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Abstract: Novel sensors with the ability to collect qualitatively new information offer the 
potential  to  improve  experimental  infrastructure  and  methods in  the field  of  research 
technology. In order to get full access to this information, the entire range from detector  
readout data transfer over proper data and knowledge models up to complex application 
functions has to be covered. The extension of existing scientific instruments comprises 
the  integration  of  diverse  sensor  information  into  existing  hardware,  based  on  the 
expansion of pivotal event schemes and data models. Due to its flexible approach, the  
proposed framework has the potential  to integrate  additional  sensor  types and offers 
migration  capabilities  to  high-performance  computing  platforms.  Two  different 
implementation setups prove the flexibility of this approach, one extending the material 
analyzing  capabilities  of  a  secondary  ion  mass  spectrometry  device,  the  other 
implementing a functional prototype setup for the online analysis of recyclate. Both setups 
can be regarded as two complementary parts of a highly topical and ground-breaking 
unique  scientific  application  field.  The  requirements  and  possibilities  resulting  from 
different hardware concepts on one hand and diverse application fields on the other hand 
are the basis for the development of a versatile software framework. In order to support  
complex and efficient application functions under heterogeneous and flexible technical 
conditions,  a software technology is proposed that  offers  modular  processing pipeline 
structures with internal and external data interfaces backed by a knowledge base with 
respective configuration and conclusion mechanisms.
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1. Introduction

Application fields like the online analysis of minerals or recyclate (OAMR) or the analysis 
of  material  composition  on  an  isotope  level  using  secondary  ion  mass  spectrometry 
(SIMS) apply different analytical methods to understand the structure and composition of 
material samples. In many cases, the integration of additional sensors into the existing 
systems offers the potential for significant improvements of these methods. Using the 
OAMR example,  a  more  comprehensive  characterization  of  the  probed  material  with 
improved analytical precision could be obtained by the use of a well-directed combination 
of diverse sensors, especially for highly complex, inhomogeneous samples [1], [2]. In the 
case of SIMS, additional components permit an increased resolution [3], [4].  While both 
fields  use  different  equipment,  they  share  the  need  to  extract  knowledge  on  high-
dimensional  sensor  data.  The  functionality  of  processing,  feature  extraction  and 
visualization of sensor data thus becomes a core element of the analytical method. In  
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order to improve the significance of material analysis, a group of researchers from HZDR 
(Helmholtz  Zentrum  Dresden-Rossendorf)  and  HTWD  (Hochschule  für  Technik  und 
Wirtschaft Dresden) has set up a data processing framework with a structure that can 
process both slow control and data stream aspects for the diverse scenarios of SIMS and 
OAMR.
Extending the sensor hardware and processing functionality of the aforementioned multi-
sensor systems raises several problems which need to be solved before a widespread 
use in industrial applications, especially in the field of mining and recycling, is possible. 
Both for SIMS and OAMR, the implementation of specific processing algorithms is poorly 
prepared by industrial manufacturers. High material throughputs in OAMR result in large 
data  streams  that  request  both  fast  data  transfers  and  high  processing  capacity. 
Dedicated sensor setups for visual cameras come with well-known data structures and 
efficient  algorithms;  but  only  advanced  co-registration  of  sensor  features  is  able  to 
improve performance. Accurate detection crucially depends on well-designed algorithms 
and data structures which are non-trivial in the case of a multi-sensor setup.
As  implementation  effort  is  a  constant  issue,  the  core  idea  is  to  arrange processing 
modules in a flexible component-based approach. Heterogeneity of applications creates 
the need for a flexible software extension; thus, the description of pivotal interfaces as 
well as data representations become a crucial part of the overall design. From a software-
based  point  of  view,  this  framework  has  to  implement  a  data  base  for  sensor 
measurements and a knowledge base comprising reference sensor data respectively the 
necessary background knowledge to process them. Scientific users have to build them 
up, step by step, by expert-guided acquisition processes or system-controlled learning 
processes.

2. Hardware Architecture and Application Background

The quality of extracted information depends to a large extend on the quality of sensor 
hardware. Sophisticated algorithms can make best use of new sensor types and may also 
be able to compensate the imperfections of analogue signals to the noise level, but only a 
proper selection of  sensor hardware and the extraction of  high-quality primary sensor 
information can really improve experimental results. Individual sensors require meticulous 
preparation of their physical environment to increase the signal/noise ratio. Integrating 
new sensors may lead to a close coupling to existing infrastructure (e.g. when extending 
a SIMS). Another outcome may be the definition of an entirely new processing platform 
as in the case of the OAMR [5].
In both cases,  sensor infrastructures have to be interfaced to different  subsystems in 
experimental  hardware  with  regard  to  triggering  and  clocking,  slow control  and  data 
streaming (for complex sensors) [7], [8], [9], [10]. These subsystems can be considered 
as being extensively independent. Clocking and trigger schemes belong to the critical 
components in scientific instruments as they directly define the quality of analogue data 
sampling. They depend on the physical process to an extent that no generic scheme may 
be applied. With respect to sensors, slow control includes calibration and setting functions 
providing all the essential preconditions for data acquisition. The aspect of data streams 
becomes relevant for sensors with high sampling rate, often in combination with high 
analogue resolution and channel count. In the following subsections, we will detail these 
aspects using two experimental facilities from the OAMR and SIMS environment.

Hardware equipment for OAMR by SenSys
Recently, the SenSys system [5] has been set up as a multi-sensor system based on 
optical  spectroscopy for  material  flow analysis  at  the  Helmholtz  Institute  Freiberg  for 
Resource Technology at HZDR (fig. 1). The mechanical hardware of SenSys consists of 
a conveyor belt on which the sample material is placed. Conveyed samples are scanned 
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by different imaging sensors mounted above the belt and establishing different sensor 
sections which have to be merged. Once the material has been scanned, it runs into a 
collector  box at  the end of  the conveyor belt.  This  setup allows for  quasi-continuous 
operation with the belt running at speeds between 0.05 and 1 m/s. 

Figure 1: Schematic view of the SenSys hardware components.

The employed sensors can be divided into three groups based on their working principle. 
To  detect  the  height  of  the  individual  objects,  a  laser  profiler,  consisting  of  a  line-
excitation laser (633 nm) and an RGB camera (Teledyne Dalsa Nano C4030), is used as 
first sensor unit.  The angle between camera and laser line is set to 30°,  the camera 
achieving a  height  resolution of  ca.  0.4 mm. Two similar  fast  industry  color  cameras 
(Teledyne Dalsa Nano C4020) provide a high spatial resolution and can be combined 
together  to create  a stereoscopic  image of  the probed scene. Each of  both cameras 
acquires a full frame at once. In addition, two different cameras are employed for spectral 
imaging of the material reflectance in a wavelength range of 400-1000 nm (Specim FX 
10) and 950-1700 nm (Specim FX 17) working as push-broom scanners acquiring the 
data line-wise, generating a total data stream of 500 MiB/s in the present setup.
Testing geological samples such as drill cores and rock pieces and also waste materials 
out of metal scrap or printed circuit boards (PCB), the performance of the data integration 
proved to be a powerful tool for carrying out scientific studies with the SenSys system.
Sensor fusion in this system is equivalent to a coherent geometric mapping of different 
sensors into a joined data model for further processing. Coherent stationary geometric 
calibration of  all  sensors involved is  the first  indispensable step.  For  moving objects, 
isometric  triggering  offers  an  efficient  scheme for  the  mapping of  both  line-  and  2D-
cameras into a common data model. As most optical sensors provide a trigger interface, 
the design of a module that delivers isometric triggers was a key requirement.
In  the  case  of  SenSys,  isometric  camera  triggering  has  been  implemented  using  a 
microcontroller-based approach, delivering a belt position sampling rate of 250 kHz which 
leads to a special resolution of 12 micrometres at 3 m/s belt speed. Based on this signal, 
several trigger groups with fixed dividing frequency to the belt position increments may be 
defined and forwarded to the respective cameras. This proves sufficient in comparison to 
camera resolution and exposure time. In both cases, clocking schemes are the basis for 
high quality data acquisition, being configured (but not directly interfaced) via the control 
system. 

Material structure investigation by enhancing a conventional SIMS
The analysis of the chemical composition of solids using a dynamical SIMS system [3] is 
essentially  based  on  the  mass spectrometric  analysis  of  sputtered  material.  For  this 
purpose, a fine-focused primary ion beam scans a precisely defined area of the sample 
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surface.  The  ionic  fraction  of  the  sputtered  material  is  transferred  to  the  mass 
spectrometer  via  an  elaborated  ion  optical  system.  Mass-separated  ions  are  then 
measured  using  Faraday  cups  or  electron  multipliers  within  a  commercial  CAMECA 
7fAuto  instrument;  for  sputtered  volume  determination,  a  white-light  interferometer 
Contour  GT-K  (Bruker)  has  been  used.  The  SuperSIMS  developed  at  the  HZDR 
represents a further development of this basic concept [4]. Here, only the negative mass-
separated secondary ions are injected into a tandem accelerator via a new unit of ion-
optical  modules.  Specific  processes  inside  this  accelerator  lead  to  the  complete 
destruction of all molecular ions and thus to the reversal of the polarity of negative ions at  
the  terminal.  As  a  result,  molecular  interferences  no longer  occur  in  the  subsequent 
analysis in the high-energy mass spectrometer, and the detection limit can be improved 
by several orders of magnitude compared to a normal SIMS analysis. As a consequence 
of  redirecting  secondary  ions  to  detectors  that  are  SIMS-external,  the  integration  of 
accelerator and detector hardware plus ion-optical sections as described in Fig. 2 prove 
to be critical for such an enhanced instrument. Eventually this has to be enhanced by 
extensive analytical and image generation software.
Consistent  control  can  only  be  provided  by  a  master  control  interfacing  the  different 
complex components which include embedded control units, accessing the data of all 
relevant  sensors  (Faraday  cup,  electron  multiplier,  image  sensor)  and  actors  (SIMS, 
accelerator,  ion  optic  magnets,  etc.).  Typically,  clocking  schemes  provide  hardware 
synchronisation with low jitter; inside a SIMS, the detector clock thus has to be derived 
from the  primary  ion  beam sampling  hardware  on  the  probe.  Slow control  and  data 
stream  interfaces  are  far  more  complex  and  require  sophisticated  techniques  for 
consistent processing - both on system and component level [8], [9], [11], [12].

Figure 2: Schematic view of SuperSIMS hardware components.

Extending commercial SIMS equipment with new evaluation methods touches the core of 
software architecture inside such an instrument.  Under the granting of  access to  the 
source code, a minimally invasive approach was the implementation of a service for the 
distribution  of  raw  sensor  data.  This  allows  both  the  preservation  of  the  original 
functionality  and the implementation of  additional interfaces with minimum processing 
load.  Among  different  slow  control  systems,  the  experimental  physics  and  industrial 
control systems (EPICS) was chosen as integration platform as it allows a representation 
of complex subsystems (commercial  SIMS, commercial  accelerator and detectors) [8], 
[9], [12]. EPICS contains a set of software tools and applications to build up a distributed 
control  system  using  dedicated  network  protocols  called  Channel  Access  (CA)  and 
pvAccess (PV) realising a client/server relationship and publish/subscribe techniques for 
I/O-related communication. Input/output controllers (IOC) represent the device layer that 
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connects directly  to physical  I/O.  EPICS is  open source and used in  many research 
facilities world-wide [8]  [13];  hence,  many software modules and libraries on different 
implementation  levels  are  available;  e.g.  for  graphical  user  interfaces,  storing  and 
accessing historical data plus IOC for particular PLC types and communication protocols 
like Modbus.
In order to integrate the existing SIMS into the EPICS control framework, its control was 
extended by dedicated IOCs which perform I/O-operations.  It  is  divided between two 
computers - one performing realtime-tasks and another for processing and visualization. 
Fig.  3  shows the  overview of  the  SIMS control  with  the  EPICS-IOC-extension.  IOC-
extensions have been implemented on the visualization PC without interfering with the 
manufacturer’s software or compromising realtime-performance. EPICS IOS’s are suited 
to interface IO-data from the machine.  Their  data layout is  defined by structures and 
enumerations that can be used to separate and convert the data into EPICS process 
variables  and  parameters.  Consequently,  this  interface  may cover  the  range of  slow 
control data and prepares the setup of a master control. 
Developing IOCs as I/O-proxies for components along the SuperSIMS beamline creates 
a flexible approach which consistently links data from different hardware sections into a 
common data base and will result in a homogeneous control system. This starts with the 
commercial SIMS, it will include the accelerator and extend to new detector hardware or 
ion-optics  beamline  segments.  EPICS  thus  allows  to  control  the  SuperSIMS  both 
manually and with the support of automation logic, e.g., it provides a framework which is 
able to incorporate machine safety and setup functionality.

Figure 3: Overview of the SIMS interfaces.

As EPICS has a focus on slow control, data streams which have to undergo elaborate 
processing have been handled separately. Image data streams from the SIMS detectors 
were  interfaced  applying  a  distinct  proxy  server  that  has  been  placed  between  the 
realtime-computer  and  the  visualization  PC.  The  proxy-server  listens  on  the  original 
network port, transferring the raw images from the SIMS machine to every connected 
peer for further processing. This preserves the functionality of the original software and 
pushes image data into the pipeline for analytical processing.

9
10
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

210
211
212
213
214
215
216
217
218
219



 6  o f  17

Although  SuperSIMS  and  SenSys  differ  in  equipment  and  application,  the  general 
architecture of  a hardware layer with inherent  trigger schemes, slow control  and data 
stream  interface  to  a  processing  layer  is  quite  identical,  thus  motivating  a  generic  
software approach for scientific data analysis.

3. Software Concept

Generic system architecture
The basic principles of the software system necessary to support the tasks of the two 
aimed  application  categories  as  well  as  to  integrate  the  data  coming  from  different 
sensors or going to different actors were developed in [6]. The corresponding ASARBWG 
project  at  HTWD  targeted  a  pilot  system  for  hardware  integration  and  software 
development especially for the SuperSIMS and SenSys installations. There,  a vertical 
three-layer  software architecture was proposed.  The central,  conceptual  layer  defines 
unified global data and program structures. Internal and external layers refer to different  
efficient implementations and user interfaces, respectively. The conceptual layer with its 
software components and relations is shown in Fig. 4. It contains horizontally three major 
subsystems.
On the left, the real states and processes of the application equipment with their sensors  
and actors are directly connected to acquisition components to deliver raw data as input  
to the system. Vice versa, control components allow setting selected output parameters. 
Raw data can immediately be used online or may be saved by a storage component as 
file  data  for  later  retrieval  and offline use.  Depending on the context,  it  is  fused and 
organised in sensor- or actor-specific formats [14], [15].

Fig. 4: Conceptual software system structure.

On the right, users and other programs get information out of the system by visualisation  
components and influence it back by interaction components. Both kinds of components 
do not work on raw data directly, but on model data that abstract from concrete sensor  
and actor features as well as file formats. Model data is organised along common formats 
and unified contexts.  They are also source and sink of  calculation and interpretation 
components  that  use domain  knowledge to  compute  additional  values or  derive new 
conclusions [16].
The connection between raw data and model data in both directions is provided by a set 
of transformation components guided by metadata. Metadata is generally relevant for the 
definition of structures and meanings of data used in the system.
On the internal  layer,  the whole  system is  implemented in  C/C++ using OpenCV for 
processing  two-  or  three-dimensional  image  and  regular  data  as  well  as  VTK  for 
processing  and  visualizing  multidimensional  and  structured  data.  For  performance 
reasons, on internal layer, OpenGL and an OpenCL-based approach [17] are involved. 
The operating system is MS Windows for current development and Linux Ubuntu for later 

11
12
220
221
222
223

224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

243

244

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259



 7  o f  17

process integration. On the external layer, a window- and a web-based user interface 
provide access to the most important components of the system.
This three-layer architecture, especially the introduction of the unified conceptual layer,  
has led to an enhanced transparency of the entire system and a substantial reduction of  
the development and integration time for new software components which is essential for 
an experimental system.

Pipeline structure
Because most of the data processing tasks in the developed system are considerable 
complex, they are subdivided step by step in single operations and organised as pipelines 
with flexible ordered or half-ordered activation structures. The result is a multiple pipeline 
system [18], [19].
In such a pipeline, input data taken from a raw or model data container are computed by 
pre-processing  into  prepared  data  as  input  for  the  content-dependent  kernel 
transformation process. At the end, the resulting transformed data is post-processed and 
put back again as output data into a proper raw or model data container.
The transformation itself consists of a sequence of single operations guided by metadata 
and  knowledge  to  fulfil  the  intended  task.  The  most  important  pipeline  of  image 
processing consists of the steps feature extraction, region estimation, object detection 
and scene evaluation. Another typical pipeline is data visualisation with the steps filtering,  
mapping and rendering. Finally, problem solving pipelines apply different mathematical 
functions, logical formula sets or rule packages in order to get conclusions by respective 
inferences.
On the external layer, each pipeline has a graphical representation on the user interface. 
Here, the operations, their parameters and their activation relations can be monitored or 
changed interactively [20]. In this way, pipelines may also be defined by non-developers. 
Fig. 5 shows an example pipeline on the web-based user interface where video-stream 
image matrices are shown to be processed by a background separator; later the mask 
and the foreground image are conjuncted and displayed in addition to the mask image.

Figure 5: Visualized example pipeline.

On the internal layer, operations can be realised using the multi-threading capability of 
several main processors and cores or involving the massive parallelism of the graphics 
boards. This is done manually by the programmer, but more and more automatically by 
the image processing and visualisation libraries. The result is higher processing speed 
and resource utilisation [21].
Using a generic and flexible pipeline structure allows to implement basic forms of quite 
different -  in previous systems separately realized - application components as single 
pipelines in one system: image acquisition, process supervision, spatial count analysis, 
profilometer  viewing,  knowledge-based  classification,  example-based  learning,  stereo 
recognition, laser light section, structured light profiling and hyperspectral viewing [22], 
[23], [24], [25], [26], [27], [28].

Data structure
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Raw data is generated by the acquisition and control component and processed further 
on by transformation operations. In parallel, they can be stored in files and retrieved back  
from there. The structure of the raw data is characterised by their location in the overall 
system near the sensor input, respectively actor output. So, the data has to conserve the 
specific authentic set of original measure or control values. At the same time, it is stored 
in  generic  containers  allowing  certain  generic  operations  to  handle  them.  These  two 
requirements are realised by organising the data in the form of  an ordered vector  of 
measure control frames in the container stream data (see fig. 6). A measure control frame 
is a data element with channel identifier, time stamp, space position and real data values. 
The role of the data values is described in the channel-information operating as data 
header. 
Using this raw data structure,  image and video data produced by camera sensors in 
standardised  formats  can  be  managed  just  as  vector  data  produced  by  any  of  the 
intensity or counting sensors in particular formats. Actor data is defined accordingly.

Figure 6: Sensor data format at input.

Processing pipelines carry out complex synthesis or analysis operations. For that, they 
require a set of unified data structures as formatted operands and interfaces for all input,  
output,  processing,  storage,  retrieval,  calculation,  interpretation,  visualization  and 
interaction tasks. These model data structures are formed by multi-dimensional spatial or 
linked graph structures organised in temporal sequences and attached by textual attribute 
vectors. Meta data describe the syntax and the semantics of these data.
All  unified  data  together  provide  the  essential  basis  for  the  required  flexibility, 
changeability and practicality of the proposed multiple pipeline system.

Flow structure
The task of  the entire system can only be fulfilled efficiently if  they are distributed to 
several cooperating components. Therefore, it is necessary that involved sensors, actors 
and computers are integrated with each other by a network. The essential subtask is to 
organise the data and the control flow among them by proper interfaces. Fig. 7 contains a 
schematic representation of this flow.

Figure 7: Data and control flow.
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All sensors and actors are attached by a sensor-actor-data interface (SADI). It contains 
externally  generated  measure  data  like  quantity  vectors,  image  matrices  or  sensor 
parameters  as  well  as  internally  generated  control  data  like  event  requests,  event 
responses or  actor  parameters together  with precise time stamps. The conversion of 
specific raw sensor and actor data is  implemented either  on hardware driver level  or 
system software level. The data transfer between processing units is handled by a client-
server architecture, using either the TCP/IP or the USB protocol.  All  the cameras are 
integrated by Gigabit-Ethernet  as in  [29].  For  offline work,  the data-exchange is  also 
possible via read and write operations on files. This dataflow may be monitored by user  
interfaces.
The performance of the entire system depends on many factors: frame sizes, frame rates 
and number of the sensors, processing times and number of the computers, data transfer 
times of  the network,  runtimes of the evaluation algorithms as well  as structures and 
number of data and knowledge elements. In our development environment at HTWD, we 
observed cycle times for the different pipelines between 0.1 and 10.0 s, whereas the 
lower limit is determined mainly by the network band width and camera frame sizes, the 
upper  boundary  results  from  the  combination  of  frame  sizes  and  transformation 
algorithms. 

4. Experimental Results

While the pipelined module structure described above is able to handle both SuperSIMS 
and SenSys applications both  systems differ  in  data  rate  and processing complexity. 
SuperSIMS provides data at  much lower rate while  the probed material  is  sputtered, 
creating a depth profile of the scanned region with a multitude of different elements inside 
the sputtered volume.  Conversely,  the multi-sensor  system SenSys at  HIF generates 
much  higher  data  rates  by  scanning  the  surface  of  moving  samples  with  different  
cameras  simultaneously;  each  giving  a  defined  spectral  range  and  preferably  planar 
regionalization.
Both systems benefit from the presented data processing pipeline by enabling real-time 
data streaming and full sensor control. Hardware-related issues have been addressed by 
dedicated interface modules, creating direct access to raw images without modification of 
proprietary  firmware.  Thus,  after  establishing  the  source  for  data  streaming,  we  can 
handle  the  streamed  data  according  to  our  needs  and  develop  flexible,  customised 
solutions  for  image  transformation  such  as  distortion  correction,  image  stacking  and 
white-balancing. Moreover, the innovative design of the system software is capable to 
incorporate  diverse  analysis  tools.  This  is  a  great  advantage  compared  to  current 
embedded firmware which can be modified to incorporate new sensors or functionalities 
only with large effort.
Our hardware integration modules and the package of software routines overcome these 
obstacles  and  will  be  continuously  further  developed  to  meet  future  tasks,  e.g.  the 
incorporation of new sensors or image classification methods.

Experimental results at SIMS material analysis
Several  pipeline-based  programs  are  designed  for  the  use  in  the  SuperSIMS 
environment.  They  are  already  in  practical  use  and  deliver  helpful  information  for  
operators  and  users.  A  dedicated  software  module  receives  raw  images  from  a 
commercial  SIMS during the scanning process and stores these data in an open and 
lossless file  format  (*.pgm).  As raw-data-transformations operate  on individual  sensor 
data,  their  processing  time  has  been  improved  by  multithreaded  implementations  for 
multi-core-processors or GPU-mapping.
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A spatial count analyser system processes the data collected by the image receiver. It  
interpolates counts in a volume size using a three-dimensional kernel and a marching 
cube  algorithm for  iso-surface  detection.  Alternatively,  a  volume renderer  uses  semi-
transparent  voxels  and  allows  viewing  the  inside  of  an  object.  Offline  3D-volume 
processing is performed by reading a series of files collected by the image receiver; each 
representing a thin layer of material. The resulting volumes can be used to extract a 3D-
surface defined by iso-detection levels of different isotopes. This allows visualizing the 
3D-shape  of  any  contained  substructures  clearly.  To  look  inside  an  object,  the 
visualisation can be switched to be semi-transparent (fig. 8 left image).

Figure 8:  Example results  for spatial  count  analyser (left  image)  and profilometer viewer  (right 
image).

Shape and volume of the real sputtered area can be inspected with the use of a Contour 
GT-K white-light interferometer. This unit transfers its data into a dedicated viewer system 
by ASC formatted files. In the viewer system, a three-dimensional surface of a sputtered 
material object is computed. The result can be examined from a scientific point of view 
with different camera points, camera perspectives, space resolutions and color mappings. 
A typical example for the viewer system output is the colored height profile in fig. 8 right.
Out of various analytical methods in dynamic SIMS instruments, the one which places the 
highest  demands  on  the  internal  synchronisation  inside  the  instrument  is  the 
measurement of  the three-dimensional distribution of  different  elements in a precisely 
defined scanned area of the sample. In order to evaluate the processing of large amounts 
of  data  representing  this  three-dimensional  distribution,  e.g.  in  a  natural  mineral,  
measurement data were taken in the normal SIMS mode, not in the much slower Super-
SIMS mode. As the data structures are identical, this approach enables the validation of  
the data processing pipeline. First reference tests were made on regular structures which 
are provided for calibration purposes. The structures are manufactured by deposition of 
thin tantalum layers on Si wafers. In this case, the distribution of the isotope 181Ta and the 
molecule 29Si30Si were measured. The measurement of the element distribution in natural 
minerals is much more demanding. In addition to a large number of elements/isotopes to 
be measured, these are also determined at different measuring times. This corresponds 
to different sputtering depths in the respective mineral.
The spatial and temporal  integration of sensor signals is obligatory as the process of  
sputtering the material  sample by  ion  beams needs a precise spatial  calibration  and 
temporal synchronisation of all participating agents. Thus, the time of arrival of material 
particles must be linked to the time of sputtering on the sample because this gives the  
information about  their  former location in  the material  sample.  At  the same time,  the  
arrival time contains information about the chemical substance because of the mass, and 
hence, acceleration and resulting velocity of the particles. Before and after the regular  
measurement,  the  particle  flow  intensity  of  the  primary  ion  beam  is  determined  as 
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reference value. The measurement of the sample itself is done with a spatial resolution of 
up to 512x512 dots in an 80 ns time grid. The resulting particle intensities vary between 1 
million and 1 billion per second. Fig. 9 illustrates the relationships between the sputtering 
time path, the sample spatial grid and the global camera image.

Figure 9: Image-space-time synchronisation in SuperSIMS.

All experimental tests prove the applicability of the developed methods and demonstrate 
functionality and flexibility of the approach chosen here. 
Compared to other methods of evaluating and using 3D imaging data from dynamic SIMS 
measurements [34-36], there are several advantages.
The automatable detection of different matrices in the sputtered volume, combined with 
the  reconstruction  of  the  shape  and  volume,  allows  the  automatic  quantification  of 
element  and  isotope  concentrations  based  on  the  availability  of  matrix-matched 
standards. This is currently only possible for measurements in exactly one matrix (e.g. 
[34]) otherwise the element or isotope ratios are presented. The correlative automated 
analysis of the 3D image information of the SIMS - signal and the signal of the white-light  
interferometer allows the automated determination of the sputter rate and the analyzed 
volumes of the individual phases. This principle makes use of additional sensors; it leads 
to improved analytical results and can be transferred to all other methods of correlative 
microscopy of SIMS measurements [e.g. 37].

Experimental results for material flow analysis 
Using the setup of multi-sensor systems at HZDR, different material streams, especially 
with the focus on drill  cores and secondary resources (e.g. printed circuit  boards and 
metal waste) have been monitored. Besides providing classification algorithms, this work 
resulted in two important, innovative tools for the online material stream characterization: 
the  automated  object  height  detection  by  laser  profiling  and  the  streaming  and  pre-
processing of RGB color and hyperspectral reflectance images.
Laser light section bases on a monochrome camera together with a wavelength filter and 
an active line laser. The software determines the deviation of a straight laser line in the 
camera image, using triangulation to calculate the height. This approach proved to be 
superior to stereo camera triangulation with respect to computational burden, resolution 
and ruggedness. Applying it to a scene on a conveyor belt, a complete three-dimensional 
surface profile (2.5D) of the moving objects in a rectangular area can be derived in real  
time. Exemplary, in Fig. 10 two images of a reconstructed PCB are shown visualizing 
both the preliminary height map (left) and the final 2.5D image after incorporation of the 
greyscale reflectance and a rendering step (right). The detailed object reconstruction will 
be further used as a base map on which the hyperspectral reflectance data projected 
using the co-registration approach of the synchronously triggered image acquisition for 
both hyperspectral cameras. 
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Figure 10: 2.5D-reconstructed images of the laser profiler for a PCB sample. Height map depicted 
in grey scale with distortions in x-y directions being still uncorrected (left). Rendered 2.5D image of 
the sample taking the greyscale values of  the laser reflectance and the height information into 
account (right).

One of  the major tasks was the integration of  multiple Gigabit-Ethernet  cameras with 
regard to configuration and image transfer.  For example, hyperspectral  (HS) cameras 
were interfaced and their data streams have been recorded in the aforementioned pgm-
format with full resolution. Presently, the image streams of five cameras are processed 
and  stored  which  results  in  a  data  flow  of  500  MB/s.  The  configuration  part  covers  
parameters  like  capture  regions,  frame  rates,  trigger  modes,  exposure  and  overall 
capture times plus gain values for image sensors and pixel bit depths. In-built raw data 
transformations perform the change of  image format,  geometry  and color.  Raw color 
images may be de-bayered to get RGB information or compensated for uneven spectral 
light distribution and spotlights with a white balance algorithm.
Knowledge-based classification is based on camera sequence data and stored explicit 
knowledge about elements and their relationships located on pieces of electronic circuit 
boards. It contains image-processing steps like feature extraction, region segmentation 
and  object  detection  on  the  basis  of  typical  object  parameters  like  color,  saturation, 
intensity, texture, size or shape, allowing to specify their ranges or limits in dedicated 
tables for further optimization. Typical detection rates vary between 50 and 80 %. It is  
expected  that  the  importance  of  this  component  will  grow in  future  by  collecting  the 
amount of real expert knowledge, also to support the other detection components.
Example-based  classification  uses  a  manually  prepared  set  of  reference  images, 
representing  typical  backgrounds,  negative  and  positive  training  objects,  representing 
typical scene elements. On the base of color images, a mask extractor generates a large 
number of assessed cropped image parts, using a multi-step cascade filter for later object  
matching.  Analysing material  flows, the comparison of the high-resolution RGB image 
with  other  hyperspectral  reflectance  sensor  data  has  shown  good  results  in  feature 
extraction of co-located extracted areas [5].
Another example of the current  object detection algorithms being fed by synchronous 
multi-camera data acquisition is the identification of PCB components with convolutional 
neural networks (CNN) (Fig. 11). We applied the VGG-16 network architecture [24] used 
for this task. While the network performs poorly in the detection of objects and in setting 
the correct bounding boxes using RGB images only, we obtain an increase in accuracy 
by taking information from the hyperspectral  reflectance image into account [30].  This 
method is inspired by the region-proposal by guided anchoring [31]. The output of the  
supervised pixel-wise classification of the HS data is used to populate a probability map, 
which exhibits high values where the given classes should be located. This probability 
map  is  used  along  with  the  region  proposal  network  of  the  CNN  for  the  anchor 
localization, i.e. to set the box where an object from a specific class should be detected.  
The boxes with different grey scale color represent different object classes recognized by 
the network in a PCB image. 
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Figure 11: Comparison of the object detection of PCB components by a neural network using RGB 
images only  (upper  left)  and RGB images combined with  anchoring  points  from the  classified 
hyperspectral  reflectance  image  (upper  right).  White  boxes  mark  the  recognition  of  integrated 
circuits, grey boxes metal sheets and black boxes gold connectors. Different grey values in the 
classified HS image represent the different detected classes (lower image).

Our approach improved the mean average precision from 0.45 to 0.61 and reduced the 
inference time from 0.75 s to 0.32 s. Acquiring more experimental data for learning and 
improving the network architecture should increase the accuracy of the object detection 
and its ability to recognize a higher variety of object classes in the images.
The findings from the neural network dealing with different sensor data are promising 
starting  points  for  a  further  investigation  of  the  fusion  of  spectral  data  from different  
sources.  Compared  to  other  studies,  where  the  fusion  of  RGB  and  hyperspectral 
reflectance was examined [32] [33], our network is able to deal with a limited number of  
training set and is better tailored for the application in PCB recycling. The inference times 
are shorter  due to  the compression of  the hyperspectral  data  into  a  low-dimensional 
feature  map.  Moreover,  the  developed  flexible  software  and  hardware  architectures 
enable an easier and more problem-adapted integration of further sensors, which is more 
challenging for the aforementioned other approaches. In addition, the ability of the here 
presented pipeline for streaming large data sets provides a unique opportunity for the 
further step of real-time multi-class object detection in material streams. 

5. Conclusion and Outlook

The paper described a sensor data processing framework which has been applied in 
different hardware setups in the field of resource technology, ranging from secondary-ion-
mass-spectrometry  to  optical  image processing  for  recyclate  analysis.  Interfacing  the 
existing  hardware  was  inevitable  groundwork  to  prepare  the  definition  of  new  data 
structures  and  processing  pipelines.  The  use  of  additional  sensors  could  thus  be 
implemented and tested on three different research and development facilities at HZDR 
and HTWD, yielding improved analytical results compared to the original setups.
For a large set of equal or similar features, open source libraries could be used. The 
present implementation allows the acquisition of  raw sensor data in real  time, sensor 
fusion in a common reference system and the flexible  extraction of  data  on different  
processing levels for developers, experts and users.
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This configurable processing pipeline framework serves as a base for further test and use 
scenarios, extending the systems application-specific knowledge-base. Future work aims 
at increasing sensitivity by integrating further sensor hardware. Extending model data and 
knowledge structures will  also improve conclusion and learning processes, resulting in 
better material classification.
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