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Abstract

In this paper, we show that behavioral features can be obtained at a group level when

the individuals of the group are heterogeneous enough. Starting from a standard model of

Pareto optimal allocations, with expected utility maximizers and exponential discounting,

but allowing for heterogeneity among individual beliefs and individual time preference rates,

we show that the representative agent has an inverse S-shaped probability distortion function

and hyperbolic discount rates. As an application of this result, we show that an agent with

a probability weighting function as in Cumulative Prospect Theory (resp. an ambiguity

averse agent, resp. an hyperbolic discounting agent) may be represented as a collection of

agents with noisy beliefs (resp. heterogeneous beliefs, resp. heterogeneous constant discount

rates).

JEL Codes : G11; D81; D84; D87; D03; H43

Keywords: behavioral agent, hyperbolic discounting, probability weighting function, rep-

resentative agent, neuro�nance, ambiguity aversion.

1 Introduction

In this paper, we analyze a model of Pareto optimal allocations with von Neuman Morgenstern

utility maximizing agents and exponential discounting. Agents are heterogeneous, in the sense

�Corresponding author: jouini@ceremade.dauphine.fr, +33144054226
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that they might di¤er in their beliefs and in their time preference rates. At the aggregate level,

the social welfare function of this economy is characterized by a social/representative belief and

a social/representative time preference rate. We examine these social characteristics and we

show that we retrieve, at the aggregate level, behavioral properties that have been proved to be

true at the individual level in recent literature. The group acts as a behavioral agent and these

behavioral properties at the aggregate level are generated by heterogeneity alone.

We start by introducing natural notions of optimism and pessimism and we assume that

beliefs are heterogeneous enough in order to allow for optimistic as well as pessimistic agents

in the initial set of von Neuman Morgenstern utility maximizing agents. In such a setting,

we obtain that the representative agent can neither be everywhere optimistic nor everywhere

pessimistic; she is optimistic for the good states of the world and pessimistic for the bad states

of the world. As in the SP/A Theory of Lopes (1987), the representative agent behaves as if

she had fear (need for security) for very bad events and hope (desire for potential) for very

good events. The representative agent puts more weight on extreme events. We show that the

distribution of outcomes from the representative agent point of view is portfolio dominated by

the objective distribution. This means that heterogeneity generates doubt at the aggregate level.

This e¤ect is reinforced when agents are more risk tolerant or when there is more heterogeneity

among agents.

The representative agent distorts the objective distribution of aggregate endowment. We

analyze this distortion and we show that the distortion function (de�ned as the transformation

of the objective decumulative distribution function into the decumulative distribution function

of the representative agent) is inverse S-shaped as is the probability weighting function in

Cumulative Prospect Theory. We show that we are able to �t relatively well standard probability

weighting functions of the Cumulative Prospect Theory literature (Tversky and Kahneman,

1992, Tversky and Fox, 1995, Prelec, 1998, among others). We analyze how the distribution of

individual characteristics in the group governs the shape of the resulting representative agent
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distortion function. Following Gonzalez andWu (1999) terminology, we show that attractiveness

at the aggregate level is directly related to the average level of optimism while discriminability

is related to beliefs heterogeneity.

As far as discount rates are concerned, we obtain that the aggregate time preference rate

is decreasing, which is consistent with �hyperbolic discounting�. It converges to the time pref-

erence rate of the most patient individual. These properties are similar to those obtained in a

deterministic setting by Gollier-Zeckhauser (2005) and Lengwiler (2005) but are derived here

in a stochastic setting that takes into account beliefs heterogeneity.

As a main application of these results we obtain that a behavioral individual (i.e. an individ-

ual whose preferences are governed by hyperbolic discounting and who distorts the distributions

through a probability weighting function) behaves as would a group of standard heterogeneous

vNM individuals with exponential discounting. Our results can then be related to Neuroeco-

nomics. As underlined by Cohen (2005), �ndings from neuroscience �provide support for a view

of the brain as a confederation of systems and behavior as the outcome of an interaction among

these, (...) when disagreements arise, behavior re�ects the outcome of a competition among

systems�. We show that a model of the brain as a central planner who, for the evaluation

of a given prospect, maximizes the social welfare of a collection of competing doers (mental

processes with heterogeneous time preference rates and noisy beliefs about the prospect under

consideration) leads to hyperbolic discounting and to probability weighting functions that have

the same shape as in the Cumulative Prospect Theory (CPT). Furthermore, such a model of

individual behavior accomodates with a distinction between risk and uncertainty and exhibits,

for some values of the parameters, ambiguity aversion. In such a framework, ambiguity aversion,

inverse S-shaped probability weighting functions and hyperbolic discounting result from doers

heterogeneity.

Note that we don�t pretend to retrieve all features of CPT on the aggregate belief nor all

features of the time preference rate as in e.g. Loewenstein and Prelec (1992). We only retrieve
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one of the three main features of CPT, namely the inverse S-Shaped probability distribution

weighting function (the other two being the presence of a reference point and the presence of

loss aversion). This comes from the fact that we have introduced heterogeneity on the beliefs

only, hence the behavioral property that we retrieve deals with the belief only. We also only

obtain the �hyperbolic�property of the time preference rate and not other behavioral properties

such as the di¤erent (discounting) treatment of gains and losses.

The paper is organised as follows. Section 2 presents the model. Section 3 analyses the

properties of the belief of the representative agent, while Section 4 analyses the properties of

the time preference rate of the representative agent. Section 5 provides possible applications.

2 The Setting

We consider an economy with a single consumption good and with agents who have the same

utility function but heterogeneous beliefs. Aggregate endowment in the consumption good is

described by a random variable e� de�ned on a probability space (
; F; P ) : We let I denote

the set of heterogeneous agents. We assume that the common utility function is CRRA with

derivative given by u0(x) = x�
1
� . Each agent has a subjective belief Qi and wants to maximize

her von Neumann Morgenstern utility for consumption of the form Ui (c) = EQi [u (c)] : We

let M i denote the density of Qi with respect to the probability P , hence agent i�s utility for

consumption can equivalently be written in the form Ui (c) = E
�
M iu (c)

�
:

In such an economy, we consider the aggregate utility function U de�ned as the solution of

the following maximization program

U(e�) � maxP
i2I y

i=e�

X
i2I
�iE

�
M iu(yi)

�

where (�i) are given positive weights. The aggregate utility function corresponds to the value

of the social welfare function at the Pareto optimum when agent i is granted a weight �i by a
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social planner. The index i may also represent a group of agents with common beliefs M i and

yi then represents the total consumption of the group and �i the sum of the weights granted

by the social planner to the individuals in the group. When the social planner grants the same

weight to all the agents in the economy, the weight �i represents the proportion of agents that

have the same belief M i: From a social planner point of view, the aggregate utility function

corresponds to the highest social utility level among all possible endowment distributions across

agents.

The number of agents can be �nite or in�nite. In the case of an in�nite number of agents,

sums are replaced by integrals. We obtain the following representation result.

Proposition 1 Representative Agent

The aggregate utility for consumption is given by

U(e�) = E [Mu(e�)]

with

M =

 X
i2I
i
�
M i
��! 1

�

(1)

for i = �
�
i : The representative agent belief is then given by M =

�P
i2I i

�
M i
��� 1� .

This means that, at the Pareto optimum, the aggregate utility is given by the utility of a

representative agent endowed with an average belief (and the same utility function as each of

the agents). In particular, if all the agents share the same belief, then the representative agent

will share this common belief. If we think of e� as a given prospect for the group I of agents, the

aggregate utility U(e�) corresponds to the social welfare associated with the optimal allocation

of e� across the members of the group and is given by the utility of the representative agent.

In the same way as the representative agent belief M is an average of the individual beliefs

M i, we show in the next corollary that the density fM of e� for the representative agent is an
5



average of the densities f i of e� for the di¤erent agents. For this purpose, let us assume that

for all i 2 I; the distribution of e� for agent i admits a density1 (with respect to the Lebesgue

measure on the real line), denoted by f i: We also assume that the distribution of e� under the

probability P admits a density and we denote it by f: Since we don�t have E [M ] = 1 (except in

the speci�c logarithmic utility setting) we need the following technical de�nition. We say that

the distribution of a random variable X admits a �density fX for the representative agent� if

for all function h, we have E [Mh (X)] =
R
h (x) fX (x) dx: Moreover, in order to analyse the

relative weights of the di¤erent states of the world from the representative agent point of view,

we introduce the probability measure Q de�ned by dQ
dP �

M
E[M ] .

Corollary 2 The distribution of e� admits the following density for the representative agent

fM =

 X
i2I
i
�
f i
��!1=�

which is a power average of the initial densities. In particular, for � = 1; the distribution of e�

for the representative agent is a mixture of the individual subjective distributions.

As an immediate consequence of Corollary 2, we get that for any measurable real-valued

function '; the distribution of ' (e�) admits the density fM;' =
�P

i2I i
�
f i;'

���1=� for the
representative agent where f i;' denotes the density of the distribution of ' (e�) for agent i: This

implies in particular that in the case � = 1; if each agent anticipates a normal distribution on

log e�, then the distribution of log e� is a mixture of normal distributions.

1 In other words, the distribution of e� under Qi is absolutely continuous with respect to the Lebesgue measure.
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3 Behavioral properties of the group

3.1 Qualitative properties

The next two simple examples illustrate the qualitative properties of the endowment distribution

from the representative agent point of view. The proofs can be found in the Appendix.

Example 1. Let us assume that all utility functions are logarithmic (� = 1): We have

EQ [e�] =
X
i2I
iE

Qi [e�] ;

which means that the mean at the aggregate level is given by an arithmetic average of the

individual means. The variance is given by

V arQ [e�] =
X
i2I
iV ar

Qi [e�] + V ari
�
EQi [e�]

�
;

where V ari
�
EQi [e�]

�
�
P
i2I i

�
EQi [e�]

�2��Pi2I iE
Qi [e�]

�2
measures beliefs (on the mean)

heterogeneity. This means that the variance at the aggregate level is given not only by an

arithmetic average of the individual variances, but also by an additional term related to beliefs

dispersion. The variance is �increased�at the aggregate level and this increase is proportional

to the level of beliefs heterogeneity: beliefs heterogeneity generates �doubt�.

Example 2. Let us assume that the objective distribution of aggregate endowment is lognormal

with e� �P lnN (�; �2) and that we have two equally weighted groups of agents, both with

lognormal subjective distributions for aggregate endowment, e� �Qi lnN (�i; �2) for i = 1; 2:

The distribution of log e� for the representative agent is not Gaussian and when agents�beliefs

are heterogeneous enough (j�1 � �2j > 2�p
� ), the distribution of log e

� is bimodal (see Figure 1).

When � = �1+�2
2 ; the distribution of log e� for the representative agent is Portfolio Dominated2

2Let us recall that a distribution f dominates a distribution g in the sense of Portfolio Dominance (f �PD g)
if we have

R
u0(x)(x� a)f(x)dx = 0 =)

R
u0(x)(x� a)g(x)dx = 0 for any real number a and any non-decreasing

concave function u: This concept has been introduced in the context of portfolio problems by Landsberger and
Meilijson (1993) and further studied by Gollier (1997). It characterizes the changes in the distribution of the
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by the objective distribution. Hence, aggregate endowment e� is considered as more risky by

the representative agent than it actually is. In particular, we have V arQ [log e�] > V arP [log e�].

This last property still holds for general (�i). Figures 1 and 2 illustrate these conclusions in

di¤erent settings. Note that Figure 1 is similar to Figure 8.2 in Shefrin (2005). For � > �0 and

associated representative agent probability measures Q� and Q�
0
; we have dQ�

dQ�0
= h�;�0(e

�) where

h�;�0 is symmetric with respect to
�1+�2
2 , decreasing before �1+�2

2 and increasing after �1+�2
2 .

A higher level of risk tolerance induces then a portfolio dominated shift in the representative

agent�s distribution. In particular, V arQ [log e�] increases with the level or risk tolerance �:

The interpretation is the following. When there is heterogeneity, each agent consumes a larger

proportion of aggregate endowment in states of the world that she considers more likely. This

leads to heterogeneous allocations and generates variance at the aggregate level. However, this

e¤ect is counterbalanced by risk aversion. Consequently, the higher the level of risk tolerance,

the more heterogeneous the members of the group are in their optimal allocations. Figure 2

illustrates this result.

For normal distributions N (�i; �2), there is a natural order on the set of possible densities

induced by the natural order on the means (�i). Agents with a larger (resp. smaller) �i can

be referred to as more optimistic (resp. pessimistic). We generalize these notions of relative

pessimism/optimism in the following de�nition. If we assume that P is the objective probability,

then we are also able to introduce absolute notions of pessimism/optimism.

De�nition 1 For i; j 2 I; agent i is said to be more optimistic than agent j and we denote it by

fi <opt fj if and only if fifj is nondecreasing. The optimism relation <opt is an order on the set

(fi)i2I : If P is the objective probability, then agent i is said to be optimistic (resp. pessimistic)

if fif is nondecreasing (resp. nonincreasing).

De�nition 1 can be rephrased in terms of Monotone Likelihood Ratio Dominance (MLR)3

returns of the risky asset that lead to an increase in demand for the risky asset irrespective of the risk-free rate.
It is then related to the degree of riskiness. See also Jouini and Napp (2008).

3This concept is widely used in the statistical literature and was �rst introduced in the context of portfolio
8



: agent i is more optimistic than agent j if the distribution of e� for agent i (i.e., under Qi)

dominates the distribution of e� for agent j (i.e., under Qj) in the sense of the MLR. For a

given agent i; if we let gi denote the transformation of the objective decumulative distribution

function F into the agent�s subjective decumulative distribution function Fi, i.e. such that

Fi = gi � F; it is easy to check that fif is nondecreasing (resp. nonincreasing) if and only if gi is

convex (resp. concave). This means that our concept of optimism/pessimism is the analog, in

the expected utility framework, of the concept of optimism/pessimism introduced by Diecidue

and Wakker (2001) in a RDEU framework. Other concepts of optimism/pessimism have been

proposed in the literature. In particular, Yaari (1987), Chateauneuf and Cohen (1994) and Abel

(2002) propose a de�nition based on First Stochastic Dominance 4. Note that MLR dominance

is stronger than FSD.

A MLR dominated shift for a given distribution reduces the mean and if fi <opt fj then

we have EQi [e�] � EQj [e�]. This last condition characterizes the MLR dominance when we

restrict our attention to a family of lognormal distributions with the same variance parameter

and we then retrieve that agent i is more optimistic than agent j if and only if �i > �j : In that

case, optimistic (resp. pessimistic) agents are then characterized by �i > � (resp. �i < �) as in

Shefrin (2005).

Proposition 3 We suppose that there are at least one optimistic agent denoted by fopt and

one pessimistic agent denoted by fpess in the set I of agents: We also assume that lim+1
fopt
f =

lim�1
fpess
f = +1 and lim�1

fopt
f = lim+1

fpess
f = 0:

1. The representative agent can neither be optimistic, nor pessimistic, i.e. fMf is non monotone.

2. The representative agent overestimates the weight of the �good states of the world� (high

problems by Landsberger and Meilijson (1990). More precisely, Landsberger and Meilijson (1990) showed that in
the standard portfolio problem a MLR shift in the distribution of returns of the risky asset leads to an increase
in demand for the risky asset for all agents with nondecreasing utilities.

4More precisely, in an expected utility framework Abel (2002) de�nes pessimism by the condition Fi � F
(First Stochastic Dominance) that corresponds to the condition gi � Id introduced by Chateauneuf and Cohen
(1994) in a RDEU setting.
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values of e�) as well as the weight of �bad states of the world� (low values of e�), i.e.

fM (x) � f(x) for x � x and fM (x) � f(x) for x � x where x and x are given real

numbers.

3. If one of the agents denoted by fmaxopt is more optimistic than all the other agents and if

one of the agents denoted by fmaxpess is more pessimistic than all the other agents, then the

representative agent behaves like the most pessimistic individual for low values of e� and

behaves like the most optimistic individual for high values of e�; i.e. fM �+1 fmaxopt and

fM ��1 fmaxpess :

By de�nition, foptf (resp. fpess
f ) is nondecreasing (resp. nonincreasing). In Proposition 3,

we slightly reinforce these conditions by further assuming that the values of foptf (resp. fpessf )

range from zero to in�nity. Notice that these conditions are satis�ed in the case of lognormal

distributions.

It appears from this proposition that as long as there are optimistic as well as pessimistic

agents in the set I of agents, the representative agent behaves like the individual agents consid-

ered in the behavioral economics and/or psychology literature. Indeed, she puts more weight

on small probability events with large consequences as in the Cumulative Prospect Theory of

Kahneman and Tversky (1992). She has fear (need for security) for very bad events and hope

(desire for potential) for very good events as in the SP/A Theory of Lopes (1987). Everything

works then as if the representative agent distorted the objective distribution of e�. In the next

section, we analyze more precisely how this distortion operates.

3.2 The distortion function

Let us �rst recall that in the context of Cumulative Prospect Theory, the probability weighting

function is de�ned as the function that transforms the decumulative objective distribution

function into the decumulative subjective distribution function. This probability weighting

function operates on any prospect. In our framework, we have seen that the representative
10



agent distorts the objective distribution of e�: In the present section, we will describe this

distortion in terms of a transformation of the decumulative distribution function of e� and we

will see that this distortion function has the same shape as the probability weighting function

of the Cumulative Prospect Theory. We will then use the typology introduced by Gonzalez and

Wu (1999) on the probability weighting functions to describe our distortion function and to

relate its characteristics to the individual beliefs of the agents. In particular, we analyze how

shifts in the distribution of individual beliefs impact the distortion function.

With the same notations as in Section 2, we denote by g the distortion function that trans-

forms the objective decumulative distribution function
R1
x f(s)ds into the decumulative distri-

bution function of the group
R1
x fM (s)ds; i.e. such that g(

R1
x f(s)ds) =

R1
x fM (s)ds: The next

proposition assumes that there are at least one optimistic and one pessimistic agent in the set

I and characterizes the shape of g under this assumption.

Proposition 4 1. In the lognormal setting with log e� �Qi N
�
�i; �

2
�
for i = 1; :::; N and if

the set I is made of both optimistic and pessimistic agents then the function g is inverse

S-shaped: concave then convex.

2. In the general setting, if there are at least one optimistic agent fopt and one pessimistic

agent fpess with lim+1
fopt
f = lim�1

fpess
f = +1 and lim�1

fopt
f = lim+1

fpess
f = 0 and

if g is continuously twice di¤erentiable on [0; 1], then g is concave for small probabilities,

and convex for high probabilities.

The function g has then the same shape as the probability weighting function of the Cumu-

lative Prospect Theory. This is in particular illustrated in Figure 3. A variety of methods have

been used to determine the shape of the probability weighting function. Tversky and Kahne-

man (1992), Fox and Tversky (1995) and Prelec (1998) among others specify parametric forms

(respectively ! (p) = p

[p+(1�p) ]1=
, ! (p) = �p

[�p+(1�p) ]1=
and ! (p) = exp� (� log p)) and

estimate them through standard techniques. Figure 4 permits to show that with a well chosen
11



distribution of agents�characteristics we obtain a distortion function that perfectly �ts Prelec

(1998)�s function. Wu and Gonzalez (1996, 1998) and Abdellaoui (2000) avoid the potential

problems of parametric estimation and directly derive from experimental studies the shape of

the probability weighting function at the aggregate or individual level. The results of all these

studies are (mostly) consistent with an inverse S-shaped weighting function, concave for small

probabilities, and convex for moderate and high probabilities.

In the lognormal setting, if we denote by �i the quantity �i =
�i��
� ; it is interesting to

remark that the distortion function g only depends on the �is and on the relative proportions

is and is independent of � and �. In other words, the distortion function only depends on how

much the agents deviate from the objective mean in terms of standard deviation.

3.3 Discriminability, attractiveness and individual agents�beliefs

Let us analyse how the main features for the shape of the representative agent�s distortion

function g; for a given aggregate endowment e�; are related to the individual characteristics

of the agents in I. Gonzalez and Wu (1999) exhibit two main features for the shape of the

probability weighting function in the context of CPT: diminishing sensitivity and attractiveness.

Attractiveness characterizes the absolute level of the function. Indeed, an inverse S-shaped

function can be completely below the identity line, can cross the identity line at some point

or can be completely above the identity line. Betting on the chance domain is more attractive

when the graph of the probability weighting function graph is more �elevated�. The de�nition

of attractiveness is expressed in terms of First Stochastic Dominance (FSD). The probability

weighting function g1 is more attractive than the probability weighting function g2 when the

subjective density f1 dominates the subjective density f2 in the sense of the FSD. In our setting,

we will say that a (representative agent�s) distortion function g1 associated with a set I1 of agents

is more attractive than a (representative agent�s) distortion function g2 associated with a set I2

of agents if fMI1 dominates f
M
I2
in the sense of the FSD. Attractiveness of the distortion function

12



is related to the level of optimism of the representative agent. In particular, since FSD is

weaker than MLR, a more optimistic representative agent is associated with a more attractive

distortion function.

Let (i) and (
0
i) denote two possible distributions of agents�density functions. If the set

(fi)i2I of agents�density functions is totally ordered with respect to the FSD order, we will

say that the distribution (0i) dominates the distribution (i) in the sense of the FSD if for any

increasing family (fi) ; we have
P
0ifi <FSD

P
ifi: In other words, the distribution (

0
i) puts

more weight on more attractive distributions. If the set (fi)i2I of agents�density functions is

totally ordered with respect to the optimism order <opt; we will say that the distribution (0i)

dominates the distribution (i) in the sense of the MLR if whenever fi <opt fj we have
0i
i
� 0j

j
:

In other words the ratio between the two densities (0i) and (i) increases with agents�optimism

and, in particular, the distribution (0i) puts more weight on more optimistic agents.

In the next proposition we analyze the impact of shifts in the distribution of agents char-

acteristics on the attractiveness of the distortion function and on the level of optimism of the

representative agent.

Proposition 5 1. For log-utility functions and in the case of lognormal distributions log e� �Qi

N
�
�i; �

2
�
for i = 1; :::; N; with the same variance parameter �2, a FSD shift in the dis-

tribution of the means (�i) increases attractiveness of the representative agent�s distortion

function.

2. For log-utility functions and general distributions, if the set (fi)i2I of agents�density func-

tions is totally ordered with respect to the FSD order then a FSD shift in the distribution of

agents�density functions increases attractiveness of the representative agent�s distortion

function.

3. For general CARA utility functions and general distributions, if the set (fi)i2I of agents�

density functions is totally ordered with respect to the optimism order <opt then a MLR
13



dominated shift in the distribution of agents�density functions increases attractiveness of

the representative agent�s distortion function and the level of pessimism of the represen-

tative agent.

When all agents have logarithmic utility functions, attractiveness at the representative agent

level increases with the weight granted to the more attractive density functions. Since FSD is

weaker than MLR, attractiveness at the representative agent level increases with the weight

granted to the more optimistic agents. This is illustrated by Figure 5. As shown in Proposition

5, this last property can be extended to power utility functions if we replace FSD shifts on the

distribution of agents�density functions by MLR shifts.

Diminishing sensitivity corresponds to the fact that people become less sensitive to changes

in probability as they move away from a reference point. In the probability domain, the two

endpoints 0 (certainly will not happen) and 1 (certainly will happen) serve as reference points

and under this principle, increments near the endpoints of probability loom larger than incre-

ments near the middle of the scale. This concept is related to the concept of discriminability in

psychophysics literature and can be illustrated by two extreme cases: a function that approaches

a step function and a function that is almost linear.

In our setting we say that a representative agent�s distortion function g1 associated with a

set I1 of agents exhibits more discriminability than a representative agent�s distortion function

g2 associated with a set I2 of agents if there exists x� 2 [0; 1] such that g1 � g2 for x � x� and

g1 � g2 for x � x�: In the next proposition we show that the level of discriminability of the

representative agent�s distortion function is closely related to the level of disagreement among

agents.

Let us consider as above a family of agents with lognormal distributions lnN (�i; �2). We

denote by (�i) the support of the distribution of the mean parameter and by (i) the associated

weights. Recall that a mean preserving spread is de�ned as a modi�cation of the distribution

set (i) on a set of three locations �1 < �2 < �3 with associated increments �1 � 0; �2 � 0
14



and �3 � 0 such that
P3
i=1 �i = 0 and

P3
i=1 �i�i = 0: A mean preserving spread will be said

symmetric if �1 = �3:

Proposition 6 For log-utility functions and in the case of lognormal distributions log e� �Qi

N (�i; �2), a symmetric mean-preserving spread on the distribution of the means (�i) decreases

discriminability of the representative agent�s distortion function.

Intuitively, this proposition means that when the level of disagreement among agents in-

creases, then the representative agent focuses more on the endpoints of the probability domain

and is less sensitive to probability variations in the middle of the scale. Figure 6 illustrates this

result. It shows, in the setting with two agents, that discriminability decreases with the level of

disagreement. When both agents agree on the objective distribution, the probability weighting

function is linear. When the agents disagree, one of them overestimating the average payo¤ by

twice the standard deviation and the other underestimating it by twice the standard deviation,

we obtain a function that approaches a step function.

4 The Setting with Heterogeneous Time Preference Rates

In this section, we extend our framework in order to take into account the impact of time and

of heterogeneous time preference rates across the agents. Aggregate endowment at a given date

t is described by a random variable e�t : Agents have di¤erent time preference rates (�i) and

di¤erent subjective beliefs Qi: We let M i
t denote the density at date t of Qi with respect to the

objective probability P and Dit � exp (��it) the discount factor of agent i between date 0 and

date t. As previously, we consider the aggregate utility function U de�ned as the solution of

the following maximization program

U(e�t ) = maxP
i2I y

i
t=e

�
t

X
i2I
�iE

�
M i
tD

i
tu(y

i
t)
�

15



where (�i) are given positive weights. Each agent is then characterized by a beliefM i
t ; a discount

factor Dit and a weight �i:

We will say that the characteristics
�
M i
t ; D

i
t; �i

�
i2I are independent if for almost all states

of the world !; M i
t (!) ; D

i
t and �i are independent

5 as random variables on I: This property

will be, in particular, satis�ed when I can be written in the form I = J � K � L and when

there exist characteristics
�
�M j
t

�
j2J

;
�
�Dkt
�
k2K and

�
��`
�
`2L such that for i = (j; k; `) we have�

M i
t ; D

i
t; �i

�
=
�
�M j
t ;
�Dkt ;

��`

�
: Roughly speaking, this property means that there is no speci�c

correlation between beliefs and time preferences and that the weights granted by the social

planner to the individuals in the economy are independent of their time and belief characteristics.

This condition is, in particular, satis�ed when beliefs and time preferences are independent

and when the agents are uniformly weighted in the social welfare function. This is also the case

when the agents�weights are given by their relative wealth and when wealth, beliefs and time

preferences are independent.

Assuming uniform weights is quite reasonable since there is no particular reason for the

social planner to favor one agent with respect to another agent. The independence of beliefs

and time preference rates is more disputable. They may be positively as well as negatively

correlated, the independence condition may then be analyzed as a central scenario.

We easily obtain the following analog of Proposition 1 in the framework with heterogeneous

time preference rates.

Proposition 7 If the characteristics
�
M i
t ; D

i
t; �i

�
i2I are independent, then the aggregate utility

for consumption is given by

U(e�t ) = E [MtDtu(e
�
t )]

5More precisely, for any real valued (measurable) functions f; g; h de�ned on the real line, we have

1
jIj

X
i2I

f
�
M i
t

�
g
�
Di
t

�
h (�i) =

 
1
jIj

X
i2I

f
�
M i
t

�! 
1
jIj

X
i2I

g
�
Di
t

�! 
1
jIj

X
i2I

h (�i)

!
a.e.
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with

Mt =

 
1

jIj
X
i2I

�
M i
t

��! 1
�

and Dt =

 
1

jIj
X
i2I

�
Dit
��! 1

�

:

The representative agent belief is then given by Mt =
�
1
jIj
P
i2I
�
M i
t

��� 1
�
and the representative

agent time discount factor is given by Dt =
�
1
jIj
P
i2I
�
Dit
��� 1

�
:

This means that all the properties established in the previous section on the belief of the

representative agent remain valid.

The properties of the representative agent time preference rate are easy to obtain. Note

that the properties of a �consensus� time preference rate when there is heterogeneity on the

individual time preference rates (and not on the beliefs) have already been studied in varying

contexts. Indeed, the problem of the aggregation of the utility discount rates has been studied by

Reinschmidt (2002) through a certainty equivalent approach, by Gollier and Zeckhauser (2005)

and Nocetti and al. (2008) through a Benthamite/Pareto optimal approach, and by Lengwiler

(2005) through an equilibrium approach. All these papers adopt a deterministic setting with no

divergence on the beliefs of the agents. On the contrary our aim here is to derive the properties

at the aggregate level simultaneously on the beliefs and on the time preference rate (and in a

quite general stochastic setting).

We know that the representative agent time discount factor is given byDt =
�P

i2I
1
jIj
�
Dit
��� 1

�

where Dit � exp (��it) : We introduce the representative agent marginal time preference rate

�m as well as the representative agent average time preference rate �a; respectively de�ned by

�Dm (t) � �
D0t
Dt

and �Da (t) � �
1

t
logDt:

The average discount rate corresponds to the rate which, if applied constantly for all in-

tervening years, would yield the discount factor Dt; whereas the marginal discount rate is the

rate of change of the discount factor. It is easy to recover the average discount rate from the

17



marginal discount rate since �a (t) =
1
t

R t
0 �m (s) ds:

Let us state the following properties of the average and marginal time preference rates.

Proposition 8 Properties of the representative agent time preference rate

1. The representative agent average and marginal time preference rates are given by

�Da (t) = �1
t
log

"
1

N

NX
i=1

exp (���it)
#1=�

;

�Dm (t) =

NX
i=1

exp (���it)PN
i=1 exp (���it)

�i:

2. The representative agent time preference rates are lower than the average of the time

preference rates, i.e.

�Dm (t) �
1

N

NX
i=1

�i = �
D
m (0) and �

D
a (t) �

1

N

NX
i=1

�i = �
D
a (0)

with strict inequalities when �i 6= �j for some (i; j) in I.

3. �Behavioral Properties� : The representative agent time preference rates are decreasing

with time. Moreover, the asymptotic discount rates are given by the lowest time preference

rate, i.e. limt!+1 �Da (t) = limt!+1 �
D
m (t) = infi (�i) : The representative agent behaves

for t large enough like the most patient agent.

These formulas permit explicit computations for speci�c distributions of the individual time

preference rates. For instance, if we assume a Gamma 6 distribution (�; �) for the �is we

obtain

�Dm (t) =
m2

m+ �v2t

6As mentioned in Section 2, sums should be replaced by integrals when dealing with continuous distributions.
The density function of a gamma distribution  (�; �) is given by ��

�(�)
x��1 exp(��x): Its mean m and its variance

v2 are respectively given by m = �
�
and v2 = �

�2
:
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where m and v2 respectively denote the mean and the variance of the considered distribution.

It is immediate on this simple example that the marginal discount rate decreases with time and

is hyperbolic as in Weitzman (1998, 2001). Furthermore, the speed of the decrease increases

with the level of heterogeneity v2 as well as with the level of risk tolerance.

The next proposition provides comparative statics results for shifts in the distribution f� of

the individual time preference rates:

Proposition 9 1. A FSD (resp. SSD) dominated shift in the distribution f� of individual

time preference rates decreases the representative agent average time preference rate �Da :

2. A MLR (resp. PD) dominated shift in the distribution f� of individual time preference

rates decreases the representative agent marginal time preference rate �Dm:

Second Stochastic Dominance as well as Portfolio Dominance are related to a notion of risk

or of dispersion while First Stochastic Dominance and Monotone Likelihood Ratio Dominance

are related to notions of shifts from low values to high values. Roughly speaking, Proposition 9

introduces the right concepts of dispersion and shifts and shows that more dispersion in agents�

time preference rates as well as shifts to lower values of individual time preference rates decrease

the representative agent�s time preference rate.

5 Applications

We have seen that starting from a standard model with optimistic as well as pessimistic vNM

and exponential discounting agents, we obtain, at the representative agent level, properties

such as an inverse S-shaped distortion function and hyperbolic discounting, that are in line

with recent empirical and experimental results. A possible interpretation of such a result is to

consider that each individual subject to experiments behaves as a group of individuals at the

equilibrium. This provides us with a possible representation of the brain as an organization

with a social planner and heterogeneous doers. Some doers are overoptimistic while others are
19



overpessimistic. Similarly, some doers are impatient while others are more patient. Such an

approach is in the same spirit as Brocas and Carillo (2008) where the authors divide the brain

into two systems: an impulsive/myopic one and a cognitive/forward-looking one. However,

while Brocas and Carillo (2008) model mainly relies on information asymmetries and principal-

agent models, our model relies on decentralization and optimal allocation approaches. Such a

decomposition of the brain into di¤erent systems that are possibly in con�ict are based on recent

neuroscience and psychology evidences (see Cohen, 2005) related to intrapersonal tensions:

temporal horizon con�icts, information con�icts (that may lead to information asymmetries as

in Brocas and Carillo, 2008, but also to information diversity and beliefs heterogeneity as in

our model) or utility evaluation con�icts. In economics, such decompositions have been �rst

considered by Thaler and Shefrin (1981) and Shefrin and Thaler (1988).

5.1 Noisy Beliefs and Cumulative Prospect Theory

In this section we show that an individual who evaluates lotteries through the social welfare

function associated with a collection of agents (neural systems or brain areas), each of them

with speci�c noisy beliefs, is a CPT agent in the sense that she distorts the distribution of the

lotteries through an inverse S-shaped weighting function (commpon to all lotteries).

We start by considereing normal distributions. Let us consider an individual who when facing

a lottery whose payo¤ x is described by a normal distribution N (�; �2) passes this information

for evaluation to separate systems. Each system i has a subjective belief Qi under which x

has a normal distribution N
�
�+ �i�; �

2
�
: The parameter �i is �xed independently of x and

characterizes the system i. It might result from noise in the information transmission. In that

case there is no speci�c reason for the average perceived signal to be biased and we should haveP
�i = 0. It might also result from a specialization of the di¤erent systems, some systems being

optimistic, i.e., �i > 0 and others being pessimistic, i.e., �i < 0: We assume that the individual

acts like a central planner looking for a Pareto optimal decomposition of the payo¤s from the

20



lottery among the systems and evaluates the lottery through the social welfare function, i.e.,

U�(x) = maxP
xi=x

X
i

iE
Qi
�
u(xi)

�
(2)

where the parameters i are the weights granted to the systems by the central planner or the

distribution of the �is.

Proposition 10 Consider an individual who evaluates any lottery x in the space X of lotteries

with normal payo¤s through U�(x):

1. The individual is a CPT agent over the space X in the sense that there exists a probability

weighting function g� such that, for all lotteries x in X with density fx we have U�(x) =R
fx;�(s)u (s) ds where g�(

R1
t fx(s)ds) =

R1
t fx;�(s)ds:

2. If there exist at least one optimistic and one pessimistic system, then g� is inverse S-

shaped.

3. A MLR shift on the distribution of the �is increases attractiveness of the probability weight-

ing function g�.

This means that a Pareto optimal decomposition leads to an overall (representative agent)

evaluation that corresponds to the valuation that would be provided by a behavioral agent.

The level of discriminability would then be directly related to the level of noise as illustrated in

Proposition 6 in the case of log utility functions. The level of attractiveness would be associated

to the level of systematic bias (if any) as a direct corollary of Proposition 5.

The behavior of the individual and the de�nition of the social welfare function U� can be

naturally generalized to any lottery whose payo¤ is a function of a normal distribution. Indeed,

consider a lottery whose payo¤ is of the form v = '(x) where x is normally distributed as above
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and where ' is a Borelian function. We may de�ne U�(v) by

U�(v) = maxP
vi=v

X
i

iE
Qi
�
u(vi)

�

where the Qis and the �is are the same as for x.

The following result extends the result of Proposition 10 to general lotteries. It relies on

the fact that any random variable is distributed as a function of a given normally distributed

variable.

Proposition 11 Consider an individual who evaluates through U� any lottery v = '(x) where

x is normally distributed and whose preferences over the set of all possible lotteries only depend

on the distribution of the lottery under consideration. The individual is a CPT agent over the

space of all possible lotteries in the sense that her preferences can be represented by the utility

function U� extended to the space of all possible lotteries and there exists a probability weighting

function g� such that, for all lottery v with density fv we have U�(v) =
R
fv;�(s)u (s) ds where

g�(
R1
t fv(s)ds) =

R1
t fv;�(s)ds:

This corollary provides then the following possible interpretation of CPT: the result of a pos-

sibly noisy transmission of the objective distribution to separate (specialized) systems (neural

systems or brain areas), the overall evaluation resulting from a social welfare function applied

to these systems. The construction of the Qis in the general case is very similar to their con-

struction in the normal case. The resulting global behavior might then be associated intuitively

with a possible behavior of the systems that consists in describing any random variable in terms

of Gaussian distributions. For instance, a random variable that takes values 0 and 1 with prob-

ability 1/2 may be described as a random variable that takes value 1 when a given Gaussian

variable N (0; 1) is positive and that takes value 0 when the Gaussian variable is negative. The

process i will then transform this binomial distribution into a binomial distribution that is equal

to 1 when a Gaussian variable N (�i; 1) is positive -or equivalently when a Gaussian variable22



N (0; 1) is smaller than �i- and is equal to 0 when the Gaussian variable N (�i; 1) is negative.

5.2 Heterogeneous Beliefs and Ambiguity aversion

In this section, we show that an individual who evaluates ambiguous lotteries through the

social welfare function associated with a collection of agents, each of them being endowed with

a plausible probability, may be ambiguity averse.

Let us consider an individual facing a lottery whose payo¤ x has an ambiguous distribution.

The ambiguity of the lottery is characterized by a set of plausible distributions with a set of

associated probabilities �x = (Qx1 ; :::; Q
x
n). We assume that the agent passes the information

to di¤erent systems (neural systems or brain areas), each endowed with one of the plausible

distributions, in order to evaluate this lottery. We assume that the individual acts like a central

planner looking for a Pareto optimal decomposition of the gains/losses from the lottery among

the di¤erent processes and evaluates the lottery through the social welfare function, i.e.,

U(x) = maxP
xi=x

X
i2I
EQ

x
i
�
u(xi)

�
:

We assume that the common utility function is given by u(x) = x
1� 1

�

1� 1
�
with � < 1:

Consider �rst the classical Ellsberg 3-color urn problem. An urn contains 30 red balls

and 60 black and yellow balls in unspeci�ed proportion. A lottery A that pays $100 if a red

ball is drawn is evaluated at U (A) = 1
3u (100) : Since the probability for one black ball to

be drawn is unknown, and if all possible probabilities of the form i
90 for i = 0; :::; 60; are

considered as equally plausible, a lottery B that pays $100 if a black ball is drawn is evaluated

at U (B) =
�
1
61

P60
i=0

�
i
90

��� 1
�
u (100) . It is easy to check that

�
1
61

P60
i=0

�
i
90

��� 1
�
< 1

3 for � < 1

and our individual prefers lottery A to lottery B. Now, the same individual evaluates the lottery

C that pays $100 if a red or a yellow ball is drawn at U (C) =
�
1
61

P60
i=0

�
30+i
90

��� 1
�
u (100) . The

lottery D that pays $100 if a black or a yellow ball is drawn is evaluated at U (D) = 2
3u (100).
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Such an individual prefers lottery D to lottery C. As in Ellsberg paradox, Savage�s independence

axiom is violated, even though each process is an expected utility maximizer and satis�es the

independence axiom. The individual exhibits ambiguity aversion. In order to generalize this

result let us recall the following de�nitions adapted to our setting from Schmeidler7 (1989).

De�nition 2 An ambiguous lottery
�
x; (Qxi )i2I

�
is de�ned by a random variable x, whose values

(x (!))!2
 represent the set of possible outcomes and by a set (Q
x
i )i2I of plausible probabilities

over 
.

De�nition 3 If
�
x;
�
Q1;xi

�
i2I

�
and

�
x;
�
Q2;xi

�
i2I

�
are two ambiguous lotteries associated to

the same random variable x, the even mixture of these ambiguous lotteries is the ambiguous

lottery
�
x;
�
1
2Q

1;x
i + 1

2Q
2;x
i

�
i2I

�
:

De�nition 4 An agent is called ambiguity averse if she prefers the even mixture of two am-

biguous lotteries that she values equally to either of the two lotteries.

Proposition 12 When � < 1; an individual who evaluates ambiguous lotteries through the

social welfare function associated to a collection of agents each of them being endowed with one

of the plausible probabilities is ambiguity averse.

We have considered as equally plausible all probabilities associated to a given ambiguous

lottery. Our results can be generalized to the setting where the individual, based on his sub-

jective information, associates a probability distribution (qi)i2I over the set (Qxi )i2I where qi

� 0 is the subjective probability that Qxi be the probability associated to the true distribution

of the lottery payo¤s. In such a setting, the qis might be integrated in the individual overall

utility function as the weights in the social welfare function, i.e.

U(x) = maxP
xi=x

X
i2I
qiE

Qxi
�
u(xi)

�
:

7See also Ghirardato (2004).
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5.3 Dynamic setting

We have until now only considered a two dates setting even though we have considered di¤erent

possible time horizons for the second date. It is useful to understand how our model might be

embedded in a dynamic setting.

Consider as in �nancial models a di¤usion setting:We denote by W a Brownian motion and

we assume that e� follows the following stochastic di¤erential equation with constant parameters

de�t =
�
�+ 1

2�
2
�
e�tdt+ �e

�
tdWt. The distribution of e�t is then, for all t; lognormal of the form

log e�t � N (�t; �2t):

Let us �rst assume as in Section 5.1 that agents� deviation from the objective mean is

constant in terms of standard deviation, i.e., that the subjective distributions are of the form

logN (�it; �2t) with �it = �t + �i�
p
t: Following Proposition 10, there exists a probability

weighting function g� that distorts the objective distribution into the distribution of the group.

This function is independent of t and the behavior of the group is then consistent across time.

Let us now consider the case where beliefs heterogeneity results from ambiguity. Di¤erent

probabilities are considered as plausible and each agent is endowed with one of them. In our

di¤usion setting, let us consider the simplest case where each probability is de�ned by its density

dMi = �iMidW where the �is are constant. Following Girsanov Theorem, the distribution of

log e�t from agent i point of view is given by N (�it; �2t) with �it = (�� 1
2�

2)t+ ��it: As seen in

Example 1, the ex-ante variance of log e�t from the representative agent point of view is given by

V arM [log e�t ]) = V ar [log e�t ] + V ari
�
�it
�
= �2t + �2t2V ari�

i: The long term ex-ante variance

from the representative agent point of view, is then higher than the objective variance and their

ratio converges to in�nity.

It is interesting to note that, even though the di¤erent agents do not learn and continue

to believe in a constant drift �i = (� � 1
2�

2) + ��i; the group as a whole learns and the drift

anticipated by the group converges to the objective drift as long as the objective probability lies

in the initial set of plausible probabilities, i.e. as long as we have �i = 0 for some i. This point
25



can be easily checked in the log utility setting where the representative agent probability is

given byM = 1
jIj
P
Mi and satis�es dM = �MMdW with �M =

P
�iMiP
Mi
: By Girsanov Theorem,

the date-t drift anticipated by the representative agent is then given by �i = (�� 1
2�

2) + ��M

which converges almost surely to the objective drift (�� 1
2�

2).
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Proof of Proposition 1

At the Pareto optimum, we have

�iM
iu0(yi) = q

for some random variable q: It follows that

yi =

�
q

�iM i

���

hence

e� =
X
i2I

�
q

�iM i

���
= q��

X
i2I

�
1

�iM i

���

and

yi = e�
�
�iM

i
��P

i2I [�iM
i]�
:

We have then

X
i2I
�iE

�
M iu(yi)

�
=

X
i2I
�iE

24M i

�
�iM

i
���1�P

i2I [�iM
i]�
�1� 1

�

u(e�)

35
= E

24 P
i2I
�
�iM

i
���P

i2I [�iM
i]�
�1� 1

�

u(e�)

35
= E

24"X
i2I

�
�iM

i
��#1=�

u(e�)

35

and U (e�) = E [Mu(e�)] with M =
�P

i2I �
�
i

�
M i
���1=�.

Proof of Corollary 2
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We have

E [Mh (e�)] = E

24 X
i2I
i
�
M i
��!1=�

h (e�)

35
= E

24 X
i2I
i

�
f i

f
(e�)

��!1=�
h (e�)

35
= E

"�P
i2I i

�
f i (e�)

���1=�
f (e�)

h (e�)

#

=

Z �P
i2I i

�
f i (x)

���1=�
f (x)

h (x) f (x) dx

=

Z  X
i2I
i
�
f i (x)

��!1=�
h (x) dx

hence fM =
�P

i2I i (fi)
��1=� :

Proofs for Example 2

1. Proof that the distribution of log e� is bimodal for j�1 � �2j > 2�=
p
� and uni-

modal for j�1 � �2j � 2�=
p
�: We have

�
f log

��
=

1

2

�
f log1

��
+
1

2

�
f log2

��
=

1

2
p
2��

exp

 
�� (x� �1)

2

2�2

!

+
1

2
p
2��

exp

 
�� (x� �2)

2

2�2

!
:

This function has either two maxima that are symmetric with respect to �1+�2
2 or only

one maximum at �1+�2
2 : In the �rst case �1+�2

2 would be a local minimum. It su¢ ces

then to analyse the sign of the second derivative of
�
f log

��
at �1+�22 : We obtain that the

distribution is bimodal for j�1 � �2j > 2�=
p
� and unimodal for j�1 � �2j � 2�=

p
�:

2. Proof that for � = �1+�2
2 the distribution of log e� is portfolio dominated by

the objective distribution. The ratio between the density of log e� under Q and the
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density of log e� under P is given by

fM log

f log
(x) =

�
1

2
exp

�
�
�2 (x� �) (�� �1) + �2 � �21

2�2

�
+
1

2
exp

�
�
�2x(�� �2) + �2 � �22

2�2

�� 1
�

which is clearly symmetric with respect to �, decreasing before � and increasing after �:

Moreover, since the distributions of log e� under Q and under P are both symmetric with

respect to �, we have EQ [log e�] = EP [log e�] = �: These properties give V arQ [log e�] >

V arP [log e�] (see Jouini and Napp, 2008).

3. Proof that for general (�i) ; V arQ [log e�] > V arP [log e�] : For general (�i), f
M log

is symmetric with respect to �1+�2
2 which gives EQ [log e�] = �1+�2

2 : Furthermore, we

may apply the same reasoning as in 2. to compare the distribution of log e� under Q

with the distribution whose density is given by 1p
2��

exp�
�
x��1+�2

2

�2
2�2

: We then have

V arQ [log e�] > �2 = V arP [log e�] :

4. Proof that a higher level of risk tolerance induces a Portfolio Dominated shift

in the representative agent distribution. For two di¤erent values � and �0 of the risk

tolerance parameter; it su¢ ces to consider
fM log

�0

fM log
�

and to apply the same reasoning as in 2.

Proof of Proposition 3

1. If lim1
fopt
f = lim�1

fpess
f = 1 and lim�1

fopt
f = lim1

fpess
f = 0 then the representa-

tive agent density function is such that lim�1
fM
f = lim1

fM
f = 1 and fM

f can not be

monotone.

2. This is immediate according to lim�1
fM
f = lim1

fM
f =1:

3. It su¢ ces to remark that fM = fmaxopt

�
maxopt +

P
i=1;:::;N
i6=opt

�
fi
fmaxopt

���1=�
: If fi

fmaxopt
is nonin-

creasing for all i then
�
maxopt +

P
i=1;:::;N
i6=opt

�
fi
fmaxopt

���1=�
is bounded away from 0 and 1 in
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the neighborhood of1 and we have fM �1 fmaxopt : The result at the neighborhood of �1

is obtained similarly.

Proof of Proposition 4

1. Let g be given by
R1
u fM (x)dx = g

�R1
u f(x)dx

�
: We have fM (x) = g0

�R1
u f(x)dx

�
f (u)

and g0
�R1
u f(x)dx

�
= fM

f (u) : We also have �f(u)g
00 �R1

u f(x)dx
�
=
�
fM
f

�0
(u) which

gives that the concavity of g is governed by the sign of
�
fM
f

�0
: Remark that

�
fM
f

�0
is

negative in a neighborhood of �1 and then that g00 is positive and g is convex in a

neighborhood of 1. Similarly, we have that
�
fM
f

�0
is positive in a neighborhood of 1

and then that g00 is negative and g is concave in a neighborhood of 1 : Finally,
�
fM
f

�0
is a

combination of exponentials where the decreasing exponentials have a negative weight and

the increasing exponentials have a positive weight. The function
�
fM
f

�0
is then increasing.

The function g is then inverse S-shaped: concave then convex.

2. Since g0
�R1
u f(x)dx

�
= fM

f (u), we have g
0(0) = fM

f (1) =1: If g
00(0) is well de�ned, we

have g00(0) < 0 and hence g00(x) < 0 in a neighborhood of 0: The probability weighting

function is then concave for small probabilities. The result in the neighborhood of 1 is

obtained similarly.

Proof of Proposition 5

1. Let us consider a distribution of the means that is described by a density function

h . The associated representative agent cumulative distribution function is given by

1p
2��2

R
dh (�)

R x
�1 exp�

(s��)2
2�2

ds: Since the function � !
R x
�1 exp�

(s��)2
2�2

ds is decreas-

ing a FSD shift of h decreases the value of
R
dh (�)

R x
�1 exp�

(s��)2
2�2

ds and leads then to

a FSD dominating distribution function for the representative agent.
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2. Let us consider a distribution (0i) and a FSD dominated shift (i). We want to prove

that
P
0iFi �

P
iFi: For a given x; letting xi denote the quantity Fi(x), it su¢ ces to

prove that
P
0ixi �

P
ixi for a nondecreasing family (xi)i2I which is true since (

0
i)

dominates (i) in the sense of the FSD.

3. Let us consider a distribution (0i) and a MLR dominated shift (i). It su¢ ces to prove

that (
P
0if

�
i )

1
�

(
P
if

�
i )

1
�
is increasing or that

P
0iGiP
iGi

is increasing with Gi = f
�
i . Without any loss

of generality, we may assume that all the considered functions are di¤erentiable and let

us consider the derivative of
P
0iGiP
iGi

�P
0iGiP
iGi

�0
=

(
P
0iG

0
i) (
P
iGi)� (

P
0iGi) (

P
iG

0
i)

(
P
iGi)

2

=

P
fi�fj ij

�
0i
i
� 0j

j

��
G0iGj �GiG0j

�
(
P
iGi)

2 :

Remark that for fi � fj we have Gi � Gj and then G0iGj � GiG0j � 0: Furthermore, for

fi � fj we also have 0i
i
� 0j

j
� 0 which leads to the conclusion.

Proof of Proposition 6

It is immediate that �1; �2; and �3 can be written in the form �2 � h; �2; �2 + h for

some h > 0: For the distribution of individual characteristics (i) ; the representative agent

distribution function is given by 1p
2��2

P
i i
R x
�1 exp�

(s��i)2
2�2

ds: The symmetric mean pre-

serving spread induces a modi�cation of this distribution that is positively proportional to

1p
2��2

(
R x
�1 exp

�
� (s��2+h)2

2�2

�
� 2 exp

�
� (s��2)2

2�2

�
+ exp

�
� (s��2�h)2

2�2

�
)ds: Simple computations

permit to show that this modi�cation is positive for x � �2 and negative for x � �2: A sym-

metric mean preserving spread leads then to a distribution function that is above (resp. below)

the original distribution function below a given threshold. We have then an increase of the level

of discriminability.

Proof of Proposition 7
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Replacing M i by M iDi in the proof of Proposition 1, we easily get that

U (e�t ) =

"X
i2I

�
�iM

i
tD

i
t

��#1=�
:

Now, if the characteristics
�
�i;M

i
t ; D

i
t

�
are independent, then

"X
i2I

�
�iM

i
tD

i
t

��#1=�
=

" 
1

jIj
X
i2I

�
M i
t

��!#1=� " 1

jIj
X
i2I

�
Dit
��!#1=�

and

X
i2I
�iE

�
M i
tD

i
tu(y

i
t)
�
= E

24 1

jIj
X
i2I

�
M i
t

��!1=�  1

jIj
X
i2I

�
Dit
��!1=�

u(e�t )

35 :

Proof of Proposition 8

We prove the proposition for �Dm since it is easy to check that all the derived properties are

inherited by �Da (t) =
1
t

R t
0 �

D
m (s) ds:

1. Immediate.

2. The representative agent time preference rate �Dm (t) =
PN
i=1

exp(���it)PN
i=1 exp(���it)

�i is an average

of the �is with weights that decrease with �i: Such an average is smaller than the equally

weighted average.

3. Denote �i = exp (���it). We have
d�Dm(t)
dt = �

�P
i2I �i�

2
iP

i2I �i
�
�P

i2I �i�iP
i2I �i

�2�
which is nega-

tive.

We have �Dm (t) =
�inf+

PN
i6=inf exp(��(�i��inf)t)�i

1+
PN
i6=inf exp(��(�i��inf)t)

and exp (��(�i � �inf)t) �i !1 0 we have then

�Dm (t)! �inf :

Proof of Proposition 9
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The proof of 1. is inspired from Jouini and Napp (2008) and the proof of 2. is inspired from

Nocetti et al. (2008).

1. We have

�Da (t) � �
1

�t
lnE [exp (���t)]

where E is the expectation operator associated with the distribution of (�i). For a given

t; the function �! exp (���t) is decreasing (and convex) and, by de�nition, a FSD (resp.

SSD) shift in the distribution of (�i) decreases the value of E [exp (���t)] and increases

�Da (t) :

2. We have then

�Dm (t) =
E [� exp (���t)]
E [exp (���t)] :

where E is the expectation operator associated with the distribution of (�i) :

Let us now consider P 1 and P 2; two distributions such that P 2 �MLR P
1: By de�nition,

the density � = dP 2

dP 1
is nondecreasing in � (in other words i ! �i and i ! �i are

comonotonic). We have then, EP
2
[� exp(���t)]

EP
2 [exp(���t)]

= EP
1
[�� exp(���t)]

EP
1 [� exp(���t)]

= EQ[��]
EQ[�]

where Q is

de�ned by a density with respect to P 1 equal (up to a constant) to exp (���t) : Since �

is nondecreasing in � , we have

EQ [��] � EQ [�]EQ [�] ;

hence

EP
2
[� exp (���t)]

EP 2 [exp (���t)]
� EQ [�] ;

� EP
1
[� exp (���t)]

EP 1 [exp (���t)]
:

Let us assume now that P 2 �PD P 1 and let us consider �D;P
2

m (t) and �D;P
1

m (t) the
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associated representative agent time preference rates: We have �D;P
2

m (t) = EP
2
[� exp(���t)]

EP2 [exp(���t)]

and then EP
2
h
u0(�)(�� �D;P

2

m )
i
= 0 with u(�) = � exp(���t): By de�nition, this implies

EP
1
h
u0(�)(�� �D;P

2

m )
i
� 0 hence �D;P

2

m � �D;P
1

m :
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Proof of Proposition 10 1. Let x 2 X with x � N
�
�; �2

�
: We have x �Qi N

�
�+ �i�; �

2
�
:

From Proposition 1, there exists Q such that U�(x) = EQ [x] and the density of x under Q

is given by fx;� (s) =
h
1
n

PN
i=1 (fx;�i)

�
i1=�

where fx;�i is the density of x under Qi: We then

have U�(x) =
R
fx;�(s)u (s) ds: It su¢ ces to prove that

R1
t fx;�(s)ds is a function of

R1
t fx(s)ds

that does not depend on x; i.e. that does not depend upon � and �: Let g� be the function

de�ned by g�
�

1p
2�

R1
t exp

�
�x2

2

�
ds
�
=
R1
t

h
1
n

PN
i=1

�
1p
2�
exp

�
�� (x��i)

2

2

��i1=�
ds for all t:

The function g� is completely de�ned on [0; 1] and by a simple change of variables, we have

g�

�
1p
2��

R1
t exp

�
� (x��)2

2�2

�
ds
�
=
R1
t

h
1
n

PN
i=1

�
1p
2��

exp
�
�� (x��i���)

2

2�2

��i1=�
ds for all t and

we then have
R1
t fx;�(s)ds = g�

�R1
t fx(s)ds

�
:

2. The function g� is the same as in Proposition 4.

3. Direct application of Proposition 5.

Proof of Proposition 11

Let v such that v = '(x) where x is normally distributed. By de�nition, we have U�(v) =

supP vi E
Qi [u(vi)]. We denote by f iv the density of v with respect to Q

i: By Proposition 1 and

Corollary 2, we have U�(v) =
R
fv;�(s)u (s) ds with fv;� =

�P�
f iv
��� 1� : We clearly have fv;� =

'0fx;� � ' and f iv = '0f ix � ' and since
R1
t fx;�(s)ds =

R1
t

�P�
f ix
��� 1� (s)ds = g� �R1t fx(s)ds

�
;

a simple change of variable leads to
R1
t fv;�(s)ds = g�

�R1
t fv(s)ds

�
: We have then the result

over the set of transformations of normal distributions.

Let us consider now a random variable v and a normally distributed random variable x:We

know that v has the same distribution as F�1v [Fx(x)] where F�1v (p) is de�ned by F�1v (p) =

inf ft : Fv(t) � pg : If the individual has preferences that only depend on the distribution, it

su¢ ces to set U�(v) = U�('(x)) with ' = F�1v � Fx which is perfectly de�ned. We then have

U�(x) =
R1
t f'(x);�(s)u(s)ds with

R1
t f'(x);�(s)ds = g�

�R1
t f'(x)(s)ds

�
and since v is distributed

like '(x); we have
R1
t f'(x);�(s)ds = g�

�R1
t fv(s)ds

�
; and the result follows.

Proof of Proposition 12
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Let us consider
�
x;
�
Q1;xi

�
i2I

�
and

�
x;
�
Q2;xi

�
i2I

�
two lotteries that our agent values equally.

For all i in I; let us denote byM1
i andM

2
i the densities respectively associated to Q

1;x
i and Q2;xi :

We have E
h�P

i2IM
�
i

� 1
� u(x)

i
= E

h�P
i2I N

�
i

� 1
� u(x)

i
: For � � 1; we have

�P
i2I
�
1
2Mi +

1
2Ni

��� 1� �
1
2

�P
i2I (M

�
i )
� 1
� + 1

2

�P
i2I (N

�
i )
� 1
� which gives E

��P
i2I
�
1
2Mi +

1
2Ni

��� 1� u(x)� � E h�Pi2IM
�
i

� 1
� u(x)

i
:
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Figure 1: In this �gure, we have represented in black the consensus belief in a log-utility agents
setting. A proportion of 47% of the agents believe that log e � N (0; 1) and the remaining 53%
believe that log e � N (2:5; 1): The beliefs of these two categories of agents are represented in
grey.

Figure 2: In this �gure we represent the consensus belief for 3 di¤erent levels of risk aversion.
We assume that a proportion of 47% of the agents believe that log e � N (0; 1) and the remaining
53% believe that log e � N (2:5; 1): The upper curve corresponds to � = 2; the lower curve to
� = 0:8 and the middle curve to � = 1: An increase of � increases the distance between the
peaks and their size.

Figure 3: In this �gure we represent in black the representative agent probability weighting
function in a model with two logarithmic utility agents. One of them overestimates the ob-
jective mean by one standard deviation and the other one underestimates it by one standard
deviation. We also represent in grey the individual probability weighting functions (the concave
one corresponds to the optimistic agent).
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Figure 4: In this �gure we represent Prelec�s function exp(�(� ln p)) with  = 0:73 that cor-
responds to a standard speci�cation. We also represent the probability weighting function
corresponding to a model with two log-utility agents. The �rst one underestimates the ob-
jective average by 120% of the standard deviation and has a weight of 30%. The second one
overestimates the objective average by 60% of the standard deviation and has a weight of 70%.
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Figure 5: In this �gure we represent the probability weighting function of the representative
agent in a model with logarithmic utility agents. In the upper curve curve the optimistic and
the pessimistic agents are equally weighted. In the lower curve, the pessimistic agents have
a 60% weight and the optimistic ones have a 40% weight. Attractiveness decreases with the
weight granted to the pessimistic agents.
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Figure 6: The probability weighting function for di¤erent levels of divergence of belief. Both
agents agree on a normal distribution but one of them overestimates the objective mean by �
times the standard deviation while the other one underestimates it by � times the standard
deviation. The value of � ranges from 0 to 2. The discriminability decreases with � (in other
words the curvature increases with �).
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