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Abstract: The composition of the mammalian gut microbiome is very important for the health and
disease of the host. Significant correlations of particular gut microbiota with host immune respon-
siveness and various infectious and noninfectious host conditions, such as chronic enteric infections,
type 2 diabetes, obesity, asthma, and neurological diseases, have been uncovered. Recently, research
has moved on to exploring the causalities of such relationships. The metabolites of gut microbiota
and those of the host are considered in a ‘holobiontic’ way. It turns out that the host’s diet is a major
determinant of the composition of the gut microbiome and its metabolites. Animal models of bacterial
and viral intestinal infections have been developed to explore the interrelationships of diet, gut mi-
crobiome, and health/disease phenotypes of the host. Dietary fibers can act as prebiotics, and certain
bacterial species support the host’s wellbeing as probiotics. In cases of Clostridioides difficile-associated
antibiotic-resistant chronic diarrhea, transplantation of fecal microbiomes has sometimes cured the
disease. Future research will concentrate on the definition of microbial/host/diet interrelationships
which will inform rationales for improving host conditions, in particular in relation to optimization
of immune responses to childhood vaccines.

Keywords: gut microbiome; microbiome–host relationship; antiviral immune responses; gut disease;
noninfectious disease; microbial metabolites; microbiome transplantation; probiotics; prebiotics; diet

1. Introduction

The human gut microbiota, comprising bacteria, viruses, fungi, protozoa, and parasites
and comprehensively termed the gut microbiome, have received increased attention for
about a decade, when it was recognized that their commensal or symbiotic relationship
is of great importance for human health, including immune responses correlated with
protection from infection or disease [1–4]. Most of the microbiome data relate to the
bacteria (bacteriome) and viruses (virome) populating the gut. Observational studies
initially reported on cotemporal correlations of the composition of the gut microbiome
with immune responses or disease outcome [5,6]. More recent studies aimed at identifying
causal relationships between metabolic products of the gut microbiome and the host in
health and disease [7–9]. This review emphasizes the importance of the transition from
observational correlation studies to studies exploring causal microbiome–host relationships,
which will provide data for rational developments of microbiota as probiotic agents.

2. The Intestinal Microbiome

The main bacterial phyla present in the gut are Proteobacteria, Bacteriodetes, Firmicutes,
and Actinobacteria, with their total number estimated to be 1014 particles, and populating
mainly the colon [10,11]. The gut microbiota in infants are originally similar to those
of the mother but will develop by colonization with Bifidobacterium, Bacteroides, and
Clostridium spp. [12], and the composition of the gut microbiome will highly depend
on nutritional/feeding and environmental conditions [4,13]. Viruses found in the gut
are mainly members of the Picornaviridae, Reoviridae, Caliciviridae, and Astroviridae fami-
lies, and of various families of bacteriophages; in addition, members of the Adenoviridae,
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Picobirnaviridae, Herpesviridae, and Retroviridae families can be present [14]. Many bacteria
replicating in the gut are commensals or symbionts; some bacteria, viruses, and most
protozoa and parasites are pathogenic. The microbial homeostasis in healthy individuals
can be disturbed to become a ‘dysbiosis’, which may be associated with the development
of disease [15]. It has been extensively documented that the gut microbiota of children
growing up in low- or middle-income countries differ drastically from those of children
in high-income countries [6,10,13]. The composition of the gut microbiome is of great
importance for the development of a functional immune system, which defends against
pathogenic microbes [16].

Viruses and bacteria interact in the gut in a complex way. Thus, bacteria exhibiting
cell receptor-like molecules on their surface can interact with viruses, and the complexes
may either be washed out of the gut or be taken up by gut epithelia [17,18]. Accord-
ingly, treatment of mice with antibiotics (ABs) reduced the diarrhea caused by murine
rotaviruses and enhanced rotavirus-specific IgA responses [19] or reduced the uptake of
poliovirus/reovirus–Bacillus cereus complexes [20]. Norovirus infectivity was also reduced
in AB-treated mice [21,22]. Mouse microbiota can be reconstituted after AB treatment or
in germ-free (GF) animals: while the AB option is inexpensive, it may not eliminate all
residual bacteria and also affect epithelial cells; the GF option is more cumbersome and
may be affected by developmental defects [23]. In human adults, AB-mediated microbiome
changes were shown to increase the replication of rotavirus vaccine [24]. Thus, enteric viral
infections can be facilitated or inhibited by bacteria, and in turn, latently virus-infected
animals can become resistant to particular bacterial infections [25,26]. Particular immun-
odeficient mouse strains were found to be resistant to rotavirus infection and disease. By
treating the microbiota of these mice with heat, filtration, and ABs, it was discovered that
the resistance was due to the presence of segmented filamentous bacteria (members of
Clostridiales) growing in the terminal ileum, which seemed to directly neutralize the virus,
possibly by interfering with its binding to host cell receptors. This represents a novel way
of protecting mammals against rotavirus disease [27]; the cytokines IL-22 and IL-18 were
also found to be involved in this protection [28]. In RV-infected neonatal mice, a loss of
Lactobacillus spp. was detected in the ileum on day 1 p.i., accompanied by an increase in
Bacteroides and Akkermania spp., which both digest mucin glycan. Simultaneously, a loss of
mucin-producing goblet cells was observed, which had recovered on day 3 p.i. [29]. These
data indicate that resident bacteria in the ileum participate in the promotion of RV infection.
Mixed infections of children with RV and enteropathogenic E. coli resulted in an increase in
the disease severity score compared to infection with RV alone [30].

3. Intestinal Microbiome and Immune Responses
3.1. In Humans

From observational studies, it has been recognized that the immune responses of
children to oral or parenteral vaccines in low-income countries are often weak and that
this finding correlated with the particular composition of the gut bacteriome of these chil-
dren [31]. The presence of Clostridia and Proteobacteria correlated with a favorable immune
response to rotavirus vaccination in Pakistan [32]. In Ghana, enrichment of Bifidobacteria
was associated with a favorable immune response of children and that of Enterobacteria and
Pseudomonas with low immune responses and lower protection [33]. The composition of
the microbiome of high responders was similar to that of high responders in high-income
countries [32,33]. No such differences were found in children receiving rotavirus vacci-
nation in Nicaragua [34]. However, most evidence indicates that the composition of the
intestinal microbiome is important for the improvement of vaccine efficacies [24,35]. The
reasons for decreases in immune responses are complex. Besides the composition of the gut
microbiome, malnutrition (including zinc deficiency and vitamin A and D avitaminoses),
intestinal and extraintestinal coinfections, immunological immaturity (often linked with
premature birth), the presence of maternal antibodies (transmitted via placenta), and host
genetic factors play a role [3,36,37].
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3.2. In Animals

The influence of the gut microbiome on enteric infections has been extensively studied
in animal models. Thus, gnotobiotic (gn) piglets transplanted with ‘healthy’ human gut
microbiota from children (HHGM: Proteobacteria, Bacteriodetes) or with microbiota from
children with weak (‘unhealthy’) immune responses (UHGM: Proteobacteria and Firmicutes)
differed in their reaction to challenge with human rotavirus: the HHGM-transplanted
animals expanded Bacteriodetes and had less severe diarrhea and virus shedding than
UHGM-transplanted animals, which maintained the high prevalence of Firmicutes spp. [38].
Similarly, neonatally GF piglets transplanted with a human infant’s fecal microbiome
(HIFM) upon challenge had less severe rotavirus disease than nontransplanted piglets; a
protein-deficient diet increased the severity of RV disease also in the HIFM-transplanted
piglets [39].

In both human and animal vaccine studies, it has been shown that the composition
of the gut microbiome is highly important for the efficacy of vaccines, e.g., against RV,
poliovirus, and bacteria, such as Salmonella and Shigella [6,40].

4. Intestinal Microbiome–Host Interaction via Metabolites

In animal studies, it has become apparent that differences in the metabolism of bacteria
may be important for the host’s health. Bacterial metabolites produced in the gut may enter
the host via hematogenic spread and either be toxic or support the health of the gut or extrain-
testinal tissues. Metabolites of both microbes and host form a complex system, and humans
have been termed as ‘holobionts’ in this concept [9]. Experiments aiming at discovering causal
microbiome–host relationships were initiated [7]. Numerous microbial metabolites were
shown to affect the host’s metabolic pathways and to be positively or negatively associated
with metabolic diseases such as type 2 diabetes (T2D) or obesity [7]. For the microbiome–host
relationship, the supply of polymeric compounds for bacterial fermentation in particular diets
plays a very important role [8]. Some products of bacterial fermentation and selected bacterial
species producing them are listed in Table 1. Of those metabolites:

1. Short-chain fatty acids (SCFAs) have anti-inflammatory activity [41] and can act as
adjuvants to vaccines [42]; butyrate-producing bacteria were found to be beneficial as
probiotics (see below) in children with idiopathic nephrotic syndrome by boosting
the synthesis of Treg cells [43];

2. Products of tryptophan metabolism (kynurenine, indoles, and tryptamine) may be
involved in neurological disease [44,45] or protect from colitis [44,46,47];

3. Spore-forming gut bacteria can modulate the production of serotonin (5-hydroxyt-
ryptamine) in entero-chromaffine cells and thus affect gut motility, platelet, and CNS
functions [48];

4. Products of histidine fermentation may cause immune pathologies and be involved
in asthma pathogenesis [49,50];

5. Imidazole propionate production is correlated with an increased risk for the develop-
ment of T2D [51,52];

6. Dopamine is generated by bacterial decarboxylases from levodopa, used for the
treatment of Parkinson’s disease [53,54];

7. P-cresol, a product of tyrosine fermentation, can reduce allergic airways inflammation [55];
8. Dietary and bacterially produced polyphenols have anti-inflammatory effects [56];
9. Host bile acids are deconjugated and transformed into secondary bile acids in the

colon, where they can inhibit the growth of Clostridioides difficile [57], but are also
associated with an increased risk of obesity development [58];

10. Trimethylamine-N-oxide, derived from bacterial metabolization of choline and car-
nitine, has been found to be associated with a risk to develop atherosclerosis and
T2D [59–61];

11. Sphingolipids derived from Bacteroides spp. metabolism are important for intestinal
bacterial homeostasis [62,63].
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Table 1. * Gut microbe fermentation products of carbohydrates, proteins, and dietary polyphenols.

Metabolite Pathway Bacterial Species
(Selected) Effects References

Acetate,
Starch and amino
acid fermentation

Bifidobacterium spp. Anti-inflammatory [7,43,64,65]
propionate, Bacteroides spp. Stronger immune

responsessuccinate, Coprococcus spp.
butyrate

Short-chain fatty acids
Campylobacter spp. Adjuvant for

cholera vaccine
[42]

Clostridium spp.
Eubacterium spp.

Kynurenine Tryptophan
fermentation

Fusobacterium spp. Neurological disorder [44,45]
Pseudomonas spp.

Indoles
Bacteroides spp. Protection from colitis [47]

E. coli [44,46]

Tryptamine Clostridium sporogenes Treatment of migraine [45]

Serotonin
Induction of host Clostridium spp. Gut motility [48]

Platelet functions

Histamine
Histidine fermentation E. coli, Lactobacillus Immunpathology [49,50]

Lactobacillus Asthma

Imidazole propionate Lactobacillus spp. Risk of T2D ** [51,52]
Streptococcus spp.

Dopamine DOPA Enterococcus Treatment of
Parkinson’s disease

[53,54]
metabolism Helicobacter

P-cresol Tyrosine and
phenylalanine
fermentation

Clostridium spp. Reduction of airways
inflammation [55]

Polyphenols Dietary and bacterial Various spp. Anti-inflammatory [56]

Bile acids
Secondary Various spp. Risk of obesity [57,58]

Protection against Cl. diff.

Trimethylamine-N
oxide

Choline metabolism Various spp. Risk of atherosclerosis [59–61]
Risk of T2D

Sphingolipids Lipid metabolism Bacteroides spp. Maintenance of
gut homeostasis [62,63]

* Adapted from [7,8,66]. ** T2D: type 2 diabetes.

The interplay between diet, gut microbiota fermentation, and host cellular pathways
leads to a complex microbe–host-produced spectrum of metabolites, strongly suggesting
that the gut microbiome affects the host’s health in a much more general way than just by
its influence on immune responses.

5. Intestinal Microbiome and Diet

In studying causal relationships between the gut microbiome composition and the
mammalian host’s health phenotype, the transplantation of human gut microbiome to
experimental animals has encountered the problem that not all human bacteria may survive
in the new host, also due to the fact that animal and human diets differ substantially. This
has been clearly demonstrated in a study by Rodriguez et al. [67], who showed that
the basal diet of mice determined the long term composition of their gut microbiome
and the mouse phenotypes to a greater extent than the transfer of largely different fecal
microbiomes obtained from lean or obese human donors.

In order to overcome some of these problems, a mouse model for the study of diet–
microbe–host interactions has been developed using the following procedure [68]:
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1. A human simplified intestinal microbiota (SIM) consisting of 10 human bacterial
strains able to metabolize dietary fibers was constructed;

2. SIM bacteria were transferred to GF mice;
3. Mice were kept on three different diets: chow (fiber-rich), high fat–high sucrose (low

in fiber), and zero fat–high sucrose (low in fiber).

The system was used to study how the different diets may affect the abundance and
the transcriptome of SIM bacteria, how SIM–diet interactions may affect the circulation
of metabolites, and how this may affect the metabolism of the host. Preliminary results
showed that:

1. The diet affected the SIM bacteria colonization and their fermentation capacity;
2. Diet–SIM bacteria interaction affected the systemic entry of SIM metabolites into the

plasma of the host;
3. The host metabolism in turn depended on the diet taken.

A microbiota-directed complementary food prototype was developed for 12–18 m old
malnourished children and been found to be beneficial for weight and height gain, increase
in plasma protein levels, and population by Faecalibacterium and Bifidobacterium spp. [69].

6. Intestinal Microbiome and Infectious and Non-Infectious Diseases

Dysbiotic microbiomes can lead to intestinal infectious diseases such as inflammatory
bowel disease, necrotizing enterocolitis, irritable bowel syndrome, chronic Clostridioides difficile
diarrhea, and extraintestinal infectious diseases [70]. Microbiota research should focus on
discovering causal links between human microbiota and infectious and immune-mediated
diseases [71].

A combination of dietary conditions and altered gut microbiomes was found to
be associated with T2D [52,67,72], obesity [73], nonalcoholic fatty liver disease [74,75],
idiopathic nephrotic syndrome [43], and cardiovascular diseases such as hypertension [76]
or atherosclerotic disease [60,61,77]. In detail, the pathogenic mechanisms are complex
and often systemic. The metabolic potential of gut microbiota (see above) may generate
bioactive compounds, which can interact with the host in various ways [61].

7. Diet, Prebiotics, and Intestinal Microbes as Probiotics

Prebiotics are components of food which support the growth of gut microorganisms
beneficial for human health. They mainly consist of fibers, which nondigestible in the
mammalian small intestine but suitable as substrates for bacteria in the colon, mainly
Bifidobacteria and Lactobacillus. A major metabolic product of bacterial fermentation of
starches is SCFAs, which have antibacterial activity [64,65]. Dietary polyphenols have
been shown to have anti-inflammatory and possibly prebiotic activities [56]. Gnotobiotic
mice colonized by a consortium of human gut-derived bacteria were fed different food-
derived fibers; by administering retrievable artificial food particles, it was possible to
identify bacterial species specialized in the degradation of particular types of fiber [78].
Analysis of the microbiota of a healthy Bangladeshi birth cohort enabled the identification
of several covarying bacteria—potentially leading the way toward gut microbiota repair in
undernourished children [79].

Different bacteria (Lactobacillus and Bifidobacterium spp.) living in mammalian guts
as commensals have been proven to act as probiotics by improving immune responses
to rotavirus vaccines in gn piglets [39,80–86]. Probiotic bacteria have also ameliorated
health in weaned piglets challenged with Salmonella typhimurium [87] and in children with
Salmonella and rotavirus gastroenteritis [88–90]. Lactobacillus reuteri was shown to decrease
the pathogenicity of Clostridioides difficile by the generation of reactive oxygen species [91].

Symbiotics are defined as a mixture of beneficial bacteria (probiotics) and fibers
(prebiotics) on which the bacteria feed. They can be used as food supplements, typically
consisting of lactic acid bacteria (Lactobacillus paracasei, L. plantarum) and plant fibers (pectin
from citrus fruits, inulin from chicory root, starch from corn) and are applied as a remedy
for microbe-associated acute infantile and noninfectious chronic diarrheas [92].
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8. Intestinal Microbes as Therapeutics

Fecal microbiota transplantation (FMT) is an established procedure to treat chronic,
AB-resistant, Clostridioides difficile-associated chronic diarrhea [93,94]. However, the overall
rate of clinical cure is variable, and major adverse clinical events are not rare [7,95]. Careful
risk assessment is indicated [96].

9. Outlook and Future Research

Knowledge of the gut microbiome, including its establishment, evolution, changes,
and association with intestinal and extraintestinal diseases has enormously increased
during the past 10 years. In particular, the relationship between particular gut microbiome
compositions and immune responsiveness to invading microbes or vaccines has been
analyzed. However, increasingly, observational studies aiming at cotemporal correlations
of microbiome composition and clinical symptoms have given way to investigations in
which causal relationships between gut microbiome composition, diet, complex metabolic
end products (of both the microbiome and the mammalian host), and clinical phenotypes
are being explored. Such data will form a rational basis for the use of gut microbiomes as
therapeutic or probiotic agents.

A list of topics that remain open for future research has been collated in Table 2.
The molecular biology of the interaction of gut microbiome and host, the dependence
of microbiota on diet, and the influence of the joint microbiome–host metabolome on
health and disease require more detailed understanding and study. Factors determining
eubiosis/dysbiosis in the microbiome–host relationship have to be identified in relation to
host clinical phenotypes, particularly in children from low-income countries. Mechanisms
determining the influence of probiotic bacterial metabolites on the host’s immune responses
have to be defined. The use of probiotic bacteria for the improvement of extended pro-
grams of immunization (EPI) in low- and middle-income countries has to be explored
and optimized.

Table 2. Topics of future research on gut microbiota.

Molecular Biology

Interrelationship of host and gut microbiota metabolism and influence of nutrition

Identification of metabolic pathways of gut microbiota determining strong acquired immune responses

Optimization of nutrition to favor the replication of microbiota considered relevant for strong immune
responses and general health promotion

Influence of joint microbiome–host metabolome on health and disease

Pathophysiology

Factors determining eubiotic homeostasis and the development of gut microbial dysbiosis

Relationship of defined dysbioses with clinical phenotypes of hosts

Identification of conditions in low-income countries affecting an unfavorablecomposition of the
gut microbiome

Effect of probiotics on immune responses

Identification of metabolites of microbes used as probiotics favoring the development of strong
immune responses

Reliability of animal models for the development of human probiotics

Optimization of microbiome in human extended programs of immunization

Identification of probiotics for use in childhood vaccination programs in low- and middle-income countries

Identification of gut microbes universally correlated with optimal immune responses, and of others correlated
with insufficient immune responses

Dependence of probiotics on the underlying microbiome composition in infants in countries of different
socioeconomic standards
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