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Abstract

We propose a novel approach in the assessment of a random risk
variable X by introducing magnitude-propensity risk measures (mX , pX).
This bivariate measure intends to account for the dual aspect of risk, where
the magnitudes x of X tell how hign are the losses incurred, whereas the
probabilities P (X = x) reveal how often one has to expect to suffer such
losses. The basic idea is to simultaneously quantify both the severity mX

and the propensity pX of the real-valued risk X. This is to be contrasted
with traditional univariate risk measures, like VaR or Expected shortfall,
which typically conflate both effects. In its simplest form, (mX , pX) is
obtained by mass transportation in Wasserstein metric of the law PX of
X to a two-points {0,mX} discrete distribution with mass pX at mX .
The approach can also be formulated as a constrained optimal quanti-
zation problem. This allows for an informative comparison of risks on
both the magnitude and propensity scales. Several examples illustrate
the proposed approach.

Keywords: magnitude-propensity; risk measure; mass transportation; optimal quan-
tization.

1 Introduction and outline
The evaluation and comparison of risks are basic tasks of risk analysis. The usual
view in Insurance mathematics is to evaluate an univariate risk1 X by a risk measure
ρ(X), which can be thought of as a one-sided deterministic univariate summary of

∗Corresponding author
1We take the Insurance Mathematics convention, where the non-negative values of X stands

for the loss incurred
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the random variable X. Risks X, Y are then compared through their respective risk
measures ρ(X), ρ(Y ).

The starting point of this paper is the basic realization that risk, as a random
variable, is intrinsically a bivariate phenomenon: magnitudes (loss amounts) occurs
with given propensities (or probabilities). Hence, it appears inescapable that a risk
measure, as a single univariate quantity on the magnitude scale, will conflate both
effects, thus giving a somehow blurred representation of the risk borne by the random
variable X. It would then be of interest to quantify risk on both the magnitude
and propensity scales. The purpose of this paper is to propose such a simultaneous
quantification.

The proposed approach is based on the following idea: as mentioned above, a risk
measure ρ(X) can be viewed as a deterministic proxy of the random risk X. Distri-
butionally speaking, it can be thought of as a Dirac measure δρ(X)(.) at ρ(X): this
distribution gives full propensity one at the magnitude level ρ(X). Therefore, in order
to quantify the risk with a varying propensity pX , it makes sense to look for an approx-
imate of the distribution of X by a mixture of two Dirac, a Dirac at location zero with
weight 1− pX , and a Dirac at location mX , with weight pX . This proxy distribution
thus encodes the magnitude and propensity effect of the risk borne by X, through
the pair (pX ,mX). Mathematically, this problem of approximating distributions is
carried out by mass transportation in Wasserstein metric. Optimal transportation to
discrete measure also corresponds to the problem of optimal quantization, well-known
in the Engineering and Signal Processing literature. Hence, the proposed approach
to quantify risk on both the magnitude and propensity scales amounts to a special,
constrained, optimal quantization problem.

The outline of the paper is as follows: In Section 2, we motivate the magnitude -
propensity approach to risk measures. As a new paradigm to risk evaluation, the
proposed approach needs a careful and detailed exposition of its main idea. We first
argue and give some evidence of this magnitude-propensity duality of risk, using (in-
tentionally) simplistic examples to make our point clear. We then show how some
classical risk measures typically mixes both effects and explain why it would be desir-
able to quantify risk on both the magnitude and propensity scales. A risk measures can
usually be derived as a M-functional, i.e. as a statistical parameter which is a solution
of a problem of minimization of some expected loss. We next show how these expected
loss minimization problems can be embedded into (degenerate) optimal transportation
problems, i.e. towards a Dirac distribution. Eventually, we propose our definition of
the magnitude-propensity pair (pX ,mX), as hinted above, and make the connection
to optimal quantization.

Section 3 is a theoretical study of the basic idea. We show how to compute the
optimal (mX , pX), both as direct minimization problem and as an optimal quantization
problem. To that purpose we briefly recall the main facts about quantization theory.
We provide existence, characterization and (partial) uniqueness results. We discuss
some basic properties of the obtained magnitude-propensity pairs and study some
example distributions.

In Section 4, we give some numerical illustrations of the basic idea. We explain
how the optimal (mX , pX) gives rise to magnitude-propensity plots, which allow for
an informative comparison of risks on both the magnitude and propensity scale. We
show how to do such comparisons for distributions with or without explicit formulas
for (mX , pX). Empirically, the optimal magnitude-propensity pair can be computed
by a fixed point algorithm, which is akin to Lloyd’s algorithm in optimal quantization.
The methodology is illustrated on a real data set of insurance losses.
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Eventually, we give a conclusion of the main results in Section 5 and add some
perspective for further research about possible variants and extensions of the basic
approach.

2 The magnitude-propensity approach to risk mea-
sures

2.1 Risk is intrinsically a bivariate propensity-magnitude
random phenomenon

As a primary concept of Insurance Mathematics, it is somehow difficult to give a pre-
cise, deductive definition of risk in terms of more primitive concepts. This explains
why, e.g. Novak (2012) p. 224, states that “There is currently no consensus concerning
the meaning of the word risk”. Hence, risk is often given an implicit or semantic defi-
nition in textbooks, as in Novak (2012) p. 191: “Risk is a possibility of an undesirable
event. Though such an event is rare, its magnitude can be devastating.”

The latter description of risk encompasses the duality magnitude-propensity of
random variables: intuitively, a claim can be “risky” because losses may happen often,
i.e. with a “high” propensity, possibly with (relatively) “small” magnitudes, or because
a catastrophe of very large magnitude may happen, albeit with a (relatively) “low”
propensity. We mention that this dual nature of risk is explicit in the Engineering
literature (see e.g. Bedford and Cooke (2001)), where it is summarized by the semantic
formula “risk=uncertainty+damage” in Kaplan and Garrick (1981).

Risk due to high magnitudes and risk due to high propensities manifests itself on
several levels: intrinsically for a single risk variable, relatively in the comparison of
two risks, and in the stochastic order itself. The best way to illustrate our point is to
give examples stripped to their simplest form, i.e. for two-points discrete measures.
Hence, we have the following intentionally simplistic examples:
• Intrinsic magnitude-propensity aspect for a single random risk:

Let X1 s.t. P (X1 = 1000) = 0.1, P (X1 = 0) = 0.9, while X2 is s.t. P (X2 =
200) = 0.5, P (X2 = 0) = 0.5. X1 and X2 have the same mean E[X1] = E[X2] =
100. X1 has a “high” magnitude risk 1000 of “low” propensity 0.1 while X2 has
a “small” magnitude risk 200 of “high” propensity 0.5, see Figure 1.

Figure 1: The dual nature of risk: X1 has high magnitude risk (left) vs X2 has
high propensity risk (right). Yet, E[X1] = E[X2].
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• Relative magnitude-propensity effect for the comparison of risks:
When one considers a pair (X1, X2) of risk variables and regards risk as a relative
property of one r.v. X1 w.r.t. the other r.v. X2, the magnitude-propensity
duality manifests itself in the comparison of risks and in the ordering structure
of probability measures. This is illustrated in the following (also intentionally
simplistic) examples:

Example 1. Let X1 s.t. P (X1 = 0) = 0.9, P (X1 = 100) = 0.1, while X2 is
s.t. P (X2 = 0) = 0.9, P (X2 = 1000) = 0.1. Then, X1 and X2 have same
propensities, but X2 is more risky than X1 due to a difference in magnitudes,
see Figure 2.

Example 2. Let X1 s.t. P (X1 = 0) = 0.95, P (X1 = 1000) = 0.05, while X2

is s.t. P (X2 = 0) = 0.5, P (X2 = 1000) = 0.5, see Figure 3. Then, X1 and
X2 have same magnitudes, but X2 is more risky than X1 due to a difference in
propensities, see Figure 3.

Figure 2: Comparison of risks for Example 1: X2 (right) is riskier than X1 due
to a difference of magnitudes

Figure 3: Comparison of risks for Example 2: X2 (right) is riskier than X1 due
to a difference of propensities
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• Magnitude-propensity effect in the stochastic order:
In both cases of Examples 1 and 2, one has

FX1(x) ≥ FX2(x), ∀x ∈ R+, (1)

so that X1 ≺st X2, where ≺st stands for the usual stochastic order. Yet, (1)
does not distinguish between a horizontal shift of c.d.f.s due to a difference in
magnitudes (Figure 4 left), and a vertical shift of c.d.f.s due to a difference of
propensities (Figure 4 right).

Figure 4: C.d.f.s of X1 (blue), X2 (red). Left: Example 1, difference of magni-
tudes (horizontal shift). Right: Example 2, differences of propensities (vertical
shift).

Remark 1. From the mathematical standpoint, let us remark that this magnitude-
propensity duality of risk can be formalized mathematically by the concept of a Galois
connection between the magnitude and probabilities spaces, considered as two ordered
spaces, (R,≤) and ([0, 1],≤). Indeed, denote by FX , resp. QX , the cumulative distri-
bution function, resp. the quantile function, of X. Then, (FX , QX) forms a Galois
connection between the magnitudes space (R,≤) and the propensity space ([0, 1],≤),
i.e. for all x ∈ R and t ∈ (0, 1),

t ≤ FX(x)⇔ QX(t) ≤ x.

See O. P. Faugeras and Rüschendorf (2017) for details and a generalization of the
concept of quantile to the multivariate case.

2.2 Risk measures as univariate deterministic proxies for
a random risk

The main paradigm to the assessment of risk in Insurance and Financial Mathematics
is based on the use of risk measures

ρ : X → R+, (2)

where X is a space of non-negative measurable random variables modeling an insur-
ance claim. These risk measures quantify risk on a magnitude scale, by converting
a random loss X into a deterministic certainty equivalent ρ(X). The latter can then
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be used for ordering different risks, and for decision making purposes, like setting the
premium for covering the risk X, see e.g. Rüschendorf (2013). The resulting risk mea-
sure should typically satisfy some desirable properties (coherent risk measure), like
translation invariance, monotonicity, etc., see e.g. Artzner et al. (1999); Föllmer and
Schied (2002).

The last decades have seen a multiplication of risk measures. Among the numer-
ous approaches encountered in the literature, let us mention the classical premium
calculation principles based on probabilistic models (see e.g. Mikosch (2009), As-
mussen and Hansjörg Albrecher (2010), Bühlmann (1996)), the axiomatic approach
where premium principles are subject to a set of desirable properties (see Artzner et
al. (1999)), the abstract/functional analytic approach where risk measures are derived
from an acceptance set and a set of scenario measures (see Föllmer and Schied (2002)),
distortion-based measures Wang (1996), and eventually the approach to risk excess
measures induced by hemi-metrics (see Olivier P. Faugeras and Rüschendorf (2018)).
These numerous approaches have lead to considerable debate on the pros and cons of
the risk measures available in the literature, see e.g. Embrechts et al. (2014).

From the magnitude-propensity point of view, the duality of risk is reflected in its
measurement, i.e. in the risk measures themselves. Some risk measures focus more on
the propensity aspect of risk, while some others focus more on the magnitude one, and
most risk measures mix both. Let us illustrate this point with the following comparison
of three well-known risk measures:

• The Value-At-Risk, defined as the left α-quantile of X,

V aRα(X) := inf{x : P (X ≤ x) ≥ α}, 0 < α < 1 (3)

encodes a propensity into a magnitude, by setting the V aRα(X) as the utmost-
left α-quantile. (Note that some authors define Var as the utmost-right quan-
tile). Value at Risk only controls the probability of a loss, it does not capture
the size of such a loss if it occurs.

• The opposite extreme is, for X an essentially bounded random variable, the
essential supremum,

ρ∞(X) := ess supX,

which quantifies the maximum magnitude of the loss, but gives no information
on the probabilities.

• The Expected Shortfall, (also called the Conditional Value at Risk, see Uryasev
and R. Tyrrell Rockafellar (2001)),

ESα(X) := E[X|X ≥ V aRα(X)], (4)

clearly mixes the two aspects magnitude-propensity of the risk by computing a
weighted average over a threshold.

In general, one wants to know both when/how often a catastrophe may occur, and
also what is the size/extent of the loss one has to face. This suggests that reducing
risk X to a single proxy on the magnitude scale as a univariate risk measure ρ(X)
is somehow inadequate to account for the dual nature of risk. This idea that one
numerical quantity cannot hedge against risk has already been evoked beforehand in
the literature, see e.g. Rootzén and Klüppelberg (1999). Let us also remark that
in their criticism of the VaR measure, the authors of the academic response to the
Basel 3.5 framework are implicitly interested in these dual propensity and magnitude
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aspects of risk (see Embrechts et al. (2014) p.27 “Question W1: VaR says nothing
concerning the what-if question: Given we encounter a high loss, what can be said
about its magnitude?”). It thus would be of considerable practical interest to quantify
risk on both the magnitude and propensity scales. This is the purpose of this paper.

Remark 2 (On elicitability). It has been argued in the literature that elicitability is
also a desirable property for risk measures (see Embrechts et al. (2014)). Elicitability
is a concept derived from point forecasting. Roughly speaking, in order that a point
forecast, derived from a statistical functional, be consistent with their evaluation by
averaging over the past, the statistical functional must be written as a (strict) M-
functional, see Gneiting (2011) for a precise definition. It is known that VaR is not a
coherent risk measure, but is elicitable, while the expected shortfall (ES) is a coherent
law invariant risk measure, but is not elicitable. ES is jointly elicitable with VaR, see
Fissler and Ziegel (2016).

This consideration of elicitability suggests the use of bivariate risk measure (ES,VaR),
i.e. of combining magnitude and propensity type univariate risk measures to obtain
something that is both coherent and elicitable. This is another supplementary moti-
vation for arguing that one should switch to bivariate risk measures for the study of
univariate risks.

Remark 3 (On parametrized risk measures). For risk measures depending on a pa-
rameter, like α in V aRα(X) or ESα(X), arise the practical issue of choosing the
“right” parameter value α for correctly representing the risk by a single numerical quan-
tity. Common practice is to hedge against a “rare event”, i.e. to take, say, α = 0.9,
0.95 or 0.99.

V aR and ES give in fact curves, α → V aRα(X) and α → ESα(X). These
curves, under mild conditions, determine the distribution of X. Hence, they give
the same information as the c.d.f. FX . They are just another possible analytical
characterization of the distribution of X. A complete assessment of the magnitude
and propensity effects of a risk X can be visualised by plotting its c.d.f. FX , or more
conveniently its survival function FX , possibly on a log-log scale. This is the classical
approach in the Engineering literature, see Kaplan and Garrick (1981), where it is
argued that “a single number is not a big enough concept to communicate risk. It takes
a whole curve”.

However, it becomes difficult to compare entire curves. Therefore, it is natural to
look for a summary of this distribution-determining curve to as few as possible numer-
ical quantities. This is the path favoured in Insurance and Financial Mathematics with
risk measures. The magnitude-propensity measure to be introduced below, can thus be
viewed as a middle-ground between univariate risk measures of Insurance Mathematics
and the full curve approach in Engineering.

2.3 M-statistical functionals can be obtained from mass
transportation to a degenerate distribution

The following discussion gives the key insight for defining a magnitude-propensity
risk measure as an optimal transportation problem. Let us recall that the Monge-
Kantorovich optimal transportation problem aims at finding a joint measure P (X,Y ) on,
say, the product measurable space (R×R,B(R2), with prescribed marginals (PX , PY ),
which is the solution of the optimisation problem:

Tc(PX , PY ) := inf
P (X,Y )∈P(PX ,PY )

∫
c(x, y)P (X,Y )(dx, dy), (5)
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where c : R× R→ R+ is a cost function and the infimum is on the set P(PX , PY ) of
joint distributions P (X,Y ) with given marginals PX , PY . Informally, mass at x of PX

is transported to y, according to the conditional distribution P (dy|x) of the optimal
transportation plan P (X,Y ), in order to recover PY while minimising the average cost
of transportation

∫
c(x, y)P (X,Y )(dx, dy). Under regularity conditions, the optimal

transportation plan is induced by a (Monge) mapping T , viz. PX,Y = PX,T (X).
See Rachev and Rüschendorf (1998), Cédric Villani (2003), Cédric Villani (2009),
Santambrogio (2015) for book-length treatment on the subject.

When PY is degenerate, i.e. PY = δm with m ∈ R, then P(PX , δm) reduces to
the singleton product measure P(PX , δm) = {PX(dx) × δm(dy)}. (5) thus simplifies
as the expected cost between X ∼ PX and a fixed point m,

Tc(PX , δm) =

∫
c(x,m)PX(dx) = E c(X,m). (6)

Therefore, minimizing the transportation cost (5) over the set D := {δm(dy),m ∈ R}
of Dirac measures is equivalent to minimizing the expected cost (6) over m ∈ R,

Tc(PX ,D) = inf
PY ∈D

Tc(PX , PY ) = inf
m∈R

E c(X,m). (7)

In particular,

• for c(x, y) = (x − y)2, (5) is the squared L2−Wasserstein metric W2 and (7)
writes as the variance,

W 2
2 (PX ,D) = inf

PY ∈D
W 2

2 (PX , PY ) = inf
m∈R

E(X −m)2 = V ar(X),

and is obviously minimised for the mean m = EX. In addition, when PX is
replaced by the conditional law of X given X ≥ V aRα(X), one obtains the
Expected shortfall (4).

• For the L1 distance, c(x, y) = |x− y|, one gets the median.

• For the asymmetric cost c(x, y) = (x− y)α1x−y≥0 + (y−x)(1−α)1y−x>0, with
0 < α < 1, one obtains the (left)-α-quantile, m = qα(X) (see e.g. Koenker and
Basset), that is to say the Value-At-Risk (3).

• For c(x, y) = y+
(x−y)1x≥y

1−α , one gets simultaneously the Expected Shortfall and
the Value-at-risk, when E[X] < ∞: the optimal value in (7) is the Expected
Shortfall while the argmin gives the Value-At-Risk, see Uryasev and R. Tyrrell
Rockafellar (2001), R Tyrrell Rockafellar and Uryasev (2002).

• And so on for other statistical functionals. See also Olivier P. Faugeras and
Rüschendorf (2018) for optimal transportation induced by cost functions which
are hemi-metrics encoding an order.

The above discussion shows that the statistical functionals and risk measures, which
can be expressed as an M-estimator solving (7) for a suitable cost function, can be
regarded as being obtained from a special mass transportation problem towards a
family of degenerate Dirac distribution δm.
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2.4 The magnitude-propensity (mX , pX) approach to mea-
suring risk

The optimal transportation view on risk measures of Section 2.3 suggests that the
limitations of the risk measures of Section 2.2 come from the fact that these univariate
functionals can be viewed as being obtained by mass transportation from the PX mea-
sure to a degenerate Dirac δm measure: the latter distribution only bears a magnitude
m with full propensity. Hence, the magnitude and propensity aspects of PX are mixed
and encoded in the sole magnitude m of the Dirac destination measure.

It therefore becomes natural to suggest a mass transportation approach to risk
measures, as in (7), but with the target Dirac distribution δm replaced by a two-points
distribution PY ,

PY = (1− p)δ0 + pδm. (8)

The latter distribution encodes both the magnitude and propensity aspects of risk: a
loss of magnitude m occurs with probability p (and no loss occurs with probability
1− p). We can therefore define of the basic idea of the paper as follows:

Definition 2.1. Let A0 := {PY = (1 − p)δ0 + pδm, p ∈ (0, 1),m ∈ R+} be the
set of such two-point distributions (8). For X ∼ PX with E[X2] < ∞, the bivariate
magnitude-propensity risk measure (mX , pX) is obtained by minimizing the Wasser-
stein W2 distance from PX to A0,

(mX , pX) = arg inf
PY ∈A0

W2(PX , PY ). (9)

In other words, the risk X is approximated in Wasserstein metric by a proxy
Y ∼ B0, which bears a loss of magnitude mX , occurring with a probability pX , and
no loss with probability 1− pX . We exclude the values p = 0, p = 1 and m = 0 in the
family A0, in order to obtain non degenerate measures.

This approach of approximating a distribution by a discrete one corresponds to the
well-known problem of optimal quantization, see Graf and Luschgy (2000). The latter
is itself related to k−means clustering, see Pollard (1982). Here, the main difference is
that one location of the discrete distribution is constrained to be 0. This point mass
at zero encodes the absence of loss and thus the point mass p at m > 0 encodes loss.
PY ∈ A0 is characterized by the two parameters (m, p), and quantization to A0 gives
the minimal way to represent the magnitude and propensity effect borne by X.

3 Theoretical analysis
The theoretical study of the optimal (mX , pX) magnitude-propensity pair in (9) can
be done by two main approaches: either as an optimal mass transportation problem
or as an optimal quantization problem. The more refined results are obtained by
the latter approach. However, we first make use of the former to quickly obtain a
characterisation of the optimal magnitude-propensity pair.

3.1 Computation of (mX , pX) by the optimal transporta-
tion approach

A direct optimization approach can be used to characterize the (mX , pX) by using the
explicit form of the Wasserstein metric in dimension one: denote by QX the quantile

9



function of PX ,
QX(t) := inf{x : FX ≥ t}, 0 < t < 1.

It is then well-known (see e.g. Rachev and Rüschendorf (1998)) that

W 2
2 (PX , PY ) =

∫ 1

0

(QX(t)−QY (t))2 dt, (10)

for univariate PX , PY with finite variance. For Y ∈ A0, its quantile function writes
QY (t) = m11−p<t≤1. Plugging the later in (10) and optimizing gives the following
characterization result.

3.1.1 Characterization by direct optimisation

In the remainder of the paper, we simplify notations and will denote simply by F , Q,
f the c.d.f., quantile function and density (if it exists) of X.

Proposition 3.1. Let X s.t. E[X2] <∞.

i) Necessary conditions: if (mX , pX) is a local minimum of (9), then it satisfies
the following system of equations,

mX = 2Q(1− pX), (11)

mX =

∫ 1

1−pX
Q(t)dt

pX
. (12)

ii) Sufficiency condition: if PX is absolutely continuous with continuous density f ,
then (mX , pX) is optimal if f(Q(1− pX)) > 0 and

2pX
f(Q(1− pX))

−Q(1− pX) > 0. (13)

Proof. i) The squared Wasserstein distance between PX and PY ∈ A0 writes

W 2
2 (PX , PY ) =

∫ 1−p

0

(Q(t))2dt+

∫ 1

1−p
(Q(t)−m)2dt

= E[X2] +m2p− 2m

∫ 1

1−p
Q(t)dt

:= ψ(m, p)

ψ is differentiable and any optimal magnitude-propensity (mX , pX) solving (9)
must satisfy the first order conditions{

∂ψ(mX ,pX )
∂m

= 0
∂ψ(mX ,pX )

∂p
= 0

⇔

{
−2
∫ 1

1−pX
Q(t) + 2mXpX = 0

−2mXQ(1− pX) +m2
X = 0.

For mX 6= 0 and pX 6= 0, one gets (11) and (12).

ii) if PX has density f such that f(Q(p)) > 0, then Q is differentiable with deriva-
tive the quantile-density qX(p) = Q(p)′ = 1

f(Q(p))
. Then ψ is twice differentiable

with Hessian matrix [
∂2ψ
∂m2

∂2ψ
∂m∂p

∂2ψ
∂m∂p

∂2ψ
∂p2

]
=

[
a b
b c

]
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with a = 2p, b = 2m−Q(1− p), c = 2m
f(Q(1−p)) . The Hessian is positive-definite

at the critical point (mX , pX) if a > 0 and ac − b2 > 0. The latter condition
writes

ac− b2 =
4pXmX

f(Q(1− pX))
− 4 (m−Q(1− pX))2 > 0

With (mX , pX) satisfying (11), (12), the condition writes

4Q(1− pX)

(
2pX

f(Q(1− pX))
−Q(1− pX)

)
> 0,

which is (13).

Remark 4. 1. If 1 − pX is in the range of F (in particular if F is continuous),
then, (11) writes

F (mX/2) = 1− pX ,
and by Exercise 3.3 in Shorack (2000) p. 113, (12) writes as

mX =
E[X1X>mX/2]

1− F (mX/2)
= E[X|X > mX/2].

This equation will be derived in the general case from the optimal quantization
viewpoint, see Theorem 3.5 and Remark 5 below.

2. Setting a := Q(1− pX), the sufficiency condition (13) writes also

af(a) < 2(1− F (a)).

In view of the fact that E[X] =
∫∞
0
tf(t) =

∫∞
0

(1 − F (t))dt < ∞, the latter
condition has to be understood as a condition on the tail decrease of the density.
It can also be expressed as a condition on the failure rate (or hazard function),
as

h(a) :=
f(a)

1− F (a)
<

2

a
.

A general existence result will be given in Theorem 3.5, by quantization methods.

3.1.2 Examples

We illustrate the formulas obtained in Proposition 3.1 on the following examples:

Example 3 (Uniform distribution). For X ∼ U[0,a], i.e. Q(p) = ap, (11) and (12)
give pX = 2/3 and mX = 2a/3.

Example 4 (Exponential distribution). For X ∼ Exp(λ), with λ > 0, the memory-
lessness property yields that E[X|X > a] = a + λ−1. Hence, the optimal threshold is
aX = λ−1 = E[X] and one has pX = e−2 ≈ 0.135 and mX = 2

λ
= 2E[X].

It is noteworthy that, in both examples, pX does is fixed and does not depend on
the parameter (a, resp. λ) of the distribution.
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Example 5 (Pareto distribution). One considers the following one-parameter (ver-
sion) of the Pareto Distribution, X ∼ Pa(θ), defined by P (X > x) = (1 + x)−θ, for
x ≥ 0. We assume that θ > 2, so that E[X2] <∞. One has that

E[X|X > a] =
θ

θ − 1
(1 + a)− 1.

Using the characterisation (22), one finds that the optimal threshold is a = 1
θ−2

.
Hence, (23) gives

mX =
2

θ − 2
, pX =

(
θ − 2

θ − 1

)θ
.

For some other distributions, one may not have a closed form expression.

3.2 A review of Optimal Quantization
Additional insight is gained by viewing the basic approach (9) as a constrained op-
timal quantization problem. We first summarize the basic facts and terminology of
(unconstrained) optimal quantization theory. The following can be regarded as a quick
introduction to the field.

Optimal quantization originates from the engineering and signal processing litera-
ture (see Lloyd (1982), Gersho and Gray (1992)). It aims at optimally discretizing a
continuous (stationary) signal in view of its transmission. It was developed originally
for analog-to-digital conversion, compression, pattern recognition.

Following Gersho and Gray (1992) and Graf and Luschgy (2000), a N−vector
quantizer on (Rd, ||.||) is a mapping T : Rd 7→ {x1, . . . , xN}, where {x1, . . . , xN} is a
codebook of size N . Thus, associated with T is a partition {Ai}, with Ai = {x ∈ Rd :
T (x) = xi}, of the input space so that a quantizer writes

T (x) =

N∑
1=1

xi1Ai(x), x ∈ Rd

and is determined by the pairs {(xi, Ai), i = 1, . . . n}. An N−optimal quantizer for
a distribution PX is a N−quantizer which minimises the mean squared error (or
distortion)

D(T ;PX) := inf
T

E(X − T (X))2.

Equivalently, it can be shown (Pollard (1982), Graf and Luschgy (2000)) that an
optimal quantizer is a Monge map minimising the Wasserstein metric W2(PX , PY )
between PX and PY , where PY is a discrete measure with N points.

It is known, see Gersho and Gray (1992), that given the codebook, the optimal
partition is given by the Voronoi partition,

Ai := {x ∈ Rd : ||x− xi|| ≤ ||x− xj ||, j 6= i}.

Conversely, given a partition, the optimal codebook is given by the centers (centroids),

yi = E(X|X ∈ Ai).

These properties are the basis of Lloyd’s iterative algorithm. This also explains why
optimal quantizers are sometimes defined directly by their codebook and corresponding
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Voronoi partition, see e.g. Pagès (2018). As a consequence, the distortion writes as a
sole function of the centers, as

D(T ;PX) = DN (x1, . . . , xN ) := Emin
xi
||X − xi||2 (14)

If the support of PX has at least N elements, existence of an N -optimal quantizer
follows from the fact that (x1, . . . , xN ) →

√
DN (x1, . . . , xN ) is 1-Lipshitz and a non-

trivial compacity argument, see e.g. Lemma 8 in Pollard (1982), Theorem 5.1 in
Pagès (2018) or Theorem 4.12 in Graf and Luschgy (2000). In dimension one, a
known sufficient condition for uniqueness of the N -optimal quantizer is that PX be
absolutely continuous with a log-concave density f . By Proposition 6.6 in Pagès (2018),
if xN := (x1, . . . , xN ) has pairwise distinct component and PX (∪1≤i≤N∂Ai) = 0, then
DN is continuously differentiable with gradient ∇DN =

[
∂DN
∂xi

]
with

∂DN
∂xi

(xN ) = E[2(xi −X)1X∈Ai ]. (15)

These calculations are the basis for a stochastic gradient descent based algorithm
known as Competitive Learning Vector Quantization, see Pagès (2018). In the one-
dimensional case, explicit expressions of the gradient can be written in terms of the
c.d.f. F and of the cumulative first moment function K(x) := E[X1X≤x] as

∂DN
∂xi

(xN ) = 2xi
[
F (xi+ 1

2
)− F (xi− 1

2
)
]
− 2

[
K(xi+ 1

2
)−K(xi− 1

2
)
]
,

where xi+ 1
2

=
xi+1+xi

2
corresponds to the boundaries of the Voronoi cells. Additional

formulas for the Hessian are available (see Pagès (2018) p. 155). These formulas allow
for a Newton-Raphson zero search procedure.

3.3 Existence and characterization of (mX , pX) by constrained
optimal quantization

We can now tackle the study of (mX , pX) from the optimal quantization viewpoint.
One thus introduces the constrained two-points quantizer with centers {x0, x1} :=
{0,m}, i.e. as a mapping T : R+ 7→ {0,m} with T (x) = m1x≥a, where a is a
threshold to determinate. Then, the optimal quantization problem with constrained
knot at zero writes

inf
a,m∈R+

E[(X − T (X))2].

By the results of the previous section (see (14)), one already knows that a = m/2, i.e.
that the Voronoi regions write A0 = {x : 0 ≤ x ≤ m/2} and A1 = {x : x ≥ m/2}. As
a consequence, and in view of (14) the distortion/objective function writes as a sole
function of the magnitude m, as

L(m) := E[X2 ∧ (X −m)2]. (16)

We first study the differentiability properties of the objective function (16) in the next
Section.
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3.3.1 B-differentiability properties of the objective function

For the general N -points quantization problem, the square root of the distortion func-
tion is 1−Lipshitz, see Pagès (2018) p. 136. Hence, it has a derivative a.e. by
Rademacher’s Theorem. Therefore, L is differentiable a.e. In addition, since the inte-
grand H : x→ X2 ∧ (X − x)2 is piecewise differentiable, it is easy to show that it has
directional derivatives everywhere. A convenient tool in the setting of optimisation
of piecewise smooth functions is the concept of Bouligand derivative (B-derivative),
see Robinson (1987) and Scholtes (2012). It drops the requirement of linearity of the
differential, represents a first-order approximation and allows to have a single-valued
notion of differential. We give below a simplified definition for functions of one variable.

Definition 3.2. A function f : R→ R is Bouligand differentiable (B-differentiable) at
x0 if there exists a positive homogeneous function ∇Bf(x0) : R→ R s.t.

f(x0 + v) = f(x0) +∇Bf(x0)(v) + o(v), ∀v ∈ R. (17)

For the study of the B-differentiability of the objective function L, we first give a
lemma on the differentiability of its integrand.

Lemma 3.3 (B-derivative of a min function). Let H(x) = min(h1(x), h2(x)), where
h1, h2 : R → R are differentiable functions. Then H is B-differentiable, with B-
derivative given by

i) if x is s.t. h1(x) < h2(x), then ∇BH(x)(v) = h′1(x)v, and conversely, if h1(x) >
h2(x), then ∇BH(x)(v) = h′2(x)v.

ii) if x is s.t. H(x) = h1(x) = h2(x), then ∇BH(x)(v) = min(h′1(x)v, h′2(x)v).

Proof. i) Assume w.l.o.g. that h1(x) < h2(x), so that H(x) = h1(x). Let us show
thatH(x) = h1(x) remains true on a neighborhood of x. Set d = h2(x)−h1(x) >
0. Let 0 < ε1 < d, 0 < ε2 < d− ε1. By continuity of h1 and h2 at x, there exists
δ > 0 s.t. ∀|v| < δ,

h1(x+ v) ≤ h1(x) + ε1 (18)
h2(x+ v) ≥ h2(x)− ε2 (19)

h1(x) + ε1 = h2(x) + ε1 − d, therefore (18) and (19) give

h1(x+ v) ≤ h2(x) + ε1 − d < h2(x)− ε2 ≤ h2(x+ v).

Hence, H(x + v) = h1(x + v) for all |v| < δ. Thus, the Bouligand derivative of
H at x reduces to the classical derivative h′1(x) of h1.

ii) One has

h1(x+ v) = h1(x) + h′1(x)v + o(v)

h2(x+ v) = h2(x) + h′2(x)v + o(v) (20)

Since H(x) = h1(x) = h2(x),

H(x+ v)−H(x) = min(h1(x+ v)− h1(x), h2(x+ v)− h2(x)).

We then use the inequality

|min(a, b)−min(c, d)| ≤ max(|a− c|, |b− d|),
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applied to a = h1(x+ v)−h1(x), b = h2(x+ v)−h2(x), c = h′1(x)v, d = h′2(x)v,
to deduce that

|H(x+v)−H(x)−min(h′1(x)v, h′2(x)v)| ≤ max(|o(v)|, |o(v)|) = |v|max(|o(1)|, |o(1)|),

viz. H is B-differentiable at x, with B-derivative

∇BH(x)(v) = min(h′1(x)v, h′2(x)v),

as the latter expression is positively homogeneous.

Corollary 3.4 (B-Differentiability of the objective function). L is B-differentiable on
x ≥ 0, with B-derivative given by

∇BL(0)(v) = −2E[X]v1v>0,

and, for x > 0,

∇BL(x)(v) = 2v E[(x−X)1X>x/2] + P (X = x/2) min(0, xv). (21)

Proof. Applying Lemma 3.3 to the integrand function H(x) = X2∧(X−x)2, i.e. with
h1(x) = X, h2(x) = (X−x)2, gives the B-derivative of the integrand function: almost
surely, for v ∈ R,

∇BH(x)(v) =



0 x < 0

min(0,−2Xv) x = 0

2(x−X)v 0 < x < 2X

min(0, 2Xv) x = 2X

0 x > 2X

In addition, the second order terms in the Taylor expansions (20) of h1 and h2 (which
are exact) do not depend on X, so that reasoning as in 3.3, it is easy to see that one
gets a remainder term in (17) for H which does not depend on X, with at most linear
growth:

H(x+ v) = H(x) +∇BH(x)(v) + vε(v),

a.s., with |ε(v)| ≤ |v|. Therefore, if one sets

∇BL(x)(v) := E[∇BH(x)(v)],

then, by linearity,

|L(x+ v)− L(x)−∇BL(x)(v)|
|v| ≤ |v| → 0,

as |v| → 0. By integration,

∇BL(0)(v) =

{
−2E[X]v v > 0

0 v ≤ 0

and for x > 0,

∇BL(x)(v) =

∫
(2(x− t)10<x<2t + min(0, 2tv)1x=2t)P

X(dt)

= E[2(x−X)1X>x/2]v + P (X = x/2) min(0, xv).

v → ∇BL(x)(v) is positively homogeneous, for x ≥ 0. Hence, L is B-differentiable.
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3.3.2 Main existence and characterization result

With these tools, we can now give the main existence and characterization result of
the optimal magnitude-propensity pair.

Theorem 3.5. i) If E[X2] < ∞ and the support of PX contains at least two
points, then there exists a magnitude-propensity pair (pX ,mX) minimizing (9).

ii) An optimal magnitude-propensity pair (pX ,mX) is characterized as a solution
of the equation

2a = E[X|X > a], a > 0, (22)

and then
mX = 2a, pX = P (X > m/2). (23)

In addition, PX({a}) = 0.

Proof. i) By the results of the Section 3.2, the objective function L of (16) is locally
Lipshitz hence continuous and its lower level sets are compact, see e.g. Lemma
8 in Pollard (1982). Hence, the general existence result follows from Weierstrass
theorem. See also Exercise 3 p. 139 in Pagès (2018).

ii) Since ∇BL(.)(.) gives a first order approximation of L, a necessary condition
for mX to be a minimizer is that ∇BL(mX)(v) ≥ 0, ∀v ∈ R. For mX = 0,
∇BL(0)(v) = −2E[X] < 0 for v > 0, therefore 0 cannot be a critical point. For
mX > 0 and v > 0, the first order condition writes

E[(mX −X)1X>mX/2] = 0. (24)

For mX > 0, v < 0, it reduces to

2E[(mX −X)1X>mX/2] +mXP (X = mX/2) = 0. (25)

Plugging (24) into (25) implies that P (X = mX/2) = 0 and yields (22), upon
reparametrizing by a = mX/2.

Remark 5.

i) We hopefully obtain the same formula between (22) of Theorem 3.5 and (11), (12) of
Proposition 3.1. The quantization approach allows to obtain a general existence result.

ii) PX does not charge the optimal threshold a = mX/2, even if PX is not absolutely
continuous. By (21), this imply that ∇BL(mX)(v) is linear in v, that is to say, L is
differentiable (in the classical sense) at the optimal mX , with

L′(mX) = 2E[(mX −X)1X>mX/2] = 2E[(mX −X)1X≥mX/2].

3.3.3 Uniqueness

The matter of uniqueness is notoriously a difficult topic in optimal quantization, see
Graf and Luschgy (2000), Pagès (2018). We provide below in Theorem 3.6 a set of
sufficiency conditions for the uniqueness of the magnitude-propensity pair. The main
condition is the log-concavity of x → x3f(x), which is fulfilled when the density f is
itself log-concave. It is a condition similar to the classical condition of Trushkin (1982)
and Kieffer (1983) for the uniqueness in (unconstrained) optimal quantization.
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Theorem 3.6. Let PX be an absolutely continuous distribution on R+, with density
f , 0 ∈ supp(PX) and E[X2] <∞. Assume

i) f̃ : x→ x3f(x) is strictly log-concave on R+;

ii) limx→0 xf(x) = 0.

Then, the optimal magnitude-propensity pair is unique.

Proof. Prior to the proof, let us make the following elementary remarks. Being log-
concave, the function f̃ : x→ x3f(x) has a limit in [0,∞) as x→ 0. Thus, we may set
f̃(0) = limx→0 x

3f(x) = 0, by assumption ii). Consequently, I := {x > 0 : f̃(x) > 0}
is an interval of R+ of the form (0, b] or (0, b), with b ∈ (0,∞], since 0 ∈ supp(PX),
and f(x) = f̃(x)/x3 is continuous on (0, b). Moreover, still by log-concavity, f̃ has a
left-handed limit f̃(b−) at b. Finally, f is continuous on (0, b), with left-handed limit
f(b−) ≥ 0.

The optimal magnitude mX is s.t. y∗ = mX/2 is a zero of the function

Φ(y) = 2yF (y)−K(y), (26)

where we have set F (y) =
∫ b
y
f(t)dt and K(y) =

∫ b
y
tf(t)dt. Moreover, since f̃ is

log-concave, ln f has right and left-handed derivatives on (0, b), and, by monotonicity,
these one-sided derivatives have limits as x ↓ 0 and x ↑ b. Therefore, Φ′ can be
continuously defined on y ∈ [0, b] ∩ R+, as

Φ′(y) = 2F (y)− yf(y). (27)

On (0, b), Φ′ has right and left-handed derivatives, so let us define Φ′′r as the right-
handed derivative

Φ′′r (y) := −3f(y)− yf ′r(y) = −yf(y)

(
3

y
+
f ′r
f

(y)

)
= −yf(y)ζ(y), (28)

where
ζ(y) := 3/y + f ′r(y)/f(y) (29)

with f ′r denoting the right-handed derivative of f . By assumption, x → x3f(x) is
strictly log-concave, therefore ζ is decreasing.

Let us show that there exists a unique y1 ∈ (0, b) s.t. Φ′(y1) = 0. For that purpose,
consider the following cases:

Case i) Assume that limy→b ζ(y) = ` ≥ 0. Then, by strict log-concavity, ζ(y) > ` ≥ 0
on I, i.e. Φ′′ < 0 and Φ′ decreasing on [0, b]. By assumption ii), Φ′(0) =
2F (0)− limy→0 yf(y) = 2 > 0.

Case ia) if b = ∞, then limy→∞ Φ′(y) = − limy→∞ yf(y) = 0 since E[X] < ∞.
Thus Φ′ > 0 and Φ is increasing on (0,∞). But since Φ(0) = −E[X] < 0
and limy→∞ Φ(y) = 0, Φ cannot have a zero in (0,∞), which contradicts
the general existence Theorem 3.5. Thus, necessarily, b <∞.

Case ib) if b < ∞, then limy→b Φ′(y) = −bf(b−) ≤ 0. If f(b−) = 0, then Φ′ > 0
on (0, b), so that Φ is increasing on [0, b) from −E[X] up to 0, which
contradicts the existence of y∗ = mX/2 ∈ [0, b/2) such that Φ(y∗) = 0.
Therefore, f(b−) > 0, limy→b Φ′(y) < 0 and there exists a unique y1 ∈
(0, b) s.t. Φ′(y1) = 0.
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Case ii) Assume that limy→b ζ(y) = ` < 0.

Case iia) If limy→0 ζ(y) = η ≤ 0. Then, since ζ is decreasing, ζ < 0 on (0, b), hence
Φ′′r > 0, so that Φ′ is increasing on (0, b). But this is clearly impossible,
since Φ′(0) = 2 and limy→b Φ′(y) = 0, resp. = −bf(b−) ≤ 0, for b = ∞,
resp. b <∞. Thus, necessarily limy→0 ζ(y) = η > 0.

Case iib) If limy→0 ζ(y) = η > 0. Then, since ζ is decreasing, there exists a unique
y0 ∈ I s.t. Φ′′r < 0 on (0, y0), and Φ′′r > 0 on (y0, b).
Assume that Φ′(y0) ≥ 0. Then, Φ′ > 0 on (0, b) \ {y0} and Φ is increasing
on [0, b]. By the general existence Theorem 3.5, there exists some y∗ =
mX/2 ∈ (0, b) s.t. Φ(y∗) = 0. Yet, limy→∞ Φ(y) = 0 since E[X] < ∞,
which is a contradiction. Therefore, Φ′(y0) < 0. With the fact that Φ′(0) =
2 > 0 and Φ′ is decreasing on (0, y0), this implies that there exists a unique
y1 ∈ (0, y0) s.t. Φ′(y1) = 0. On (y0, b), Φ′ cannot have any zeros, since Φ′

is increasing, Φ′(y0) < 0 and either Φ′(b−) = −bf(b−) < 0 if b < ∞, or
limy→∞ Φ′(y) = 0 if b =∞, since E[X] <∞.

So, in both cases, Φ is increasing on (0, y1) and decreasing on (y1, b). Moreover Φ(0) =
−E[X] < 0 and limy→b Φ(y) = 0, and the general existence Theorem 3.5 ensures that
Φ has at least a zero in (0, b/2). Hence, necessarily Φ(y1) ≥ 0 and Φ has at most one
zero, located in (0, y1).

In particular, if f is itself log-concave, then the conditions of Theorem 3.6 are
fulfilled, as shown in the next corollary.

Corollary 3.7. If f is a log-concave density on (0, b), then the assumptions i) ii) of
Theorem 3.6 hold.

Proof. i) x→ 3/x is decreasing and f ′r/f is non-increasing, therefore ζ is decreas-
ing, i.e. f̃ : x→ x3f(x) is strictly log-concave.

ii) Let y0 > 0 s.t. f(y0) > 0. For 0 < y < y0 < b, one has, by log-concavity, that

ln f
(y + y0

2

)
≥ 1

2
ln f(y) +

1

2
ln f(y0)

⇐⇒ ln f(y) ≤ 2 ln f
(y + y0

2

)
− ln f(y0)

⇐⇒ 0 ≤ f(y) ≤ f2
(y + y0

2

)
/f(y0)

⇐⇒ 0 ≤ yf(y) ≤ yf2
(y + y0

2

)
/f(y0),

which implies limy→0 yf(y) = 0 by continuity. (Note that the statement is trivial
if limy→0 f(y) <∞.)

Remark 6. Examples of distributions satisfying the hypotheses of Theorem 3.6, but
not those of Corollary 3.7 (in particular, whose density is not log-concave) are the
power distributions

f(x) = (a+ 1)xa1(0,1)(x), −1 < a < 0,

and the Gamma distributions

f(x) =
xa−1

Γ(a)
e−x1x>0, 0 < a < 1.
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Remark 7. If, in addition to being log-concave, the density is non-increasing, a sim-
pler proof of Theorem 3.6 can be given as follows: Let X̃ be the symmetrized version of
X, with density f̃(x) = 1

2
f(|x|). Let λ ∈ [0, 1], x, y ∈ R. Since ln f is non-increasing

and concave,

ln f(|λx+ (1− λ)y|) ≥ ln f(λ|x|+ (1− λ)|y|) ≥ λ ln f(|x|) + (1− λ)f(|y|),

viz. f̃ is log-concave. Therefore, by the existence and uniqueness results of Trushkin (1982),
Kieffer (1983), there exists a unique three-points stationary quantizer of X̃.

The optimal magnitude mX is obtained by deriving the optimal two-points quantizer
of X with a point constrained to be zero. mX must verify the stationary condition

E[(mX −X)1X≥mX/2] = 0. (30)

On the other hand, a three-points (unconstrained) quantizer (x1, x2, x3) for X̃ must sat-
isfy the stationary condition E[(x−X̃)1Ai(X̃] = 0. Let us show that that (−mX , 0,mX)
is a three-points stationary quantizer for X̃. Indeed, for x1 = −mX , the stationary
condition writes

∫
(−mX − t)1t≤mX/2f̃(t)dt = 0, which gives (30) by the change of

variable x = −t and the symmetry of f̃ . For x3 = mX , the stationary condition is also
(30) since mX > 0. For x2 = 0, it writes

∫mX/2
−mX/2

xf̃(x)dx = 0, which is automatically

satisfied since f̃ is even. Therefore, (−mX , 0,mX) is the unique three points stationary
quantizer for X̃. Thus mX is unique.

3.4 Discussion and properties
The optimal magnitude-propensity pair (mX , pX) obtained by (23) or (11), (12) has
several interesting characteristics. From (11), resp. (12), it is clear that the magni-
tude mX can be interpreted either as (twice) a Value-At-Risk V arα(X), resp. as an
Expected Shortfall ESα(X), for a special value of α:

mX = ESpX (X) = 2V aR1−pX (X). (31)

It is thus comforting that one obtains, for the magnitude effect, a quantity akin to the
classical and well-used univariate risk measures. In addition, such an interpretation
gives an answer to the problem mentioned in Remark 3 about the “right” choice of
α for parametrized risk measures like V aRα(X) or ESα(X): the corresponding α is
determined by pX , hence by the distribution PX . It is no longer a subjective choice
dependent on the user.

The magnitude-propensity paradigm mX , pX , by quantifying risk on a bivariate
scale, is fundamentally different from the traditional approach to measuring risk by a
univariate coherent risk measure ρ. Hence, it may not make sense to look for properties
similar to those of coherent risk measures. However, one has the following noteworthy
properties for the magnitude mX .

Proposition 3.8 (positive homogeneity/scaling of the magnitude). For a > 0, maX =
amX , and paX = pX

Proof. From the expression (14) of the distortion as a function of the centers,

W 2
2 (P aX , PY ) = E[min{aX2, (aX −m)2}] = a2 E[min{X2, (X −m/a)2}].

Therefore maX
a

= mX , and paX = pX .
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Recall the definition of the convex order: X ≤cx Y if Eφ(X) ≤ Eφ(Y ), for all
integrable, convex functions φ, see e.g. Rüschendorf (2013). One has:

Proposition 3.9 (Monotonicity of the magnitude). If X ≤cx Y , then mX ≤ mY .

Proof. By e.g. Proposition 1 in Puccetti (2013), X ≤cx Y if and only if E[X|X >
a] ≤ E[Y |Y > a], for all a ≥ 0. Hence, the curve a 7→ E[X|X > a] is below the curve
a 7→ E[Y |Y > a]. Thus, the optimal threshold aX for X, satisfying (22), is lower than
the corresponding optimal threshold aY for Y . Therefore, mX ≤ mY .

Eventually, the magnitude effect will be larger than the average ofX, which seems a
desirable property from the point of view of the classical premium calculation principles
Bühlmann (1996):

Proposition 3.10. If PX is absolutely continuous, then mX ≥ EX.

Proof. Let F (x) = P (X ≥ x), K(x) = E[X1X≥x] =
∫
(x,∞)

tf(t)dt and β(x) =

K(x)/F (x). Then,

β′(x) =
−xf(x)F (x) + f(x)K(x)

F
2
(x)

=
f(x)

F (x)

(
K(x)

F (x)
− x
)
≥ 0

as K(x) ≥ xF (x). Therefore, β is non-decreasing, hence β(x) ≥ β(0) = E[X]. There-
fore, the solution mX of the equation x = β(x/2) satisfy mX ≥ E[X].

4 Magnitude-propensity risk comparison: numer-
ical illustrations and empirical aspects

4.1 Risk comparison with magnitude-propensity plots
A fundamental objective of risk analysis is the comparison of risks. The proposed
approach allows to compare risks on both the magnitude and propensity scales, by
displaying a point of coordinates (mX , pX) on the magnitude and propensity axes.
Figure 5 illustrates the resulting magnitude-propensity plot, for the uniform, expo-
nential and Pareto distributions of Examples 3-5. Both the uniform and exponential
distribution have constant propensity along the parameter, and a magnitude linearly
increasing with the mean of the distribution. The blue dots show the (mX , pX) points
for a distribution with mean E[X] = 1, 2, 5, and 10: the uniform distribution has a
higher propensity, with a lesser magnitude effect. For the Pareto distribution, the red
circles show the (mX , pX) points with parameter value θ = 2.1, 2.5, 5, 10: the tail
effect is reflected in the behavior of the magnitude-propensity pair. For a heavy-tailed
distribution (θ close to 2), one has a large magnitude with a very small propensity,
while for a short-tailed distribution (θ large), the magnitude effect remain limited but
with a larger propensity. This behaviour is in accordance with what could be expected
from intuition.

4.2 Distributions with no closed form expressions for (mX , pX)

For some more complicated distributions, one may not have a closed form expression
of the (mX , pX) as in Examples 3-5. However, one can use the computation capa-
bilities of, e.g., Mathematica Wolfram Research, Inc. (2020) to obtain a closed-form
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Figure 5: Magnitude-propensity plots for the uniform U[0,a] distribution (solid
line), Exponential Exp(λ) (dotted) and Pareto Pa(θ) (dashed), for varying val-
ues of the parameter a, λ, θ.

expression of the E[X|X > a] and then find numerically the root of (22). We illustrate
the procedure for the Gamma and Weibull distributions, two distributions frequently
encountered in insurance mathematics.

Example 6 (Gamma distribution). For X ∼ Γ(α, β), its density writes f(x) =
xα−1e−(x/β). One has

E[X|X > a] = β
Γ(1 + α, a/β)

Γ(α, a/β)

where Γ is the incomplete Gamma function. We take a family of Γ(α, 2) distribution,
with shape parameter α varying from 0.1 to 2.9 by stepsize of 0.2. We solve (22) nu-
merically with initial point E[X]. The resulting magnitude-propensity plot is displayed
in Figure 6.
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Figure 6: Magnitude-propensity plot for Gamma distribution X ∼ Γ(α, 2), for
α varying from 0.1 to 2.9. The corresponding mean E[X] is indicated near the
circled (mX , pX) points.

The coordinates of the circled points indicate the magnitude-propensity (mX , pX)
values and are labeled with the expectation E[X]. Here, it is interesting that both mX

and pX are increasing with the mean parameter, contrary to the Pareto case of Figure
5. This corresponds to intuition: let us recall that as the shape parameter α increase,
the density f(x) is shifted to the right and shrinks toward zero for small x values, see
Figure 7. Hence, both the magnitude and propensity coding the risk borne by X will
increase.
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Figure 7: Probability density functions f for Gamma distributions Γ(α, 2), with
α = 0.1 (blue), 1 (orange), 3 (green), 7 (red).
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Example 7 (Weibull distribution). For X ∼ W (α, β), its density writes f(x) =
xα−1e−(x/β)α . One has

E[X|X > a] = βea
αβ−α

Γ(1 + 1/α, aαβ−α)

where Γ is the incomplete Gamma function. The effect of shifting the parameters is
illustrated in Figure 8 below.
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Figure 8: Magnitude-propensity plot for a Weibull W (α, β) distribution for
β = 2 (blue), β = 1.5 (red), β = 3 (green). The magnitude-propensity (mX , pX)
points are labeled by the values of α = 0.5, 1, 2, 4.

4.3 Empirical computations and illustrations
The characterization (22) shows that the optimal threshold is a fixed point of the
function

a 7→ E[X|X ≥ a]

2
. (32)

For empirical data, i.e. when the distribution of X is unknown but one has a sample
of realizations of X, one can replace the unknown expectation in (32) by a sample
estimator. For the empirical measure, one obtains an estimate of (mX , pX) as a fixed
point of

a 7→
∑n
i=1Xi1Xi>a

2
∑n
i=1 1Xi>a

.

A Mathematica code is given in Appendix 5.2. The latter would correspond to Lloyd’s
algorithm in the unconstrained quantization problem. See Pagès (2018) for discussion
of numerical optimal quantization. Alternatively, one could seek directly for a (global)
minimizer of the objective function L of (16), using a generic minimizer program (e.g.
the command “NMinimize” in Wolfram Research, Inc. (2020)).

These approaches are illustrated on a synthetic and a real dataset. For the syn-
thetic data set, we simulated a sample of 100 i.i.d. Uniform on [0, 1] random variables.
From Example 3, we known that we should obtain (mX , pX) = (2/3, 2/3). LLoyd’s
algorithm on the sample gives

(mX , pX) ≈ (0.67, 0.65).
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NMinimize, which finds for a global minimum, also finds the same mX ≈ 0.67.
For the real data set, we take the US Hurricane Losses data, which is an example

data set in Wolfram Research, Inc. (2020). It reports the thirty most destructive
hurricanes in the U.S., from 1949 to 1999, see Figure 4.3.

1950 1960 1970 1980 1990 2000
0

5.0×109

1.0×1010

1.5×1010

Figure 9: US Hurricane Losses data (Reported losses) in the U.S. 1949−−1999.
Available at https://datarepository.wolframcloud.com/resources/US-Hurricane-
Loss.

We standardized the original data by dividing each entry by 106. There is one
clear outlier at 15500 (the famed “Andrew” hurricane). It is noteworthy that Lloyd’s
algorithm on the full dataset give

(mX , pX) ≈ (15500, 0.0333),

i.e. the outlier value as magnitude, with propensity one over the number of sample
points (1/30): the outlier has a dwarfing effect on the whole data set and this is
reflected on the magnitude-propensity measure. If the outlier value is removed, one
gets

(mX , pX) ≈ (2401.67, 0.206897),

which better reflects the magnitude and propensity effects of the data set.

5 Conclusion

5.1 Summary
In this paper, we introduce the magnitude-propensity risk measures (mX , pX), as a way
to simultaneously quantify both the severity and the propensity of a riskX. Introduced
as a particular mass transportation problem in the Wasserstein metric W2 of the law
of X to a two-points {0,mX} discrete distribution with mass pX at mX , it generalizes
M−functionals, in particular the traditional risk measures like Var and Expected
Shortfall. The key observation is to view the proposed approach as a constrained
optimal quantization problem, with a fixed null center. This allows to parametrize
the problem with a single parameter, the optimal threshold determining the Voronoi
regions, and to derive it as a solution of a fixed point equation. General existence and
characterization results are obtained using B-derivatives, and sufficiency conditions
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for uniqueness are given. The obtained magnitude mX has interesting interpretations
in terms of classical risk measures, as (twice) a Var or as an Expected Shortfall. In
addition, it has noteworthy properties, like positive homogeneity, monotonicity w.r.t.
convex order and being larger than the mean.

Visualization and comparison of risks can be done on magnitude-propensity plots,
which allow for an informative comparison of risks. The effect of tails, shift in the
density and outliers is reflected in the (mX , pX) pair. Empirically, the pair can be
estimated e.g. by using a variant of Lloyd’s algorithm for optimal quantization, or
by direct global minimisation. This novel paradigm of visualizing and comparing
risk on the bivariate magnitude-propensity scale offers a broader perspective on risk
assessment and evaluation.

5.2 Perspective: towards general risk quantization
To make the presentation clear, we focus in this paper on the simplest way to quantify
risk on the magnitude and propensity scale, i.e. on the basic idea (9) with a constrained
two-points quantizer {0,mX}. This view of measuring risk via a constrained optimal
quantization problem naturally suggests to consider several variants and extensions.
To stimulate further research on the topic, we conclude the paper with a brief sketch
below of these possible variants and extensions.

In all these variants, the rationale is to have a discrete proxy which summarizes the
distribution of X and has an intuitive interpretation. The question of which variant
is more sensible from a risk perspective is somehow partially a subjective issue, and is
thus left to the appreciation of the reader for the application at hand. What matters is
that risk comparisons between several risks be performed within the same framework.

(a) Variant: Mean standardization / Moderate-Large risks.
In view of the fact that

W 2
2 (PX , PY ) = W 2

2 (PX−E[X], PY−E[Y ]) + (E[X]− E[Y ])2,

it would make sense to have a discrete proxy Y which has the same mean as X.
One could also standardize differently by the mean, by simply subtracting
it. More precisely, one could quantize X − E[X] to a two-point distributions,
PY (.) = pδm1(.) + (1 − p)δm2(.), with m1 < m2. This allows to summarize
the distribution of X into a mean effect E[X], which itself decomposes into a
“moderate risk” of magnitude m1 +E[X] and propensity p1, and a “large” risk of
magnitude m2 + E[X] and propensity p2. This gives a quintuplet of descriptive
statistics, which summarizes the characteristics of the distribution and can be
thought as an alternative to Tukey’s box plot.

(b) Variant: three-points quantification.
Also, one can refine our proxy by looking for a quantization to a discrete
distribution with more than two points. For example, another way to re-
fine one’s measure of risk into a “moderate” risk and a “large” risk (or, say,
“Low” risk and “Tail” risk), is to use directly a three points discrete measure,
PY = (1−p1−p2)δ0 +p1δm1 +p2δm2 , with m1 < m2. With a such three points
discrete measure, one can encode and quantify both moderate, resp. large risk,
in the magnitude and propensity scale with (m1, p1), resp. (m2, p2).
Such a simultaneous quantization of the “mild” and “extreme” risk parts of an
insurance risk X could reveal to be very valuable in the field of Reinsurance, see
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e.g. Hansjörg Albrecher, Beirlant, and Teugels (2017). The insurer and reinsurer
have to agree on an optimal risk sharing policy, with the insurer usually ceding
to the reinsurer the “extreme” part of the risk (the one with high magnitude and
low propensity), while keeping and managing the “mild” part. The proposed risk
quantization approach by magnitude and propensity seems to be particularly
well-suited for this task.

(c) Extension to financial risk.
For X real-valued (i.e. we take the financial mathematics convention, with
X ≥ 0 standing for a gain and X < 0 for a loss), one can consider for example
a three-points risk quantization with the following distribution,

PY (.) = p−δm−(.) + (1− p+ − p−)δE[X](.) + p+δm+(.),

with m− ≤ E[X] ≤ m+ or with

PY (.) = p−δm−(.) + (1− p+ − p−)δ0(.) + p+δm+(.),

with the constraint E[X] = E[Y ], m− ≤ 0 ≤ m+. This allows to summarize the
gain/loss of the distribution on both the magnitude and propensity scales.

(d) Multivariate risk.
Multivariate generalisations to risk vectorsX ∈ Rd are similar in spirit, although
the computations are less explicit. One can somehow reduce to the scalar case by
considering the risk quantization of a portfolio vector βTX, for β in unit simplex,
see e.g. R Tyrrell Rockafellar and Uryasev (2002), Uryasev and R. Tyrrell
Rockafellar (2001).

(e) Covariates.
Another extension is to take into account the effect of covariates X on a loss
variable Y , by quantizing the risk of the conditional distribution Y |X, (or a
linear approximation thereof, as in quantile regression). Note that a related, but
distinct, approach occurs in Frequency-Severity models (see e.g. Frees (2010)
Chapter 16): there, the loss distribution has a large proportion of zeros, and the
modeling is done in two parts, one for the frequency of zeros, and the other for
the severity. Among other, models include the Tobit model Tobin (1958), with
a censored latent variable and the individual risk model, see Frees (2010).

Acknowledgments
Olivier P. Faugeras acknowledges funding from ANR under grant ANR-17-EURE-0010
(Investissements d’Avenir program).
Declaration of interest: none.

Appendix: Mathematica code
Empirical computation of (mX , pX) by Lloyd’s Method:

(*Input: data= dataset;
x0=starting value of the threshold search (take the mean
of the data set for example)
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Ouput: {m_X,p_X}
*)

mplloyd[data_, x0_] :=
Module[{a},

iteratefunction[a_] := Mean[Select[data, # > a &]]/2;
a = FixedPoint[iteratefunction[#] &, x0];
{2 a, NProbability[x > a, x \[Distributed]
EmpiricalDistribution[data]]}

]
(* one could also have computed p_x by
1-CDF[EmpiricalDistribution[data],a] *)
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