microbiome
comprises important microbial taxa, supporting plant fit-
ness (Lemanceau et al., 2017; Compant et al., 2019), it
can be assumed that the oak phytometer core micro-
biome assisted the trees to establish along the transect.
The interplay of this core microbiome with site-specific
microbes, promoting the tree adaptation to individual
sites, may explain the wide distribution of Q. robur across
Europe (Plomion et al., 2018).

Conclusion and future perspectives

In the current study, we demonstrated that the soil micro-
biome associated to the tree roots is responsive to an
interplay of geographic, soil physico-chemical, and host
tree parameters. We revealed that the relative contribu-
tion of these abiotic and host tree parameters varies
between bacteria and fungi, and that host tree impact is
reinforced when zooming on the microbiome enriched in
the proximity of roots. In our analyses, we considered the
sources of microbial community variability as completely
independent from each other without interactions. Indeed,
the abiotic and host tree parameters affect soil microbial
communities via highly complex interactions. Our results
indicated a high dependence of tree parameters on cli-
matic or soil conditions, and the latter is also reversely
impacted by host trees. However, the use of a
phytometer approach enabled us to exclude influences of
intraspecific genetic tree variations, while maintaining
locally adapted tree performances and their effect on soil
microbial communities. Last, the tree RZ affine microbial
OTUs, which were revealed mostly common to all sites
despite their spatial distance might be one element
enabling broad latitudinal distribution of the oak.

Even if our study was conducted in grasslands, many
of the tree root-associated microbial taxa, especially
ectomycorrhizal fungi, had been previously identified in
forest ecosystems. However, conclusions about the vari-
ability of soil microbial communities along a European
transect in other ecosystems cannot be drawn from the
presented results. Therefore, and towards a full under-
standing of the impact of trees on their root-associated
microorganisms under field conditions, similar studies
under other land-use systems are required.

Methodology

Description of the host trees, sites and soil sampling

This study used phytometers of the pedunculate oak
clone DF159 (Quercus robur L.), which were generated
via micro-propagation to retain their common genetic
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identity (Herrmann et al., 2016; Ferlian et al., 2018), and
inoculated in the Petri dishes with the ectomycorrhizal
fungus Piloderma croceum to increase their survival rate
(Herrmann and Buscot, 2007). From Petri dishes to pots
in the greenhouse, only tree saplings were picked, leav-
ing out the substrate, and there was no new inoculation
with ectomycorrhizal fungi in pots. In November 2014,
DF159 trees were out-planted at grassland field sites due
to better growth of young oaks in open or semi-open hab-
itats oppositely to their shade intolerance (Jensen and
Löf, 2017; Bobiec et al., 2018). In this regard, 13 oak sap-
lings were out-planted in each of the four grassland field
sites along a European North–South transect. From
North Europe to South, the sites were Lapinjärvi
(Southern Finland), Bad Lauchstädt (Central Germany),
Fontain (Eastern France), and Bordeaux (Southern
France) (Fig. 8A). Because of their geographic position
and distance from each other, the sites are characterized
by different weather conditions (Table 1). Additionally, the
history of the sites was also different. For example,
Lapinjärvi was a pure grassland and had not been
exploited before; Bad Lauchstädt was used for

agricultural activities before the time of the tree out-plant-
ing; while Fontain and Bordeaux are frequently inun-
dated. The oak saplings were propagated during winter
2012/2013 followed by a two-step acclimatization in a
greenhouse during summer 2013, an outfield nursery
during summer 2014, and out-planting in November
2014. In each field site, six of the trees, which had devel-
oped at least four LB were selected to conduct this study.
The total height of the trees’ main trunk was measured at
the soil sampling time in September 2018, and their per-
centage height increase since out-planting and during the
vegetation period 2018 was calculated. Also, the total
length of the first four main LB and their length increase
during the vegetation period 2018 were determined.
Shoot flushes (SFs) produced by the four branches over
the vegetation period 2018 were counted. Because all
branches of the selected trees produced at least an initial
SF designated as first shoot flush (SF1), its length was
also measured and leaves number counted to compare
the tree performance during 2018 among the sites. For
the same purpose, five of the SF1 leaves were harvested
to measure their area as well as fresh and dry weight

Fig 8. A) Study sites: grey sections represent the study countries, from North to South, Finland, Germany and France; black dots indicate the
individual field sites; B) Bordeaux field plot design: green circles indicate investigated oak phytometer, and red dots mark the sampling positions
of the three subsamples that were taken and pooled to obtain the oak phytometer root-free soil samples (RFZ1, RFZ2 and RFZ3); C) Sampling
positions, i.e. three subsamples illustrated as black dots around the trunk of investigated oak phytometer.
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(FW and DW respectively). From these SF1 data, we
also calculated specific leaf area (SLASF1, the ratio
between the one-sided area of a fresh leaf and its DW)
and leaf dry matter content (LDMCSF1, the ratio leaf DW-
to-FW) as important traits in determining the tree relative
performance and as a proxy of the photosynthesis rate
(Poorter and Garnier, 1999; Shipley and Vu, 2002;
Poorter and Bongers, 2006).

Six soil samples were collected in the oak tree RZ at
every site plus three samples from the tree RFZ within
the same plot (see Bordeaux field plot design in Fig. 8B).
The soil of RZ includes both, rhizosphere soil and non-
rhizosphere soil located around the active tree roots, and
is therefore expected to accommodate microbial commu-
nities strongly shaped by the respective tree (Burns
et al., 2015). Studying the tree RZ soil allowed us to dis-
tinguish between the respective impacts of the host tree
and local environmental conditions in shaping the soil
microbial community (Weißbecker et al., 2018;
Habiyaremye et al., 2020a). We also sampled the tree
RFZ soil to analyse communities of the local soil micro-
bial pools. Based on the criterion of the presence of living
plant roots to define the RZ (Steven et al., 2014), we con-
ducted a pre-sampling to examine and estimate the dis-
tance from the tree trunk and soil depth which contain a
great amount of the tree terminal rootlets. This soil sam-
pling test was done at Bad Lauchstädt, which represents
nearly the centre of the transect (Table S2), and resulted
in sampling 30 cm from the tree trunk to 15 cm soil depth.
Each soil sample consisted of three pooled subsamples
taken with a 2 cm diameter soil auger. The tree RZ sub-
samples were taken around the tree trunk (Fig. 8C),
whereas samples of the tree RFZ were collected in
between three neighbouring trees at the same distance
from a tree to another (Fig. 8B). A total of 36 soil samples
(6 trees × 4 sites = 24 RZ soil samples) + (3 RFZ× 4
sites = 12 RFZ soil samples) were individually sieved
(2 mm mesh size) to homogenize the soil and to remove
roots and large organic debris. Each composite soil sam-
ple was divided into two aliquots. One aliquot (15 g) was
kept for soil microbial DNA analysis and the other aliquot
(50 g) for characterization of soil physicochemical proper-
ties. All samples were cooled within ice boxes immedi-
ately after sampling, taken to the laboratory and stored at
-20�C until the start of laboratory analysis.

Physico-chemical analyses of the soil samples

As described previously (Goldmann et al., 2015; Moche
et al., 2015), soil pH was determined with a glass elec-
trode in a 1:2.5 soil/0.01 M CaCl2 suspension after 1 h.
Gravimetric soil moisture was determined using a fully
automated moisture analyser (DBS60-3, KERN & SOHN
GmbH, Balingen, Germany). Soil total nitrogen content

(TN) and total carbon content (TC) were determined in
triplicate by dry combustion with a Vario elemental ana-
lyser (EL III, Elementar, Hanau, Germany). The carbon to
nitrogen (C/N) ratio was then calculated based on TC
and TN. To determine the potentially bioavailable soil
organic C and N for microbial utilization, hot water
extractable C and N (HWC and HWN respectively) were
measured (Ghani et al., 2003; Schulz et al., 2011;
Francioli et al., 2016). Additionally, the amount of labile
organic C and N, which are readily decomposable by soil
microorganisms according to Zsolnay (1996) and
Zakharova et al. (2015) were determined in the form of
cold water-extractable C (CWC) and N (CWN) as
described in Schmidt et al. (2017). As in Francioli
et al. (2016), we determined mineral nitrogen contents
(NH4

+-N and NO3
−-N whose sum gave total mineral nitro-

gen content, Nmin) as well. Plant-available phosphorous
(P) and potassium (K) content were extracted from the
soil with calcium acetate lactate (1:20 wt./vol., pH 4.2,
1.5 h) as in Schüller (1969) and, after filtration of the sus-
pension (filter type: Whatman Schleicher and Schuell
595 1/5 diameter 270 mm), quantified in extracts (diluted
1:10) by inductively coupled plasma optical emission at
emission lines 766.49 nm (K) and 178.287 nm (P) using
a SPECTRO ARCOS spectrometer (Spectro Analytical
Instruments GmbH, Kleve, Germany).

Soil microbial DNA extraction, PCR amplification and
Illumina-based sequencing

The total microbial DNA of each soil sample was
extracted from 0.4 g using the Power Soil DNA Isolation
Kit (Qiagen, Hilden, Germany) according to the manufac-
turer’s instructions. After determining the concentrations
of DNA extracts using a NanoDrop-8000 spectrophotom-
eter (Thermo Fisher Scientific, Dreieich, Germany), the
DNA extracts were stored at -20�C. Before PCR amplifi-
cation, the DNA extracts were adjusted to 10–15 ng μl-1.
The microbial genomic DNA was used as a template to
produce PCR DNA amplicon libraries for bacteria and
fungi. Bacterial 16S rRNA genes were amplified using a
primer mix: P5-8N-515F + P5-7N-515F together with
P7-2N-806R + P7-1N-806R (Caporaso et al., 2012; Moll
et al., 2018), while P5-5N-ITS4 + P5-6N-ITS4 (Gardes
and Bruns, 1993; Leonhardt et al., 2019)/P7-3N-
fITS7 + P7-4N-fITS7 (Ihrmark et al., 2012; Leonhardt
et al., 2019) were used to amplify fungal ITS2 rDNA, with
the Illumina adapter sequences in all the primers.

We used the proofreading KAPA Hifi polymerase
(Kapa Biosystems, Boston, MA, USA) in all the PCR
reactions. PCR amplification, quality check-up by gel
electrophoresis, cleaning up of the PCR products, attach-
ment of Illumina Nextera XT indices and sequencing
adaptors, index PCR amplification, libraries’ quantification
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and sequencing were done as described in Habiyaremye
et al. (2020b). Illumina MiSeq sequencing was performed
at the Department of Soil Ecology of the Helmholtz-
Centre for Environmental Research-UFZ in Halle (Saale),
Germany.

Sequences analysis

The generated raw sequences for this study can be
found in the European Nucleotide Archive, under acces-
sion number PRJEB39387. Sequences analysis and
processing were conducted following the DeltaMP pipe-
line (v0.2, https://github.com/lentendu/DeltaMP) as in
Schöps et al. (2018). Prior to clustering, 16S and ITS2
sequences were quality-filtered. Using uparse of Pan-
daSeq algorithm (Masella et al., 2012; Edgar, 2013), pair-
end reads were merged with a minimum 20 bp for both
16S and ITS2 while the maximum was 440 and 450 bp
for 16S and ITS2 respectively. No ambiguous sequence
was allowed, and primer sequences with more than 4 bp
differences were discarded. Homo-polymers of 20 bp dif-
ferences at maximum were also removed. At the same
time, we discarded sequences shorter than 200 bp and
longer than 300 bp sequence length. Using UCHIME
(Edgar et al., 2011), chimeras were also identified and
eliminated as implemented in MOTHUR (Schloss
et al., 2009). The remaining high-quality sequences with
a 97% similarity level were clustered into OTUs using
VSEARCH [v2.10.4, (Rognes et al., 2016)]. We based on
the Bayesian classifier as implemented in MOTHUR
(Schloss et al., 2009) to assign taxonomy, and this was
done using the SILVA reference database [v128, (Quast
et al., 2013)] and UNITE [v8.0, (Nilsson et al., 2018)] for
bacteria and fungi respectively. 16S sequences ascribed
to chloroplasts or mitochondria were discarded from the
bacterial OTU table. To get rid of bias due to sampling
size, 60 989 and 14 968 sequences were randomly
selected in each sample for bacteria and fungi respec-
tively, and retained for the downstream analysis. This
normalization of the samples was done using the function
‘rarefy_even_depth’ from the phyloseq package v1.19.1
(McMurdie and Holmes, 2013) in R v4.0.2
(R Development Core Team, 2020). As reflected by the
rarefaction curves (Fig. S2), the sequencing depth was
adequate to fully cover the microbial communities.

Statistical analyses

Data analysis was performed using R v4.0.2
(R Development Core Team, 2020). In all our analyses
we used a significance threshold of p < 0.05. Initially, the
examination embraced two groups of explanatory param-
eters: (i) abiotic environmental parameters including soil
physico-chemistry (pH, soil organic and mineral matter

and soil moisture) and geographic position-related
parameters of the sites (latitude, longitude, elevation,
MAT and MAPs), and (ii) oak phytometer-related parame-
ters (total height of the main trunk at sampling time in
September 2018, percentage height increase since out-
planting and during the vegetation period 2018; total
length of the LB, their length increase and number of SFs
in 2018; length of SF1 of the LB and its leaves number,
specific leaf area-SLASF1 and leaf dry matter content-
LDMCSF1). The parameters were compared among the
field sites using one-way analysis of variance (ANOVA)
with Tukey-HSD post-hoc test. We also performed Spe-
arman’s rank correlation test to examine the relationship
between the abiotic environmental parameters and tree
growth. After, we analysed the oak tree effect by compar-
ing between microbiomes of the tree RZ and RFZ. We
took the sites altogether and applied the indicator species
analysis to detect microbial OTUs with preference to the
tree RZ or RFZ by using the multipatt function
implemented in indicspaces package v1.7.9 (Cáceres
and Legendre, 2009). From this, we extracted the bacte-
rial and fungal OTUs with significant preference to the
RZ, which we designated as the RZ affine microbiome.
As well, we applied NMDS based on the Bray-Curtis dis-
similarity matrices (Kruskal, 1964; Clarke, 1993) and per-
MANOVA with 9999 permutations (Anderson, 2001) to
test dissimilarities between the microbial communities
structure of the tree RZ and RFZ within individual sites.
By using the distance function of the analogue package
v0.17.5 (Simpson et al., 2020), we calculated the mean
Bray-Curtis distances of each RZ microbial community
with the communities of sampled RFZs of the same site
and analysed their relation with the tree parameters by
using Spearman rank correlation test.

For most of the subsequent analyses, we separately
considered the total microbiomes of the tree RFZ and RZ
as well as the RZ affine microbiome, retrieved from the
overall dataset based on the described indicator species
analysis. We tested the individual variability of these
three microbiomes along the European transect. We first
generated Venn diagrams to visualize the shared and
unique bacterial and fungal OTUs among the study sites
using R package VennDiagram (V1.6.20). After, we cal-
culated the Shannon diversity index (Shannon, 1948)
using the diversity function of the vegan package v2.5-6
(Oksanen et al., 2019) and applied Tukey-HSD post-hoc
test to compare the Shannon diversity among sites and
to reveal significant differences. We then related the
microbial Shannon diversity values to the abiotic environ-
mental parameters along the European transect. Subse-
quently, perMANOVA with 9999 permutations and an
NMDS based on Bray-Curtis dissimilarity matrices were
used to test divergences in the microbial communities’
structures among the sites. The envfit function of the
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vegan package (Oksanen et al., 2019) was used to
assess the effect of geographic, soil physicochemical
and oak phytometer parameters, and included highly sig-
nificant parameters in the NMDS plots. We further tested
correlations between microbial dissimilarities and increas-
ing geographical distance among field sites. We set a
distance of 0 km for samples from the same field site and
used the online tool GPS coordinates (https://gps-
coordinates.org/distance-between-coordinates.php) to
compute the distances among the field sites and to con-
struct a geographical distance matrix (in km) (Table S3).
We then carried out Mantel tests between the matrix of
geographical distances and corresponding matrices of
microbial Bray-Curtis distances. Simultaneously, we
implemented a variation partitioning analysis using
varpart function in vegan (Oksanen et al., 2019) to com-
pare the relative contribution of the geographic, soil phys-
icochemical, and host tree parameters in explaining the
noticed variations within both the tree RZ total micro-
biome and the RZ affine microbiome.
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Supplementary Figure S1. Overlap of microbial OTUs of the tree root-free and root 
zones among the field sites.
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Supplementary Figure S2. Individual rarefaction curves of bacterial and fungal OTUs at a 97% 
similarity level of all 36 soil samples.
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Supplementary tables 

Supplementary Table S1. Bray-Curtis dissimilarities between the communities of the oak phytometer root and root-free 
zones, as well as the significantly correlated oak tree parameters. Correlation was tested between the tree parameters and 
the mean Bray-Curtis dissimilarities of each tree root zone (from RZ1 to RZ6) versus all three root-free zones (from RFZ1 
to RFZ3) of the same site. 
 

  Bacteria Fungi TH by 
2018 

TH incr. 
in 2018 LDMC Sites RZ RFZ1 RFZ2 RFZ3 Mean RFZ1 RFZ2 RFZ3 Mean 

LAP 

RZ1 0.238617 0.23742 0.240306 0.238781 0.44221 0.419094 0.423303 0.428202 140.0 4.03 6.25 

RZ2 0.183115 0.18118 0.254915 0.206403 0.414618 0.326229 0.414685 0.385177 111.5 3.33 6.25 

RZ3 0.187099 0.191018 0.257489 0.211869 0.419361 0.39845 0.454303 0.424038 101.5 3.10 12.25 

RZ4 0.237485 0.259522 0.267966 0.254991 0.471606 0.492384 0.479089 0.481026 142.5 3.30 9.25 

RZ5 0.215236 0.234272 0.25098 0.233496 0.490179 0.522982 0.505211 0.506124 109.0 3.58 6.00 

RZ6 0.216957 0.242667 0.225992 0.228539 0.537413 0.560128 0.530198 0.54258 173.0 3.60 7.25 

BAL 

RZ1 0.226779 0.249324 0.26413 0.246744 0.525788 0.54229 0.584246 0.550775 193.0 0.68 12.25 

RZ2 0.271049 0.272623 0.276673 0.273448 0.557256 0.538549 0.542424 0.546076 176.0 0.73 9.75 

RZ3 0.2427 0.250832 0.265031 0.252854 0.519241 0.536478 0.550508 0.535409 216.0 0.72 10.5 

RZ4 0.28515 0.267802 0.262588 0.271847 0.650454 0.600013 0.580372 0.61028 159.0 0.63 10.00 

RZ5 0.242618 0.229451 0.213317 0.228462 0.57957 0.532202 0.570551 0.560774 199.0 0.59 11.50 

RZ6 0.234469 0.215449 0.202414 0.217444 0.535142 0.531734 0.491181 0.519352 235.0 1.01 13.50 

FON 

RZ1 0.250144 0.263015 0.237289 0.250149 0.404663 0.525922 0.371058 0.433881 230.5 13.39 10.75 

RZ2 0.250193 0.271508 0.243159 0.254953 0.432189 0.570283 0.499599 0.50069 318.5 11.88 8.75 

RZ3 0.215318 0.233485 0.218384 0.222395 0.447956 0.564204 0.460783 0.490981 283.5 8.75 9.33 

RZ4 0.242962 0.234633 0.214563 0.230719 0.464725 0.568413 0.436665 0.489934 257.0 11.20 6.00 

RZ5 0.219482 0.235715 0.22445 0.226549 0.475949 0.486371 0.494388 0.485569 200.0 10.48 7.66 

RZ6 0.209464 0.204594 0.183738 0.199265 0.498731 0.608231 0.453902 0.520288 287.5 11.49 6.50 

BOR 

RZ1 0.284084 0.274328 0.278493 0.278968 0.597876 0.617117 0.610235 0.608409 236.0 10.16 10.75 

RZ2 0.262506 0.237584 0.268098 0.256063 0.483632 0.492718 0.430318 0.468889 167.0 8.57 11.67 

RZ3 0.279559 0.238551 0.26372 0.26061 0.63422 0.638295 0.633418 0.635311 185.0 8.51 8.25 

RZ4 0.272459 0.255554 0.291512 0.273175 0.761558 0.76383 0.748397 0.757928 209.0 9.67 7.00 

RZ5 0.288413 0.267442 0.265491 0.273782 0.589658 0.596473 0.598744 0.594958 179.0 6.69 7.75 

RZ6 0.289938 0.252718 0.268655 0.270437 0.668894 0.676777 0.655064 0.666912 356.0 7.45 7.00 

TH: Oak phytometer height in 2018, TH incr.: relative phytometer height increase, LDMC: leaf dry matter content, LAP: Lapinjärvi, 

BAL: Bad Lauchstädt, FON: Fontain, BOR: Bordeaux



Chapter 3 – Supplementary material 
 

86 
 

Supplementary Table S2. Matrix of geographic distances (in km) among the field sites. The 
distances were computed by using the online tool GPS coordinates (https://gps-
coordinates.org/distance-between-coordinates.php, accessed on 15 April 2020).  
 

 Lapinjärvi Bad Lauchstädt Fontain Bordeaux 

Lapinjärvi 0    

Bad Lauchstädt 1,350.29 0   

Fontain 1,975.44 630.92 0  

Bordeaux 2,464.89 1,145.78 530.76 0 

 

https://gps-coordinates.org/distance-between-coordinates.php
https://gps-coordinates.org/distance-between-coordinates.php
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Abstract: Patterns of trees’ endogenous rhythmic growth (ERG) and paralleled C allocation shift 
between root and shoot systems have been studied, but there is still a need to understand their 
impact in shaping soil microbiomes. Moreover, the impact of plants on soil microbial communities 
can be modulated or overweighed by time-induced plant and/or seasonal changes. Thus, we 
intended to analyze the structure of soil microbiomes as response to simultaneous alternated host 
tree root and shoot flushes and time-induced changes within one vegetation period at two sites in 
Central Germany. In this study, we utilized oak phytometers (Quercus robur L., clone DF159) as host 
trees, and made use of their ERG, whereby consecutive root and shoot flushes make a complete 
growth cycle. We studied two complete growth cycles during the same vegetation period, 
performed a non-destructive soil sampling and applied high-throughput amplicon sequencing of 
the bacterial 16S gene and the fungal ITS2 region. As C allocation shifts between the tree root and 
shoot, released root exudates and consequently the nutrient availability alternate for soil 
microorganisms. We therefore anticipated different microbial communities in the host tree root zone 
along the growth cycles until autumnal leaf senescence. In our results, the bacterial community 
exhibited a directional change over time along the vegetation period. In contrast, the fungal 
community appeared sample specific. Our findings enlarge the current understanding of the 
temporal microbial assembly in the host tree root zone. 

Keywords: tree endogenous rhythmic growth; microbial community structure; bacteria; fungi; time-
induced changes; tree root zone; Quercus robur L. 

 

1. Introduction 

Plant-root associated microorganisms feed primarily on plant rhizodeposits [1], of which the 
amount and dynamics are correlated with plant biomass [2]. Recently, a mesocosm experiment on 
annual dynamics of microbes associated with roots of grass and forb species found significant 
changes on the bacterial community over time, while the fungal community varied according to the 
host plant species [3]. However, this work did not consider the effects of plant development that 
occur over a vegetation period, and the sampling times were not determined according to phases of 
the plant development. 
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Oak trees (Quercus robur L.) are characterized by an endogenous rhythmic growth (ERG) with 
an alternation of root flush (RF) and shoot flush (SF), which are constitutive of one rhythmic growth 
cycle [4]. This alternation can be followed by using anatomical shoot bud developmental stages from 
A to D [5]: bud resting for stage A indicates the end of a SF; bud swelling for stage B corresponds to 
ongoing RF; bud outbusting for stage C indicates the end of a RF; and leaf expansion from the bud 
known as stage D corresponds to a new SF. Over a vegetation period and depending on 
environmental parameters, oak trees can have one growth cycle (one RF and one SF), two growth 
cycles (RF1, SF1, RF2 and SF2) or even more cycles, concluded by the autumnal leaf senescence. The 
tree ERG is paralleled with high and low concentrations of photoassimilates in roots during the root 
and shoot flushes, respectively [6]. According to the “push” hypothesis, the more C “pushed” into 
roots, the more C ought to be exuded from roots [7]. This should induce changes in the tree root 
associated microbial communities. 

In the current research, we considered oak time-induced changes and the ERG as a single time 
entity, and analyzed their impact on the tree root zone microbial communities over one vegetation 
period. Due to bacteria rapid response to environmental changes [3], we hypothesized (1) temporal 
changes in bacterial communities. We also predicted (2) changes of the fungal communities over time, 
due to their dependence on host plants and tight attachment to recently assimilated C [8]. 

2. Materials and Methods 

The study was carried out at two grassland field sites in Central Germany: Bad Lauchstädt 
(51°23′29.65″ N, 11°52′32.14″ W) and Harsleben (51°51′43.43″ N, 11°04′58.73″ W). The two sites have 
similar weather conditions due to their geographic proximity. Oak phytometers used for this study 
were outplanted at the sites in November 2014, and soil was sampled during the vegetation period 
2018. Based on the tree bud development stages, we determined the times of RFs and SFs and 
respectively sampled at the ends of the tree RF1, SF1, RF2, SF2, and at the senescence to conclude the 
vegetation period. 

Soil samples were taken in the tree root and root-free zones as described previously 
Habiyaremye, et al. [9], despite the upper 0–15 cm soil 30 cm from the tree trunk that were taken. 
Detailed descriptions of the molecular methods, from DNA extraction to Illumina-based sequencing 
were also published before [9]. Bioinformatics and processing of sequences data were conducted 
using the dadasnake pipeline (v0.5) [10], a DADA2 [11] implementation in snakemake [12]. 

Statistical analyses were performed using R v4.0.2 [13]. We performed a non-metric 
multidimensional scaling (NMDS) based on the Bray–Curtis dissimilarity matrices [14] to test 
divergences in the microbial communities over time. By using the function “adonis” of the vegan 
package v2.5-6 [15] we performed permutational analysis of variance (PERMANOVA) with 9999 
permutations [16] to test the effect of sampling times for bacteria as well as sampling time and 
sampled position for the fungi. We further carried out Mantel correlation tests between a sampling 
time distance matrix (in days) and corresponding matrices of bacterial Bray–Curtis distances using 
9999 permutations. 

3. Results and Discussion 

From both the NMDS plot and PERMANOVA results, bacterial community of the tree root and 
root-free zones changed between time points along a vegetation period (p < 0.001 for both the tree root 
and root-free zone) (Figure 1A). Mantel correlation test revealed positive linear correlation between 
distance in time and dissimilarities among the bacterial communities (Bad Lauchstädt: R = 0.59, p < 0.001 
in the tree root zone, and R = 0.67, p < 0.001 in the tree root-free zone; Harsleben: R = 0.65, p < 0.001 in 
the tree root zone, and R = 0.31, p = 0.008 in the tree root-free zone) (Figure 1B). 
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Figure 1. (A) Non-metric multidimensional scaling (NMDS) based on Bray–Curtis dissimilarity 
displaying bacterial community structure along with succession of sampling times. R2 and p values 
are PERMANOVA results showing the effect of sampling time points, which coincided with ends of 
the tree RF1, SF1, RF2, SF2, and the senescence. (B) Correlation between distance in time along 
vegetation period and Bray–Curtis dissimilarity among the bacterial communities. R and p values are 
Mantel correlation test results. Time-Lag here means number of days in-between sampling times. 

For fungal community of the tree root zone, sampling time points showed either no impact 
(Harsleben, PERMANOVA: p > 0.05) or less impact compared to sampled trees (Bad Lauchstädt, 
PERMANOVA: R2 = 0.13 for sampling time and 0.50 for sampled trees, p < 0.001). Within the tree root-
free zone, a fine-scale niche partitioning of the fungi was also noticed (Figure 2). 

Our results confirmed the first hypothesis of temporal changes on the tree root zone bacterial 
community at both sites, Bad Lauchstädt and Harsleben. However, the second hypothesis of time-
induced changes on the fungal community over the vegetation period was only confirmed at Bad 
Lauchstädt and rejected at Harsleben. Short-term variability in bacterial communities was also 
previously reported [17,18], while the majority of changes in soil fungal communities take place over 
longer time scales [17,18]. The rapid response of bacteria to environmental changes is a result of their 
relatively short generation times [17,18], versus the relatively long generation times for the fungi 
[3,17]. Referring to solely effects of plant time-induced changes, the bacterial community variations 
may have been a result of increasing size and productivity of the host plants, and subsequent changes 
in quantity and quality of the rhizodeposits over the vegetation period. This could explain the 
changes noticed in both the tree root and root-free zones. 

The fungal community underwent time-induced succession in one site only. The community 
showed rather always fine spatial scale changes which may be explained by concurrent plant-soil 
interactions at fine spatial scales [19] and the fungi high dependence on host plants [8]. 
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Figure 2. Non-metric multidimensional scaling (NMDS) based on Bray–Curtis dissimilarity 
displaying fine spatial scale partitioning of the fungal community. Sampling times coincided 
respectively with ends of the tree RF1, SF1, RF2, SF2, and the senescence. 

4. Conclusions 

Bacterial community structure in the root zone of the oak phytometers changed between time 
points along one vegetation period. On the contrary, the fungal community structure displayed fine 
spatial scale partitioning, closely linked to host plant individuals. The current research underlines the 
significance of repeated samplings over a vegetation period, but could not decouple respective 
impacts of time and ERG. Future studies should parallel rhythmically growing host trees with 
continuously growing trees, and track development of their root-associated microbial community 
over several consecutive vegetation periods to determine respective magnitude of time and host plant 
rhythmic growth. 

Acknowledgments: We are thankful to the Soil Ecology Department of the Helmholtz Centre for Environmental 
Research (UFZ), especially the staff of the TrophinOak/PhytOakmeter project; to the German Academic 
Exchange Service (DAAD); and to the University of Rwanda. 

References 

1. Dennis, P.G.; Miller, A.J.; Hirsch, P.R. Are root exudates more important than other sources of 
rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol. Ecol. 2010, 72, 313–327. 

2. Aulakh, M.; Wassmann, R.; Bueno, C.; Kreuzwieser, J.; Rennenberg, H. Characterization of root exudates 
at different growth stages of ten rice (Oryza sativa L.) cultivars. Plant Biol. 2001, 3, 139–148. 

3. Hannula, S.E.; Kielak, A.M.; Steinauer, K.; Huberty, M.; Jongen, R.; De Long, J.R.; Heinen, R.; Bezemer, T.M. 
Time after Time: Temporal Variation in the Effects of Grass and Forb Species on Soil Bacterial and Fungal 
Communities. mBio 2019, 10, e02635-19, doi:10.1128/mBio.02635-19. 

4. Herrmann, S.; Recht, S.; Boenn, M.; Feldhahn, L.; Angay, O.; Fleischmann, F.; Tarkka, M.T.; Grams, T.E.E.; 
Buscot, F. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource 
availability. J. Exp. Bot. 2015, 66, 7113–7127, doi:10.1093/jxb/erv408. 



Proceedings 2020, 66, 35 5 of 5 

 

5. Herrmann, S.; Grams, T.E.E.; Tarkka, M.T.; Angay, O.; Bacht, M.; Bönn, M.; Feldhahn, L.; Graf, M.; Kurth, 
F.; Maboreke, H., et al. Endogenous rhythmic growth, a trait suitable for the study of interplays between 
multitrophic interactions and tree development. Perspect. Plant Ecol. Evol. Syst. 2016, 19, 40–48, 
doi:10.1016/j.ppees.2016.02.003. 

6. Angay, O.; Fleischmann, F.; Recht, S.; Herrmann, S.; Matyssek, R.; Oßwald, W.; Buscot, F.; Grams, T.E.E. 
Sweets for the foe—Effects of nonstructural carbohydrates on the susceptibility of Quercus robur against 
Phytophthora quercina. New Phytol. 2014, 203, 1282–1290, doi:10.1111/nph.12876. 

7. Karst, J.; Gaster, J.; Wiley, E.; Landhäusser, S.M. Stress differentially causes roots of tree seedlings to exude 
carbon. Tree Physiol. 2016, 37, 154–164, doi:10.1093/treephys/tpw090. 

8. Denef, K.; Roobroeck, D.; Manimel Wadu, M.C.W.; Lootens, P.; Boeckx, P. Microbial community 
composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils. Soil 
Biol. Biochem. 2009, 41, 144–153, doi:10.1016/j.soilbio.2008.10.008. 

9. Habiyaremye, J.D.D.; Goldmann, K.; Reitz, T.; Herrmann, S.; Buscot, F. Tree root zone microbiome: 
exploring the magnitude of environmental conditions and host tree impact. Front. Microbiol. 2020, 11, 749. 

10. Weißbecker, C.; Schnabel, B.; Heintz-Buschart, A. Dadasnake, a Snakemake implementation of DADA2 to 
process amplicon sequencing data for microbial ecology. GigaScience 2020, 9, giaa135, 
doi:10.1093/gigascience/giaa135. 

11. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-
resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583, 
doi:10.1038/nmeth.3869. 

12. Köster, J.; Rahmann, S. Snakemake—A scalable bioinformatics workflow engine. Bioinformatics 2012, 28, 
2520–2522, doi:10.1093/bioinformatics/bts480. 

13. R Development Core Team. R: A Language and Environment for Statistical Computing. 2019. Available 
online: https://www.r-project.org (accessed on 17 August 2020). 

14. Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 
18, 117–143. 

15. Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.; O’Hara, R.; 
Simpson, G.; Solymos, P.; et al. vegan: Community Ecology Package. R package Version 2.5-6; R Foundation for 
Statistical Computing: Vienna, Austria, 2019. 

16. Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 
32–46, doi:10.1111/j.1442-9993.2001.01070.pp.x. 

17. Sun, S.; Li, S.; Avera, B.N.; Strahm, B.D.; Badgley, B.D. Soil Bacterial and Fungal Communities Show 
Distinct Recovery Patterns during Forest Ecosystem Restoration. Appl. Environ. Microbiol. 2017, 83, e00966-17, 
doi:10.1128/aem.00966-17. 

18. Lauber, C.L.; Ramirez, K.S.; Aanderud, Z.; Lennon, J.; Fierer, N. Temporal variability in soil microbial 
communities across land-use types. ISME J. 2013, 7, 1641–1650, doi:10.1038/ismej.2013.50. 

19. Burke, D.J.; López-Gutiérrez, J.C.; Smemo, K.A.; Chan, C.R. Vegetation and Soil Environment Influence the 
Spatial Distribution of Root-Associated Fungi in a Mature Beech-Maple Forest. Appl. Environ. Microbiol. 
2009, 75, 7639–7648, doi:10.1128/aem.01648-09. 

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional 
affiliations. 

 

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 



94 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



95 
 

SYNOPSIS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



SYNOPSIS 

97 
 

This thesis reports on the spatial and temporal variability of soil microbial communities in 

different soil zones around trees of a pedunculate oak clone (Quercus robur L., DF159, 

Herrmann et al., 2016) out-planted as tree phytometers in grassland field sites across 

Europe. Quercus robur L. is widely distributed across Europe (Eaton et al., 2016), in 

forest, grassland and agricultural systems (MacDougall et al., 2004; Löf et al., 2016; 

Bobiec et al., 2018; Parmain and Bouget, 2018) and its strong interactions with soil 

bacteria and fungi were demonstrated (Herrmann and Buscot, 2007; Meaden et al., 

2016).This tree species is also characterized by an endogenous rhythmic growth with 

alternation of root and shoot flushes (Herrmann et al., 2015), which impacts the biological 

soil activity since the tree early age (Eisenhauer et al., 2018). On this background, the 

use of a clone of Q. robur L. out-planted as a phytometer appeared to be an adequate 

model system to disentangle the pure and combined effects of geographic, soil physico-

chemical, and host tree parameters in shaping soil microbial diversity and community 

structure.  

Besides Chapter 1 which introduced the whole work, Chapters 2 and 3 individually dealt 

with changes of the soil microbiome at spatial scale while Chapter 4 focused on a 

temporal scale. Spatially, sites of Central Germany characterized by comparable climatic 

conditions were investigated on the one hand in Chapter 2, while sites situated along a 

wide range of climatic conditions across Europe were considered on the other hand in 

Chapter 3. At temporal scale, investigation was done along a vegetation period, whereby 

soil sampling time points coincided with ending tree root and shoot flushes related to the 

endogenous rhythmic growth. We used the PCR-based Illumina MiSeq technology for 

16S rRNA gene and the internal transcribed spacer (ITS) region of the rDNA gene to 
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investigate variability of the soil bacterial and fungal communities, respectively, in 

response to changes in abiotic environmental and host tree parameters. 

As the plant root-associated microorganisms mostly originate from the surrounding soil, 

the potentially predominant drivers of their communities would be the edaphic parameters 

and geographic location attributes (Müller et al., 2016). However, the plant root-

associated microorganisms are also dependent on plant rhizodeposits, which are 

composed of plant primary and secondary metabolites, underlining the strong relationship 

between root-associated microbial communities and the host plant (Müller et al., 2016; 

Chen et al., 2019). Meanwhile, previous researches were interested in investigating 

rhizosphere microbial communities, yet these are most directly controlled by the selective 

forces exerted by host plants (Kowalchuk et al., 2002). Thus, studies on diversity and 

structure of the rhizosphere inhabiting microbial communities do not give enough weight 

to direct contribution of the abiotic environmental parameters. Therefore, to rationally 

mediate between geographic-climatic, soil physico-chemical, and oak clone parameters 

and unravel their respective impact on the soil microbiome, we investigated and 

compared the microbiomes of the root and root-free soil zones around the trees. Here, 

the tree root soil zone means soil that contains living roots of the tree (Steven et al., 2014) 

whereas the tree root-free soil zone refers to soil from within the same plot, around the 

same trees but out of reach of any tree roots.   

1.1. Main findings of this study 

 The main findings reported in this thesis are summarized here below: 
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i. DF159 pedunculate oak out-planted in the field started exerting an impact on the 

local soil microbial community since its early age. Two years after out-planting, the trees 

had already recruited symbiotic microbial partners including numerous species of 

ectomycorrhizal fungi and started shaping their root-associated microbial community as 

shown in Chapter 2. Indeed, this is a high achievement for such a short time, especially 

considering moderate size and consequent limited exudation potentials of the 

investigated trees. The early recruitment of the ectomycorrhizal fungi and other beneficial 

microorganisms might be one of the mechanisms that the pedunculate oak uses to 

quickly acclimate to local conditions. 

ii. In particular, the soil bacterial and fungal communities of the tree root zone were 

shaped by interplay among geographic, soil physico-chemical, and host tree parameters. 

This was reported in Chapter 2 on investigation among the sites with comparable climatic 

conditions in Central Germany. We also had the same observation in Chapter 3 

describing variability in soil microbial communities among the sites characterized by a 

broad range of climatic and soil physico-chemical conditions across a European North-

South transect. The analyzed geographic parameters included mainly latitude, 

temperature, and precipitations, while the soil physico-chemical parameters included 

especially soil moisture, pH, as well as carbon and nitrogen content. Variability in these 

abiotic environmental parameters, especially along the European transect in Chapter 3 

triggered changes in the host tree growth and performance which were also reflected in 

the root-associated microbial communities. However, by comparing the tree root and root-

free soil zones we also observed a potential of the trees to shape their most proximal soil 

microbiome. This effect is difficult to detect as it can be masked by the passive diffusion 
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of non-interacting tree independent microorganisms that diffuse passively from the tree 

root-free soil zone to the root soil zone. To eliminate this effect, in Chapter 3 we 

considered a sub-community within the microbiome of the tree root zone, which is the 

affine microbiome, made of microorganisms enriched in this zone in comparison to the 

tree root-free zone. Within this root zone affine microbiome, a higher proportion of OTUs 

were identified at all sites of the European transect from Finland to South-Western 

France, while no OTUs was exclusive of any of the sites. This pinpoints the capacity of 

the trees to shape a core microbiome independently from the geographic, climatic and 

soil context.  

iii. Bacterial and fungal communities responded differently to changes in the abiotic 

environmental and host tree parameters. These different patterns were mainly highlighted 

in Chapter 3, whereby the bacterial community responded more to the abiotic parameters, 

while the fungal community was more impacted by the host tree. Also, Chapter 4 shows 

that the bacterial community structure exhibited a directional change over time along the 

vegetation period, while the fungal community structure appeared mainly closely linked 

to host plant individuals. Those findings suggest distinct mechanisms for shaping the two 

microbiomes.  

Trees have the ability to build associations with specific microbial members from local 

community and harness their power to rapidly adjust to the ambient environmental 

conditions (Lau et al., 2017). The tree root-associated microorganisms also assist in 

improving the tree acquisition and absorption of nutrients from soil, and in preventing 

establishment of pathogens (Gehring et al., 2017; Lau et al., 2017). Meanwhile, 

dependence of the soil microbiome on the host plants and abiotic environmental 
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parameters was previously reported (Carrero-Colón et al., 2006; Fierer and Jackson, 

2006; De Deyn et al., 2011; Brockett et al., 2012; Classen et al., 2015; Docherty et al., 

2015), and this is what leads to variability of the microbial diversity and community 

structure across geographic space, time or both (Ladau and Eloe-Fadrosh, 2019). Higher 

dependence of the bacterial community on the abiotic environmental parameters was also 

previously reported (Millard and Singh, 2010; Lange et al., 2014), while the fungal 

community was rather more attached to the host plants (Chen et al., 2018; Roy et al., 

2018; Wang et al., 2020).  

To conclude on the different patterns between bacterial and fungal communities, we also 

took the opportunity that we could compare their variability at the site Bad Lauchstädt 

between September 2016 and September 2018 (i.e. respectively two and four years after 

trees out-planting) (Figure 1), by using the datasets of Chapter 2 and Chapter 3, 

respectively. The Shannon diversity index decreased between the two time points in both 

the oak phytometer root and root-free soil zones for the bacteria, while for the fungi it 

increased significantly in the tree root-free zone (RFZ) and tended to increase in the tree 

root zone (RZ) (Figure 1A). According to Figure 1B, impact of sampling time on the 

microbial community structure was higher for the bacteria (perMANOVA: p = 0.003 R2 = 

0.15) than for the fungi (perMANOVA: p = 0.006, R2 = 0.11). The host tree effect on 

microbial community structure was noticed at both sampling times for the fungi, while it 

was noticed only in September 2018 for the bacteria. Additionally, the rate of microbial 

community turnover (BetaSIM, replacement of microbial OTUs) between September 2016 

and September 2018 was overall significantly higher for fungi than for bacteria (Figure 

2). Indeed, plants, especially long-lived trees, restructure their root-associated 
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microbiomes not only intra-annually as proved in Chapter 4, but also inter-annually 

(Pennanen et al., 1999;Wallander et al., 2010;Kyaschenko et al., 2017;Averill et al., 

2019). This restructuring process started just after the tree out-planting and revealed 

continuous temporal dynamics, based on plant continuous needs to acclimate to changes 

in environmental conditions as well as on changing quality and quantity of rhizodeposits, 

which seem to induce more changes in the fungal than in the bacterial community. 

Furthermore, compared to the overall fungal community, the turnover rate of the 

ectomycorrhizal fungi (EcM) was lower (Figure 2). Also, the tree root zone EcM showed 

higher nestedness (BetaSNE, gain or loss of microbial OTUs between the time points) than 

the tree root free zone, indicating a continuing recruitment of these fungi along with the 

host tree age. 

Different patterns of bacterial and fungal communities are due to fundamentally important 

differences between bacterial and fungal traits, including their different nutrient mode, 

morphology, physiology, generation time, temperature dependence, and carbon use 

efficiency (Six et al., 2006; Ullah and Dijkstra, 2019). As consequence, fungi depend more 

on their host plants (Chen et al., 2018; Roy et al., 2018; Wang et al., 2020) compared to 

bacteria, which are usually more affected by abiotic environmental parameters (Millard 

and Singh, 2010; Lange et al., 2014). 
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Figure 1. Variability of the soil microbiome at Bad Lauchstädt field site between 
September 2016 and September 2018. Comparison of microbial Shannon diversity index 
(A) and community structure (B) between the tree root and root-free soil zones, and 
between September 2016 and September 2018.  
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Figure 2. Overall beta diversity considering turnover (BetaSIM), i.e. replacement of 
microbial OTUs, and nestedness (BetaSNE), i.e. gain or loss of microbial OTUs from 
September 2016 to September 2018 at the site Bad Lauchstädt. Beta diversity, turnover 
and nestedness were calculated with R-package “betapart” (Baselga and Orme, 2012). 
RZ: root zone, RFZ: root-free zone, EcM: Ectomycorrhizal fungi. 

 

Coming back to the central questions which directed our respective studies as mentioned 

within the introduction (Chapter 1) of this thesis, we found that:   

1. Common genetic identity of the clonal pedunculate oak trees together with the 

homogeneous climate conditions induced similar microbial diversity within the tree 

root zone among the sites but the community structure was site-specific (Chapter 

2) 
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2. Two years after out-plant of the clonal oak trees, the tree root zone was already 

enriched in particular microbial taxa, especially the beneficial microbial partners 

such as the ectomycorrhizal fungi (Chapter 2). 

3. Even at a large spatial scale of European North-South transect with a wide range 

of the environmental variables, the clonal pedunculate oak trees were able to 

shape an interacting soil microbiome from very different local soil communities 

(Chapter 3). This tree-interacting microbiome is assumed to assist the tree 

establishment under the variable environmental conditions along the transect. 

4. The clonal oak phytometer only contributed more than the investigated abiotic 

environmental parameters in shaping the tree root zone affine fungal community 

(Chapter 3). This highlights not only impact of trees on their most proximal soil 

microbiome but also the high attachment of the fungi on their host plants. 

5. The results that are presented in Chapter 4 of this thesis did not answer the original 

question about whether the impact of alternation of root and shoot flushes on the 

tree-associated microbiome can deviate the expected temporal succession of the 

tree-associated microbial communities. Further analyses are still going on to 

disentangle between influence of time and alternation of root and shoot flushes.  

 

5.2. Contributions of this PhD research to soil biodiversity research 

As one of its main contributions, this PhD research introduced the use of a tree clone 

phytometer to analyze plant impact on variations of soil microbial communities, especially 

along a wide range of environmental conditions. Phytometer plants have been used for a 

long time as environmental measuring “instruments” (Clements and Goldsmith, 

1924;Gibson, 2015) to study the relationship between a plant species and its habitats or 
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different ecological contexts (Clements and Goldsmith, 1924; Antonovics and Primack, 

1982; Antonovics et al., 1987). In this research, we used a clonal phytometer system, 

which warrants genotypic identity of all single plants. Such an approach is rare, 

particularly for phytometer trees (Kaldorf et al., 2004;Foulon et al., 2016). The main 

advantage of using a tree clone is to avoid intraspecific genetic variations among the 

phytometer trees while maintaining their locally adapted performances and consequent 

effect on soil microbial communities.  

Working with such a clonal phytometer reinforced considerably the power of comparing 

the communities of the non-rooting and rooting soil zone, and to zoom into the root zone 

affine sub-community. This particularly enabled us to precise the impact of trees on 

buffering the distance decay of soil microbial communities (Chapter 3, Figure 6), which 

was already weakly detected by Goldmann et al. (2016) in their comparison of rooting 

and non-rooting soil around non clonal spruce trees. In this thesis, the tree root zone 

affine microbiome refers to soil bacterial and fungal species that demonstrate a significant 

preference to the tree root zone for their habitat. To identify members of this microbial 

sub-community, Chapter 3 compared the community composition between the tree root 

and root-free soil zones by using the indicator species analysis. Contrarily to the outcome 

of the usual overlap analysis, the tree root zone affine microbiome has the advantage of 

not including rare species or OTUs. It rather consists of microbial species that are highly 

attached to the tree and fully exposed to its influence, besides the abiotic environmental 

parameters. Therefore, the approach is suitable to rationally tackle the tree impact on soil 

microbial community versus those of abiotic environmental variables. As our sampling 
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procedure only represents a minor disturbance, our design allows also long-term 

investigations and the phytometer trees can be further monitored in the coming years.   

5.3. Technical potentials and limitations of the used molecular approach  

This research used DNA metabarcoding coupled with high-throughput amplicon 

sequencing to assess the microbial diversity and community structure in the root soil zone 

of pedunculate oak clone out-planted in European grassland field sites. The choice of 

DNA metabarcoding was based on its greatest benefit to process multiple samples 

simultaneously without the need to isolate individuals first (Porter and Hajibabaei, 2018). 

In the DNA metabarcoding approach, DNA is extracted from a group of samples, 

amplified by using primers that target marker genes. These barcode genome regions are 

then sequenced using high-throughput sequencing, and identified against reference 

databases. DNA metabarcoding is therefore an efficient tool to access biodiversity and 

community composition including taxonomic classification, and has a great advantage in 

terms of high speed as well as relatively low cost (Comtet et al., 2015; Thomsen and 

Willerslev, 2015; Porter and Hajibabaei, 2018). Among the commonly used high-

throughput sequencing platforms for DNA metabarcoding studies, Illumina is currently the 

most popular technique and the default choice due to its very low sequencing error rate, 

its low price, and the paired-end approach covering amplicons of up to ~550 bases in 

length (e.g. MiSeq 2 x 300) (Porter and Hajibabaei, 2018; Nilsson et al., 2019). Moreover, 

Illumina provides sequencing at greater depth for bacterial 16S and fungal ITS2 genes 

(Schmidt et al., 2013; Porter and Hajibabaei, 2018). In all studies of this thesis, Illumina 

MiSeq was used. 
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Multiple limitations associated with the DNA metabarcoding approach are related to the 

laboratory protocol routine and the reference databases. First, the use of a marker gene 

hinders to some extent taxonomic assignment at the species and strain levels and 

increases the risk for biases associated with the PCR because it does not allow 

differentiation between genomes with similar marker genes (Pérez-Cobas et al., 2020). 

Second limitation and the biggest concern due to its interference with PCR amplification 

of certain taxa is primer bias caused by variable primer-template mismatches (Piñol et 

al., 2015; Elbrecht et al., 2017). It is thus likely that not all taxa present in a sample can 

be properly detected with the DNA metabarcoding approach. Additionally, PCR and 

sequencing errors can lead to false-positive detection (Elbrecht et al., 2017), leading to 

incorrect taxonomic assignment and overestimation of the microbial diversity (Edgar, 

2017). Also, taxonomic assignment based on reference databases limits DNA 

metabarcoding for ecosystem assessment as always demonstrated by a large number of 

unidentified OTUs because the taxa are not yet present in the reference databases 

(Elbrecht et al., 2017). Similarly, main goals of high-throughput sequencing include also 

functional assignment of the recovered microbial OTUs. However, DNA metabarcoding 

is challenged by insufficient guild data for many microbial groups (Nilsson et al., 2019). 

Thus, a higher proportion of the bacterial and fungal OTUs could not be assigned to well-

defined guilds. To solve the above mentioned challenges, PacBio (Pacific Bioscience) 

sequencing technology, which analyzes completed genomes was introduced as a 

powerful way, but its use is still limited by its high cost (Song et al., 2019). To profile 

taxonomic composition and functional potential of the microbial communities at 
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reasonable cost, recent development has introduced shotgun high-throughput which 

targets a suite of genes (Quince et al., 2017).   

Last, the DNA sequencing approaches used in this research also capture DNA from dead 

microbial cells (Emerson et al., 2017), free DNA from dead cells, and DNA adsorbed to 

soil particles (Nielsen et al., 2007). Therefore, the DNA metabarcoding provides 

information about the potential microbial community and is likely another source of 

overestimating the microbial diversity and abundance. To overcome this, future DNA- 

based microbial community analyses should be coupled with assessment of the microbial 

gene expression, like at the level of RNA (metatranscriptomics). 

5.4. Considerations for future studies  

Numerous studies conducted on temporal dynamics of soil microbial communities 

associated with plant roots indicated successional changes of bacterial and fungal 

communities at different time scales (Buckley and Schmidt, 2003; Kennedy et al., 

2006;Lipson, 2007; Zhang et al., 2011). These findings were proved by the results 

reported in this thesis. However, connection between temporal variations in microbial 

assemblages and measurable changes in the host plant phenology is still limited 

(Chaparro et al., 2014). In this line, our ongoing study is applying deep analysis of the 

data set presented in Chapter 4 to investigate the precise impact of rhythmic growth of 

the pedunculate oak clone, in particular its alternating root and shoot flushes along a 

vegetation period. The overall goal is to check if these repeatedly growth phases induce 

oscillations in the tree-associated microbial communities. The analyses are mainly 

focusing on the tree root zone affine microbiome and the individual microbial functional 
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guilds. Time constraints did not allow us to wait for the results and incorporate them in 

this thesis. 

By using the clone of pedunculate oak phytometer, this PhD thesis improved the 

understanding of the diversity and structure of soil bacterial and fungal communities in 

response to changes in abiotic environmental and host tree growth parameters. Towards 

a full understanding of the contribution of biotic drivers to soil bacterial and fungal 

communities, future studies should also consider bacterial-fungal interactions and couple 

them with the host tree parameters. This is because, independently of edaphic 

parameters, bacteria and fungi contribute to shaping the structure of each other’s 

community (Duponnois et al., 1993; von Alten et al., 1993; Requena et al., 1997; Dunstan 

et al., 1998; Singh et al., 2009). Moreover, bacterial-fungal interactions are not only 

beneficial to one or both of the interacting microbial partners, but also crucial for 

ecosystem functioning (Frey-Klett et al., 2011; Deveau et al., 2018).  

Soil microbial communities vary with land-use types (Schöps et al., 2018; Xue et al., 2018; 

Plassart et al., 2019), and the conclusions of this thesis are based on the grassland 

systems. Therefore, similar researches on the other land-use types, such as forest and 

agricultural systems, are highly recommended. Furthermore, during this PhD research, 

core microbial OTUs of the pedunculate oak root soil zone were identified even across 

large spatial distance and assumed to be among strategies that the tree uses to support 

its wide distribution across Europe. To confirm this assumption, future research should 

compare along an environmental gradient the responses of the microbiomes vis-à-vis 

pedunculate oak and vis-à-vis another tree with a very small habitat range.  
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This PhD research revealed as well temporal changes on the tree root zone microbiome 

in two-year time span (between September 2016 and September 2018). This is because 

plants restructure the assembly of their root-associated microbiomes inter-annually 

(Pennanen et al., 1999; Wallander et al., 2010; Kyaschenko et al., 2017; Averill et al., 

2019), beside the impact of changing abiotic environmental parameters over time. 

Because of this, the tree root zone microbiome turnover is likely a process which never 

ends. As the investigated trees remain in their field plots because sampling technique 

applied in this research inflicts minor disturbance, a long-term monitoring on variability of 

the soil microbiome associated to the investigated pedunculate oak clone is possible and 

highly recommended. The long-term monitoring will also answer the important question 

about whether the tree root core microbiome is stable or also exhibits turnover over time.  
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