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ABSTRACT

The knowledge of patient-specific neural excitation pat-
terns from cochlear implants (CIs) can provide important 
information for optimizing efficacy and improving speech 
perception outcomes. The Panoramic ECAP (‘PECAP’) 
method (Cosentino et al. 2015) uses forward-masked elec-
trically evoked compound action-potentials (ECAPs) to 
estimate neural activation patterns of CI stimulation. The 
algorithm requires ECAPs be measured for all combina-
tions of probe and masker electrodes, exploiting the fact 
that ECAP amplitudes reflect the overlapping excitatory 
areas of both probes and maskers. Here we present an 
improved version of the PECAP algorithm that imposes 
biologically realistic constraints on the solution, that, 
unlike the previous version, produces detailed estimates 
of neural activation patterns by modelling current spread 
and neural health along the intracochlear electrode array 
and is capable of identifying multiple regions of poor 
neural health. The algorithm was evaluated for reliabil-
ity and accuracy in three ways: (1) computer-simulated 
current-spread and neural-health scenarios, (2) compari-
sons to psychophysical correlates of neural health and 

electrode-modiolus distances in human CI users, and (3) 
detection of simulated neural ‘dead’ regions (using forward 
masking) in human CI users. The PECAP algorithm reli-
ably estimated the computer-simulated scenarios. A mod-
erate but significant negative correlation between focused 
thresholds and the algorithm’s neural-health estimates was 
found, consistent with previous literature. It also correctly 
identified simulated ‘dead’ regions in all seven CI users 
evaluated. The revised PECAP algorithm provides an esti-
mate of neural excitation patterns in CIs that could be 
used to inform and optimize CI stimulation strategies for 
individual patients in clinical settings.

Keywords:  cochlear implant (CI), electrically 
evoked compound action potential (ECAP), neural 
excitation patterns, neural health, current spread, 
optimization

INTRODUCTION

Although many cochlear-implant (CI) listeners under-
stand speech well in quiet backgrounds, there is much 
variability in outcomes, particularly in noisy conditions 
(Friesen et al. 2001; Firszt et al. 2004). Knowledge about 
each CI user’s unique neural activation pattern can 
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provide important information for optimizing efficacy and 
improving speech perception (Long et al. 2014; Pfingst 
et al. 2015). Here we describe a method for using the 
electrically evoked compound action-potential (ECAP) 
(Charlet de Sauvage et al. 1983; Brown et al. 1990) to 
provide an objective measurement of two key factors 
affecting neural activation patterns, namely the current 
spread from each electrode and the pattern of neural 
health along the cochlea. Several studies have suggested 
that ECAPs can be used to estimate aspects of neural 
activation patterns. For example, experiments with guinea 
pigs have shown that spiral-ganglion neuron (SGN) sur-
vival is positively correlated with the maximum ECAP 
amplitude, the IPG effect on the ECAP amplitude, and 
with the slope of the ECAP Amplitude Growth Func-
tion (AGF) (Prado-Guitierrez et al. 2006; Ramekers et al. 
2014). The IPG effect is the impact on the ECAP metric 
of increasing the gap between the two phases of a bipha-
sic current pulse (i.e., from 8 to 58 µs), giving the stimu-
lated neurons more time to recover from their response 
to the first phase when presented with the second phase 
(Prado-Guitierrez et al. 2006).

A widely used method to estimate neural spread of 
excitation (SOE) using ECAPs was first presented by 
Cohen et al. (2003) and leverages the Forward-Masking 
method of artefact reduction (Abbas et al. 1999). As CI 
stimulation artefacts are much larger than the evoked neu-
ral responses, artefact-reduction techniques are necessary 
to extract the neural response. In the Forward-Masking 
method, the responses to several combinations of probe 
and masker pulses are recorded and a subtraction para-
digm is used to extract the neural response to the probe 
pulse (Fig. 1). This method requires the neural response 
to the probe pulse to be completely masked by the masker 
pulse, and the reduction in ECAP amplitude with increas-
ing masker-probe distance has been considered an esti-
mate of the neural SOE from the probe (Abbas et al. 
2004; Hughes and Abbas 2006; van der Beek et al. 2012). 
A few metrics derived from these data have been shown to 
correlate with estimates of channel interaction within the 
cochlea. The equivalent rectangular bandwidth (ERB) of 
the area under the ECAP SOE function has been shown 
to correlate with electrode-modiolus distances measured 
from CT scans (DeVries et al. 2016), which are commonly 

Masker Probe Waveform Waveform components

A Ap + Θ + Np + φ

B Ap + Am + Θ + k ⋅ Np + Nm + φ

C Am + Θ + Nm + φ

D Θ + φ

ECAP A – (B – C) – D (1 – k) ⋅ Np

Fig. 1   Schematics and components for the forward-masking 
artefact-reduction technique. The maskers (dashed blue lines) and 
probes (solid green lines) are presented in biphasic current units, 
and the waveforms (solid black lines) were measured in C28 (with 
the probe and masker both on electrode 3) in µV (y axis) over a 
period of 2 ms (x axis). Ap is the stimulus artefact as a result of the 
probe, Am is the same for the masker, Np is the neural response to 

the probe, Nm is the same for the masker, Θ is the amplifier switch-
on artefact, φ is baseline neural activity, and k is the proportion of 
the probe’s neural response that is not masked by the masker. For 
maskers and probes presented on the same electrode, the entire 
neural response to the probe is masked. Therefore, k = 0 and the 
resulting ECAP waveform is Np
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thought to affect current spread. Another metric, the 
Channel Separation Index (CSI), is calculated by taking 
two SOE functions centred on different electrodes and 
summing the difference between their respective normal-
ized ECAP amplitudes as a function of masker location 
(Hughes 2008). This produces a higher CSI for electrodes 
which produce less similar SOE functions and has been 
shown to be a significant predictor of speech perception 
scores (Scheperle and Abbas 2015). However, both of 
the above SOE and CSI metrics are oversimplifications, 
because the amplitude of the ECAP waveform is deter-
mined by the spread from both the probe and the masker 
electrodes. Essentially, these methods assume uniform 
(and, in fact, infinitely narrow) spatial spread from each 
masker electrode, which is likely not the case.

To overcome this limitation, Cosentino et al. (2015) 
introduced the Panoramic ECAP Method (also referred to 
simply as ‘PECAP’), which considers the variation of the 
neural activation patterns by collecting ECAP amplitudes 
for all combinations of masker and probe electrodes. 
Based on a multi-stage nonlinear optimization algorithm, 
PECAP correctly identified notable exceptions to ideal 
electrode-neuron interfaces such as cross-turn stimulation 
and computer-simulated areas of neural death. However, 
it was limited in its detection to a single exception per 
CI user (i.e. one neural dead region or instance of cross-
turn stimulation), and the constraints imposed on the 
algorithm—which were necessary for it to reach a unique 
solution—were not biologically plausible. For example, 
the algorithm did not allow for the asymmetric neural 
excitation patterns that are likely to occur in the event of 
the presence of a neural dead region. Another method 
has also been presented using similar data and treating 
it as a deconvolution problem (Biesheuvel et al. 2016).

Here we present a revised Panoramic ECAP Method 
that also uses ECAP amplitudes for all combinations of 
masker and probe electrodes. It primarily differs from 
the original PECAP method in that it explicitly models 
the data using a combination of assumed current spread 
from each electrode and a common patttern of estimated 
neural health along the length of the cochlea. We argue 
that this allows the model to account for effects such as 
neural dead regions and broad current spread using a set 
of biologically realistic constraints; other differences from 
the original method are described in the following section.

We evaluated the revised PECAP method in three 
ways. First, we performed computer simulations to gener-
ate patterns of neural health and current spread, simu-
lated the ECAPs that these would produce, added noise 
to those measures, and submitted this artificial ECAP 
matrix to the algorithm. This allowed us to compare 
the PECAP outputs to a ‘ground truth’ and to evaluate 
its robustness to noise. It also provided an illustration 
of some of the algorithm’s potential benefits and limita-
tions. It was, however, somewhat circular in design and 
therefore limited in terms of its ecological validity. Next 

we used some previous data including ECAP recordings, 
focused detection thresholds, and CT scans in human 
CI users to test the hypotheses that regions of lower 
predicted neural health according to the PECAP algo-
rithm should correspond to regions with higher detec-
tion thresholds obtained with focussed stimulation and 
that wider current spread estimations according to the 
PECAP algorithm should correspond to electrodes that 
are located further away from neural tissue. Finally, we 
recorded ECAPs from a group of CI users and manipu-
lated the stimuli so as to simulate the effects of a neural 
dead region. The resulting data were then submitted to 
the PECAP algorithm, allowing us to determine whether 
it could successfully identify the locations of the simulated 
neural dead regions in the cochlea.

METHODS: DATA COLLECTION

Participants

Data were analysed from two cohorts of CI users, one 
of which was collected in a previous study and the other 
in the present study. The data from the first cohort 
were generously provided by DeVries et al. (2016), who 
collected ECAP amplitudes for all available combina-
tions of probes and maskers using the Forward-Masking 
artefact-reduction technique, presented at most com-
fortable level (MCL). These ECAP data were available 
for 9 of the 10 participants included in that study, 
all of whom were users of Advanced Bionics devices. 
ECAPs from a tenth participant were only available 
for a few electrodes and were therefore excluded from 
our analysis. Steered quadrupolar (sQP) thresholds and 
electrode-modiolus distances calculated from computer-
ized tomography (CT) scans were also available in the 
same participants. (For details, see DeVries et al. 2016.)

The second cohort was all volunteers at the MRC Cogni-
tion and Brain Sciences Unit in Cambridge, UK. Permission 
to conduct the study was granted by the National Research 
Ethics committee for the East of England, and all partici-
pants provided their written consent to participate. They were 
reimbursed for their travel costs and were compensated for 
volunteering their time. Thirteen users of Cochlear Corpora-
tion devices were recruited; three of whom were excluded 
from the analysis either because no ECAPs could be meas-
ured or because stimulation artefacts obscured the majority 
of responses. Those retained in the analysis are described in 
Table 1. All participants were unilaterally implanted with the 
exception of C19, who was sequentially bilaterally implanted 
and for whom both ears were tested (the two ears are referred 
to as C19R and C19L). This resulted in inclusion of a total 
of 11 ears with participants at an average of 62.2 years of age 
(standard deviation = 14.6 years). Electrodes were excluded 
from PECAP recording either if they were deactivated in the 
clinical MAP, or if they elicited non-auditory sensations.
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Panoramic Electrically Evoked Compound 
Action‑Potential Measurements

The data collection methods described in this section 
refer only to the second cohort of participants described 
above and included in Table 1. Participants were asked 
to remove their clinical CI processor and replace it with 
a laboratory-owned CP910 processor connected to a 
testing laptop computer running the Custom Sound EP 
clinical software (Cochlear Limited, Australia). If partic-
ipants wore a hearing device in their contralateral ear, 
they removed it during the session. We initially per-
formed some preliminary measurements so as to iden-
tify the stimulus levels and recording parameters that 
would be used in the main part of the study. For these 

preliminary measures, ECAPs were obtained using the 
forward-masking technique in the “Advanced NRT” 
tab of the Cochlear Corporation clinical software pro-
gram, Custom Sound EP. Symmetric, cathodic-leading 
biphasic current pulses with phase durations (PD) of 
25 µs, inter-phase gaps (IPGs) of 8 µs, masker offsets 
of 0 Current Units (CUs), and masker-probe intervals 
(MPIs) of 400 µs that were presented at 80 pulses per 
second (pps) on one electrode at a time, starting from 
subthreshold current levels. All stimuli were presented 
in monopolar (MP) mode, with the extra-cochlear 
ball electrode (MP1) used as the ground for stimula-
tion and the case electrode (MP2) used as the ground 
for recording. Participants were instructed to report 

TABLE 1

Participant information

n/a not applicable

ID Implanted ear Age (years) Duration of 
profound 
hearing 
loss before 
implantation 
(years)

Duration of 
implant use 
(years)

Aetiology Device Elec-
trodes 
assessed

ECAP recording 
gain (dB)/delay 
(µs)

Dead region 
simulation 
centre (elec-
trode)

C03 Right 75 10 15 Scarlet 
fever, viral 
infec-
tions, and 
Meniere’s 
disease

CI24RE 4–22 50 dB/122 µs 16

C04 Left 75 52 (L) 15 (R) 14 Idiopathic 
viral infec-
tion

CI24RE 4–22 40 dB/122 µs n/a

C09 Right 69 48 14 Hereditary CI24RE 2–21 40 dB/98 µs 15

C13 Right 57 17 4 Maternal 
rubella 
and ear 
infection

CI522 1–22 50 dB/122 µs 16

C19R Right 66 18 4 Exposure 
to loud 
sounds

CI422 3–22 50 dB/98 µs 5

C19L Left 66 20 2 Exposure 
to loud 
sounds

CI512 1–20 50 dB/122 µs 10

C25 Left 43 14 2.5 Hereditary CI522 4–22 50 dB/122 µs n/a

C26 Right 57 3 2 Hereditary CI522 1–22 60 dB/122 µs n/a

C28 Right 30 14 12 Perinatal 
deafness 
due to 
ototoxic 
antibiotic

Hybrid L24 4–22 40 dB/73 µs 8

C29 Left 76 gradual 
decline

3 Exposure 
to loud 
sounds

CI522 3–22 50 dB/98 µs n/a

C30 Right 71 5 4 Measles CI512 1–22 60 dB/73 µs 14
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loudness using an eleven-point chart with descriptors 
labelled from 0 (inaudible) to 10 (too loud). Current 
levels were increased in steps of 6, 4, or 2 current units 
(CUs) until participants reported a loudness level of 7 
(loud but comfortable), and then decreased in steps of 
2 CUs until the participant indicated that loudness was 
at level 6 (MCL). The CUs at the perceptual detection 
threshold, as well as for loudness levels of 4 (medium 
soft), 5 (medium), 6, and 7, were recorded. If the cur-
rent level reached the upper compliance limit for an 
electrode prior to reaching the participant’s perception 
of loudness level 7, then the PD (for every electrode) 
was increased to 42 µs (this occurred for participants 
C04, C09, and C28). This procedure was performed 
for every third electrode that was turned on in the 
participant’s clinical MAP. For electrodes for which 
loudness scaling was not performed, the CUs for MCL 
were interpolated linearly between evaluated electrodes.

Using an electrode that had been observed to have a 
clear ECAP waveform during loudness scaling, recording 
parameters for the Gain and Delay were optimized for 
each participant using the ‘Optimize recording param-
eters’ option in Custom Sound EP. Delays from 73 to 
122 µs in step sizes of 25 µs as well as Gains of 40, 50, 
60, and 70 dB at a recording electrode offset of +2 were 
evaluated. While the Delay and Gain settings should 
not affect ECAP amplitudes in theory, they may affect 
measurements by clipping the N1 peak, obscuring the 
waveform via amplifier saturation, or causing exces-
sive measurement noise. Therefore, the Delay and Gain 
combination that produced the highest measured N1-P2 
ECAP amplitude was selected, except in cases where 
the waveform that produced the highest amplitude was 
observed to be particularly noisy compared to average, 

in which case a Delay and Gain setting combination that 
produced a lower amplitude was selected in favour of a 
less noisy waveform. These parameters were then used 
for all subsequent recordings on all electrodes for that 
participant, the values for which are included in Table 1.

Custom software written in Python (version 2.4.4, Python 
Software Foundation, US) through the PyCharm IDE 
interface (Community Edition 2016.1.5, JetBrains, Czech 
Republic) was then used for recording ECAPs based on the 
NIC2 platform from Cochlear Corporation. The software 
allowed for the acquisition of four ECAP waveforms, each 
averaging 12 sweeps for a total of 48 sweeps per ECAP 
recording condition; accessible in the same amount of time, 
it would take to record a single 48-sweep waveform using 
Custom Sound EP. The collection of four individual aver-
age waveforms instead of a single one provided an estimate 
of the variability of the ECAPs and was used in the analysis 
of robustness of PECAP to noise. Stimulus parameters were 
the same as for the preliminary measurements.

The parameters for Gain, Delay, Phase Duration, 
IPG, and MCL current levels were used to record ECAP 
amplitudes for every electrode included in the partici-
pant’s active MAP (additionally excluding electrodes for 
which non-auditory sensations were reported) using the 
Forward-Masking artefact-reduction technique for the 
cases where the probe and the masker were co-located 
(on the same electrode). This subset of ECAP recordings 
will hereafter be referred to as the ‘diagonal’ as they 
constitute the diagonal of the recorded PECAP matrix 
(an example of which is shown in Fig. 2). Note that the 
current levels for both the masker and the probe were 
set to MCL and that the default 10-CU increase in the 
level of the masker relative to the probe that is used in 
the Custom Sound EP software was removed. ECAPs 
were recorded using an electrode spaced two electrodes 
apical from the active probe electrode, except on the 
two most apical electrodes where the recording elec-
trode was placed two electrodes basal to the active probe 
electrode. It was confirmed with the participant that the 
stimulation level used for the diagonal was comfortable 
to listen to for an extended period of time prior to ini-
tiating the primary PECAP recording sequence, which 
consisted of recording an ECAP waveform for every 
combination of masker and probe electrode. The record-
ing electrode was again located two electrodes apical 
to the probe electrode as a default during this primary 
recording sequence, with the recording electrode two 
basal to the probe for the two most-apical probes. When 
the recording electrode would have been co-located with 
the masker electrode, the recording electrode was moved 
to the electrode between the masker and the probe. 
These recordings constitute the primary PECAP matrix 
(hereafter referred to as Mo , and shown in Fig. 2). The 
PECAP recording sequence took between 35 and 55 min 
to record, depending on how many electrodes were deac-
tivated in the participant’s MAP or excluded from the 
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Fig. 2   An example of the PECAP Mo matrix measured for a CI par-
ticipant (C03), each cell of which represents the amplitude of an 
ECAP waveform in µV, recorded using all possible combinations of 
probe and masker electrodes from base to apex. It can be seen that 
the ECAP amplitudes are highest along the diagonal of the matrix 
for which probe and masker are placed on the same electrode, 
thereby maximising the overlap in neural excitation area
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PECAP matrix due to non-auditory sensations. Partici-
pants were instructed to sit in a chair but were allowed 
to sleep, read, write, or watch documentaries with sub-
titles during the recording sequence.

Dead Region Simulations

For seven of the participants listed in Table 1, we collected 
a second Mo matrix that included a neural dead region 
simulation. The Forward-Masking artefact-reduction tech-
nique requires four recorded frames to extract the neural 
response from the stimulus artefacts: the probe alone, the 
probe preceded by the masker, the masker alone, and a 
system signature (see Fig. 1). In order to simulate a neural 
dead region, one electrode was selected per participant on 
which two pre-masker pulses, spaced 400 µs apart from each 
other, were presented 400 µs before each of these frames 
for every masker-probe combination in the Mo matrix (see 
Fig. 3). These pre-masker pulses were always presented on 
the same electrode, regardless of the masker-probe pair. 
It was reasoned that the nerves excited by the electrode 
selected to simulate the neural dead region at MCL would 
still be in a refractory state with lower responsiveness during 

every ECAP recorded in Mo , thereby simulating a neural 
dead region (or at least a region of reduced responsive-
ness) centred on one electrode. The aim was to determine 
whether PECAP would correctly identify this local reduction 
in neural responsiveness compared to the standard condition 
without the neural dead region simulation.

For participants for whom the dead region simula-
tion dataset ( MDRS ) was collected during a different ses-
sion than the standard Mo dataset, loudness scaling as 
described in the previous session was repeated, to deter-
mine whether any changes in perceptual loudness for a 
given current level had occurred between sessions. This 
was not observed in any of the participants, so the same 
current levels were used in both sessions. The electrode 
used for the dead region simulation was selected by visu-
ally inspecting the ECAP amplitudes along the diagonal 
of Mo in the standard condition and selecting an elec-
trode with an ECAP amplitude considered high enough 
such that the expected reduction in response amplitude 
due to the pre-masker pulses would be detectable between 
the two conditions. The current level of the pre-masker 
pulses was set to the same level determined as MCL for 
that electrode during loudness scaling.

Pre-masker pulses Masker Probe Waveform Waveform 
components

A Apmp1 + Npmp1 + Apmp2 + 
Npmp2 + Ap + Θ + Np + φ

B
Apmp1 + Npmp1 + Apmp2 + 

Npmp2 + Ap + Am + Θ + k ⋅
Np + Nm + φ

C
Apmp1 + Npmp1 + Apmp2 + 

Npmp2 + Am + Θ + Nm + φ

D
Apmp1 + Npmp1 + Apmp2 + 

Npmp2 + Θ + φ

ECAP A – (B – C) – D (1 – k) ⋅ Np

Fig. 3   Schematics and components for the forward-masking artefact-
reduction technique in the dead region simulation condition. Note 
that the onset of each of the biphasic current pulses (pre-masker 
pulses, maskers, and probes alike) was spaced 400  µs apart from 
each other. The additional symbols in the ‘waveform components’ 
column not described in Fig. 1 are in red and are as follows: Apmp1 
is the stimulus artefact as a result of the first pre-masker pulse, Apmp2 

is the same for the second pre-masker pulse, Npmp1 is the neural 
response to the first pre-masker pulse, and Npmp2 is the same for the 
second pre-masker pulse. With the addition of the two pre-masker 
pulses (red dotted lines) prior to the Masker and Probe pulses in the 
standard forward-masking artefact-reduction technique, there is no 
change to the result of the ECAP waveform equation, as the addi-
tional components are all subtracted out
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The diagonal of the PECAP matrix with the addition 
of the dead region simulation was then recorded using 
the custom NIC2 software, after which the participant 
was again asked whether the loudness level was comfort-
able to listen to for an extended period of time. For two 
participants, this was not the case. To decrease listening 
levels to a lower, more comfortable loudness, the level of 
the pre-masker pulses was decreased for C03 by 5 CUs 
while the masker and probe pulses remained at MCL. 
Participant C09, however, indicated that decreasing the 
pre-masker pulses by 5 CUs was still not comfortable 
for extended listening. In order to achieve comfortable 
listening levels for C09, both the Mo and MDRS were 
additionally recorded at a loudness level of 4 (medium 
soft) on the loudness chart. The other five participants 
indicated that the diagonal with the dead region simula-
tion was louder than for the standard PECAP diagonal, 
but that it was still comfortable to listen to for an extended 
period of time. Therefore, all current levels for these par-
ticipants remained at the levels identified as MCL during 
initial loudness scaling. The electrodes selected for the 
dead region simulation condition for each participant are 
listed in Table 1.

METHODS: PECAP ALGORITHM STRU​CTU​RE

Overview

This subsection provides an overview of the PECAP algo-
rithm. More-detailed information including mathematical 
formulations are provided in the following subsection.

The PECAP algorithm assumes that each measured 
ECAP—that is, each cell of the measurement matrix M
—is determined by the overlap of the excitation patterns 
produced by the corresponding masker and probe. To 
formalize this, we assume that there is another matrix, 
A , each row of which represents the neural excitation 
pattern produced by stimulating one electrode. We also 
assume that each excitation pattern results from the 
combination of two factors. One of these is given by a 
third matrix, C , each row of which represents the cur-
rent spread produced by stimulating one electrode. We 
assume that each current-spread function is Gaussian 
and that the functions for each electrode differ only in 
the width (σ) of the Gaussian. The second factor is a 
neural health vector, ƞ, which varies along the electrode 
array. Its value is constrained to vary between 0 and 1, 
where 0 corresponds to a completely unresponsive—or 
dead—neural region. Note that because the input ( M ) 
to the algorithm consists of ECAPs, it is deaf to non-
synchronized responses and so ƞ predominantly reflects 
the synchronized neural responsiveness, and A reflects 
the synchronized neural excitation patterns. Nevertheless, 
we use the terms ‘neural health’ (referring not directly 
to SGN survival but synchronized neural responsiveness 
measured with forward-masked ECAPs) and ‘excitation 
pattern’ for brevity.

An example of how the current spread and neural 
health are combined to produce an excitation pattern 
is illustrated in Fig. 4a, which shows the neural-health 
vector (ƞ) as a function of position along the cochlea in 
the case of a neural dead region centred on electrode 
17. The solid blue line in Fig. 4b shows the Gaussian 
current spread produced by stimulating electrode 16 (the 
16th row of the C matrix). Multiplying these two curves 
gives the predicted excitation pattern (the 16th row of 
the A matrix) shown by the dashed red line Fig. 4b. It’s 
worth noting that although the current spread is con-
strained to be symmetric wthin C , the algorithm can 
reproduce an asymmmetric excitation pattern in A . In 
addition, the neural-health vector ƞ, which is independ-
ent of which electrodes are being stimulated, will have 
a biolgically plausible and consistent effect on excitation 
patterns produced by stimulating other nearby electrodes. 
For example, given the neural health ƞ in Fig. 4a, stimu-
lating electrode 15 would also produce an asymmetric 
excitation pattern with less activation near electrode 16 
than electrode 14.

An overview of the PECAP estimation process is 
shown in Fig. 5. The input to the algorithm is the meas-
urement matrix M . The algorithm generates some initial 
random values for the current-spread matrix C and of the 
neural-health vector ƞ. Next, the algorithm combines ƞ 
and C to produce the predicted excitation patterns, and 
then calculates the ECAP matrix that would arise from 
those predicted excitation patterns. This predicted M 
matrix ( ̂M ) is then compared to the observed M matrix 
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Fig. 4   a An example of a neural health vector ƞ along the coch-
lea from apex (left) to base (right) with a dead region centred on 
electrode 17. b The Gaussian current spread (solid blue line) cen-
tred on electrode 16 (C16) and the resultant neural activation pat-
tern (dashed red line) for the same electrode that is defined as 
A16 = C16 · ƞ 
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( Mo ), and the initial estimates of C and ƞ are updated 
using a nonlinear optimization algorithm. This procedure 
continues iteratively in such a way as to minimize the 
error between Mo and M̂ until a stop criterion is met, 
at which point the algorithm returns the final estimates 
of σ and ƞ, together with the resulting estimates of the 
excitation patterns ( A).

Before describing the mathematical details of the 
PECAP, it is worth making an important general point, 
known as the inverse problem (Groetsch 1993; Kirsch 
1996). This is that, although a given set of excitation 
patterns will, according to the model, produce a unique 
predicted measurement matrix ( ̂M ), the converse is not 
true. That is, a given measurement matrix Mo could in 
theory arise from any one of a large number of underly-
ing excitation patterns ( A ). This is why it is necessary to 
impose smoothness and boundary constraints on ƞ and 
C (described in detail in the following section) in order to 
arrive at a stable and plausible solution. These essentially 
prevent the estimated parameters (σ and ƞ) from varying 
erratically between adjacent electrodes.

Mathematical Formulation and Details

The following subsection provides the details of the math-
ematical formulas that govern the structure and imple-
mentation of the PECAP algorithm.

The primary qualitative advantage of the revised 
PECAP method over previous approaches is its ability to 
separately model the contributions of current spread and 
neural health. It estimates how both entities vary along 
the length of the electrode array, and allows for asymmet-
ric patterns of neural excitation through their interaction. 

It is important to reiterate here that the neural health 
estimate does not directly represent SGN survival. As it 
is a parameter extrapolated from ECAP measurements, 
each cell of the neural-health vector described in this 
section represents the synchronous responsiveness of the 
auditory nerve at a given electrode relative to all other 
electrodes along the array for any given patient. The fol-
lowing section explains how the estimation of both the 
current spread and the neural health is achieved, given 
various assumptions about their interaction.

As previously noted, the PECAP model assumes that 
ECAP amplitudes are a result of the overlap in the neural 
activation patterns between the probe and masker elec-
trodes. We can describe the amplitude of the ECAP from 
any given combination of masker and probe electrodes as

where Ap(k) and Am(k) are the neural activation patterns 
produced by electrodes p (probe) and m (masker) at MCL 
as a function of location along the cochlea k , expressed 
at each evaluated electrode in a CI user’s MAP from e1 
to en , where n is the total number of active electrodes. 
We make the symmetry assumption Mp,m= Mm,p because 
the overlapping area of neural excitation between two 
electrodes should be equivalent regardless of the order 
in which the probe and masker electrode pulses are pre-
sented. In reality, the measured ECAP amplitudes do not 
always exactly satisfy the Mp,m= Mm,p assumption, due to 
a combination of measurement noise and the recording 
electrode being determined by the location of the probe 
electrode, rather than the masker electrode. Therefore, 
prior to submitting Mo to the PECAP algorithm, each 

(1)Mp,m= Mm,p =
∑en

k=e1
Ap(k) · Am(k)

Ms

Measured 
ECAP Matrix

compare

σ current spread

ƞ neural health

C

Matrix of Gaussian 
Current Spreads

A

Matrix of Neural 
Excitation Patterns
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Reconstructed 
ECAP Matrix

^

^

Fig. 5   Schematic for the PECAP algorithm. The optimization algorithm adjusts the values in the σ and ƞ vectors, reconstructs M̂ , and updates σ 
and ƞ iteratively in order to minimize the RMSE between Mo and M̂
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ECAP amplitude is replaced with an average amplitude, 
equivalent to averaging across the diagonal of Mo (see 
Fig. 2), thereby also reducing the total amount of noise 
present in the data:

As noted above, each cell of this measurement matrix 
is assumed to arise from the overlap of the neural excita-
tion patterns produced by the corresponding masker and 
probe. That is, if A is the matrix of neural excitation 
patterns with the rows and columns corresponding to 
the excitation pattern of each probe and masker, respec-
tively, then Mp,m is the result of multiplying row p and 
column m of A . Because the excitation pattern produced 
by stimulating an electrode is the same whether it is used 
as masker or probe, the same is true if we transpose A 
so that the rows represent the maskers and the columns 
represent the probes ( AT ). Therefore, more generally, the 
full matrix containing the ECAPs for every combination 
of masker and probe electrode can be described as

where the cells in both the neural response ( A ) and the 
ECAP ( M ) matrices are expressed in units of in µV.

As described above and illustrated in Fig.  4, the 
PECAP algorithm allows for biologically plausible asym-
metry of the neural excitation patterns by defining A 
as the combination of two underlying factors: symmet-
ric current spread from each electrode represented by a 
matrix C for which each row is a Gaussian function, and 
a vector η representing neural health at each electrode 
which is multiplied with each row of C to obtain A:

Each row of C is described by a Gaussian function, the 
shape of which is controlled by three parameters within 
the following equation:

The amplitude αi , the mean µi , and the standard 
deviation σi of the Gaussian function describe the cur-
rent spread from electrode i . By expressing A as a linear 
combination of η and C , we allow for modelling asym-
metry in the neural activation patterns. Figure 4 shows 
an example of the neural activation pattern centred on 
one electrode for a situation where there is a neural dead 
region near the electrode in question (Fig. 4a), resulting in 
an asymmetric neural excitation pattern for that electrode 
(Fig. 4b). Note that the dead region will affect excita-
tion patterns for all nearby electrodes in a biologically 
plausible and consistent manner, for example, affecting 
the apical side of the excitation patterns of more-basal 

(2)M
′

p,m= M
′

m,p =
Mp,m +Mm,p

2

(3)M =

√
A · AT

(4)A = η · C

(5)Ci(k) = αi · e
−
(k−µi )
2·σi

2

electrodes, but the basal side of the excitation patterns of 
more-apical electrodes.

The PECAP algorithm assumes that the Gaussian 
current-spread from each electrode is centred on the i th 
electrode, so µi is also not a free parameter. To reduce 
free parameters and to enable both the A and the M 
matrices to be in the same units of µV, all values of the 
amplitude variable α are set to a single, fixed value equal 
to the maximum ECAP amplitude of the M o matrix. 
Therefore, the only free parameter in the Gaussians in C 
is σ , and Eq (5) can be simplified to

Given the measured Mo as an input to the PECAP 
algorithm, we wish to determine how the neural-health 
( ηi ) and current-spread ( σi ) values vary along the length of 
a participant’s cochlea. As there is no unique solution for 
the two vectors η and σ that will produce any given Mo 
due to the inverse problem mentioned above, a numeri-
cal approach using smoothness constraints and nonlinear 
optimization is used, as described below.

As depicted in Fig. 5, the optimization algorithm 
adjusts the neural-health and current-spread vectors 
η and σ iteratively to minimize the error between Mo 
and M̂  . For a set of electrodes 1: N  , the estimation 
of neural health along the length of the cochlea η is 
initialized with N  random values between 0 and 1 indi-
cating a proportion of healthy neurons. The current 
spread parameter σ is initialized with an additional N  
random values between 1 and 6 indicating the stand-
ard deviation of the current spread in units of elec-
trodes. The C matrix is then defined using Eq. (6) for 
i  = 1:N  for the randomly initialized values of σ . A is 
defined using (4) , and M̂  is constructed using (3) . The 
root-mean-squared error (RMSE) between Mo and M̂ 
is then calculated as

and it is this value that is minimized during optimization.
The optimization method used for finding the values for 

η and σ with minimum ε
Mo ,M̂

 is Sequential Quadratic 
Programming (sqp) implemented with the fmincon() function 
in MATLAB R2018a (Powell 1983; Hock and Schittowski 
1983). PECAP uses inequality constrains to implement 
smoothness conditions that prevent adjacent electrodes 
from having values of σ that vary by more than ± 3 for 
adjacent electrodes, and values of η that vary by more 
than ± 0.3, which can be described as

(6)Ci(k) = α · e
−

(k)2

2·σi

(7)ε
Mo ,M̂

=

√
1

N
·
∑(

Mop,m − M̂p,m

)2

(8a)|σi − σi−1| ≤ 3

(8b)|ηi − ηi−1| ≤ 0.3
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as well as upper and lower limits consistent with σ and η 
initialization described as

As previously noted, the neural-health vector η does 
not directly represent absolute SGN survival and func-
tion. Therefore, ηi = 0 does not mean there are no 
surviving SGNs at electrode i  , nor does ηi = 1 refer 
to a scenario where all SGNs are perfectly healthy at 
electrode i  . The neural health (also described as the 
synchronized neural responsiveness) at each electrode is 
defined as the electrical current at electrode i multiplied 
by η (4). As the algorithm scales the assumed current 
to the maximum ECAP amplitude measured in Mo , ƞ 
can be considered as the synchronized neural response 
divided by the scaled current. This in turn will depend 
on several factors including the number of surviving 
SGNs at electrode i  , and various attributes of neural 
tissue such as myelination and survival of the peripheral 
processes. Because of the scaling, it will also depend on 
the neural responsiveness and survival elsewhere along 
the array. Therefore, η can be viewed as a measure of 
‘synchronized neural responsiveness’ which we refer to 
simply as ‘neural health’ for brevity. ηi = 0 can there-
fore be interpreted as an absence of synchronized neural 
responsiveness at electrode i , and ηi = 1 can be viewed 
as the highest possible synchronized neural responsive-
ness for that patient with values in between representing 
relative amounts between these extremes.

The neural health and current spread were modelled 
by PECAP for 20 hypothetical electrodes beyond the end 
of the electrode array (10 on either side) to avoid math-
ematical edge effects unrelated to the intended estimation 
process that may otherwise occur at both ends of the 
array. This is also biologically plausible because although 
PECAP only estimates current spread and neural health 
patterns for the locations of the active electrodes of the 
array, these are likely to extend beyond the area covered 
by the active electrodes, in particular for the most apical 
cochlear turn (Heutink et al. 2019; Iyer et al. 2018).

RESULTS: PECAP ALGORITHM VALIDATION

Computer Simulations

The accuracy of PECAP and its robustness to noise was 
first evaluated using a circular approach based on com-
puter simulations (referred to here as the ‘backward 
model’ of PECAP), wherein 10 example scenarios of neu-
ral health and current spread along the electrode array 
(σs and ƞs) were artificially generated to simulate Ms 
matrices. The method is depicted in Fig. 6. Because these 
neural activation patterns were simulated, this method of 

(9a)0 < ηi ≤ 1

(9b)1 < σi ≤ 6

validation has the advantage that the ground-truth As 
matrices are available, which means that in addition to 
ε
Ms ,M̂

 (which is equivalent to ε
Mo ,M̂

 in Eq. (7) just with 
Ms instead of Mo ), εAs ,Â

 can also be calculated:

ε
As ,Â

 is a measure of how accurately the PECAP 
method is able to reconstruct the ground-truth neural 
activation patterns, whereas ε

Mo ,M̂
 and ε

Ms ,M̂
 indicate 

how accurately PECAP is able to fit the reconstructed to 
the measured ECAP data. Only the latter measure 
( ε
Mo ,M̂

 ) is available when evaluating ECAP data meas-
ured with human CI participants (referred to here as the 
‘forward model’ of PECAP).

For each of the 10 simulated scenarios, 12 signal-to-
noise ratio (SNR) levels were evaluated. Random Gauss-
ian noise was added to the Ms matrices before sub-
mission to the PECAP algorithm at the following SNR 
(dB) levels: −5, −2, 1, 4, 7, 10, 13, 16, 19, 22, 25, + ∞. 
This resulted in a total number of 120 conditions (10 
simulated neural activation patterns × 12 SNR values). 
Each scenario is illustrated by the solid lines in the top 
two plots in one panel of Fig. 7. Simulation scenarios 
1 (Fig. 7a) and 2 (Fig. 7b) both consisted of uniform 
good neural health and uniform narrow and wide current 
spread along the electrode array, respectively. Simulation 
scenarios 3 (Fig. 7c) and 4 (Fig. 7d) emulated 1 and 2 
but with the inclusion of a neural dead region towards 
the apical end of the cochlea centred on electrode 17. 
Simulation scenarios 5 (Fig. 7e) and 6 (Fig. 7f) consisted 
of alternating wide and narrow current spread between 
even and odd electrodes, where 5 had uniformly good 
neural health and 6 contained a neural dead region, also 
towards the apical end of the cochlea centred on elec-
trode 17. Simulation scenarios 7 (Fig. 7g) and 8 (Fig. 7h) 
contained a neural dead region right at the apical edge 
of the electrode array and uniform narrow and wide cur-
rent spread, respectively. Finally, simulation scenario 9 
(Fig. 7i) had current spread that was wider at the apex 
and narrower at the base and an uneven pattern of neu-
ral health, and simulation scenario 10 (Fig. 7j) had nar-
row current spread near the middle of the array that got 
wider towards both ends, also with an uneven pattern 
of neural health. For all conditions, an arbitrary α value 
of 150 µV was used to generate the Ms matrices, which 
resulted in a variety of maximum peak ECAP amplitudes 
in the various simulations. In order to compare the errors 
between simulations, each error metric (ε) was normalized 
by dividing by the maximum ECAP amplitude in the 
simulated Ms for that simulation and SNR combination. 
Each panel of Fig. 7 shows the original ƞ and σ values 
along the electrode array, the ƞ and σ reconstructed with 
an infinitely high SNR (no added noise), and the errors 

(10)ε
As ,Â

=

√
1

N
·
∑(

Asp,m − Âp,m

)2
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for each simulation (Eqs. 7 and 10) in % as a function 
of SNR.

The symbols to the right of each plot show the errors 
obtained for each simulated scenario at infinite SNR 
(‘clean’, with no noise added). For these ideal conditions, 
PECAP estimated σ with < 2% RMSE for all 10 sce-
narios, and ƞ with < 5% RMSE for 7 of the 10 scenarios. 
Scenarios 4, 8, and 9 had RMSEs for ƞ of 11.19%, 
6.96%, and 7.10%, respectively. For these, PECAP was 
less accurate in estimating areas of low neural health than 

in the other scenarios, and it should be noted that the 
neural dead regions in these scenarios were all co-located 
with areas of relatively wide current spread, illustrating a 
situation in which the algorithm may have more diffi-
culty. It can also be seen that the algorithm’s RMSE for 
optimizing M is lowest for the most positive SNRs and 
increases steeply for SNRs below 4–7 dB. The error for 
the estimation of A shows more variability across condi-
tions in its dependence on SNR: on average, it follows a 
similar pattern to the error for M  , but for some 

Ms

Measured 
ECAP Matrix

compare

σ current spread

ƞ neural health

C

Matrix of Gaussian 
Current Spreads

A

Matrix of Neural 
Excitation Patterns

M

Reconstructed 
ECAP Matrix

^

^

ƞs simulated neural 
health

Cs

Simulated 
Matrix of Gaussian 
Current Spreads As

Simulated 
Matrix of Neural 

Excitation Patterns
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σs simulated 
current spread
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^

Fig. 6   Schematic for the ‘backward model’ of PECAP used for the 
computational validation of the model accuracy and its sensitivity 
to noise. The two vectors σs and ƞs are initialized with pre-defined 
values, the backwards (grey) part of the algorithm is run to generate 
a simulated Ms using Eqs.  (6), (4), and (3), and random Gaussian 

noise is added. The algorithm is then run in the normal, forward 
manner (black) with σ and ƞ initialized from random numbers as 
described previously, and the resultant final estimates of σ and ƞ are 
evaluated by comparing them to σs and ƞs
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simulations (i.e. 2, 4, and 8) where the current spread is 
uniformly wide, the RMSE in A is constant at low SNRs 
and drops below 10% or below only for SNRs above 
10 dB. It should also be noted that in most conditions, 
ε
As ,Â

 is greater than ε
Mo ,M̂

 . This is unsurprising, as it is 
ε
Mo ,M̂

 rather than ε
As ,Â

 that is minimized within the 
PECAP algorithm. An average of ε

Mo ,M̂
 and ε

As ,Â
 across 

all 10 simulated scenarios is plotted in Fig. 7k, and an 
evaluation of PECAP’s robustness to noise based on SNR 
obtained in the real ECAP measurements is described in 
the fourth algorithm validation section below.

Association Between Estimated Neural Health 
and Focused Thresholds in CI Users

It has been suggested that behavioural detection thresh-
olds for focused forms of stimulation should be correlated 
with neural survival (Goldwyn et al. 2010). DeVries et al. 
(2016) measured detection thresholds for focused (steered 
quadrupolar) stimulation (hereafter referred to simply 
as focused thresholds) on multiple electrodes for nine 
Advanced Bionics CI users, and also collected Mo matri-
ces for those same participants. They kindly provided 
both sets of data, and the Mo matrices were submitted 
to the PECAP algorithm so as to estimate neural health 
(ƞ) and current spread (σ) along the cochlea for each 
participant. These values were compared to the focused 
thresholds in the same participants.

Individual participant correlations were performed 
between the focused thresholds and ƞ, with the hypoth-
esis that if ƞ accurately models neural health, the two 
measures should be negatively correlated. To correlate 
the within-participant, across-electrode variation in ƞ and 
focused thresholds, we performed an ANCOVA with ƞ 
as the dependent variable, focussed threshold as covari-
ate, and participant as a random factor. This analysis 
is mathematically equivalent to subtracting the mean 
threshold and ƞ across electrodes for each participant 

from that participant’s scores, and calculating the cor-
relation co-efficient for all data combined. A modest but 
significant negative correlation was found between ƞ and 
the focused thresholds (r(107) = −0.29, p = 0.001). Inspec-
tion of individual participants’ data showed that 3 of the 
9 participants had significant negative correlations (s22: 
r(13) = −0.75, p = 0.002, s29: r(13) = −0.70, p = 0.005, 
s42: r(13) = −0.54, p = 0.044), although s42 showed a 
more moderate correlation than the other two and did 
not remain significant after Bonferroni corrections for 
multiple comparisons (for 4 comparative metrics—ƞ, σ, 
focused threshold, and electrode-to-modiolus distances 
(EMD): p = 0.05/6 = 0.0083 for 95% significance). It is 
noted that for the other 6 participants for whom no cor-
relations were found, 5 of them had Mo matrices with 
maximum ECAP amplitudes below 150 µV, suggesting 
lower SNRs. The maximum ECAP amplitude in the Mo 
matrices of the three participants who showed signifi-
cant correlations was substantially larger: s22 = 585 µV, 
s29 = 289 µV, and s42 = 642 µV. It should also be noted 
that the focused thresholds were obtained using sQP stim-
ulation, whereas the ECAP measurements were obtained 
using monopolar stimulation at a comfortable level that 
is expected to be less focused. The different patterns of 
neural excitation between the two methods of stimulation 
could have affected the results. The across-electrode cor-
relations are shown for individual participants and for all 
participants combined in Fig. 8a. For the combined data, 
the values shown for each participant are normalized to 
the across-electrode mean for that participant, because 
the ANCOVA removes between-participant differences 
(Bland and Altman 1995).

Association Between Estimated Current Spread 
and Electrode‑to‑Modiolus Distances in CI Users

EMD measures were extracted from CT scans in the 
same participants for whom data was described in the 
previous section. A detailed description of the collection 
and processing of these data can be found in DeVries 
et al. (2016).

We evaluated the within-participant across-electrode 
correlation between the EMD and σ, with the hypoth-
esis that if σ accurately models current spread, the two 
measures should be positively correlated, as an electrode 
that is farther from the neurons (larger EMD) would 
be expected to result in a larger current spread. We 
performed an ANCOVA with σ as dependent variable, 
EMD as co-variate, and participant as a random fac-
tor. This analysis did not reveal a significant correlation 
between EMD and σ (r(120) = −0.10, p = 0.261). At 
an individual level, 4 of the 9 participants showed sig-
nificant correlations, 2 of which were positive and 2 of 
which were negative (s22: r(15) = 0.77, p < 0.001, s38: 
r(38) = −0.86, p < 0.001, s40: r(15) = −0.79, p < 0.001, 
s42: r(13) =  0.88, p <  0.001). The across-electrode 

Fig. 7   Error (RMSE) profiles as a function of SNR for ten simulated 
scenarios (a–j). The neural health vector (ƞ) and the current spread 
vector (σ) used to generate the ten scenarios are shown for every 
electrode (N = 22 electrodes) in each plot. In the top two graphs 
for each simulation scenario, the dashed grey lines indicate the 
simulated values (ƞs and σs), and the solid black lines indicate the 
reconstructed predictions of the algorithm (ƞ and σ) at SNR = ∞ (no 
noise added). The bottom graph for each simulation scenario shows 
the ε

Ms ,M̂
 and ε

As ,Â
 values across all SNR levels, normalized by 

the maximum value in the Ms and As matrices respectively for each 
condition. Therefore, while the units are indicated as %, the RMSE 
values have been normalized so they fall on a scale of 0–1. Note 
that estimates of ƞ for the neural dead regions in scenarios 4, 8, and 
9 are suboptimal. The across-electrode correlations between origi-
nal and reconstructed ƞ for these scenarios (ƞs,ƞ) are r(21) = 0.91, 
0.97, and 0.87, respectively (all with p  <  0.001). The ε

Ms ,M̂
 and 

ε
As ,Â

 values were then averaged across conditions for all SNRs in 
the final graph (k), in which error bars indicate one standard devia-
tion from the sample mean

◂
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Fig. 8   a The left-hand plots show the within-participant, across-
electrode correlations between Focused Thresholds (obtained using 
sQP stimulation) and PECAP estimate of neural health (ƞ). The right-
hand plot shows the combined correlations for all participants, with 

between-participant differences removed by expressing each value 
relative to the mean for that participant. b This is in the same format 
as a but showing the correlations between electrode-to-modiolus 
distances and PECAP estimate of current spread (σ)

580



C. Garcia et al.: The Panoramic ECAP Method: Estimating Patient‑Specific Patterns of Current …

correlations are shown for individual participants and for 
all participants combined in Fig. 8b. For the combined 
data, the values shown for each participant are normal-
ized to the across-electrode mean for that participant. 
Possible reasons for the absence of a significant correla-
tion are considered in the ‘Discussion’.

Detection of Simulated Neural Dead Regions in 
CI Users

The accuracy of the algorithm and its ability to iden-
tify neural dead regions was further evaluated using the 
PECAP data from the seven CI participants for whom 
neural dead region simulations were performed. It was 
expected that the occurrence of a simulated neural dead 
region should not affect the PECAP algorithm’s estimate 
of current spread (σ), but that the estimate of neural health 
(ƞ) would decrease at the location of the electrode used for 
the dead region simulation while remaining consistent fur-
ther away from that location. The estimated neural excita-
tion patterns ( ̂A ) for one participant (C03) are shown for 
both the standard and dead region simulation conditions 

in Fig. 9, along with the σ and ƞ vectors estimated by 
PECAP for both conditions. As predicted, the current 
spread remained consistent between the two conditions 
(RMSE = 2.27%), and the neural health dropped at and 
around electrode 16 (the electrode used for the simulation 
of the dead region). To evaluate whether any reduction 
in ƞ was, as expected, restricted to locations close to the 
dead-region-simulation electrode, we assumed that the 
dead region simulation would affect about 5 electrodes, 
with 2 electrodes on either side of the electrode selected 
for the dead region simulation. This was based on previ-
ous estimates of current spread in CI users, as current 
levels required to achieve equal loudness have been shown 
to plateau after the 2nd electrode away from a central one 
in monopolar mode (Marozeau et al. 2015). For example, 
in the case of participant C03, it would be expected that 
the dead region simulation reaches approximately from 
electrodes 14 to 18 (16 ± 2). For C03, the RMSE between 
the two condition’s estimated neural health (ƞ) for these 5 
electrodes was 26.27%. The difference between the ƞ vec-
tors for the remaining electrodes across the two conditions 
was much lower (RMSE = 8.81%), indicating a consistent 
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Fig. 9   Neural dead region simulation results for participant C03. In 
the top left, the Â matrix for neural excitation patterns which PECAP 
estimates for the standard condition, and in the top right, the ÂDRS 
matrix which PECAP estimates for the neural dead region simula-
tion condition. The neural dead region was simulated for this par-
ticipant at electrode 16, as indicated by the red box. The graph in 
the bottom left indicates PECAP estimation of current spread (σ) was 

consistent between the standard condition (black, straight line) and 
the neural dead region simulation condition (red, dotted line). The 
graph in the bottom right shows PECAP estimation of neural health 
(ƞ) for both conditions. Poorer estimated neural health is apparent 
for the neural dead region simulation in comparison to the standard 
condition from electrodes 13 to 18, but estimates were largely con-
sistent between the two conditions for the other electrodes

581



C. Garcia et al.: The Panoramic ECAP Method: Estimating Patient‑Specific Patterns of Current …

estimate of neural health for electrodes expected not to be 
affected by the simulated neural dead region.

The differences in ƞ between the two conditions for 
each participant were not directly comparable, due to the 
fact that the neural health vector contains proportional 
values (not absolute values) at each electrode location 
with respect to the other electrode locations of that CI 
participant. This was particularly apparent for two partic-
ipants (C13 and C28) for whom the electrode selected for 
the neural dead region simulation was at or immediately 
adjacent to the area with the highest predicted neural 
health in the standard condition. In order to perform a 
more direct comparison between the two conditions for 
these participants in particular, the ƞ vector for the dead 
region simulation dataset was multiplied by the ratio of 
the maximum ECAP amplitude (in µV) in the MDRS and 
the Mo matrices for all participants:

where Mo is the standard ECAP matrix and MDRS is the 
ECAP matrix for the dead region simulation. Figure 10 
shows the estimated σ and ƞ vectors for the standard and 

(11)η
′

DRS =
max(MDRS)

max(Mo)
· ηDRS

neural dead region simulation conditions for all seven 
participants. It can be seen from visual inspection of the 
ƞ vectors that the PECAP algorithm correctly identified 
a decrease in the estimated neural health in the expected 
region for all participants.

As noted above, we would not expect a simulated dead 
region to affect the estimate of current spread. The first 
column of Table 2 shows the RMSEs of the σ vectors 
between the two conditions. The highest error occurred 
for the estimated σ vector of C13 (32.58%), which may 
be due to the low ECAP amplitudes of the neural dead 
region simulation dataset for this participant (the maxi-
mum observed ECAP amplitude in this  MDRS matrix 
is 45.5 µV). All other RMSEs for σ are below 20%, and 
the overall RMSE is 15.83%, indicating that PECAP 
estimated current spread with 84% consistency.

The second column of Table 2 shows that the RMSEs 
of the ƞ vectors for electrodes assumed not to be affected 
by the dead region simulation (ƞalive)—i.e. those located 
more than 2 electrodes away from the electrode on which 
the pre-masker pulses were presented—are all below 12%, 
with an average of 8.97%, indicating approximately 91% 
consistency. The third column of Table 2 shows the 
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Fig. 10   PECAP estimates for σ (current spread, left) and ƞ (neu-
ral health, right) for the seven participants for whom neural dead 
region simulations were performed. Solid black lines indicate 
estimations of neural health and current spread from the standard 

PECAP condition, and dotted red lines indicate estimations in the 
dead region simulation condition. Vertical dashed red lines in the 
ƞ graphs indicate the electrode that was used for the neural dead 
region simulation for each participant
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RMSEs of the ƞ vectors for electrodes assumed to be 
affected by the dead region (ƞdead). It can be seen from 
comparing the values in this column with the previous two 
columns that the RMSEs are higher for ƞdead than for σ or 
ƞalive for all individual participants, as well as when aver-
aged across participants (RMSE = 30.52%). This suggests 
that PECAP detected the simulated neural dead region in 
the correct location of the ƞ vectors for all participants.

However, as RMSE metrics are calculated with the 
squared error, they do not inform about the direction of 

the effect of the dead region simulation on ƞ. Therefore, 
the mean signed differences (MSDs) and their standard 
deviations were also calculated between the two condi-
tions for each of the metrics in the first three columns 
of Table 2. It was calculated such that a positive MSD 
would indicate a reduced value of the metric in the dead 
region simulation condition. Figure 11 shows these values 
across electrodes for all individual participants as well as 
for the across-electrode averages across all participants. 
For σ across participants, MSD = −0.20 (± 0.54 stand-
ard deviations). This metric was found not to be statisti-
cally significantly than from 0 after a two-tailed t-test 
(t(6) = −0.98, p = 0.36), indicating no evidence for error 
bias in estimates of σ in one direction or another as a 
result of the dead region simulation. The estimate of neu-
ral health was, across participants, reduced significantly 
for regions near the simulated dead region (red trian-
gles; MSD for ƞdead = 0.25 (± 0.16)), but not for regions 
farther away (blue triangles; MSD for ƞalive = 0.026 
(± 0.086)). The MSDs for these two populations were 
significantly different from each other as shown by a 
two-tailed t-test (t(6) = 3.26, p = 0.017) with a Hedge’s gs 
of 1.63, indicating a large effect of the dead-region simu-
lation on ƞ across participants in the expected location 
and direction. All individual participants also showed sig-
nificant, positive Hedges’ g values of above 0.5, and most 
between 1.4 and 2.1 (above Cohen’s thresholds of 0.5 
and 0.8 for a medium and large effect size, respectively 
(Cohen 1988; Lakens 2013)), indicating that the effect of 
the dead region simulation observed across participants 
was also present for each individual participant.

PECAP’s Robustness to Noise

Finally, we assessed the robustness of PECAP’s neural acti-
vation pattern estimates to noise. As the algorithm does not 
have an internal mechanism for determining the level of 

TABLE 2

RMSEs for σ and ƞ for each of the seven participants who participated in the dead region simulation part of the experiment. As 
expected, errors are consistently higher for ƞdead than for both σ and ƞalive

Participant RMSEs (%) Dead region simulation electrode Estimated ƞ dead region 
(excluded from ƞalive 
RMSE)σ ƞalive ƞdead

C03 2.27% 8.81% 26.27% 16 14–18

C09 13.58% 5.37% 21.82% 15 13–17

C13 32.58% 10.21% 39.50% 16 14–18

C19R 10.21% 6.78% 20.08% 5 3–7

C19L 15.59% 8.91% 44.99% 10 8–12

C28 8.61% 11.74% 31.05% 8 6–10

C30 1.96% 9.39% 20.01% 14 12–16

Across 15.83% 8.97% 30.52% Total electrodes = 142 (σ), 107 (ƞalive), 35 (ƞdead)
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Fig. 11   Signed differences for σ (current spread) and ƞ (neural 
health) for each of the seven participants who participated in the 
dead region simulation part of the experiment. The error bars rep-
resent one standard deviation from the sample mean. The asterisks 
show cases where the ƞalive and ƞalive signed differences were statis-
tically significant from each other as a result of a two-tailed t-test. 
Across electrodes, all the individual participants showed p < 0.001 
and Hedge’s gs > 0.8 (**) between ƞalive and ƞalive signed differences, 
except for C09 (p  =  0.038, Hedge’s gs  =  0.59, df  =  19) and C30 
(p = 0.036, Hedge’s gs = 0.78, df = 21) (*)
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confidence it has in its accuracy, it is necessary to develop 
a way to determine this separately, based on the noise level 
of any new Mo matrix recorded. In the 1st results section 
(‘Computer Simulations’), it was determined that for all ten 
simulated scenarios combined, PECAP’s error in replicat-
ing A ( ε

As,Â
 ) dropped below 10% for SNRs of 10 dB and 

above. Therefore, in order to be confident that PECAP’s 
neural activation patterns are < 10% error, any new Mo 
matrix must have an overall SNR above 10 dB.

However, since SNR cannot be measured directly 
from a recorded Mo matrix, a transfer function must 
be defined between a measurable property of these data 
and SNR. The measurable property we selected was the 
RMSE between repeated measurements of Mo using the 
same stimuli. To address this, 50 new Mo matrices for 
the 10 simulated neural scenarios used in the backwards 
model of PECAP in ‘Introduction’ were again simulated 
at each of 51 SNR values ranging from −20 to 30 dB, 
and 100 RMSE values were then calculated for each 
condition at each SNR. The average RMSE across simu-
lations was calculated for each SNR (displayed in red 
asterisks in Fig. 12), and a 5th order polynomial was fit 
to the data (displayed in the solid black line in Fig. 12):

RMSEs were then calculated for the Mo matrices of the 
CI users. This was done by extracting the first two sets of 
12 sweeps from the ECAP waveforms separately from the 
second two sets of 12 sweeps, and calculating the RMSE 
between the 2 Mo matrices each comprised of 24-sweep 
ECAP waveforms. These RMSE values were then matched 
with their corresponding SNR value in the 5th order poly-
nomial fit (displayed in blue circles in Fig. 12). As doubling 
the number of averages reduces the background noise in the 
ECAP waveform by a factor of √2 (Undurraga et al. 2012; 
Stronks et al. 2019) and all previous analyses with PECAP 
described in this paper were obtained with 48-sweep ECAP 
waveforms instead of the 24-sweep Mo matrices used here, 
the extracted SNR values (in dB rel. 1 µV) for the human 
CI data were then increased by 3 dB. This is mathematically 
equivalent to multiplying the same values in µV on a linear 
scale by √2. These extrapolated SNR values for each of the 
human CI datasets from the second participant cohort are 
included in Table 3. As can be seen from the table, all of 
these SNR values fall above the 10 dB threshold determined 
in the 1st algorithm validation section above. This suggests 
that the PECAP results presented in the previous algorithm 
validation section with the dead region simulations con-
tained sufficiently low noise levels such that the algorithm 
can be expected to produce neural activation pattern esti-
mates ( ̂A ) with > 90% accuracy. We can therefore conclude 
that the remainder of the human CI data analysed in this 
study were above the required SNR for PECAP to indicate 
90% accuracy in reconstructing neural activation patterns.

(12)f (x) = −5.70 ∗ 10−7x5 + 1.15 ∗ 10−5x4 + 8.44 ∗ 10−4x3 − 0.012x2 − 0.80x + 17.46

DISCUSSION

Choice of Smoothing Constraints

As noted in the ‘Methods: PECAP Algorithm Struc-
ture’ section, the inverse problem meant that in order 
to obtain a unique and robust solution, it was necessary 
to incorporate smoothness constraints into the PECAP 
algorithm. Unlike the originl version of the algo-
rithm (Cosentino et al. 2015), the version of PECAP 
described here used constraints that were biologically 
plausible. Our method of constraining ƞ was informed 
by a study in anesthetized cats that found that a 2-h 
exposure to a 12-kHz tone at 124–130 dB SPL caused 
SGN density to change from approximately 1200 to 
300 cells/mm2 in the space of 2 mm along the length 
of the cochlea (Fallon et al. 2020). Assuming that this 
kind of targeted neural dead region formation is an 
extreme example of typical variation of neural health 
in human cochleas, we concluded that for electrodes 
spaced 0.75 mm apart as in the Cochlear Corpora-
tion’s Nucleus Device (Loizou 1998), neural health will 
not likely vary more than 30% of its overall range 
between adjacent electrodes (see Eq. 8b).

Our chosen constraints on the current-spread matrix 
C are consistent with data showing that human coch-
lear diameters in the first turn are as low as 1.2 mm 
(Avci et al. 2014). If one reasonably assumes that the 
electrode array cannot be orthogonal to the ST walls 
and there is likely to be at least a 45° angle between the 
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Fig. 12   5th order polynomial transfer function (Eq.  12) between 
RMSEs of Mo matrices and SNR values from −20 to 10 dB is indi-
cated as the operating SNR threshold above which PECAP estimates 
are considered reliable. The 24-sweep RMSEs for the Mo s of each 
of the 11 human CI participants in the second cohort are plotted
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array and the wall, there must be a stretch of at least 
three 0.75-mm-spaced electrodes to reach from one wall 
of the cochlear tube to the other (1.2 * √2 ≈ 1.7 mm). 
Assuming that current spread is at its most narrow (i.e. 
σ = 1) when electrodes are closest to the neurons and 
widest (i.e. σ = 6) when they are farthest away, it must 
take at least three electrodes to span the entire range of 
possible current-spread values. We therefore assumed 
that current-spread estimates will not vary more than 
50% of their range between adjacent electrodes, and the 
smoothness constraint was rounded up to 3 from 2.5 (see 
Eq. 8a) in order to allow the algorithm flexibility regard-
ing this assumption.

In both cases, we performed additional simulations 
(not shown) using the backward model, which revealed 
that the predicted patterns of ƞ and σ were almost iden-
tical when the constraints between adjacent electrodes 
were relaxed from 0.3 to 1 (ƞ) and from 3 to 5 (σ), 
respectively.

Evaluations Using the Backward Model

Using the backward model, it was possible to replicate 
neural activation patterns ( A ) with RMSE values of 
< 10% given simulated Ms matrices with SNRs of 
10 dB or higher. Assuming that our use of Gaussian 
noise to simulate measurement noise is reasonable, this 
indicates that we may expect PECAP’s estimations of 
neural activation patterns to be at least 90% accu-
rate for an Mo matrix that achieves an SNR of 10 dB 
or higher. The computer simulation validations also 
revealed three simulated scenarios in which PECAP 
struggled somewhat to replicate the exact pattern of 
neural health. In all three of these, PECAP overesti-
mated neural health where a neural dead region was 
located at the same position along the electrode array as 
relatively wide current spread. However, it was consist-
ently accurate in its replication of both current-spread 
and neural-health estimates in all other simulated sce-
narios. It correctly identified neural dead regions when 
the current spread was narrow, both in the middle and 
at the edge of the array. It was also able to reconstruct 
atypical patterns of alternating current spread with high 
accuracy, and identified neural dead regions concur-
rently without increases in error metrics.

Evaluations Using Behavioural Thresholds and 
CT‑Scan Measures

Recognizing that the backward model of PECAP 
is a somewhat circular validation, we also took other 
approaches to evaluate the reliability and accuracy of 
PECAP’s estimates of current spread and neural health. 
The data generously provided by DeVries et al. (2016) 
allowed us to compare PECAP’s estimates of neural 
health with focused thresholds in a within-participant 
design. The moderate but significant negative correlation 
between these two metrics provides evidence in favour 
of ƞ reflecting, at least to some extent, neural health. 
However, it should be noted that focussed thresholds 
are not the only measure believed to be affected by neu-
ral health (Pfingst et al. 2015). A recent study (Brochier 
et al. 2021b) obtained several such measures, including 
the effect of IPG on ECAPs and the effects of pulse rate 
and stimulus polarity of behavioural thresholds. They 
found that none of these measures correlated with each 
other, and used a biophysical model (Joshi et al. 2017) to 
suggest that different measures reflect different aspects of 
neural health located at various portions of the auditory 
nerve. In terms of the PECAP algorithm, neural health 
is implicitly defined as that aspect of neural health that 
determines the amplitude of a recorded ECAP, and as 
previously discussed, therefore represents the synchronous 
neural responsiveness of the auditory nerve at a given 
location relative to all other locations along the array for 
any given patient. It is likely that this definition does not 
correspond exactly to the aspects of neural health respon-
sible for detection thresholds. For example, a reduction in 
the number of surviving neurons may affect both behav-
ioural thresholds and ECAPs, whereas a reduction in the 
synchrony of firing of surviving neurons may affect only 
the ECAPs.

The DeVries et al. (2016) data also provided the oppor-
tunity to compare PECAP’s estimates of current spread 
with electrode-to-modiolus distances. Although no signifi-
cant correlation was found here, EMD is also an estimate 
of expected current spread, not a direct measure. The lack 
of correlation between the two could therefore be due to 
inaccuracies in either estimate. It should also be noted 
that the values from DeVries et al. (2016) were calculated 
by defining EMD as the distance from the electrode to 

TABLE 3

Effective SNRs (in dB) for each of the human CI PECAP Mo datasets collected from the participants described in Table 1. It can 
be seen that all datasets from all participants fall above the 10 dB robustness threshold for PECAP

Participant C03 C04 C09 C13 C19R C19L C25 C26 C28 C29 C30

SNR (dB) Standard condition 20.19 15.91 21.59 23.62 27.79 23.46 17.46 23.90 25.73 17.83 16.05

Dead region simulation condition 23.23 n/a 16.04 15.58 28.35 22.98 n/a n/a 21.64 n/a 29.67
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the medial wall; a recent study showed that ECAP-based 
metrics were more likely to correlate with EMD when it 
was calculated from the mid-modiolar axis, as opposed to 
the medial wall (Schvartz-Leyzac et al. 2020).

Dead‑Region Simulations

We attempted to simulate neural dead regions in human 
CI users using custom software which enabled the addition 
of pre-masker pulses prior to each frame of the forward-
masking ECAP recording technique. This aimed to simu-
late localized neural dead regions centred on a chosen 
electrode by inducing a refractory state in the neurons near 
that electrode when each ECAP was recorded. PECAP 
was able to identify differences in estimated neural health 
located at these simulated dead regions in comparison 
to when no pre-masker pulses were presented in all par-
ticipants. Not only this but the fact that it consistently 
allocated the differences in the neural activation patterns 
between the two conditions to the neural health estimate ƞ 
rather than to the current spread estimate σ indicated that 
PECAP was able to accurately separate these two aspects 
of the neural activation patterns. Across all participants and 
between the two conditions, it achieved 84% consistency in 
its estimate of current spread, σ (the standard deviation of 
the Gaussian current spread), and 91% consistency in the 
remainder of the neural health estimate, ƞ, demonstrating 
that the algorithm was also able to give consistent esti-
mates of both attributes when expected. The fact that all 
participants also showed positive mean signed differences 
for ƞ at the simulated dead region sites indicates that the 
magnitude of the effect was in the expected direction, and 
the dead region simulations reduced neural health estimates 
for all individual participants. It should be pointed out, 
however, that these simulated neural dead regions were 
likely simulating regions of poor neural health and not 
regions of complete neural death. In real life, the varia-
tion in neural health may be more extreme than can be 
stimulated in this fashion. Future studies might benefit, for 
example, from comparing the PECAP algorithm’s neural 
health estimate between a control group of CI users and a 
population with a known pattern of neural health such as 
patients with cochlear nerve deficiency (CND) who display 
poorer neural survival and responsiveness apically than 
basally (He et al. 2018). Nevertheless, these results suggest 
that PECAP is capable of accurately locating regions of 
reduced neural health in human CI users, and it follows 
that we can expect it to also identify more extreme changes 
in neural health such as a truly dead region.

Estimating the SNR

As there is no internal measure of confidence in the 
accuracy of PECAP’s estimates of current spread and 
neural health, we developed a metric of the accuracy 
of the neural activation patterns for any given Mo . In 

order to achieve 90% accuracy in estimating the neural 
activation patterns ( A ), we determined that a 10-dB SNR 
threshold must be achieved by the Mo . For any future 
use of PECAP, it is recommended that repeated measures 
be obtained during data acquisition, such that the SNR 
can be determined by calculating the RMSE and using 
the transfer function (Eq. 12). By developing our own 
ECAP-measurement software so as to separately analyse 
different subsets of repeats, we were able to do this with-
out increasing the time required to obtain the measure-
ments. If the SNR is above 10 dB, 90% confidence in the 
neural activation patterns can be expected from PECAP.

Limitations

We recognize also that there are various limitations of the 
model. ECAPs only measure the synchronous auditory nerve 
response and do not capture activity of more central factors 
which are also understood to contribute to variation in audi-
tory perception between CI users. Therefore, PECAP can 
only be expected to estimate variation in peripheral audi-
tory factors, and not to capture all variations that impact 
speech perception outcomes of CI users. ECAPs are also 
measured at low stimulation rates (i.e. 80 pulses per second), 
whereas clinical MAPs stimulate at much higher rates. This 
is a necessary limitation of ECAP measurements but could 
mean that the PECAP algorithm’s estimates of neural health 
and current spread are inconsistent with patterns of neural 
excitation at clinical stimulation rates. ECAPs can also be 
affected by the characteristics of the recording electrode, 
which were not considered by the algorithm (Schvartz-
Leyzac and Pfingst 2016; Brochier et al. 2021a).

Additionally, in order to be a viable diagnostic tool 
used in clinical settings, it is desirable to be able to collect 
PECAP Mo matrices in a time-efficient manner. While 
the algorithm only requires a few seconds on a standard 
computer to estimate patterns of current spread and neu-
ral health once the data is collected, the data acquisition 
process is currently much slower. It can take up to 45 
min to record a PECAP Mo matrix using commercially 
available software in Cochlear Corporation devices, and 
this does not include the time spent determining current 
levels for equal loudness across electrodes.

Further work is needed to speed up the data acquisition 
process as well as transform PECAP into a fully objective 
tool. This may include evaluating the impact of record-
ing PECAP Mo matrices at equal current levels intra-
operatively, as well as investigating ways in which the data 
acquisition time can be reduced without compromising the 
stability and accuracy of the algorithm’s estimates.

Clinical Applications

Despite the above-mentioned limitations, the PECAP 
method could be applied clinically in order to inform 
additional intervensions as well as augment the clinical 
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decision process during CI fitting today. For example, 
it is common practice to deactivate an electrode in a 
CI patient’s MAP when there is evidence that suggests 
the presence of a neural dead region, such as excep-
tionally high detection thresholds, impedances, or if 
the patient provides subjective reports such as ‘poor 
sound quality’, among other reasons (Sanderson et al. 
2019). If PECAP Mo matrices were to be collected and 
analysed as described in this study, the neural health 
vector (ƞ) could be used to objectively inform deci-
sions about which electrodes to deactivate in order to 
optimize delivery of information from the implant to 
the neural tissue. Indeed, both the neural health and 
current spread estimates could be leveraged to inform 
site-selection strategies to mitigate suboptimal neural 
excitation patterns. Individual ECAPs are also com-
monly measured clinically to confirm the responsiveness 
of neural tissue, and collecting and analyzing PECAP 
Mo matrices could provide a more holistic estimate of 
the neural activation patterns in these scenarios. While 
there is potential to use PECAP clinically in these—or 
other—ways, it will be important to evaluate and con-
firm the beneficial impact of PECAP-inspired interven-
tions related to CI programming on CI outcomes such 
as speech perception.

CONCLUSION

A revised version of the Panoramic ECAP Method 
(‘PECAP’) was described that estimates patient-specific 
neural activation patterns in the cochlea in terms of cur-
rent spread and neural health from electrically evoked 
compound action potentials in CI users. The algorithm 
was evaluated using computer simulations, comparisons 
to other estimates of neural health and current spread, 
and simulated neural dead regions in human CI users. 
PECAP reconstructed neural activation patterns with 
at least 90% accuracy in datasets with SNRs above 
10 dB. Moderate correlations with focused thresholds 
provided evidence in favour of PECAP’s neural health 
estimate (ƞ) to accurately reflect neural health, but also 
suggested that focused thresholds reflect different (albeit 
not entirely independent) aspects of auditory neural 
health than those that determine the amplitude of an 
ECAP response. The algorithm identified all seven of 
the simulated regions of reduced neural responsiveness 
in human CI users, providing further evidence for the 
accurate estimation of neural health profiles in PECAP’s 
ƞ vector. PECAP could serve as an objective tool to 
be used in clinical settings to inform and optimize CI 
programming decisions for individual patients. Further 
work is required to optimize its data collection time and 
to evaluate the potential impact of PECAP on CI fitting 
strategies and their effect on CI speech perception.
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