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Abstract Horizontal gene transfer (HGT) is an essential force in microbial evolution. Despite

detailed studies on a variety of systems, a global picture of HGT in the microbial world is still

missing. Here, we exploit that HGT creates long identical DNA sequences in the genomes of

distant species, which can be found efficiently using alignment-free methods. Our pairwise analysis

of 93,481 bacterial genomes identified 138,273 HGT events. We developed a model to explain

their statistical properties as well as estimate the transfer rate between pairs of taxa. This reveals

that long-distance HGT is frequent: our results indicate that HGT between species from different

phyla has occurred in at least 8% of the species. Finally, our results confirm that the function of

sequences strongly impacts their transfer rate, which varies by more than three orders of

magnitude between different functional categories. Overall, we provide a comprehensive view of

HGT, illuminating a fundamental process driving bacterial evolution.

Introduction
Microbial genomes are subject to loss and gain of genetic material from other microorganisms

(Boto, 2010; Puigbò et al., 2014), via a variety of mechanisms: conjugation, transduction, and trans-

formation, collectively known as horizontal gene transfer (HGT) (Soucy et al., 2015; Garcı́a-

Aljaro et al., 2017). The exchange of genetic material is a key driver of microbial evolution that

allows rapid adaptation to local niches (Boucher et al., 2011). Gene acquisition via HGT can provide

microbes with adaptive traits that confer a selective advantage in particular conditions (Koo-

nin, 2016; Massey and Wilson, 2017) and eliminate deleterious mutations, resolving the paradox of

Muller’s ratchet (Takeuchi et al., 2014). In addition, HGT could also facilitate DNA repair, the fixa-

tion of beneficial mutations and the elimination of costly mobile genetic elements such as phages or

conjugative elements (see Ambur et al., 2016 and references therein).

Since the discovery of HGT more than 50 years ago (Freeman, 1951), many cases of HGT have

been intensively studied. Several methods have been developed to infer HGT. Some methods rely

on identifying shifts in (oligo-)nucleotide composition along genomes (Ravenhall et al., 2015).

Clonal frame-based methods instead perform phylogenetic analysis on similar set of strains to iden-

tify recombination events (Croucher et al., 2015; Didelot and Falush, 2007). Other methods are

based on discrepancies between gene and species distances, that is, surprising similarity between

genomic regions belonging to distant organisms that cannot be satisfactorily explained by their con-

servation (Lawrence and Hartl, 1992; Nelson et al., 1999; Koonin et al., 2001; Novichkov et al.,
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2004; Dessimoz et al., 2008; Dixit et al., 2015; Caro-Quintero and Konstantinidis, 2015). For

example, genomes from different genera are typically up to 60-70% identical, meaning that one in

every three base pairs is expected to differ. The presence of regions that are significantly more simi-

lar than expected can be interpreted as evidence of recent HGT events. Using such methods, the

transfer of drug and metal resistance genes (Huddleston, 2014), toxin-antitoxin systems

(Van Melderen and Saavedra De Bast, 2009), and virulence factors Escobar-Páramo et al., 2004;

Nogueira et al., 2009 have been observed numerous times. It is also known that some bacterial

taxa, such as members of the family of Enterobacteriaceae (Doi et al., 2012), are frequently involved

in HGT, whereas other groups, such as extracellular pathogens from the Mycobacterium genus

(Eldholm and Balloux, 2016), rarely are. Notably, the methods used in the detection and analysis of

instances of HGT are computationally complex and can be used to discover HGT events in at most

hundreds of genomes simultaneously. Consequently, a general overview of the diversity and abun-

dance of transferred functions, as well as the extent of involvement across all known bacterial taxa in

HGT, is still lacking. In particular, exchanges of genetic material between distant species – because

discovering such long-distance transfers requires the application of computationally costly methods

to very large numbers of genomes – are rarely studied.

In this study we use a novel approach to address these questions and challenges. Our method is

based on the analysis of long exact sequence matches found in the genomes of distant bacteria.

Exact matches can be identified very efficiently using alignment-free algorithms (Delcher et al.,

2002), which makes the method much faster than previous methods that rely on alignment tools.

We identified all long exact matches shared between bacterial genomes from different genera (see

Identification of exact matches in Materials and methods). Such long matches are unlikely to be verti-

cally inherited, and we therefore assume that they result from HGT. This allowed us to study transfer

events between 1,343,042 bacterial contigs, belonging to 93,481 genomes, encompassing a total of

0.4 Tbp.

In a quarter of all bacterial genomes, we detected HGT across family borders, and 8% partici-

pated in HGT across phyla. This shows that genetic material frequently crosses borders between dis-

tant taxonomic units. The length distribution of exact matches can be accounted for by a simple

model that assumes that exact matches are continuously produced by transfer of genetic material

and subsequently degraded by mutation. Fitting this model to empirical data, we estimate the effec-

tive rate at which HGT generates long sequence matches in distant organisms. Furthermore, the

large number of transfer events identified allows us to conduct a functional analysis of horizontally

transferred genes.

Results

HGT detection using exact sequence matches
We identified HGT events between distant bacterial taxa by detecting long exact sequence matches

shared by pairs of genomes belonging to different genera. We exploit that pairs of genomes from

different genera are phylogenetically distant, so that sequences shared by both genomes due to lin-

ear descent (orthologous sequences) have low sequence identity. Therefore, long sequence matches

in such orthologs are exceedingly rare. Generally, even the most conserved sequences in bacterial

genomes from different genera have a nucleotide sequence identity of at most 90-95% (Qin et al.,

2014). In the absence of HGT, the probability of observing an exact match longer than 300 bp

between such regions in a given pair of genomes is then extremely small (’ 0:9300 ’ 10
�14). Thus,

even if millions of genome pairs with such divergence are analysed, the probability to observe even

one long exact match in orthologous sequences remains negligible: one does not expect to find a

single hit of this size between any two bacterial genomes.

Figure 1 illustrates this point. In the dot plot comparing the genome sequences of two Entero-

bacteriaceae, Escherichia coli and Salmonella enterica (Figure 1A), we observe numerous exact

matches shorter than 300 bp along the diagonal, revealing a conservation of the genomic architec-

ture at the family level. Filtering out matches shorter than 300 bp (Figure 1B) completely removes

the diagonal line, confirming that exact matches in the orthologous sequences of these genomes

are invariably short.
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Because very long exact sequence matches are extremely unlikely in orthologs, those that do

occur are most likely xenologs: sequences that are shared due to relatively recent events of HGT. As

an example, Figure 1C shows a dot plot comparable to Figure 1A, but now comparing the

genomes of Enterococcus faecium and Atopobium minulum. No diagonal line is seen because these

genomes belong to different phyla and therefore have low sequence identity. Nevertheless, an exact

match spanning 19,117 bp is found (diagonal green line highlighted by the red ellipse). The most

parsimonious explanation for such a long match is a recent HGT event. In addition, the GC content

of the match (55%) deviates strongly from that of both contigs (38.3% and 48.9%, respectively),

another indication that this sequence originates from HGT (Ravenhall et al., 2015). Comparing the
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Figure 1. Dot plots of the exact sequence matches found in pairs of distant bacteria. On panels (A and B) resp.

(C and D), each dot/line on the grid represents an exact match at locus x of the genome of Escherichia coli (resp.

Enterococcus faecium) and locus y of the genome of Salmonella enterica (resp. Atopobium minutum). Blue dots/

lines indicate matches between the forward strands of the two species, and green dots/lines those between the

forward strand of E. coli (resp. E. faecium) and the reverse complement strand of S. enterica (resp. A. minutum).

(A–B) Full genomes of E. coli K-12 substr. MG1655 (U00096.3) and S. enterica (NC_003198.1), which both belong to

the family of Enterobacteriaceae. Panel A shows all matches longer than 25 bp. The sequence similarity and

synteny of both genomes, by descent, is evident from the diagonal blue line. Panel B only shows matches longer

than 300 bp. (C–D) Same as panels (A-B), but for the first 1.4 Mbp of E. faecium (NZ_CP013009.1) and A. minutum

(NZ_KB822533.1), which belong to different phyla, showing few matches longer than 25 bp (panel C). Yet, a single

match of 19,117 bp is found, as indicated with red ellipses in panels (C-D). The most parsimonious explanation for

this long match is an event of horizontal gene transfer.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Long exact matches cluster in bacterial genomes.

Figure supplement 2. Average nucleotide identity (ANI) between strains of Escherichia coli which share a certain
number of exact matches to a different family.

Figure supplement 3. Distribution of exact matches between Escherichia coli strains and bacteria from a different
family.

Figure supplement 4. Distribution of exact matches between Escherichia coli strains and bacteria from a different
family.
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sequence of this exact match with all non-redundant GenBank CDS translations using blastx

(Altschul et al., 1990), we find very strong hits to VanB-type vancomycin resistance histidine, antires-

triction protein (ArdA endonuclease), and an LtrC-family phage protein that is found in a large group

of phages that infect Gram-positive bacteria (Quiles-Puchalt et al., 2013). Together, this suggests

that the sequence was transferred by transduction and established in both bacteria aided by natural

selection acting on the conferred vancomycin resistance.

In the following, we assume that long identical DNA segments found in pairs of bacteria belong-

ing to different genera reveal HGT. This assumption is further supported by several observations.

First, in the identified matches, we did not detect enrichment of sequences known to be highly con-

served, such as rRNA (see functional analysis below in HGT rates of genes differ strongly between

functional categories). Second, the exact matches are clustered in the genomes (see Figure 1—fig-

ure supplement 1 (C)), as expected for transferred sequence that have already started to diverge in

the two species, giving rise to several shorter adjacent matches. Third, if it is true that long exact

matches are the result of HGT events, closely related strains should present similar long exact

matches to distant species, resulting from HGT event that occurred prior to the split of the two

strains. We do observe such a pattern (see Figure 1—figure supplement 2, Figure 1—figure sup-

plement 3 and Figure 1—figure supplement 4) although the signal is not very strong (see Appen-

dix 1 Phylogenetic analysis among HGT event in E. coli for more details). We stress, however, that a

matching sequence may not have been transferred directly between the pair of lineages in which it

was identified: more likely, it arrived in one or both lineages independently, for instance carried by a

match length r (bp)
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Figure 2. Match-length distributions (MLDs) obtained by identifying exact sequence matches in pairs of genomes

from different genera, based on matches between Escherichia and Klebsiella (red dots), Vibrio and Salmonella

(green stars), and Clostridium and Bacillus (blue squares). Black plus signs represent the MLD obtained by

combining the MLDs for all pairs of genera. Each MLD is normalised to account for differences in the number of

available genomes in each genus (see Empirical calculation of the MLD for pairs of genera and sets of genera in

Materials and methods). Only the tails of the distributions (length r � 300) are shown. Solid lines are fits of power

laws with exponent �3 (Equation (1)) with just a single free parameter.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. MLD obtained by combining the MLDs for all pairs of genera.

Source data 2. MLD based on matches between Clostridium and Bacillus.

Source data 3. MLD based on matches between Vibrio and Salmonella.

Source data 4. MLD based on matches between Escherichia and Klebsiella.

Figure supplement 1. Match-length distributions (MLDs) obtained by identifying exact sequence matches in pairs
of genomes from different genera in the curated set.

Figure supplement 2. Match-length distributions (MLDs) computed for shorter matches.
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Box 1. Horizontal gene transfer explains the power-law distribution of exact

sequence matches.

The tails of thematch-length distributions (MLDs) in Figure 2 obey a power-law distribution with exponent�3. This observation can be

explained by a simplemodel of horizontal gene transfer (HGT). (SeeA simplemodel of HGT explains the power-law distribution of exact

sequencematches andAnalytical calculation of theMLDpredicted by a simplemodel of HGT for a full derivation.) Consider two

genomes, A and B, fromdifferent genera (seeBox 1—figure 1, left panel). At some point in time, HGT introduces a new, long exact

match between the two genomes (coloured bar). Subsequently, mutations (red stars) have the effect of ‘breaking’ this match into ever

smaller pieces (see Figure 1—figure supplement 1A-B for two examples).With time,more andmoremutations accumulate. Themore

time passes, themore pieces there will be, but the shorter theywill be on average. Assuming thatmutations occur at randompositions,

after some time the lengths of the exactmatches within this one segment are distributed exponentially (bottom left).With time, the

mean of this exponential distribution decreases. EachMLD in Figure 2 represents a collection of exactmatches obtained by comparing

many pairs of genomes and thus contains contributions ofmany xenologous segments created at various times in the past. Therefore,

these distributions are the result of mixtures of many exponential MLDs, eachwith a differentmean.Mathematically, such amixture

becomes apower lawwith exponent�3provided the ageof the xenologous segments is not strongly biased.Box1—figure 1 illustrates

this point (right panel). If 50 exponential MLDs (grey, blue, and purple curves) based on randomly sampled ages are simply summed up,

the result (red curve) approaches a power lawwith exponent�3, recognised in a log-log plot as a straight line with a slope of�3.
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Box 1—figure 1. Schematic explanation of the mathematical model.

(Left) The evolutionary fate of a DNA segment followingHGT. Initially, the event generates a single long exactmatch between genomes

A and B. As time passes, mutations break this match intomore andmore pieces that are shorter and shorter. TheMLD stemming from

a single segment follows an exponential distribution with amean decreasing with the age of the transfer, as represented at the bottom

of the scheme. (Right) Exponential MLDs (log-log scale) for many segments originating fromdifferent HGT events (blue: very recent

event, purple: older event). The red curve is the sumof all blue, purple and grey curves and follows a power lawwith exponent – 3.
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phage or another mobile genetic element that transferred the same genetic material to multiple line-

ages through independent interactions.

We restrict this study to matches longer than 300 bp to minimise the chance that those matches

result from vertical inheritance. Because after HGT the transferred sequences accumulate mutations,

matches longer than 300 bp are expected to originate from relatively recent events. Assuming a

generation time of 10 hr (Gibson et al., 2018), we estimate the detection horizon to be of the order

of 1000 years ago (see Age-range estimation of the exact matches in Materials and methods).

Empirical length distributions of exact matches obey a power law
To study HGT events found in pairs of genomes, we considered the statistical properties of r, the

length of exact matches. Note that the number of long matches found in a single pair of genomes is

usually very small. Hence, in this study we conduct all statistical analyses at the level of genera. To

do so, we selected all bacterial genome fragments longer than 105 bp from the NCBI RefSeq data-

base (1,343,042 in total) and identified all sequence matches in all pairs of sequences belonging to

different genera ( » 109 pairs). We then analysed the distribution of the lengths of the matches, called

the match-length distribution or MLD. The MLD for a pair of genera GA and GB is defined as the nor-

malised length distribution of the matches found in all pairwise comparisons of a contig from GA and

a contig from GB. The normalisation ensures that the prefactor of the MLD does not scale with the

number of genomes present in the database (see Empirical calculation of the MLD for pairs of gen-

era and sets of genera in Materials and methods). A comparable approach has previously been

applied successfully to analyse the evolution of eukaryotic genomes (Gao and Miller, 2011;

Massip and Arndt, 2013; Massip et al., 2015).

We first consider the MLD obtained by combining the MLDs for all pairs of genera. While the vast

majority of matches is very short (<25 bp), matches with a length of at least 300 bp do occur and

contribute a fat tail to the MLD (Figure 2). Strikingly, over many decades this tail is well described

by a power law with exponent �3:

mðrÞ~ r�3: (1)

The same �3 power law is found in the MLDs for individual pairs of genera (see Figure 2).

To verify that the observed power-law distributions were not the result of assembly artefacts or

erroneous annotation, we constructed a smaller, manually curated dataset which included only long

contigs (>106 bp, see Restricted dataset in Materials and methods). This restricted dataset still com-

prises 138,273 matches longer than 300 bp. MLDs computed with this dataset also consistently

results in �3 power laws ( Figure 2—figure supplement 1). Hence, the results are robust to assem-

bly or annotation artefacts.

Below, we will explain that the power law is a signature of HGT. Consistently, for matches shorter

than 300 bp, the MLDs deviate from the power law (see Figure 2—figure supplement 2), because

in this regime vertical inheritance, convergent evolution and random matches contribute to the

MLD.

A simple model of HGT explains the power-law distribution of exact
sequence matches
A simple model based on a minimal set of assumptions can account for the power law observed in

the MLD (see Box 1). Let us assume that, due to HGT, a given pair of bacterial genera A and B

obtains new long exact matches at a rate �, and that these new matches have a typical length K

much larger than 1 bp. These matches are established in certain fractions fA and fB of the popula-

tions of the genera, possibly aided by natural selection. Subsequently, each match is continuously

broken into shorter ones due to random mutations that happen at a rate � per base pair in each

genome. Then the length distribution of the broken, shorter matches, resulting from all past HGT

events, converges to a steady state that for 1 � r<K is given by the power law mðrÞ ¼ A=r3, with

prefactor:

A :¼K
fAfB

LALB

�

�
; (2)

consistent with Equation (1); see Analytical calculation of the MLD predicted by a simple model of
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HGT in Materials and methods for a full derivation. Here LA (resp. LB) is the average genome length

of all species in genus A (resp. B). Hence, the power-law distribution can be explained as the com-

bined effect of many HGT events that occurred at different times in the past. While the model above

makes several strongly simplifying assumptions, many of these can be relaxed without affecting the

power-law behaviour; see Robustness of the power-law behaviour in Materials and methods for an

extended discussion.

In the model, the prefactor A quantifies the abundance of long exact matches and hence is a

measure of the rate with which two taxa exchange genetic material. Equation (2) shows that A

reflects the bare rate of the transfer events, the typical length of the transferred sequences, as well

as the extent to which the transferred sequences are established in the receiving population, possi-

bly aided by selection. By contrast, because of the normalisation of the MLD (see Empirical calcula-

tion of the MLD for pairs of genera and sets of genera in Materials and methods), A does not scale

with the number of genomes in the genera being compared and is thus robust to sampling noise.

Hence, the value of A can be used to study the variation in HGT rate among genera. In addition, the

values of A estimated from the full and the restricted datasets (Figure 2 and Figure 2—figure sup-

plement 1) are very close, showing that the estimates of A are robust to assembly artefacts. Finally,

our estimates are unlikely to be strongly affected by the presence of plasmids since only a small frac-

tion of plasmids is longer than 105 or 106 bp (Shintani et al., 2015).

Long-distance gene exchange is widespread in the bacterial domain
The analysis above has allowed us to identify a large number of HGT events. In addition, the deriva-

tions in the previous section provide a method to quantify the effective HGT rate between any two

taxa by measuring the prefactor A. Supplementary file 1 and 2 contains the value of A for all pairs

of genera and families. Using these results, we further studied the HGT rate between all pairs of bac-

terial families in detail.

Figure 3 shows the prefactors A for all pair of families (see Figure 3—figure supplement 1 for a

similar plot for all pairs of phyla). Families for which the available sequence data totals less than

107 bp were filtered out since in such scarce datasets typically no HGT is detected (Figure 3—figure

supplement 2) and the prefactor cannot reliably be estimated (see Supplementary file 3 for the

total length of all families). A first visual inspection of the heatmap reveals that the HGT rate varies

drastically (A varies from 10
�16 to 10

�8) among pairs of families. Also, the large squares on the diago-

nal of the heatmap indicate that HGT occurs more frequently between taxonomically closely related

families. This is especially apparent for well-represented phyla including Bacteroidetes, Proteobacte-

ria, Firmicutes, and Actinobacteria. Yet, we also observe high transfer rates between many families

belonging to distant phyla, indicating that transfer events across phyla are also frequent (see Fig-

ure 3—figure supplement 1). Notably, we find that some families display an elevated HGT rate with

all other families across the phylogeny; these families are visible in the heatmap (Figure 3) as long

colourful lines, both vertical and horizontal.

We studied the HGT rate variations in more detail in the restricted dataset (see Restricted dataset

in Materials and methods). The analysis of the restricted dataset reveals the extent of HGT, even

between distant species (Figure 4). Indeed, we find that 32.6% of RefSeq species have exchanged

genetic material with a species from a different family. Moreover, we find that 8% of species in the

database have exchanged genetic material with a species from a different phylum. Finally, the spe-

cies involved in these distant exchanges are spread across the phylogenetic tree: the species

involved in long-distance transfers belong to 19 different phyla (out of 34). Importantly, we repeat

that the method is sensitive only to events that occurred in the last ~1000 years. Also, these esti-

mates are lower bound estimates since the power of our detection method is limited in species for

which only few genomes have been sequenced.

The data also unveil that the propensity to exchange genetic material varies dramatically among

species from closely related classes. For instance, within the phylum Firmicutes, we find classes in

which we detected HGT in only a small percentage of species (30% in the Negativicutes), while in

other classes we find events in almost all species (>90% in Tissierellia, Figure 4 and

Supplementary file 4). This trend can be observed in most of the phyla and raises the question of

which species features drive HGT rate variations.
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Figure 3. Effective pairwise horizontal gene transfer (HGT) rate at the family level. For each pair of families, the prefactor A is displayed (decimal

logarithmic scale, see colourbar and Supplementary file 1). The values on the diagonal are set to zero. The phylogenetic tree of bacterial families,

taken from Kumar et al., 2017, is shown at the top. Phyla are indicated with coloured bars next to the upper axes of the heatmap (see legend); grey

Figure 3 continued on next page
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The rate of HGT correlates with evolutionary distance, ecological
environment, Gram staining, and GC content
To better understand the causes of the large variations in transfer rate between different taxa, we

next studied the effect of biological and environmental properties on the HGT rate.

First, we assessed the impact of the taxonomic distance between genera. To do so, we computed

the prefactor A for pairs of genera at various taxonomical distances (Figure 5). On average, this pre-

factor decreases by orders of magnitude as the taxonomic distance between the genera increases

(inset of Figure 5). In particular, the average prefactor obtained when considering genera from the

same family is more than three orders of magnitude higher than when considering genera from

Figure 3 continued

vertical and horizontal lines represent borders between phyla. The barplot on the right-hand side of the heatmap shows the cumulative genome sizes

of each family (decimal logarithmic scale).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Effective pairwise horizontal gene transfer (HGT) rate at the phylum level (coarse-grained version of Figure 3).

Figure supplement 2. Total contig length distribution of families versus their involvement in long-distance horizontal gene transfer (HGT) events.

Figure 4. Involvement of different phyla and classes of bacteria in long-distance horizontal gene transfer (HGT). Percentage of contigs involved in at

least one of the observed long-distance HGT event grouped at phylum level (left panel) and at classes level (right panel). Note that only the classes

with the largest numbers of contigs are shown (see Supplementary file 4 for all data). Numbers of contigs belonging to the phyla and classes are

given in the middle part of figure.
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different phyla. Seeking exact matches between organisms from different domains, we compared

genomes of bacteria and archaea and found only a few long matches (see "Comparing bacterial and

archaeal genomes" section in the Appendix). These results support the notion that the divergence

between organisms plays an important role in the rate of HGT between them (Ochman et al., 2000;

Brügger et al., 2002; Nakamura et al., 2004; Ge et al., 2005; Choi and Kim, 2007; Dagan et al.,

2008; Andam and Gogarten, 2011) (see also Figure 5—figure supplement 1). Note, however, that

a lower effective rate of HGT can be due to a lower transfer rate of genetic material and/or a more

limited fixation in the receiving genome, and the model cannot distinguish those two scenarios.
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Figure 5. Match-length distributions (MLDs) resulting from comparison of genera at a given taxonomic distance.

Statistically, the prefactor A obtained for a pair of genera decreases with the taxonomic distance between those

genera. To demonstrate this, the figure shows averaged MLDs based on the MLDs of all pairs of genera at given

taxonomic distances. G/F (blue circles): MLD obtained by averaging MLDs of pairs of genera that belong to the

same family. F/O (red squares): MLD obtained by averaging MLDs of pairs of genera that belong to the same

order, but to different families. O/C (green diamonds): Pairs of genera from the same class, but different orders.

C/P (black stars): Same phylum, different classes. P/D (red circles): Same domain, different phyla. Grey lines

indicate power laws mðrÞ / r�3, for comparison. Inset: Prefactor A for each of the distributions in the main figure.

The prefactor decreases by orders of magnitude as the taxonomic distance increases.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Raw data corresponding to the inset of Figure 5: prefactor A for each of the distributions in the

main figure.

Source data 2. MLD obtained by averaging MLDs of pairs of genera that belong to the same domain, but to dif-

ferent phyla (P/D).

Source data 3. MLD obtained by averaging MLDs of pairs of genera that belong to the same phylum, but to dif-

ferent classes (P/C).

Source data 4. MLD obtained by averaging MLDs of pairs of genera that belong to the same class, but to differ-

ent orders (O/C).

Source data 5. MLD obtained by averaging MLDs of pairs of genera that belong to the same order, but to differ-

ent families (F/O).

Source data 6. MLD obtained by averaging MLDs of pairs of genera that belong to the same family (G/F).

Figure supplement 1. Effective horizontal gene transfer (HGT) rate as a function of the divergence time between
genera.

Figure supplement 2. Match-length distributions (MLDs) resulting from comparison of sets of genera associated
with different ecological environments: gut, soil, and marine (see Supplementary file 7 for detailed annotation).

Figure supplement 3. Match-length distributions (MLDs) resulting from comparison of sets of genera associated
with different Gram staining test results (see Supplementary file 7 for detailed annotation).

Figure supplement 4. Match-length distributions (MLDs) resulting from comparison of sets of bacteria associated
with different GC content (see Supplementary file 7 for detailed annotation).
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We then explored other factors that influence the value of A. To do so, we calculated MLDs for

sets of genera from different ecological environments: gut, soil, or marine (Figure 5—figure supple-

ment 2), regardless of their taxonomic distance. Our results suggest that the effective rate of HGT is

about 1000 times higher among gut bacteria than among marine bacteria. This pattern is observed

for both the rates of HGT within ecological environments (i.e., HGT among gut bacteria versus

among marine bacteria) and the rates of crossing ecological environments (i.e., HGT between gut

and soil bacteria versus between marine and soil bacteria). The soil bacteria take an intermediate

position between the gut and the marine bacteria. Moreover, bacteria from the same environment

tend to share more matches than bacteria from different environments, consistent with previous

analyses (Smillie et al., 2011).

A similar analysis demonstrates that the HGT rate among Gram-positive bacteria and among

Gram-negative bacteria is much larger than between these groups (see Figure 5—figure supple-

ment 3). The groups of bacteria with GC-poor and GC-rich genomes exhibit a similar pattern (see

Figure 5—figure supplement 4). We note, however, that all these factors correlate with each other

(Gupta, 2000). From our analysis, the contribution of each factor to the effective rate of HGT there-

fore remains unclear.

HGT rates of genes differ strongly between functional categories
To better understand the factors that explain variations in observed HGT rates, we next conducted a

functional analysis of transferred sequences. To determine whether particular functions are overrep-

resented in the transferred sequences, we first queried 12 databases, each specifically dedicated to

genes associated with a particular function. Comparing to a randomised set of sequences (see Gene

enrichment analyses in Materials and methods) reveals that the gene functions of the transferred

sequences strongly impact the transfer rate, as we observe a 3.5 orders of magnitude variation

between the most and the least transferred categories (Figure 6 and Appendix 1—table 1).

More specifically, antibiotic and metal resistance genes are among the most widely transferred

classes of genes (resp. 37� and 4� enrichment compared to random expectation), in good agree-

ment with previous evidence (Huddleston, 2014; von Wintersdorff et al., 2016; Evans et al.,
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Figure 6. Functional enrichment of the sequences involved in horizontal gene transfer (HGT) based on the analysis

of 12 specialised databases. Enrichments for each gene category (vertical axis) are computed relative to a control

set obtained by sampling random sequences from the contigs that contained the matches (see

Materials and methods). Enrichment for genes offering resistance against various types of antibiotics and biocides

can be found in Supplementary file 5.
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2020). The enrichment of resistance genes is expected since their functions are strongly beneficial

for bacterial populations under specific, transient conditions. Interestingly, genes providing resis-

tance against tetracycline and sulfonamide antibiotics – the oldest groups of antibiotics in use – are

the most enriched (see the full list in Supplementary file 5). In addition, we also find a strong enrich-

ment among the transferred genes of genes classified as integrative and conjugative elements, sug-

gesting that these genes mediated the HGT events (Paquola et al., 2018; Nakamura et al., 2004).

In contrast, exotoxins and small regulatory RNAs are the least transferred genes ( » 100� depletion).

More generally, genes in the wider ‘Transport proteins’ and ‘Enzymes’ categories are strongly under-

represented in the detected HGT events.

To obtain a better understanding of the function of the transferred sequences, we annotated the

transferred sequences in two ways: using SEED subsystems (Overbeek et al., 2005) and using gene

ontology (GO) terms (Ashburner et al., 2000; Carbon et al., 2021). While the 12 curated databases

queried above are more complete and accurate on their specific domains, using the SEED subsystem

and GO analysis allows to test for over- or underrepresentation in a systematic way and for a

broader set of functions. To avoid false positives, we retained only the functions for which the results

showed good agreement between the SEED and GO approaches (see SEED subsystems and GO

terms ontological classification in Materials and methods).

The results of these functional profiling methods are in good agreement with the database

queries as the broad categories linked to ‘Phages, Prophages, Transposable elements, Plasmids’,

and to ‘Virulence, Disease, and Defense’ are found to be the most enriched, although with a smaller

enrichment (4.6- and 3.4-fold enrichment, respectively, see Supplementary file 6). Those findings

confirm the strong enrichment of expected functional categories among HGT events and validate

the good resolution of our methods.

In addition to previously known enriched functions, we also discovered a significant enrichment

(1.3�, conditional test adjusted p-value <10�16, see SEED subsystems and GO terms ontological

classification in Materials and methods) for genes in the ‘iron metabolism’ class. Indeed, a wide

range of iron transporters, parts of siderophore, and enzymes of its biosynthesis appeared in our

HGT database, in line with previous analysis focusing on cheese microbial communities

(Bonham et al., 2017). Hence, the results show that the horizontal transfer of genes related to iron

metabolism occurs in a wide set of species and is not restricted to species found in cheese microbial

communities. Notably, the proteins in the ‘iron metabolism’ functional category can be identified in

transferred sequences belonging to six different bacterial phyla.

Two other interesting SEED categories are found to be enriched. First, we found an enrichment

for genes belonging to the secretion system type IV (1.4� enrichment, conditional test adjusted

p-value <10�14). Among the seven types of secretion systems (Costa et al., 2015), we found an

enrichment only for type IV, a diverse and versatile secretion system, which has been shown to play

a role in the prokaryotic conjugation process (Wallden et al., 2010). Finally, we also found an enrich-

ment for proteins involved in spore DNA protection, an important step of the complex sporulation

process (Piggot and Hilbert, 2004). This enrichment is in good agreement with the recent finding

that some bacteria rely on HGT to acquire sporulation genes, although the mechanisms and benefits

of this strategy are still unclear (Ramos-Silva et al., 2019).

Discussion
In this study, we developed a computationally efficient method to identify recent HGT events. Apply-

ing this method to the genomes of the 93,481 organisms of the RefSeq database, we identified an

unprecedentedly large number of HGT events between bacterial genera. Our analysis reveals that

HGT between distant species is extremely common in the bacterial world, with 32.6% of organisms

detected as having taken part in an event that crossed genus boundaries in the last ~1000 years.

While a similar analysis has been conducted on a much smaller dataset (about 2300 organisms, see

Smillie et al., 2011), this study is, to our knowledge, the first to provide an extensive description of

HGT in the microbial world at this scale.

One striking result is the finding that HGT is also common between very distant organisms.

Indeed, in 8% of the organisms we studied, we found evidence for their involvement in a transfer of

genetic material with bacteria from another phylum in the last ~1000 years. The molecular
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mechanisms at play in these long-distance transfer events remain to be elucidated, for instance via a

dedicated study targeting families with very high exchange rate.

Analysing the statistical properties of the exact sequence matches between different genera, we

found that the tail of the MLD follows a power law with exponent �3. This observation is particularly

robust since the empirical power law spans between two and four orders of magnitude, with an

exponent always close to �3. To understand this phenomenon, we developed a model of HGT that

explains the observed �3 power law. The prefactor of the power law depends on a single lumped

parameter: the effective HGT rate. This made it possible to quantify the effective rate of HGT

between any pair of genera. Doing so, we found that the HGT rate varies dramatically between pairs

of taxa (Figure 3 and Figure 3—figure supplement 1), raising the question of which factors influ-

ence the HGT rate. Further analysis confirmed that the HGT rate decreases with the divergence

between the two bacteria exchanging material (Figure 5 and Figure 5—figure supplement 1) and

is larger for pairs of bacteria with similar properties, such as ecological environment, GC content,

and Gram staining (Figure 5—figure supplement 2, Figure 5—figure supplement 3 and Figure 5—

figure supplement 4). However, since all these properties are correlated, we could not disentangle

the independent contribution of each of those features to the HGT rate.

Finally, a functional analysis of the transferred sequences showed that the function of a gene also

strongly affects its chance of being exchanged (Figure 6). As expected, genes conferring antibiotic

resistance are the most frequently transferred. In contrast, some functional categories are strongly

underrepresented in the pool of transferred genes. For instance, genes that are involved in transcrip-

tion, translation, and related processes as well as those involved in metabolism are all depleted in

our HGT database. One potential explanation is that these genes generally co-evolve with their

binding partners (Jain et al., 1999). As such, their transfer would be beneficial to the host species

only if both the effector and its binding partner were to be transferred together. As simultaneous

HGT of several genes from different genome loci is very unlikely (unless they are co-localised), these

genes are less prone to HGT. For additional discussion of the functional constraints on HGT, we refer

to these reviews (Thomas and Nielsen, 2005; Popa and Dagan, 2011; Pál et al., 2005;

Cohen et al., 2011).

Our model of HGT is very robust to its simplifying assumptions. Most of them can be relaxed

without breaking the specific power-law behaviour with the �3 exponent. In fact, the only crucial

assumptions of the model are that HGT events have taken place continuously and at a non-zero rate

up to the present time (see Materials and methods). Whether HGT is a continuous process on evolu-

tionary time scales or instead occurs in bursts has been a matter of debate (Rivera et al., 1998;

Jain et al., 1999; Wolf and Koonin, 2013), and bursts of transfer events at some point in the past

might explain some of the deviations from the �3 power-law behaviour we observe (Figure 5). In

addition to HGT bursts, other complex evolutionary mechanisms that we do not consider in our

model could in theory explain those deviations, including mechanisms of gene loss that allow bacte-

ria to eliminate detrimental genes, or selfish genetic elements (van Dijk et al., 2020). Finally, the

RefSeq database is expected to contain misclassifications of contigs. This, as well as errors in

genome assembly could bias the estimation of the effective HGT rate A. In addition, the representa-

tion of the various strains and taxa in the database is highly variable; this bias might affect the esti-

mates, since our model assumes that there is a single parameter that represents the effective HGT

rate between two taxa, whereas in reality the HGT rate can be different for different subtaxa/strains.

In that case, the sampling bias of the database would bias the prefactor A towards the effective HGT

rate of subtaxa/strains which are more represented in the database.

Although it is widely accepted that bacteria often exchange their genes with closely related spe-

cies via HGT, our large-scale analysis of HGT sheds new light on gene exchange in bacteria and

reveals the true scale of long-distance gene transfer events. Evidently, long-distance exchange of

genetic material is a recurrent and widespread process, with specific statistical properties, suggest-

ing that HGT plays a decisive role in maintaining the available genetic material throughout

evolution.
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Materials and methods

Identification of exact matches
Reference bacterial sequences (O’Leary et al., 2016) were downloaded from the NCBI FTP server

on 3 April 2017 together with taxonomy tree files. We identified maximal exact matches using the

MUMmer 3.0 (Delcher et al., 2002) software with the maxmatch option, which finds all matches

regardless of their uniqueness. Specifically, to find all matches longer than 300 bp between sequen-

ces in files 1.faXandX2.fa and save it in the file Res.mumm, we used the following command:

mummer -maxmatch -n -b -l 300 1.fa 2.fa > Res.mumm.

Further details can be found in the following GitHub repository: https://github.com/mishashe/

HGT (Sheinman et al., 2021a, copy archived at swh:1:rev:

b32b6ebd11b49349893ec69fc4788cf7ede26003, Sheinman et al., 2021b).

Empirical calculation of the MLD for pairs of genera and sets of genera
To construct MLDs, we use all contigs longer than 105 bp. The MLD of a pair of genera i and j is

defined as

mijðrÞ ¼
MijðrÞ

‘i‘j
; (3)

where MijðrÞ is the number of matches of length r between all contigs of genus i and all contigs of

genus j. ‘x is the total length of the available contigs of genus x. The expected number of matches

found in the analysis of a pair of genera scales with the amount of sequence data available for these

genera. Normalising by ‘i‘j therefore ensures that mijðrÞ does not scale with the database size, so

that the mijðrÞ for different pairs of genera can be compared.

In Figure 2, Figure 5 and Figure 5—figure supplement 1, Figure 5—figure supplement 2, Fig-

ure 5—figure supplement 3, Figure 5—figure supplement 4, we show MLDs based on the

matches found between pairs of sequences from two sets of genera. These MLDs were calculated as

follows:

mðrÞ ¼

P

i;jmijðrÞ
P

i;j 1
; (4)

where the index i runs over the genera from the first set and the index j runs over the genera from

the second set.

Fitting the power law to the empirical data
To fit the power law (1) to the empirical data, we binned the tail (r > 300) of the empirical MLD

(using logarithmic binning) and then applied a linear regression with a fixed regression slope of �3

and a single fitting parameter, that is, the intercept lnðAÞ (CalculatePrefactor.m script in the GitHub

repository).

Analytical calculation of the MLD predicted by a simple model of HGT
A simple model based on a minimal set of assumptions can account for the observed power-law dis-

tributions. We first consider a particular event of HGT in which two bacterial genera gain a long

exact match of length K � 1 via HGT. After time t, the match is established in certain fractions of

the populations of both genera, denoted f1 and f2, respectively, possibly aided by natural selection.

By this time, the match is expected to be broken into shorter ones due to random mutations, which

we assume occur at a constant effective rate � ¼ ð�1 þ �2Þ=2 at each base pair, where �1 and �2 are

the mutation rates of genus 1 and 2.

Suppose that we now sample n1 genomes from genus 1 and n2 from genus 2 and calculate the

MLD according to Equation (3). Then in the regime 1 � r < K the contribution of the matches

derived from this particular HGT event is given by Ziff and McGrady, 1985; Massip and Arndt,

2013:
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m12 rjtð Þ ¼
f1n1f2n2K 2�tð Þ2e�2�tr

‘1‘2
¼
f1f2K

L1L2
2�tð Þ2e�2�tr: (5)

Here, L1 and L2 are the average lengths of the genomes sampled from the two genera. Equation (5)

shows that each individual HGT event contributes an exponential distribution to the MLD.

The full MLD is composed of contributions of many HGT events that happened at different times

in the past. Assuming a constant HGT rate �, the HGT events are uniformly distributed over time,

which results in the following full MLD (Massip et al., 2015):

m12ðrÞ ¼

Z

¥

0

�m12ðrjtÞdt¼
f1f2K

L1L2

�

�

1

r3
; (6)

which yields the observed power law with exponent �3.

The prefactor

A¼K
f1f2

L1L2

�

�
(7)

in Equation (1) can be interpreted as an effective transfer rate per genome length. It depends on

several parameters: the transfer rate from one species to another per genome length �=ðL1L2Þ, the

length of the transferred sequences K, the degree to which the sequence is establishment in the

population of the two genera f1 and f2, and the effective mutation rate �.

Robustness of the power-law behaviour
For simplicity, the above argument makes several strong assumptions, including that �, K, f1, and f2

are the same for all HGT events and that these events are distributed uniformly over time. However,

if these assumptions are relaxed the power law proves to be remarkably robust.

First, we could assume that all of the above parameters differ between HGT events, according to

some joint probability distribution PðK; �; f1; f2Þ. As long as this distribution itself does not depend

on the time t of the event, Equation (6) then becomes

m12ðrÞ ¼

Z ZZ Z

¥

0

PðK;�; f1; f2Þ

Z

¥

0

�m12ðrjtÞdtdK d�d f1d f2 ¼
�

L1L2

Kf1f2

�

� �

1

r3
; (8)

where the angular brackets denote the expectation value. The power law remains, except that the

prefactor now represents an average over all possible parameter values. Second, we can relax the

assumption that the divergence time t is uniformly distributed (i.e., that HGT events were equally

likely at any time in the past). In general, Equation (6) should then be replaced by

m12ðrÞ ¼

Z

¥

0

PdðtÞ�m12ðrjtÞdt; (9)

in which PdðtÞ is the divergence-time distribution. Previously, this distribution was assumed to equal

1, but other possibilities can be explored. For example, if instead we assume that xenologous

sequences are slowly removed from genomes due to deletions, the divergence times may be expo-

nentially suppressed,

PdðtÞ ¼ e�lt; (10)

in which case Equation (9) becomes:

m12ðrÞ ¼

Z

¥

0

PdðtÞ�m12ðrjtÞdt¼
f1f2K

L1L2

�

�
rþ

l

2�

� ��3

: (11)

This MLD again has the familiar power-law tail in the regime r� l=ð2�Þ. Generally, if the divergence-

time distribution can be written as a Taylor series
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PdðtÞ ¼
X

¥

i¼0

ait
i

i!
; (12)

Equation (9) evaluates to

m12ðrÞ ¼
f1f2K

L1L2

�

2�

X

¥

i¼0

ðiþ 1Þðiþ 2Þair
�3�i: (13)

The tail of this distribution is dominated by the first non-zero term in the series, because it has the

largest exponent. Again this results in a power law with exponent �3 provided a0 ¼ Pdð0Þ does not

vanish. That is, an exponent of �3 is expected provided HGT events have taken place at a non-zero

rate up to the present time (Massip et al., 2015, Massip et al., 2016).

Age-range estimation of the exact matches
According to the above model, the probability that a match of length r originates from an event

that took place a time t ago is given by

pðtjrÞ ¼ �m12 rjtð Þ=m12ðrÞ ¼ r3�ð2�tÞ2e�2�tr: (14)

The most likely time tML is found by setting the time derivative of Equation (14) to zero, which

results in

tML ¼ ð�rÞ�1: (15)

Above, we considered exact matches with a length r > 300 bp. Only in sequences involved in rather

recent HGT events such long matches are likely to occur, and hence the method can only detect

recent events. Equation (15) can provide a rough estimate for the detection horizon of the method.

To do so, we substitute r¼ 300 bp into Equation (15). Assuming a mutation rate � of 10�9 per bp

and per generation, this results in a detection horizon of tML »10
6 generations. Assuming a mean

generation time in the wild of about 10 hr (Gibson et al., 2018), this corresponds to approximately

1000 years. That is to say, we estimate that the HGT events we detect date back to the past

1000 years. We stress, however, that both the mutation rate and the generation time can strongly

vary from one species to the next; hence this estimate is highly uncertain.

By Equation (15), the event that created the match of 19,117 bp in Figure 1C–D is dated back

about 60 years ago, again with a large uncertainty. Vancomycin was discovered in 1952, but wide-

spread usage started only in the 1980s, and resistant strains were first reported in 1986

(Levine, 2006).

Restricted dataset
To quantitatively study HGT rate variations, we constructed a smaller, curated dataset to reduce the

risk of potential artefacts. The curated dataset encompasses only the exact sequence matches that

stem from the comparison of contigs larger than 106 bp, since short contigs are more likely to pres-

ent assembly or species assignment errors, or to originate from plasmid DNA. The resulting dataset

comprises 138,273 matches longer than 300 bp.

Hence, using the RefSeq database, we analysed all exact sequence matches longer than 300 bp

between bacteria from different bacterial families, filtering out all contigs smaller than 106 bp. For

some organisms we suspect an erroneous taxonomic annotation, due to their high similarity to

another species, much higher than what is expected based on their reported taxonomic distances.

For species for which we found very high similarity (i.e., a large number of long exact matches) to

several distant species, we further compared this species to species belonging to its annotated taxa

to compute the intra-taxon similarity. When the intra-taxon similarity was smaller than the similarity

to distant species, we concluded that the annotation was likely erroneous. We thus manually cleaned

the results, removing the comparisons between the species with suspected erroneous annotation

and the taxa with which it had large similarities. Using this criterion, we removed from our database

the comparison between the following accession numbers and all species of the mentioned taxa:

. Accession number NZ_FFHQ01000001.1 and all Enterococcus
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. Accession number NZ_JOFP01000002.1 and accession number NZ_FOTX01000001.1

. Accession number NZ_LILA01000001.1’ and all Bacillus

. Accession number NZ_KQ961019.1’ and all Klebsiella

. Accession number NZ_LMVB01000001.1’ and all Bacillus

. Pairwise comparisons between accession numbers NZ_BDAP01000001.1,
NZ_JNYV01000002.1, and NZ_JOAF01000003.1

This resulted in 138,273 unique matches.

Environment, Gram, and GC content annotation
Ecological annotation of bacterial genera is not well defined, and different members of the same

genus can occupy different ecological niches. Nevertheless, using the text mining engine of Google,

we annotated some of the genera as predominately marine, gut, and soil (see paragraph 11 in the

GitHub repository). Using the same approach we identified Gram-positive, Gram-negative, GC-rich,

and GC-poor genera. The results are summarised in Supplementary file 7.

Additional information about bacterial genomes (such as Gram classification or lifestyle) were col-

lected from PATRIC database metadata (Wattam et al., 2017).

Gene enrichment analyses
To assess the enrichment of genes in the set of transferred sequences, we generated a set of control

sequences as follows. For each match i present in wi contigs, we randomly sampled without replace-

ment a random sequence with the same length from each of those wi contigs. This way, the control

set takes into account the enrichment of certain species in the set of transferred sequences.

For the results of Figure 6 and Supplementary file 5, we analysed 12 specialised databases:

acquired antibiotic resistant genes (ResFinder database; Zankari et al., 2012), antibacterial biocide

and metal resistance genes database (BacMet database; Pal et al., 2014), integrative and conjuga-

tive elements (ICEberg database; Bi et al., 2012), virulence factors (VFDB database; Chen et al.,

2016), essential genes (DEG database; Luo et al., 2014), toxin-antitoxin systems (TADB database;

Shao et al., 2011), peptidases (MEROPS database; Rawlings et al., 2012), bacterial exotoxins for

human (DBETH database; Chakraborty et al., 2012), transmembrane proteins (PDBTM database;

Kozma et al., 2013), restriction enzymes (REBASE database; Roberts et al., 2015), bacterial small

regulatory RNA genes (BSRD database; Li et al., 2013), the transporter classification database

(TCDB; Saier et al., 2016), and enzyme classification database (Brenda; Placzek et al., 2017).

For each set of genes from a database, using the blast toolkit (Altschul et al., 1990), we calculate

the total number of unique match-gene hit pairs for the matches (see paragraph 10 in GitHub repos-

itory for the exact blast command). We weighted each hit to the database by wi to obtain a total

number of hits H:

H ¼
X

i

wini: (16)

Assuming random sampling of organisms, the standard error of H is given by

dH ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

i

win
2
i

r

: (17)

SEED subsystems and GO terms ontological classification
To connect identifiers of the SEED subsystems (Overbeek et al., 2005) to accession identifiers of

NCBI nr database, two databases were downloaded: nr from NCBI (NCBI Resource Coordinators,

2016) FTP and m5nr from MG-RAST (Meyer et al., 2008) FTP servers (on 17 January 2017). The

homology search of proteins of the nr database against m5nr was computed using diamond v0.9.14

(Buchfink et al., 2015). Proteins from the databases were considered to have similar function if they

shared 90% of amino acid similarity over the full length. Additional files for SEED subsystems (onto-

logy_map.gz, md5_ontology_map.gz, m5nr_v1.ontology.all) were downloaded from MG-RAST FTP

on the same date.

To annotate exact matches, open reading frames and protein sequences were predicted with

Prodigal v2.6.3 (Hyatt et al., 2010) and queried against nr using diamond. After that subsystems

classification was assigned to predicted proteins when possible.
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To assign GO terms to proteins of the HGT database, we queried them against the PFAM and

TIGRFAM databases using the InterProScan v5.36–75.0 (Zdobnov and Apweiler, 2001).

The scripts used to compute this analysis can be found in paragraph 6 of the GitHub repository.

The algorithms of these two systems of ontological classifications are very different. SEED subsys-

tems is based on protein homology search with diamond, where closely related proteins will be clas-

sified within the system. Assignment of GO terms is based on HMM profiles search, where more

distant relatives of proteins can be recognised.

To test for enrichment we conducted the Fisher exact test and a 95% confidence interval was

obtained for the enrichment. We considered as truly enriched (resp. underrepresented) classes only

the functions that were significantly enriched (resp. depleted) in both GO and SEED functional analy-

ses. For further details, see the code in the GitHub repository (Enrichment.R).
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Appendix 1

Phylogenetic analysis among HGT event in E. coli
If an HGT event happened between a species of taxon A and the common ancestor of species B and

B’ before the evolutionary splits of B and B’, we expect to observe two HGT events (e.g., between A

and B and between A and B’). Indeed, we find that closely related strains often have exactly the

same matches to distant families. As shown in Figure 1—figure supplement 2, pairs of E. coli strains

with high average nucleotide identity (ANI) tend to share such matches. However, this effect is not

very strong, probably because ANI does not accurately reflect the evolutionary distance between

pairs of strains. To investigate this further, we retrieved the sequence of each match between E. coli

strain and a species outside the Escherichia family. We then aligned all those matches (with blast) to

all other E. coli strains and kept all alignments with an E-value <10�5 to assess, for each HGT event,

its presence in each E. coli strain. The resulting matrix is shown in Figure 1—figure supplement 3.

One can see that E. coli strains cluster to compact groups, possibly reflecting their phylogeny (see

Figure 1—figure supplement 3 (a)). The abundance of matches among E. coli strains exhibits a bi-

modal distribution (see Figure 1—figure supplement 3 (b)), possibly indicating the direction of

HGT: matches that are abundant in E. coli have likely been transferred from E. coli to the distant

family, whereas matches that are rare in E. coli were likely transferred from the distant family to E.

coli . As shown in Figure 1—figure supplement 4, sharing a match to a different family (within a

blast hit) is not strongly related to ANI distances; the association can be detected only statistically,

as mentioned in Figure 1—figure supplement 2.

Comparing bacterial and archaeal genomes
It is known that bacteria and archaea have exchanged genetic material during their evolution

(Aravind et al., 1998; Nelson et al., 1999; Garcia-Vallvé et al., 2000). However, comparing all bac-

terial and archaeal RefSeq contigs longer than 106 bp, we find only several exact matches longer

than 300 bp.

The longest one is of length 727 (see sequence 1 in Supplementary file 8). This exact sequence

exists in archaeon Methanobacterium sp. MB1 and two bacteria: Mahella australiensis 50–1 BON

and Petrotoga mobilis SJ95. The amino acid sequence of this match hits the (2Fe-2S)-binding pro-

tein, known to exist in both the bacterial and archaeal kingdoms.

Mahella australiensis gen. nov., sp. nov. (phylum: Firmicutes) is a moderately thermophilic anaero-

bic bacterium isolated from an Australian oil well (Bonilla Salinas et al., 2004). Petrotoga mobilis

(phylum: Thermotogae) bacteria appear to be common members of the oil well microbial commu-

nity. Petroleum reservoirs are a unique subsurface environment characterised by high temperatures,

moderate to high salt concentrations, and abundant organic matter (Hu et al., 2016). Methanobac-

terium sp. Mb1, a hydrogenotrophic methanogenic archaeon, was isolated from a rural biogas plant

producing methane-rich biogas from maize silage and cattle manure in Germany (Maus et al.,

2013).

We found a blast hit with more than 99% identity to this match in nine other species: Pseudother-

motoga elfii DSM 9442, Clostridium clariflavum DSM 19732, Fervidobacterium pennivorans strain

DYC, Thermoanaerobacter sp. X513, Thermoanaerobacter sp. X514, Fervidobacterium pennivorans

DSM 9078, Thermoanaerobacterium thermosaccharolyticum DSM 571, and Fervidobacterium islandi-

cum strain AW-1.

Just next to this match the same species share another match of length 496 (see sequence 2 in

Supplementary file 8.fa). This match codes for signal peptidase II, also known to exist in both bacte-

rial and archaeal kingdoms and, probably, plays some role in an antibiotic resistance (Xiao and Wall,

2014).
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Enrichment of gene functions in HGT

Appendix 1—table 1. Enrichment of different gene categories relative to the control set (see Gene

enrichment analyses in Materials and methods).

Database Enrichment

Antimicrobial resistance, Zankari et al., 2012 36:6� 0:2

Biocide and metal resistance, Pal et al., 2014 3:6� 0:03

Restriction enzymes, Roberts et al., 2015 0:34� 0:01

Transmembrane proteins, Kozma et al., 2013

a 0:6� 0:02

b 0:98� 0:07

Peptidases, Rawlings et al., 2012 0:084� 0:004

Exotoxins, Chakraborty et al., 2012 0:006� 0:003

Integrative, conjugative, Bi et al., 2012 23:9� 0:1

Virulence factors, Chen et al., 2016 1:2� 0:026

Essential genes, Luo et al., 2014 0:23� 0:002

Small regulatory RNAs, Li et al., 2013 0:01� 0:005

Toxin-antitoxin, Shao et al., 2011 9:5� 0:6

Transport proteins, Saier et al., 2016

Channels/pores 0:32� 0:01

Electrochemical transporters 0:56� 0:01

Primary active transporters 0:96� 0:01

Group translocators 0:018� 0:002

Transmembrane electron carriers 0:026� 0:004

Accessory factors 0:08� 0:01

Incompletely characterised 0:24� 0:01

Enzymes, Placzek et al., 2017

Isomerases 0:61� 0:001

Hydrolases 0:39� 0:0004

Ligases 0:35� 0:001

Oxidoreductases 0:33� 0:0004

Transferases 0:33� 0:0004

Lyases 0:16� 0:0003
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