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Heart failure (HF) with preserved ejection fraction (HFpEF) is a multifactorial disease accounting for a large and increasing proportion of
all clinical HF presentations. As a clinical syndrome, HFpEF is characterized by typical signs and symptoms of HF, a distinct cardiac pheno-
type and raised natriuretic peptides. Non-cardiac comorbidities frequently co-exist and contribute to the pathophysiology of HFpEF.
To date, no therapy has proven to improve outcomes in HFpEF, with drug development hampered, at least partly, by lack of consensus
on appropriate standards for pre-clinical HFpEF models. Recently, two clinical algorithms (HFA-PEFF and H2FPEF scores) have been devel-
oped to improve and standardize the diagnosis of HFpEF. In this review, we evaluate the translational utility of HFpEF mouse models in
the context of these HFpEF scores. We systematically recorded evidence of symptoms and signs of HF or clinical HFpEF features and
included several cardiac and extra-cardiac parameters as well as age and sex for each HFpEF mouse model. We found that most of the
pre-clinical HFpEF models do not meet the HFpEF clinical criteria, although some multifactorial models resemble human HFpEF to a
reasonable extent. We therefore conclude that to optimize the translational value of mouse models to human HFpEF, a novel approach
for the development of pre-clinical HFpEF models is needed, taking into account the complex HFpEF pathophysiology in humans.
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HFpEF: a heterogeneous disease
with multiple disease mechanisms

Heart failure (HF) with preserved ejection fraction (HFpEF) is a com-
plex clinical syndrome that is characterized by both extra-cardiac and
cardiac features.1–3 Prevalence is still rising4–8 and survival of patients
with HFpEF is poor, with a 5-year survival rate after first hospitaliza-
tion of 35–40%.9,10 So far no treatment has been proven successful in
reducing morbidity and mortality rates in HFpEF, potentially due to
the large pathophysiological heterogeneity and diversity in HFpEF
phenotypes.11 Recent studies have identified HFpEF as a systemic
disease that is associated with, or may be triggered by a wide range of
clinical risk factors and comorbidities such as aging, female sex,
hypertension,12,13 pulmonary congestion, metabolic syndrome, obes-
ity,7,12,14–16 type 2 diabetes mellitus (T2DM), hyperlipidaemia, renal
disease, atrial fibrillation (AF), and skeletal muscle weakness.11 These
risk factors and comorbidities give rise to intertwining disease

mechanisms in the pathophysiology of HFpEF.17,18 Due to the wide
range of comorbidities and clinical presentations, potential underlying
aetiology of HFpEF is diverse; HFpEF can result from various struc-
tural abnormalities of the myocardium, or may result from abnormal
loading conditions, e.g. as seen in hypertension, valvular diseases, vol-
ume overload, or rhythm disorders.19

Although HFpEF patients thus represent a heterogeneous
group with a broad extent of extra-cardiac features, the cardiac
phenotype has less interpatient variability and includes (concen-
tric) left ventricular (LV) hypertrophy,20 LV diastolic dysfunc-
tion,21 cardiac stiffening, atrial dilatation, fibrosis,22 (systemic)
inflammation, microvascular endothelial dysfunction,23,24 and ele-
vated natriuretic peptides.19,25,26

The definition of HFpEF as a clinical syndrome, based on typical
symptoms and signs, presents challenges due to non-specificity of
cardinal symptoms such as breathlessness and effort intolerance.
Recently, two diagnostic HFpEF algorithms, the HFA-PEFF20 and

Graphical Abstract

An in-depth review of existing pre-clinical HFpEF mouse models with validation of their translational value using the HFA-PEFF and H2FPEF scores.
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..H2FPEF27 scores, were developed to standardize and improve the
accuracy of HFpEF diagnosis. Both of these scores (Figure 1) use a
stepwise diagnostic approach to score and evaluate probability
of HFpEF presence. The H2FPEF score uses functional echocar-
diographic data and places emphasis on the presence of comor-
bidities (e.g. hypertension, obesity) and the effect of age, while
not including natriuretic peptide levels. The HFA-PEFF algorithm
also assesses pretest probability based on clinical features (includ-
ing age and comorbidities) and similarly includes a score but
based on both functional and structural echocardiographic data,
including morphological aspects of the left atrium and LV, as well
as levels of natriuretic peptides, such as N-terminal pro brain
natriuretic peptide (NT-proBNP).

Both HFpEF scores have recently been validated in various
patient cohorts29–33 and communities studies34 and it was concluded
that both HFpEF scores categorized patients well, especially in
those patients with intermediate and high scores. These scores, how-
ever, are not without controversy, with criticisms ranging from
over-simplification of the diagnostic challenges to over-complicating
the diagnostic process by requiring expensive tests or the scores

largely disagree.35,36 In addition, misclassification has been reported,
especially in those patients with low HFpEF scores, potentially due to
the fact that both scores use resting parameters in a phenotype in
which physiological abnormalities augment during exercise.33,37

Nevertheless, both scores have been shown to have prognostic
utility in human patients,38,39 suggesting that they capture key patho-
physiologic components that determine outcomes in HFpEF.

Of note, the combined considerations of the phenotypic complex-
ity of HFpEF, the interplay of cardiac and non-cardiac comorbidities,
and the role that these comorbidities play in the pathophysiology of
HFpEF have not been adequately taken into account in the evaluation
of pre-clinical models of HFpEF. While the HFA-PEFF and H2FPEF
algorithms have been developed to standardize and improve
HFpEF diagnosis in patients, these scores may represent a novel
approach to improve putative applicability of HFpEF mouse mod-
els. Therefore, this review aims to evaluate the translational
aspects of currently available pre-clinical mouse models of HFpEF
in the context of the HFA-PEFF and H2FPEF scores and proposes
a novel approach to the assessment and development of future
pre-clinical HFpEF models.

Figure 1 Diagnostic HFpEF scoring algorithms used to score HFpEF animal models. Both algorithms first include a pretest assessment to evaluate
signs and symptoms and clinical features of HFpEF that include congestion, increased comorbidity burden and reduced exercise tolerance. The se-
cond step of the HFA-PEFF19 score assesses three domains that include functional aspects [echocardiographic diastolic function (E/e0 and GLS)], mor-
phological aspects (left atrial enlargement, LV mass and wall thickness and concentric hypertrophy) as well as levels of circulating natriuretic
peptides.2,28 The H2FPEF27 score combines clinical and echocardiographic patient characteristics: obesity, hypertension, AF, pulmonary hypertension,
age >60 years and diastolic function (E/e0). A higher score represents a higher likelihood of having HFpEF (HFA-PEFF >_5 points; H2FPEF >6 points),
while a lower score is used to rule out HFpEF. For patients with an intermediate score, both algorithms recommend additional testing to refine the
diagnosis by exercise echocardiography or invasive measurements of cardiac filling pressures in a non-resting state.19,27 AF, atrial fibrillation; GLS, glo-
bal longitudinal strain; HF, heart failure; LV, left ventricle; PASP, pulmonary artery systolic pressure.

HFpEF in humans and mice 3
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HFpEF in mice: where do we
stand?

Over the last decades, development of HFpEF specific treatments
has been disappointing. Standard, successful, HF with reduced ejec-
tion fraction (HFrEF) treatment options, such as angiotensin-
converting enzyme inhibitors (ACEi), angiotensin receptor 1 blockers
and mineralocorticoid receptor antagonists (MRA) did not convin-
cingly reduce mortality and morbidity rates in HFpEF patients.40–42

Trials with other types of drugs, such as nitric oxide donors and cyclic
guanosine monophosphate (cGMP) stimulating therapies failed to im-
prove clinical status,43–47 or were neutral for the primary endpoint
(angiotensin receptor–neprilysin inhibitor, PARAGON-HF trial48,49).
To date, no HFpEF specific treatment options exist and there is an
unmet need to improve morbidity and mortality rate in these
patients.

Drug development typically progresses in stages, from pre-clinical
to clinical. Valuable HFpEF animal models presenting clinical HFpEF
phenotypes are crucial for the successful design of new therapies.
This has been neglected so far, which has led to the failure of many
clinical studies. Sildenafil, for example, successfully reduced LV hyper-
trophy and cardiac remodelling in mice that suffered from angiotensin
II (ANGII)-induced or transverse aortic constriction (TAC) induced
HF.50,51 Clinical studies of sildenafil in HFpEF patients, however, did
not observe these beneficial effects on clinical or hemodynamic
parameters.45 Studies with ACEi in myocardial infarction models
(MI),52,53 successfully reduced hypertrophy and fibrosis with a con-
comitant improvement of cardiac function. However, studies in
patients with HFpEF have yielded inconsistent results.40 This was also
the case for the MRA spironolactone: in pre-clinical studies in diet
induced51,54 and myocardial infarction (MI)55,56 models this drug
improved systolic and diastolic cardiac function. A subsequent large
randomized controlled trial on the other hand, remained neutral and
did not meet its endpoint.41 The unsuccessful bench-to-bedside
translation may, at least partly, be explained by the fact that pre-
clinical animals models not fully recapitulate the clinical HFpEF
phenotype and TAC or MI models cannot be considered as HFpEF
model.

In this review we discuss and score several pre-clinical HFpEF
models using the HFA-PEFF and H2FPEF scores. We found that sev-
eral major discrepancies exist between pre-clinical HF models and
clinical HFpEF. Pre-clinical HFpEF models do not always recognize
the importance of signs and symptoms of HFpEF, or clinical HFpEF
characteristics (graphical abstract). Several so-called HFpEF models
would have obtained high scores according to the HFA-PEFF and
H2FPEF risk scores (Figure 2) due to functional or morphological fea-
tures, while signs of lung congestion or exercise impairment were ab-
sent and levels of natriuretic peptides low (Table 1). Thus, a model
without pulmonary congestion may relate to hypertensive heart dis-
ease in humans rather than clinical HFpEF (for example db/db or ob/
ob models). The currently developed HFA-PEFF and H2FPEF scores
both emphasize typical symptoms and signs of HF, or clinical HFpEF
characteristics as key for the diagnosis of HFpEF. Although the assess-
ment of signs and symptoms or diagnostic HF criteria may be more
challenging in animals than in humans, it is not impossible. Pulmonary
congestion can be demonstrated by increased lung weight, and

reduced exercise tolerance can be measured via voluntary or forced
exercise testing. Reduced exercise tolerance is one of the hallmarks
in human HFpEF and should ideally be part of phenotyping HFpEF
animal models.

Importantly, the demonstration of LV diastolic dysfunction has
been the cornerstone of validation of a HFpEF animal model; how-
ever, the presence of diastolic dysfunction alone is neither synonym-
ous nor sufficient for a diagnosis of HFpEF. Indeed, diastolic
dysfunction, as occurs with aging, can exist without the presence of
symptomatic HF. Nonetheless, aging is a potent risk factor for
HFpEF.7,57,58 Aging itself is associated with ventricular-vascular stiff-
ening and fibrosis, key mechanisms in the pathogenesis of HFpEF.59,60

The aging process also exacerbates chronic systemic inflammation,
dysregulation of energy supply61–63 and increased cardiomyocyte
stiffness and increased hypertrophy that may all result in HFpEF spe-
cific diastolic dysfunction and cardiac remodelling.64,65 We realize
that aging itself can have major practical limitations (>20 months to
produce the phenotype); however, because it is such an important
factor, we encourage researchers to include it.

Another major difference between animal and human HFpEF can
be found in disease complexity and disease heterogeneity. In humans,
HFpEF is considered a multifactorial and heterogeneous disease with
a plethora of clinical manifestations.11 For many years, pre-clinical
HFpEF models have relied upon a single perturbation. The develop-
ment of several recent multifactorial models has shown that it is feas-
ible to develop a HFpEF-like phenotype in mice by using multiple
perturbations, and these models may represent a new era of multifac-
torial pre-clinical HFpEF models.

HFpEF in mice: fundamental
checklist

We do not believe that ‘one-size-fits-all’ pre-clinical HFpEF model
exists. Several animal models of HFpEF have been developed that
only focused on a limited aspect of this multifactorial syndrome. This
strategy has been proven unsuccessful and the recent development
of combinatory models is very promising.66–68 Although recent multi-
factorial HFpEF models have been proven valuable, and may improve
bench-to-bed translation, these models also focus on specific HFpEF
phenotypes and do not recapitulate the entire heterogeneity of the
clinical HFpEF syndrome. In addition, technical challenges remain in
developing mouse models. AF, for example, has not been included in
any of the pre-clinical HFpEF models so far.

We therefore suggest that all pre-clinical HFpEF studies should in-
clude a mouse model that fulfils (a majority of) the following require-
ments in order to perform a reliable and accurate pre-clinical HFpEF
study. This has been schematically presented in Figure 3.

Pretest assessment of signs and
symptoms and clinical HFpEF features
First of all, ejection fraction should be preserved. Assessment of
symptoms such as shortness of breath, fatigue, oedema, tachycardia,
and exercise impairment in animals may be less straightforward than
in humans, but various parameters are available to provide a global

4 C. Withaar et al.
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.impression if signs and symptoms and clinical HFpEF features are
present:

• Increased natriuretic peptide levels. Natriuretic peptide levels should
be measured in plasma or LV tissue. Elevated natriuretic peptide
levels play an important part in the HFA-PEFF score and also pro-
vide a global impression if HFpEF is likely to be present in animals.

• Impaired exercise performance. Impaired exercise capacity caused by
skeletal muscle weakness, fatigue, or cardiovascular to muscle
mismatch should be measured by voluntary or forced exercise.
This is a typical feature of HFpEF, and analysis of exercise capacity,
including assessment of skeletal muscle function, will provide es-
sential information regarding HFpEF severity.69–71

• Lung congestion. Analysis of lung weight and pulmonary vasculature
will be helpful to determine increased diastolic filling pressures and
presence of diastolic dysfunction.

In case surrogate measurements of signs and symptoms and clinical
HFpEF features (increased natriuretic peptides, preserved ejection
fraction and increased comorbidity burden) are not present, the pre-
clinical model does not meet the HFpEF criteria as suggested by the

two scores and should therefore not be regarded as a pre-clinical
HFpEF model.

A distinct cardiac phenotype with
preserved systolic lv function with
concentric hypertrophy and diastolic
dysfunction

• Assessment of systolic cardiac function. Systolic cardiac function
should be assessed by transthoracic echocardiography and should
include measurement of LV dimensions to assess concentric
hypertrophy and LV systolic function. Post-mortem analysis
(weighing and staining) of the total heart and LV should take place
to assess amount of cardiac hypertrophy and fibrosis.

• Assessment of diastolic function. Diastolic function should be deter-
mined by morphological criteria (atrial enlargement) or functional
parameters. In mice, evaluation of diastolic function is complex
and the E/A and E/e0 ratio is difficult to assess and highly variable.72

Global longitudinal strain (GLS) and reverse peak longitudinal
strain rate (RPLSR) are easily obtained, highly reproducible, and
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Figure 2 HFA-PEFF and H2FPEF scores obtained by HF models. All HF models have been scored for cardiac and extra-cardiac domains of HFA-
PEFF and H2FPEF scores. Based upon these scores, mouse HF models are differentiated into more or less likely to fulfil the criteria of the HFA-PEFF
or H2FPEF score. If we solely record the scores, several of so-called HFpEF models would have obtained high scores due to functional or morpho-
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.have therefore to be integrated as indices of diastolic dysfunction
in mice.73,74 Post-mortem analysis (weighing) of atria should take
place to evaluate atrial enlargement.

• Assessment of cardiac hemodynamics. Although considered as gold
standard for diagnosis of HFpEF, invasive hemodynamic measure-
ments are performed to a limited scale in humans due to a lack of
expertise, availability, risks, and costs. A distinct advantage in ani-
mal models is that this gold standard assessment can be done
more easily and more frequently but requires experience to be re-
liable. Invasive hemodynamic measurements provide information
on intracardiac volumes, filling pressures, contractile and relaxation
forces and derivate measures such as tau, dP/dT of the LV.
Although measurements of systolic pulmonary artery pressure and
pulmonary capillary wedge pressure yield additional information
about diastolic function and pulmonary hypertension, measuring
right-sided invasive hemodynamics presents more of a challenge in
pre-clinical models and may not be required if gold standard left-
sided invasive hemodynamics are already evaluated.

Extra-cardiac comorbidities such as
hypertension, obesity, type 2 diabetes
mellitus, and renal dysfunction
Assessment of extra-cardiac features of HFpEF should take place in
all pre-clinical HFpEF models. This assessment should include

evaluation of several comorbidities that are closely related to the de-
velopment of HFpEF.

• Hypertension. Assessment of hypertension can be performed in
several ways, including invasive hemodynamic measurements at
sacrifice or by using tail-cuff measurements or continuous registra-
tions throughout the study period.

• Renal function. Plasma should be obtained to determine kidney
function. Post-mortem analysis of kidneys should take place
(weighing þ staining).

• Obesity. Mice should be repeatedly weighed during the experiment.
Body mass composition should be determined throughout the ex-
periment and prior to sacrifice.

• T2DM. Fasting plasma glucose levels or glycated hemoglobin
should be obtained throughout the experiment. Glucose tolerance
can be evaluated by oral glucose tolerance test and insulin sensitiv-
ity can be tested by insulin tolerance test.

• Skeletal muscle weakness. Post-mortem analysis of skeletal muscle
should take place to evaluate reduced mass, and address impaired
skeletal oxidative metabolism and abnormal skeletal muscle
composition.

AF is a well-known comorbidity for HFpEF and represents an im-
portant part of the H2FPEF score (three points if AF is present).
Unfortunately, induction of AF in mice is challenging and so far none

Diabetes

Skeletal muscle weakness

Renal dysfunction

Pulmonary hypertension

Pulmonary congestion

Hypertension

HFpEF in mice: a novel approach to develop a multifactorial pre-clinical HFpEF mouse model 

Increased fibrosis

Concentric LV hypertrophy

Elevated natriuretic peptides

Diastolic dysfunction

Preserved Ejection Fraction

SexAging

Obesity

Left atrial enlargement

Figure 3 HFpEF in mice: a novel approach to develop a multifactorial pre-clinical HFpEF mouse model. The following clinical HFpEF features are
essential to develop a reliable and accurate pre-clinical HFpEF model: (1) pulmonary congestion and elevated natriuretic peptides; (2) a distinct car-
diac phenotype with preserved systolic LV function with concentric hypertrophy, fibrosis, atrial enlargement and diastolic dysfunction; (3) extra-car-
diac comorbidities such as hypertension, obesity, T2DM and renal dysfunction and skeletal muscle weakness; and (4) incorporate and evaluate the
effect of sex and aging. LV, left ventricle. Parts of the figure were drawn by using pictures from Smart Servier Medical Art (http://smart.servier.com),
licensed under a Creative Commons Attribution 3.0 Generic License (https://creativecommons.org/licenses/by/3.0/).
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of the experimental AF models resemble typical clinical HFpEF char-
acteristics.75–77 We therefore excluded AF from this section.

Effect of sex and aging
Epidemiological evidence suggests that HFpEF is highly represented
in older women.78 The effect of aging and sex should therefore be
taken into account when developing a pre-clinical model.

• Aging. The life span of a rodent is shorter than humans, and mice
are already considered ‘old’ after 18 months and ‘very old’ when
>24 months.79 Aging may represent an important contributing fac-
tor to the development of HFpEF and should therefore be consid-
ered when studying HFpEF.57,80

• Female sex. Sex-specific differences are known to exist in humans
and mice 4,12,81–86 and for various interventions, young female
mice have been shown to be less susceptible to develop a cardiac
phenotype as compared to young males.87,88 Hormonal differen-
ces or hormonal changes (such as menopause) are thought to
play an important role in the increased cardiovascular risk profile
of older females.21,89 Interestingly, the development of LV hyper-
trophy may also occur in a sex-specific manner: females more
often display concentric remodeling89 while males develop eccen-
tric LV remodeling.90 Since the meaning of these differences are
not fully understood yet we strongly advise to develop pre-clinical
HFpEF models that take into account the effect sex may have. At
the very least, investigators may consider including females rather
than performing exclusively male experiments as is often the case.

Validation and translation of the
H2FPEF and HFA-PEFF scores in
animal models

For most experimental HFpEF models, mice are preferred small ani-
mals since they are easy to handle, quick to breed, allow genetic
experiments, and are known to produce reliable and highly reprodu-
cible outcomes. Larger animal models of HFpEF, such as rat,91–108

dogs109,110 and pigs,111–117 also exist (summarized in Supplementary
material online, Table S1); nevertheless, ethical issues, difficulty in
introducing high throughput genetic and molecular studies, cost, and
duration of study limit large animal models. We included mice models
that were widely used in HF research, and are presented as ‘HFpEF’
models, or were used to evaluate several HFpEF treatment options
in the pre-clinical phase, often without translational success.

All models were scored for pre-clinical sign and symptoms or clin-
ical HFpEF features (including age and sex), as well as cardiac and
extra-cardiac domains of HFA-PEFF and H2FPEF scores (Table 1).
Based upon these scores, mouse HF models have been differentiated
into more or less likely to fulfil the criteria of the HFA-PEFF or
H2FPEF score, schematically presented in Figure 2. In the Graphical
abstract, we presented the models in less or high likelihood for
HFpEF, including whether models with higher scores also present
pre-clinical signs and symptoms or clinical HFpEF characteristics.

Angiotensin-II infusion models
Chronic stimulation of the ANGII type 1 receptor with ANGII
infusion by osmotic mini-pumps is a well-known and reliable model

to induce HF with cardiac hypertrophy and increased remodelling.
Remodeling takes place with118–122 or without123 hypertension,
depending on the dosage of ANGII. The ANGII effects seems to be
strain specific: treatment with ANGII in Balb/c124 mice typically
results in lung congestion and LV dilatation, whereas treatment with
ANGII in C57BL6 mice results in lung congestion, as well as exercise
intolerance, concentric remodelling with fibrosis, and increased levels
of natriuretic peptides.120,122 ANGII treated mice develop diastolic
dysfunction that includes worsening LV isovolumetric relaxation
time, increased LV end-diastolic pressure and increased E/e0.50,120–124

In mice, exogenous ANGII administration does not interfere with kid-
ney function,123 but may induce skeletal muscle alterations.125 ANGII
models, and especially the ANGII induced hypertension models, re-
semble cardiac features of human HFpEF to a large extent. Effects of
age and obesity, however, are neglected in this model resulting in the
following scores:

• Pretest assessment of signs and symptoms and clinical HFpEF fea-
tures: lung congestion, hypertension and reduced exercise
capacity.

• Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy,
increased natriuretic peptide levels);

• Total H2FPEF score: 2 (hypertension and increased filling
pressures).

Leptin receptor-deficient model (db/db)
Genetically modified db/db mice have a point mutation in the gene
encoding for the leptin receptor that leads to malfunctioning of this
receptor.126 These mice are typically used for cardiometabolic re-
search, especially for studies in the field of non-insulin dependent
T2DM. Young db/db mice develop obesity, hyperglycaemia and se-
vere dyslipidemia without hypertension.127 The onset of symptoms
in mice is severe and early in life, and therefore not directly translat-
able to the human situation in which progression of obesity and
T2DM is a slower and chronic process. db/db mice have been
from different strains, different ages and different sex128 and results
from studies performed in these mice are therefore not always
comparable.

In general, db/db mice develop diastolic dysfunction including atrial
enlargement, concentric hypertrophy, and fibrosis at older
ages.129,130 LV ejection fraction remains preserved, with decreased
GLS rates after 16 weeks. Hypertension may be present, with131,132

or without133,134 ANGII infusion. Development of cardiac hyper-
trophy may already be present at early age (8–9 weeks133,135) or
develops at a later point in time (up to 16 weeks136,137). Most db/db
mice develop concentric hypertrophy, although eccentric hyper-
trophy has been observed as well.138 Signs of congestion are usually
not present in these mice, and natriuretic peptide levels are not
elevated.139,140

• Pretest assessment of signs and symptoms and clinical HFpEF fea-
tures: increased comorbidity burden (obesity and diabetes) and
reduced exercise capacity.

• Total HFA-PEFF score: 4 (diastolic dysfunction, LV hypertrophy);
• Total H2FPEF score: 4 (obesity, hypertension, diastolic dysfunction).

8 C. Withaar et al.

https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab389#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab389#supplementary-data
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Leptin-deficient model (ob/ob)
The ob/ob is a leptin-deficient mouse that spontaneously develops
obesity (within 4 weeks) and T2DM secondary to hyperglycaemia
and hyperinsulinemia.141,142 The mice develop concentric hyper-
trophy with diastolic dysfunction possible due to lipid accumula-
tion.143 The ejection fraction is preserved without congestion or
exercise impairment and natriuretic peptide levels are unchanged or
reduced.144–146 The observed maladaptive cardiac alterations appear
to be related to the loss of leptin mediated signaling and are reversed
by recombinant leptin treatment.129,147 However, obese HFpEF
patients with leptin deficiency are rarely observed, so the ob/ob mice
do not mimic the human HFpEF phenotype.148

• Pretest of signs and symptoms and clinical HFpEF features:
increased comorbidity burden (obesity and diabetes) and reduced
exercise capacity.

• Total HFA-PEFF score: 4 (diastolic dysfunction, LV hypertrophy);
• Total H2FPEF score: 3 (obesity, diastolic dysfunction).

High fat diet/western diet
Obesity is an important comorbidity in patients with HFpEF and has
been suggested to play an import role in (development of)
HFpEF.149,150 In pre-clinical models, unhealthy food consumption is
mimicked by a high fat diet (HFD) (>60% fat of daily caloric intake) or
by a Western diet (36% fat and 36% sucrose of daily intake). Both of
these diets are able to induce an unfavourable cardiometabolic
phenotype with obesity and glucose intolerance in young male and
female animals138,151–155 albeit in a strain-specific manner.156–159 In
older animals, the HFD appears to result in more profound cardio-
metabolic changes including hyperglycaemia and insulin resistance
and more profound inflammation.160,161 There may also be sex-
specific effect as female mice tend to gain more weight than age-
matched male littermates.81,138,154–164

Besides an unfavourable cardiometabolic phenotype, these models
result in concentric LV hypertrophy with preserved ejection fraction,
and mild to moderate diastolic dysfunction.154,163,164 Furthermore,
pulmonary hypertension has been described as well as increased lev-
els of cardiac fibrosis.164,165 Pulmonary congestion is absent and lev-
els of natriuretic peptides are usually not elevated.166 Renal
dysfunction may occur after long term diet (>20 weeks) in young
mice or at earlier point in time in aged mice.161,167,168 Mice fed on an
HFD or Western diet typically show reduced exercise capacity, most
likely related to their obese state as skeletal muscle weakness is not
observed in these mice.71,157,169

• Pretest assessment of signs and symptoms and clinical HFpEF fea-
tures: increased comorbidity burden (obesity and pre-diabetes)
and reduced exercise capacity.

• Total HFA-PEFF score: 4 (diastolic dysfunction, LV hypertrophy).
• Total H2FPEF score: 4 (obesity, pulmonary hypertension, diastolic

dysfunction)

Aged mice (24–30 months)
Similar to humans, natural aging in mice (with or without dietary
intervention) is a main driver of development of a maladaptive cardiac
HFpEF phenotype.170 At an age of 24–30 months, mice recapitulate
many hallmarks of human HFpEF pathophysiology, including diastolic

dysfunction, concentric hypertrophy with fibrosis and reduced exer-
cise capacity.171,172 This mice furthermore have lung congestion and
increased natriuretic peptide levels. Hypertension or T2DM, how-
ever, have not been described.

• Pretest assessment of signs and symptoms and clinical HFpEF fea-
tures: lung congestion, increased natriuretic peptide levels, reduced
exercise capacity, but no comorbidity burden.

• Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy);
• Total H2FPEF score: 2 (age, diastolic dysfunction).

Accelerated senescence model (SAMP)
Senescence accelerated prone (SAMP) mice belong to a strain of
mice that were generated by selective inbreeding of AKR/J mice.173

These mice show accelerated senescence and age-related patho-
logical phenotypes, similar to aging disorders seen in humans. In add-
ition, they start displaying features of aging at younger age
(10 months) than normal mice (8 months).174 Deleterious mutations
in the DNA repair genes are to be involved in their genetic vulner-
ability for enhanced aging, and specific gene analyses show involve-
ment of oxidative and stress response pathways.175 SAMP mice
develop age-related diastolic dysfunction with atrial enlargement and
adverse cardiac remodelling including LV hypertrophy and fibro-
sis.102,159,176 Levels of natriuretic peptides are elevated in these
mice.159 When fed a Western diet, SAMP mice also develop hyper-
tension and lung congestion, albeit without obesity or T2DM.159 It
has not been described if female or male SAMPs age differently.

• Pretest assessment of signs and symptoms and clinical HFpEF fea-
tures: increased natriuretic peptide levels, lung congestion and
reduced exercise capacity.

• Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy,
elevated natriuretic peptides).

• Total H2FPEF score: 4 (hypertension, effect of aging, increased fill-
ing pressures).

Progress in pre-clinical HF models:
development of multifactorial
models

The abovementioned models are mostly unifactorial disease models
that use one perturbation to induce HF. More recently, progress has
been made in the development of pre-clinical HFpEF models and this
has led to multifactorial models that use two or more perturbations
to mimic the human HFpEF phenotype. In the following section, we
will again use the HFA-PEFF and H2FPEF score to describe and valid-
ate a traditional multifactorial model as well as newer multifactorial
HFpEF models.

Deoxycorticosterone acetate salt-
sensitive model
The deoxycorticosterone acetate salt-sensitive model was already
developed in 1969 to study hypertension in young mice and rats.177

This model relies upon a combination of multiple perturbations
including administration of deoxycorticosterone acetate, increased
salt intake (addition of 1% NaCl to drinking water) and

HFpEF in humans and mice 9
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uninephrectomy. This typically results in cardiac hypertrophy with fi-
brosis, increased levels of natriuretic peptides, while blood pressure
remains unchanged or only mildly increased.178,179 LV function
remains preserved while moderate diastolic dysfunction can be
observed.180 Nevertheless, these mice do not display lung conges-
tion.181 Again, the effect of age and sex has not been described in this
model.

• Pretest assessment of signs and symptoms and clinical HFpEF fea-
tures: increased natriuretic peptide levels, and reduced exercise
capacity.

• Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy,
increased levels of natriuretic peptides);

• Total H2FPEF score: 1 (diastolic dysfunction).

Aldosterone uninephrectomy mouse
Impaired renal function is frequently observed in patients with
HFpEF. Renal dysfunction may be attributed to fluid overload, blood
pressure elevation, and thus congestion.182 In C57BL6 or FB/N back-
ground, the combination of uninephrectomy and aldosterone infu-
sion results in the development of hypertension, lung congestion, and
reduced exercise capacity without obesity or T2DM.183,184

Preserved LV ejection fraction is observed with concentric remodel-
ling, mild-to-moderate diastolic dysfunction, and increased levels of
natriuretic peptides.185–188 The effect of female sex or aging is un-
known and obesity or T2DM is not observed.

• Pretest assessment of signs and symptoms and clinical HFpEF fea-
tures: lung congestion, increased natriuretic peptide levels and
reduced exercise capacity.

• Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy,
increased levels of natriuretic peptides);

• Total H2FPEF score: 2 (hypertension, increased filling pressures).

Combinatory model of high fat diet and
L-NAME
Schiattarella et al.169 were the first to present a two-hit pre-clinical
mouse model that resembles human HFpEF. In short, C57BL/6N
wild-type mice were subjected to a combination of HFD and hyper-
tension that was induced by L-NAME (constitutive nitric oxide syn-
thase inhibitor). They observed that mice that were subjected to
both stress factors developed a typical HFpEF phenotype, including
lung congestion and reduced exercise tolerance and increased natri-
uretic peptides. On the contrary, mice that were only exposed to
one stressor did not develop this phenotype.169 More recently, sex-
dependent effects have also been shown: young female mice were
more resilient for development of HFpEF, as the combination of
high-fat and L-NAME resulted in a more attenuated cardiac pheno-
type as compared to young male mice.189 The effect of aging was not
studied.

• Pretest assessment of signs and symptoms and clinical HFpEF fea-
tures: increased natriuretic peptides, lung congestion, reduced ex-
ercise capacity, and increased comorbidity burden (hypertension,
obesity and pre-diabetes).

• Total HFA-PEFF score: 6 points (increased natriuretic peptides,
diastolic dysfunction, concentric LV hypertrophy).

• Total H2FPEF score: 4 (obesity, hypertension, increased fill-
ing pressures).

Combinatory model of high fat diet and
ANGII infusion
The combination of HFD and ANGII infusion induces hypertension,
obesity and T2DM in young male mice.151,190,191 This intervention
also results in preserved LV function with diastolic dysfunction, con-
centric hypertrophy with fibrosis and increased natriuretic peptides.
However, signs and symptoms or clinical features of HFpEF, if any, ap-
pear to be very mild since lung congestion in young animals is absent
and effect on exercise capacity is unknown.151,190–192

• Pretest assessment of signs and symptoms and clinical HFpEF fea-
tures: increased natriuretic peptide levels, increased comorbidity
burden (hypertension and pre-diabetes);

• Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy,
elevated levels of natriuretic peptides);

• Total H2FPEF score: 4 (obesity, hypertension, increased filling
pressures).

Combinatory model of aging, high fat
diet, and ANGII infusion
We have recently developed a multifactorial mouse model that com-
bines aging (18–22 months) with HFD and ANGII infusion.193 In these
older female C57BL6/J mice, a HFpEF-like phenotype is present
including concentric LV hypertrophy and LV fibrosis, diastolic dys-
function, lung congestion, increased natriuretic peptide levels, and
elevated blood pressures. The effect of sex has not been studied yet.

• Pretest assessment of signs and symptoms and clinical HFpEF fea-
tures: lung congestion, increased natriuretic peptide levels, reduced
exercise capacity, and increased comorbidity burden (hyperten-
sion, obesity and pre-diabetes);

• Total HFA-PEFF score: 6 (diastolic dysfunction, concentric LV
hypertrophy, elevated natriuretic peptide levels);

• Total H2FPEF score: 5 (obesity, hypertension, elderly, increased
filling pressures).

Combinatory model of aging, high fat
diet and desoxycorticosterone pivalate
A very recent study by Deng et al.194 used a combinatory model of
16 months of ageing, long-term HFD (13 months) and 3 months of
desoxycorticosterone pivalate challenge in mice to induce a HFpEF-
like phenotype. Their model resulted in many typical HFpEF features,
including lung congestion, hypertension and impaired exercise toler-
ance. They also showed diastolic dysfunction, LV hypertrophy, fibro-
sis and increased levels of natriuretic peptides. Both sexes were
included but not further studied.

• Pretest assessment of signs and symptoms and clinical HFpEF fea-
tures: lung congestion, increased natriuretic peptide levels, reduced
exercise capacity and increased comorbidity burden (hypertension,
obesity and pre-diabetes);

• Total HFA-PEFF score: 6 (diastolic dysfunction, LV hypertrophy,
elevated natriuretic peptide levels);

• Total H2FPEF score: 5 (obesity, hypertension, elderly, increased
filling pressures).

10 C. Withaar et al.
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Conclusion

HFpEF remains a major public health problem worldwide with still
increasing prevalence and incidence. So far, HFpEF treatment mostly
focuses on symptom reduction since HFpEF-specific drugs do not
exist. Despite numerous efforts to develop HFpEF-specific drugs,
bench-to-bedside translation has not been successful, and this may, at
least partly, be due to the lack of pre-clinical HFpEF models that ad-
equately recapitulate the complexities of the human condition.

HFpEF is a multifactorial disease in which comorbidities contribute
to the pathophysiology of the clinical syndrome. While this compli-
cates the development of preclinical models, progress in the field will
be aided by consensus on key elements that a HFpEF animal model
should manifest. The recent development of two clinical HFpEF
scores has led to a novel clinical standard for defining the key clinical
features of HFpEF. This state-of-the-art review is the first to apply
clinical scores to HFpEF mouse models to improve putative applic-
ability and translational value of pre-clinical HFpEF research. It pro-
poses a novel approach to follow when performing a pre-clinical
HFpEF study to optimize bench-to-bed translation and provide a
checklist for small HFpEF animal models. Although this checklist may
not capture all human HFpEF variables, it will help to provide better
and more relevant small animal HFpEF models with better putative
application and translational value. So far, most of the pre-clinical
models do not fully meet these criteria (presented in Graphical
abstract). Of course, pathophysiology of the mouse heart cannot be
translated to humans 1 on 1, and translation of pre-clinical findings to
human conditions should always be done cautiously. Of note, clinical
studies should be challenged as well to account for diverse HFpEF
physiology to optimize bench-to-bed translation.

This review furthermore describes some multifactorial models
that resemble human HFpEF to a large extent, and suggests that these
small animal models remain attractive models for future HFpEF re-
search. Based on this review, we advocate that future HFpEF pre-
clinical studies that test potential new therapeutic agents should con-
sider use of multiple HFpEF animal models so that their effects can be
tested on multiple HFpEF phenotypes. Following this approach we
believe that pre-clinical HFpEF models will be able to help fill major
gaps in HFpEF pathophysiology and will eventually facilitate develop-
ment of novel HFpEF therapeutics.

Supplementary material

Supplementary material is available at European Heart Journal online.
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165. Cannon MV, Silljé HHW, Sijbesma JWA, Khan MAF, Steffensen KR, van Gilst
WH, de Boer RA. LXRa improves myocardial glucose tolerance and reduces
cardiac hypertrophy in a mouse model of obesity-induced type 2 diabetes.
Diabetologia 2016;59:634–643.

166. Bartels ED, Nielsen JM, Bisgaard LS, Goetze JP, Nielsen LB. Decreased expres-
sion of natriuretic peptides associated with lipid accumulation in cardiac ven-
tricle of obese mice. Endocrinology 2010;151:5218–5225.

167. Bruder-Nascimento T, Ekeledo OJ, Anderson R, Le HB, Belin de Chantemele
EJ. Long Term High Fat Diet Treatment: an Appropriate Approach to Study the
Sex-Specificity of the Autonomic and Cardiovascular Responses to Obesity in
Mice. Front Physiol 2017;8:

168. Gai Z, Hiller C, Chin SH, Hofstetter L, Stieger B, Konrad D, Kullak-Ublick GA.
Uninephrectomy augments the effects of high fat diet induced obesity on gene
expression in mouse kidney. Biochim Biophys Acta Mol Basis Dis 2014;1842:
1870–1878.

169. Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, Luo
X, Jiang N, May HI, Wang ZV, Hill TM, Mammen PPA, Huang J, Lee DI, Hahn
VS, Sharma K, Kass DA, Lavandero S, Gillette TG, Hill JA. Nitrosative stress
drives heart failure with preserved ejection fraction. Nature 2019;568:351–356.

170. Aurich AC, Niemann B, Pan R, Gruenler S, Issa H, Silber RE, Rohrbach S. Age-
dependent effects of high fat-diet on murine left ventricles: role of palmitate.
Basic Res Cardiol 2013;108:1–17.

171. Roh JD, Houstis N, Yu A, Chang B, Yeri A, Li H, Hobson R, Lerchenmüller C,
Vujic A, Chaudhari V, Damilano F, Platt C, Zlotoff D, Lee RT, Shah R, Jerosch-
Herold M, Rosenzweig A. Exercise training reverses cardiac aging phenotypes
associated with heart failure with preserved ejection fraction in male mice.
Aging Cell 2020;19:e13159.

172. Roh JD, Hobson R, Chaudhari V, Quintero P, Yeri A, Benson M, Xiao C,
Zlotoff D, Bezzerides V, Houstis N, Platt C, Damilano F, Lindman BR, Elmariah
S, Biersmith M, Lee SJ, Seidman CE, Seidman JG, Gerszten RE, Lach-Trifilieff E,
Glass DJ, Rosenzweig A. Activin type II receptor signaling in cardiac aging and
heart failure. Sci Transl Med 2019;11:8680.

173. Takeda T, Hosokawa M, Higuchi K. Senescence-accelerated mouse (SAM): a
novel murine model of senescence. Exp Gerontol 1997;32:105–109.

174. Karuppagounder V, Arumugam S, Babu SS, Palaniyandi SS, Watanabe K, Cooke
JP, Thandavarayan RA. The senescence accelerated mouse prone 8 (SAMP8): a
novel murine model for cardiac aging. Ageing Res Rev 2017;35:291–296.

175. Tanisawa K, Mikami E, Fuku N, Honda Y, Honda S, Ohsawa I, Ito M, Endo S,
Ihara K, Ohno K, Kishimoto Y, Ishigami A, Maruyama N, Sawabe M, Iseki H,
Okazaki Y, Hasegawa-Ishii S, Takei S, Shimada A, Hosokawa M, Mori M, Higuchi
K, Takeda T, Higuchi M, Tanaka M. Exome sequencing of senescence-
accelerated mice (SAM) reveals deleterious mutations in degenerative disease-
causing genes. BMC Genomics 2013;14:248.

176. Reed AL, Tanaka A, Sorescu D, Liu H, Jeong E-M, Sturdy M, Walp ER, Dudley
SC, Sutliff RL. Diastolic dysfunction is associated with cardiac fibrosis in the
senescence-accelerated mouse. Am J Physiol Circ Physiol 2011;301:H824–H831.

177. Willard PW. A model for evaluation of thiazide-induced hypotension. J Pharm
Pharmacol 1969;21:406–408.

178. Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM,
Gu L, Kumar P, Pokhrel N, Zeng D, Belardinelli L, Sorescu D, Solaro RJ, Dudley
SC. Ranolazine improves cardiac diastolic dysfunction through modulation of
myofilament calcium sensitivity. Circ Res 2012;110:841–850.

179. Mohammed SF, Ohtani T, Korinek J, Lam CSP, Larsen K, Simari RD, Valencik
ML, Burnett JC, Redfield MM. Mineralocorticoid accelerates transition to heart

failure with preserved ejection fraction via “nongenomic effects”. Circulation
2010;122:370–378.

180. Jeong EM, Monasky MM, Gu L, Taglieri DM, Patel BG, Liu H, Wang Q, Greener
I, Dudley SC, Solaro RJ. Tetrahydrobiopterin improves diastolic dysfunction by
reversing changes in myofilament properties. J Mol Cell Cardiol 2013;56:44–54.

181. Bowen TS, Eisenkolb S, Drobner J, Fischer T, Werner S, Linke A, Mangner N,
Schuler G, Adams V. High-intensity interval training prevents oxidantmediated
diaphragm muscle weakness in hypertensive mice. FASEB J 2017;31:60–71.

182. ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C, van
Heerebeek L, Hillege HL, Lam CSPP, Navis G, Voors AA. Connecting heart fail-
ure with preserved ejection fraction and renal dysfunction: the role of endothe-
lial dysfunction and inflammation. Eur J Heart Fail 2016;18:588–598.

183. Tanaka K, Valero-Mu~noz M, Wilson RM, Essick EE, Fowler CT, Nakamura K,
van den Hoff M, Ouchi N, Sam F. Follistatin-like 1 regulates hypertrophy in
heart failure with preserved ejection fraction. JACC Basic Transl Sci 2016;1:
207–221.

184. Valero-Mun~oz M, Li S, Wilson RM, Hulsmans M, Aprahamian T, Fuster JJ,
Nahrendorf M, Scherer PE, Sam F. Heart failure with preserved ejection frac-
tion induces Beiging in adipose tissue. Circ Heart Fail 2016;9:e002724.

185. Valero-Munoz M, Li S, Wilson RM, Boldbaatar B, Iglarz M, Sam F. Dual
endothelin-A/endothelin-B receptor blockade and cardiac remodeling in heart
failure with preserved ejection fraction. Circ Heart Fail 2016;9:e003381.

186. Wilson RM, De Silva DS, Sato K, Izumiya Y, Sam F. Effects of fixed-dose isosor-
bide dinitrate/hydralazine on diastolic function and exercise capacity in
hypertension-induced diastolic heart failure. Hypertension 2009;54:583–590.

187. Garcia AG, Wilson RM, Heo J, Murthy NR, Baid S, Ouchi N, Sam F. Interferon-
c ablation exacerbates myocardial hypertrophy in diastolic heart failure. Am J
Physiol Heart Circ Physiol 2012;303:H587–H596.

188. Tanaka K, Wilson RM, Essick EE, Duffen JL, Scherer PE, Ouchi N, Sam F. Effects
of adiponectin on calcium-handling proteins in heart failure with preserved ejec-
tion fraction. Circ Heart Fail 2014;7:976–985.

189. Tong D, Schiattarella GG, Jiang N, May HI, Lavandero S, Gillette TG, Hill JA.
Female sex is protective in a preclinical model of heart failure with preserved
ejection fraction. Circulation 2019;140:1769–1771.

190. Reddy SS, Agarwal H, Barthwal MK. Cilostazol ameliorates heart failure with
preserved ejection fraction and diastolic dysfunction in obese and non-obese
hypertensive mice. J Mol Cell Cardiol 2018;123:46–57.

191. Gaspari T, Brdar M, Lee HW, Spizzo I, Hu Y, Widdop RE, Simpson RW, Dear
AE. Molecular and cellular mechanisms of glucagon-like peptide-1 receptor
agonist-mediated attenuation of cardiac fibrosis. Diabetes Vasc Dis Res 2016;13:
56–68.

192. Du W, Piek A, Marloes Schouten E, van de Kolk CWA, Mueller C, Mebazaa A,
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Schouten EM, Dokter MM, Voors AA, Westenbrink BD, Lam CSP, de Boer RA.
The effects of liraglutide and dapagliflozin on cardiac function and structure in a
multi-hit mouse model of heart failure with preserved ejection fraction.
Cardiovasc Res 2020;cvaa256. doi: 10.1093/cvr/cvaa256 [Epub ahead of print].

194. Deng Y, Xie M, Li Q, Xu X, Ou W, Zhang Y, Xiao H, Yu H, Zheng Y, Liang Y,
Jiang C, Chen G, Du D, Zheng W, Wang S, Gong M, Chen Y, Tian R, Li T.
Targeting mitochondria-inflammation circuit by b-hydroxybutyrate mitigates
HFpEF. Circ Res 2021;128:232–245.

16 C. Withaar et al.


	tblfn1
	tblfn2



