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Background: Prior concussion studies have shown that objective neurophysiological
measures are sensitive to detecting concussive and subconcussive impairments in
youth ice-hockey. These studies monitored brain vital signs at rink-side using a within-
subjects design to demonstrate significant changes from pre-season baseline scans.
However, practical clinical implementation must overcome inherent challenges related
to any dependence on a baseline. This requires establishing the start of normative
reference data sets.

Methods: The current study collected specific reference data for N = 58 elite, youth,
male ice-hockey players and compared these with a general reference dataset from
N = 135 of males and females across the lifespan. The elite hockey players were
recruited to a select training camp through CAA Hockey, a management agency for
players drafted to leagues such as the National Hockey League (NHL). The statistical
analysis included a test-retest comparison to establish reliability, and a multivariate
analysis of covariance to evaluate differences in brain vital signs between groups with
age as a covariate.

Findings: Test-retest assessments for brain vital signs evoked potentials showed
moderate-to-good reliability (Cronbach’s Alpha > 0.7, Intraclass correlation
coefficient > 0.5) in five out of six measures. The multivariate analysis of covariance
showed no overall effect for group (p = 0.105), and a significant effect of age as
a covariate was observed (p < 0.001). Adjusting for the effect of age, a significant
difference was observed in the measure of N100 latency (p = 0.022) between elite
hockey players and the heterogeneous control group.
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Interpretation: The findings support the concept that normative physiological data
can be used in brain vital signs evaluation in athletes, and should additionally be
stratified for age, skill level, and experience. These can be combined with general
norms and/or individual baseline assessments where appropriate and/or possible. The
current results allow for brain vital sign evaluation independent of baseline assessment,
therefore enabling objective neurophysiological evaluation of concussion management
and cognitive performance optimization in ice-hockey.

Keywords: electroencephalography (EEG), event-related potentials, brain vital signs, ice hockey, normative data

INTRODUCTION

Background
Individuals participating in contact sports are at higher risk
for concussion and traumatic brain injury (McCrory et al.,
2017). The current standard for concussion assessment in the
literature is symptom monitoring, with only a small minority
of research studies using additional outcome measures (Haider
et al., 2018). Concussions can result in very subtle neurological
effects that might not be detected as visible symptoms by either
the individual or clinicians. In fact, it has been shown that
neurological deficits in areas such as attention exist well after
observable symptoms have been resolved (Gosselin et al., 2006;
Fickling et al., 2019b). Subjective symptom assessment remains
important and can play a major role in treatment programs
such as those that incorporate exercise as medicine (Leddy et al.,
2018). However, there is an increasing movement to combine
these assessments with objective, neurophysiological measures
of concussion in order to better quantify injury severity and
monitor change over time (Smith et al., 2017; Pender et al.,
2020). Recently, studies have demonstrated the ability of rapid
objective assessments based on electroencephalography (EEG)
that show high sensitivity and specificity to detecting concussion
and concussion-related neurological changes (Boshra et al., 2019;
Fickling et al., 2019b; Bazarian et al., 2021).

Event related potentials (ERPs) are small stimulus time-
locked responses that can be extracted from EEG through signal
averaging to obtain a specific record of sensory, perceptual, and
cognitive brain activity (Patel and Azzam, 2005; Ghosh Hajra
et al., 2016). ERPs are identified by distinct waveforms that
represent the polarity, latency and amplitude of brain responses
to the reception and processing of stimuli. ERPs have been
historically limited to experimental laboratories due to lengthy
test times and non-standardized procedures. To facilitate the
clinical translation of ERPs, the brain vital signs framework
compressed and standardized the ERP procedure into a rapid and
automated 6-min evaluation of three well established auditory
event-related potential (ERP) responses, the N100, P300, and
N400 Ghosh Hajra et al. (2016).

The brain vital sign frameworks uses a combination of
auditory tone and spoken word stimuli to elicit the N100,
P300, and N400 ERPs, as responses along the continuum of
information processing from low-level sensory to higher level
cognitive processing. Auditory tones with random embedded
deviants elict the N100 and P300. The N100, first demonstrated

in 1939, represents the brain’s sensory response to hearing tones
and is indexed as a measure of auditory sensation (Davis, 1939;
Näätänen and Picton, 1987). The P300 is derived from the
brain’s response to random changes of deviant tones within the
sequence. It is one of the most extensively researched ERPs
across a wide range of brain conditions, it is considered to
represent the cognitive processes of attention and memory as well
as consciously-maintained working memory processing (Sutton
et al., 1965, 1967; Polich, 2007). Finally, spoken word pairs
elicit the N400 ERP. Half of the word pairs are semantically
congruent (i.e., bread-butter) and half are incongruent (bread-
window). The N400 then represents an index of cognitive
processing in language, as the brain reacts to the unexpectedness
of the semantic incongruency (Kutas and Hillyard, 1980; Ghosh
Hajra et al., 2018). The N400 is most affected by language
comprehension factors and has been studied in associated
neurological conditions such as learning disorders, stroke, TBI,
dementia (D’Arcy et al., 2003; Taylor and Olichney, 2007; Schulz
et al., 2008; Steppacher et al., 2013; Abel et al., 2018).

Each of these ERP peaks are evaluated for their amplitude,
representing the magnitude of simultaneous neural recruitment
related to the stimulus, and the latency, representing the speed
of response to the stimulus. The spectrum of cognitive processes
evaluated (i.e., sensation, attention, and cognitive processing)
enable these measurements to be sensitive to subtle neurological
impairments in information processing that occur following a
sports concussion (Fickling et al., 2019b). Technologically, the
collection of brain vital signs with a standardized system at the
point-of-care requires a specific device implementation (Ghosh
Hajra et al., 2016). The NeuroCatch Platform (NeuroCatch R©

Inc., Surrey, BC, Canada) is a Health Canada approved
class 2 medical device that provides portable, rapid and
automated acquisition, display, analysis, storage, reporting, and
management of EEG/ERPs in brain vital sign monitoring (Ghosh
Hajra et al., 2016). Using this approach, recent brain vital signs
research in ice-hockey concussion studies has demonstrated
increased sensitivity to both concussive and sub-concussive
impacts (Fickling et al., 2019b, 2021).

The prior concussion studies used a within-subjects repeated
measures model, where each player acts as their own control
(Fickling et al., 2019b, 2021). A baseline test was performed
before the start of the season, when a player was theoretically
“concussion-free.” However, the challenge with baseline testing
is that the assessments must be performed prospectively and
can therefore be impractical (Schmidt et al., 2012). While
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possible in research, evaluation in clinical practice is significantly
improved with specific neurophysiological reference data. With
specific reference data in addition to more comprehensive
general normative datasets, it is then possible to better interpret
individual results with respect to statistical frameworks along
with the relative effects of demographic variables such as age
and sex (Gordon and Konopka, 2005). In addition, known
physiological effects related to factors such as repeat testing
can also be normatively controlled to aid in specific individual
applications. For instance, in a recent study, Smith et al. (2020)
verified a slight reduction in the N400 amplitude effects due
to habituation during test-retest, which stabilizes across repeat
testing (Smith et al., 2020). Importantly, specific reference
ranges can help to address key outstanding questions such
as: Does a history of playing hockey impact the current
results? Questions like this can be empirically stratified to
better characterize the relationship between to healthy and
concussed athletes. An examination of the sensitivity of
normative vs baseline approaches have shown similar abilities
to classify injury status (Schmidt et al., 2012). Given that,
the definition of “normative” can range greatly based on the
population sampled and these are known to affect EEG data
(Johnstone and Gunkelman, 2003; Duncan et al., 2009), it
is critical to begin narrowing the specificity of norms in
order to translate the clinical utility of evoked potentials as
brain vital signs.

A systematic review by Conley et al. (2018) found that
most EEG studies investigating concussion examined differences
between groups of concussed vs. healthy athletes, rather than
before and after suspected concussion (Conley et al., 2018).
However, several studies have shown that specific factors, which
differ for athletes, may affect their EEG results relative to healthy
populations of non-athletes (Del Percio et al., 2007; Eckner
et al., 2016; Sato et al., 2020). A key question for the practical
implementation of brain vital signs, or any quantitative EEG
procedure, is therefore whether specific norms differ significantly
from general norms? In the absence of an individualized baseline,
one can evaluate this question by acquiring a normative reference
database with specific controlled variables and attributes for
evaluation against both general norms and repeatability in order
establish a possible alternative (Duncan et al., 2009).

Objectives and Hypotheses
This study characterized neurophysiological brain vital signs
extracted from auditory ERPs toward developing specific and
general reference norms. The primary hypothesis predicted
that the ERP responses would be stable over test-retest in
Group A, with the exception of the known short-term N400
habituation effect (described above). This critical step is
required to enable future comparison of function after injury.
A second exploratory question examined whether there were
any differences between Group A specific norms and Group
B general norms. While the two groups were expected to fall
within the same statistically overlapping range, normative age-
related differences were anticipated and therefore the question of
possible group differences after controlling for the effect of age
was also explored.

MATERIALS AND METHODS

Overview
This study was designed as a cross-sectional observational
experiment (ClinicalTrials.gov Identifier: Group A:
NCT03975023, Group B: NCT03835962). To address the
critical need for normative reference values, we enrolled two
participant groups. Group A (specific): elite hockey players in
which pre-morbid history and future concussion risk is a highly
prominent issue. Elite players were recruited to participate in
a training camp through CAA Hockey, a management agency
for players drafted to professional leagues such as the National
Hockey League (NHL). Brain vital signs were collected twice,
with each player assessed 2-days apart. Group B (general): A
heterogeneous sample of neurologically healthy individuals
ranging of all ages and sexes. Brain vital signs were collected
once in this group. For both groups, latency and amplitude
values for the N100, P300, and N400 were evaluated and the
results are considered with respect to future clinical evaluation
of concussion within an individual athlete, in the absence of a
baseline evaluation.

Participants
The institutional review board Advarra approved the studies.
Informed, written consent/assent was obtained according to
the declaration of Helsinki. Participants over the age of
majority provided consent. Participants under the age of
majority provided assent, in addition to consent from their
parents/guardians. Group A: Male elite ice hockey players
(N = 58; Age: 16.24 ± 0.76 years) were studied. Fifty-one (Yue
et al., 2020) were from North America (Canada: 29, United States:
22) and seven from Europe (Sweden: 3; Switzerland: 1; Finland: 1;
Slovakia: 2). Forty-three (Nakata et al., 2010) were fluent English
speakers. Players did not report previous concussions. For
Group B: 135 neurologically healthy individuals living in Canada
ranging in age from 8 to 83 years old (mean 40.62 ± 16.88) were
recruited. The group consisted of 67 males (Age = 40.54± 17.03)
and 68 females (Age = 40.71± 16.85). All were fluent in English.

Data Collection
Group A: Brain vital signs testing was completed in a 10-min
test session using the NeuroCatch R© Platform (NCP) during an
international ice hockey camp for male youths in Los Angeles,
CA, United States. Groups of five players were scanned in parallel.
Distractions were mitigated by performing the scans in a quiet,
closed room with all players in the group facing the same
direction. Participants (n = 46) were retested using the same
procedure 2 days later. Different sets of pseudorandomized word
pairs were used for the retest, so that participants did not hear the
same arrangement of words twice. The dropout for the repeated
scans were due to scheduling challenges during the camp. Group
B: Brain vital signs testing for the general reference group
was completed using the NeuroCatch R© Platform in Surrey, BC,
Canada. Data were collected in a comparably controlled setting,
using the same methodology, acquisition systems, software, and
settings as with Group A. Participants were only tested once.
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For both studies: EEG data were recorded at 500 Hz
sampling rate from three midline scalp electrodes (Fz, Cz, and
Pz) embedded in an elasticized g.Nautilus cap (g.tec medical
engineering, Austria). A reference electrode was clipped to the
right earlobe and disposable Ag/AgCl electrodes were used for
electro-oculagram (EOG) recording from the supra-orbital ridge
(above) and outer canthus (beside) of the left eye. g.GAMMAsys
electrode gel was applied to each location to ensure conductivity.
Skin-electrode impedances were maintained below 30 k� at each
site. Participants were asked to listen attentively to the auditory
stimuli, but no active response was required. To reduce motor
and ocular artifacts, participants were instructed to sit upright
motionlessly, and maintain visual fixation on a cross positioned
at eye-level 2 m away.

Data Processing
Raw EEG data were bandpass filtered from 0.5 to 20 Hz,
corrected for ocular artifacts using an adaptive filter (He
et al., 2004) and smoothed for feature selection using an
epoch-level wavelet filter (Quiroga and Garcia, 2003). After
stimulus segmentation and baseline correction, individual trials
were rejected if they contained an amplitude above ±75 µV.
Proprietary NCP software then automatically identified the
latency (in milliseconds) and amplitude (in microvolts) for the
N100, P300, and N400 ERPs based on local max/minima within
expected temporal ranges. Data from six participants (10.34%) in
Group A were excluded due to poor data quality (>than 25%
of ERP epochs rejected). Given that the N400 is a measure of
language processing, N400 data were not included from the 15
Group A participants who were not fluent English speakers.

Outcome Measures and Statistical
Analysis
Brain vital signs used for outcome measures included the raw
amplitudes and latencies from the six evoked potential measures
(3 ERP peaks ∗2 peak measures). Standardized brain vital sign
scores were then created for Group A by comparing mean brain
vital signs data to the distributions from Group B to generate
a Z-score which was then linearly mapped to a 0–100 scale,
a process described by Fickling et al. (2019b). Based on this
approach, larger amplitudes and faster latencies were assigned
higher scores; and smaller amplitudes and slower latencies were
assigned lower scores (Table 1).

Standardization allowed for all six outcome measures to be
plotted on equivalent 0–100 scales and relative distributions
(given that each amplitude and latency metric has a different
range and distribution in the general reference group). Grand-
averaged ERP waveforms from all participants were also

TABLE 1 | Brain vital sign standardized scoring framework.

Amplitudes Latencies

x > µ + 3 σ Score = 100 Score=0

µ-3σ < x < µ + 3σ Score =
∣∣ (µ+3σ)−x

6σ

∣∣ Score =
∣∣ x−(µ−3σ)

6σ

∣∣
x < µ-3σ Score = 0 Score=100

generated at each time point to visually assess test-retest
changes in Group A.

Test-retest evaluation for reliability were completed
using Intraclass Correlation Coefficients (Two-way mixed,
single measures, absolute agreement) and Cronbach’s Alpha.
Descriptive statistics for brain vital signs in both groups were
generated for all time points. To compare brain vital signs
between the groups, and control for the difference in age, a
multivariate analysis of covariance (MANCOVA) was completed
with group as the main factor and participant age as the covariate.
The MANCOVA was completed for Group A-Time 1 and Group
B. Age was modeled as a covariate due to the difference in
mean age between the two groups, and the fact that there were
insufficient age-matched participants from Group B (Table 2). To
be consistent, given that Group B only received one scan at one
time point, only the first time point from Group A was included.

Finally, multiple regression models were used to analyse age-
adjusted predictions of amplitude and latency on the N100, P300
and N400. All statistical analyses were completed using SPSS
(IBM, NY, United States). Figures were created using Matplotlib
package for Python.

RESULTS

Descriptive Statistics
Descriptive statistics, including means, standard deviations,
medians, interquartile ranges, sample range, minimum and
maximum values for each group and time point are shown in
Table 1. Table 2 lists the number of participants in different
age ranges for each group. To provide an additional visual
representation of the relative distributions of the outcome
measures, violin plots of peak amplitudes and latencies for N100,
P300, and N400 ERPs in both groups and time points are
presented in Figure 1. Table 3 outlines the total number of
participants in different age ranges for each group.

Test-Retest Comparison
Grand-average ERP waveforms for Group A Time 1 (top row)
and Group A Time 2 (bottom row) are presented in Figure 2.
Radar plots of group mean elite athlete (Group A) results at
each time point, standardized against the general (Group B)
reference database are shown in Figure 3. A third radar plot
was included as a representation individual concussion (adapted
from Fickling et al., 2019b). The results of the statistical test-
retest comparisons are represented in Table 4. As expected, there
was a significant decrease in N400 amplitude from Time 1 to
Time 2 (F = 6.061, p = 0.019∗), but no difference in the other
five brain vital signs. In these five measures, the brain vital signs
results demonstrated moderate-to-good reliability (Cronbach’s
Alpha > 0.7, ICC > 0.5) and showed strong overlap agreement
in the waveforms and radar plots.

Multivariate Analysis of Covariance
Table 5 shows details of the statistical analysis for the
MANCOVA comparing Group A-Time 1 and Group B. Effects
are shown for multivariate (main effects: all six brain vital signs
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TABLE 2 | Descriptive statistics for all groups and time points.

Group A—Time 1 Group A—Time 2 Group B

N100 amplitude N 52 46 134

Mean ± SD 9.48 ± 3.52 µV 8.74 ± 3.39 µV 9.98 ± 4.28 µV

Median ± IQR 9.03 ± 4.72 8.18 ± 3.88 9.62 ± 6.11

Range (Min-Max) 15.85 (2.38–18.23) 14.44 (3.82–18.27) 19.77 (0.13–19.9)

N100 latency N 52 46 134

Mean ± SD 109.46 ± 15.44 ms 110.04 ± 14.47 ms 102.96 ± 11.09 ms

Median ± IQR 106 ± 18 107 ± 18 102 ± 12

Range (Min-Max) 70 (80–150) 66 (72–138) 76 (74–150)

P300 amplitude N 52 46 135

Mean ± SD 9.53 ± 4.32 µV 10.07 ± 5.08 µV 10.14 ± 4.38 µV

Median ± IQR 8.58 ± 6.88 10.10 ± 6.60 9.56 ± 5.85

Range (Min-Max) 16.73 (2.99–19.72) 26.66 (2.19–28.85) 24.02 (0.25–24.27)

P300 latency N 52 46 135

Mean ± SD 279.04 ± 38.78 ms 281.57 ± 44.26 ms 281.57 ± 51.36 ms

Median ± IQR 282 ± 51 289 ± 62 284 ± 64

Range (Min-Max) 184 (170–354) 206 (178–384) 286 (162–448)

N400 amplitude N 38 33 135

Mean ± SD 6.26 ± 2.40 µV 5.10 ± 1.56 µV 4.99 ± 2.28 µV

Median ± IQR 6.62 ± 2.98 4.96 ± 2.26 4.51 ± 2.60

Range (Min-Max) 13.79 (0.43–14.22) 6.2 (2.02–8.22) 17.65 (0.94–18.59)

N400 latency N 38 33 135

Mean ± SD 438.26 ± 58.95 ms 440.36 ± 53.40 ms 456.24 ± 69.18 ms

Median ± IQR 424 ± 86 442 ± 68 458 ± 100

Range (Min-Max) 278 (318–596) 250 (330–580) 326 (284–610)

metrics combined) and univariate (individual brain vital signs)
comparisons with post hoc covariate-adjusted estimated marginal
means. There was no overall significant effect of group in the
dataset (p = 0.105). As expected, there was a significant overall
effect of age as a covariate (p < 0.001). Significant univariate
effects in N100 latency, P300 amplitude, and N400 amplitude
were also present. Differences in P300 amplitude (p = 0.014) and
N400 amplitude (p < 0.001) were explained by age differences,
but N100 latency differences remained significant (p = 0.022)
after adjusting for age. The estimated marginal means showed
that the elite athlete group was 6.315 ms slower in N100
latency than the general reference group. Figure 4 displays linear
regression models with age-specific predictions of ERPs with 95%
CIs by age in 10-year brackets.

DISCUSSION

Main Findings
Hypothesis 1: The specific group of elite ice-hockey players
(Group A) were comparable across test-retest (Table 2),
except for the expected reduction in the N400. Reliability
at the group-level was highly consistent across the group-
mean waveforms (Figure 2), with repeatable amplitude and
timing in the N100 and P300 and minor reduction in the
N400. N400. The well-known N400 habituation effect (Smith
et al., 2020) is due to familiarization of word-pair priming
in the stimulus sequence when the interval between scans

is short. This was still present despite the use of a different
arrangement of pseudorandomized word pairs for the second
test, suggesting potential habituation to the general concept
of congruent vs incongruent pairs instead of (or in addition
to) habituation to specific word pairs themselves as previously
reported. Of course, some inherent variability in individual
test-retest reliability was expected based on daily state (sleep,
mood, etc.) and the fact that participants were engaging in
contact sport training between the scans. While short term
effects have yet to be examined, longer term participation in
contact sports has shown to significantly impact brain vital
signs in proportion to the number of head impacts received
over a specific period (Fickling et al., 2021).

Hypothesis 2: The MANCOVA showed no overall significant
difference for group (p = 0.105), but a significant overall effect
of age as a covariate (p < 0.001) was present. At the univariate
level, there were significant age-related effects for both P300
amplitude (p = 0.014) and N400 amplitude (p < 0.001). These
are prominent on the regression plots (Figure 4), with a
general decrease in both of these components as age increases.
While there are some visible overall trends for age in the other
four metrics, these were not significant at the multivariate
level, suggesting that the multivariate result is largely driven
by the significant P300 and N400 amplitude changes. It is
also possible that the effect of age on brain vital signs is
non-linear. This can be seen in the directional change and
subsequent reversal from the 10/20 to 30/40 to 50/60 age
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FIGURE 1 | Descriptive statistics: Violin plots describing distributions of relative amplitudes (left) and latencies (right) for N100 (top), P300 (middle), and N400
(bottom) in elite youth ice hockey athletes (Day 1 in blue, Day 2 in green, Ref in Gray). Hashes on the violin plots represent the mean, maximum, and minimum values
in the range, with the population probability density shaded. Note: the large ranges in Group A-Time 2 P300 amplitude and Group B N400 amplitude are due to
outliers which are included in the violin plots.

groups, particularly in the N100 amplitude, N100 latency,
and P300 amplitude (Figure 4). Given that the coefficients of
determination at the univariate level (Figure 4) showed that
the linear model fit was poor overall, further investigation of
age-related changes are required.

After the correction for age, the model found a significant
difference only for the N100 latency between the elite and general
reference groups. The estimated marginal mean difference
between groups for the N100 latency was approximately 6 ms—
with N100 peak latency for elite hockey players slightly
slower than the general normative reference. Although a small
difference, it appears to reflect a specific sample difference.
While an underlying explanation of the difference is beyond
the scope of the current study, we speculate that sensory
modality processing differences may exist for elite sportspeople
who may be predisposed toward visual processing compared

to auditory processing. Further investigations would need to
compare the auditory and visual N100 directly to better
explore specific differences in sensory modality processing
(Pawlowski et al., 2019).

Comparisons With Available Data
The results provided a critical first step in the use of brain vital
signs evaluation independent of a baseline. They confirm that
comparisons are possible through either the specific or general
reference value data sets. Given the rapid time advantage of brain
vital signs (in minutes), continued development and refinement
of normative databases is highly practical. Accordingly, while the
current findings provide the initial publication of an open-access
database for brain vital signs reference data, continued normative
data collection is required.

The distributions of ERP responses were not surprising. The
N100, P300, and N400 ERPs have been extensively studied in
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TABLE 3 | Total number of participants in different age ranges for each group.

Age range Group A Group B

0–10 3

10–20 58 10

20–30 35

30–40 22

40–50 18

50–60 31

60+ 16

both healthy and neurological populations given their respective
discoveries in 1939 (Davis, 1939), 1967 (Sutton et al., 1967), and
1980 (Kutas and Hillyard, 1980). Detailed systematic reviews
and meta-analyses of the N100 (Tomé et al., 2015) and P300
(van Dinteren et al., 2014) literature have provided insight into
response features across the lifespan for healthy controls. The
regression plots across different age groups corresponded closely
with these prior meta-analyses for the N100 and P300.

Interestingly, the current results appear to represent the
initial published norms for the N400 response across the
lifespan. Given the relationship to higher-level cognitive
processing, the N400 is an increasingly important brain
vital sign response. Clinical ERP studies have repeatedly
demonstrated the critical role of the N400 in acquired
brain injury (D’Arcy et al., 2003; Gawryluk et al., 2010) and
recently shown the specific importance in understanding
subconcussive/subclinical impairment (Fickling et al., 2019b,
2021). The current N400 effects replicated prior empirical
characterization of habituation effects. N400 habituation
appears to stabilize quickly and show increased sensitivity to
subtle cognitive processing improvements even in healthy
individuals (Smith et al., 2020). For instance, cognitive
training paired with neuromodulation significantly improved
cognitive vigilance and reduced the N400 habituation
(Smith et al., 2020), suggesting potential application in the
optimization of cognitive processing for elite performance
(Frehlick et al., 2019).

FIGURE 2 | Grand-Average ERPs to standard/deviant tones (left, N = 52) and semantic congruent/incongruent word pairs (right, N = 38) for Group A Time 1 (Top
Row) and Time 2 (Bottom Row). Brain vital sign responses to the pattern changes in different tones (80% standard: low-frequency, low-amplitude, 20% deviant:
high-frequency, high-amplitude) generate the well-established N100 and P300 ERP waves. Differences in semantic relationships between congruent (“bread-butter”)
and incongruent (“bread-window”) word pairs elicit the N400 negativity. Refer to Ghosh Hajra et al. (2016) for a detailed description of how brain vital signs can be
rapidly recorded.
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FIGURE 3 | Radar plots for Group A Time 1 (Blue) and Group A Time 2 (Green) showing group-mean elite athlete normalized brain vital signs scores compared to
Group B, a general reference database of 135 participants of all ages and sexes. An example radar plot of data from a single concussed ice-hockey athlete for
comparison (adapted from Fickling et al., 2019b).

While preliminary, the specific reference data provide a
valuable benchmark for further comparison of elite athlete
patterns (Del Percio et al., 2007; Taliep and John, 2014; Sato
et al., 2020). For example, elite ice-hockey performance requires
speeded sensory-perceptual, attention, and cognitive processing,
which can be benchmarked in terms of brain vital signs responses
against the norms. An individual athlete can improve athletic
performance at the elite level through measuring improved
parameters like improving physical performance (Nakata et al.,
2010; Russo and Ottoboni, 2019).

Clinical Relevance: Moving Concussion
Management From Baselines to
Normative-Driven Recovery
There have been concerns raised about the validity of baseline
testing in general, due in the fact that a baseline test is
only a single cross-sectional representation of an individual’s

state and might be affected by a variety of internal (e.g.,
intentional sandbagging) and external factors (Schmidt et al.,
2012; Brooks et al., 2016). An inaccurate baseline assessment
could thus result in both false positive and false negative
diagnoses. In addition, a baseline test operates under the possibly
incorrect assumption that each player is fully neurologically
healthy. Many contact sports players, particularly at the elite
level, have likely sustained prior concussions as well as
a history of repetitive head trauma, which can confound
baseline assessments. This further highlights the need for
objective tests of brain function that are robust, reliable
and both sensitive and specific to detecting neurological
deviation—independent of baseline testing (Dolan et al., 2007;
Smith et al., 2017).

A key question for is how reference data can be applied
in a clinical setting to improve longitudinal monitoring for
concussion-related effects. The advantage of reference values
is an inherent clinical target range to manage toward during
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TABLE 4 | Statistical analysis for Test-Retest reliability of brain vital signs in Group A.

One-way ANOVA Cronbach’s Alpha ICC ICC 95%CI ICC p value

N100 amplitude (N = 46) F = 1.161 p = 0.287 0.732 0.577 0.349–0.741 < 0.001

N100 latency (N = 46) F = 0.033 p = 0.857 0.813 0.689 0.499–0.815 < 0.001

P300 amplitude (N = 46) F = 1.334 p = 0.252 0.729 0.572 0.343–0.737 < 0.001

P300 latency (N = 46) F = 0.397 p = 0.532 0.768 0.627 0.414–0.775 < 0.001

N400 amplitude (N = 33) F = 6.061 p = 0.019* 0.503 0.305 −0.008–0.573 0.026

N400 latency (N = 33) F = 0.784 p = 0.383 0.822 0.699 0.473–0.838 < 0.001

*p < 0.05.

TABLE 5 | Statistical analysis for the multivariate analysis of covariance (MANCOVA) for Group A-Time 1 (time point 1) and Group B.

Multivariate Tests

Effect Wilk’s Lambda F Hypothesis df Error df Sig Partial Eta Squared

Intercept 0.026 1021.110 6.0 164 <0.001* 0.974

Age 0.855 4.649 6.0 164 <0.001* 0.145

Group 0.939 1.786 6.0 164 0.105 0.061

Tests of Between Subjects Effects

Corrected Model Intercept Age Group

F Sig F Sig F Sig F Sig

N100 amplitude 0.211 0.810 173.89 <0.001*** 0.346 0.557 0.01 0.916

N100 latency 5.206 0.006** 2589.27 <0.001*** 0.291 0.590 5.36 0.022*

P300 amplitude 3.084 0.048* 245.64 <0.001*** 6.153 0.014* 2.27 0.133

P300 latency 0.372 0.690 1186.35 <0.001*** 0.728 0.395 0.35 0.558

N400 amplitude 12.768 <0.001*** 326.09 <0.001*** 15.850 <0.001*** 0.09 0.759

N400 latency 1.517 0.222 1436.90 <0.001*** 0.758 0.385 0.56 0.455

Covariate-adjusted estimated marginal means—pairwise comparisons

Mean difference (B-A) SD error 95% CI lower 95% CI upper Sig

N100 amplitude −0.099 0.932 −1.938 1.741 0.916

N100 latency −6.315 2.728 −11.701 −0.930 0.022*

P300 amplitude +1.445 0.958 −0.447 +3.337 0.133

P300 latency +6.319 10.757 −14.916 +27.554 0.558

N400 amplitude −0.152 0.495 −1.129 +0.825 0.759

N400 latency +11.204 14.957 −18.322 +40.731 0.455

Group is modeled as the main factor and age is modeled as a covariate. Effects are shown for multivariate (main effects: all six brain vital signs metrics combined) and
univariate (individual brain vital signs) comparisons with post hoc covariate-adjusted estimated marginal means.
*p < 0.05, **p < 0.01, and ***p < 0.001.
Bold values are where p < 0.05.

rehabilitation from injury, enabling longitudinal monitoring
of recovery progress and/or testing efficacy of treatment.
Importantly, this approach can incorporate baseline data, where
available, but can also be done without it. An example of
this application is represented in Figure 3. Presenting data
in multivariate radar plot format allows for clinicians to
rapidly visualize and identify any deviation from normal, using
the average “hexagonal” shape as a quick reference. This
feature facilitates a quick and reliable clinical evaluation of
functional brain activity that may be compromised after a
brain injury. As detailed in Figure 3, the radar plots of a
concussed athlete represent a deviation from the “normal” shape

that may alert a clinician without the necessity to examine
numerical data. Progress in recovery can then be monitored
in a longitudinal fashion during patient recovery until the
radar plot reaches typical ranges for all variables ahead of any
return-to-play decisions. This longitudinal monitoring approach
accounts for confounding factors and inherent variability
within the individual, but also provides an individual-level
statistical framework for evaluating significant change over time.
Fickling et al. (2020) demonstrated this clinical application
pathway using a longitudinal approach in recovery from severe
traumatic brain injury, suggesting similar approaches can be
taken for concussion.
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FIGURE 4 | Linear regression models with age-adjusted predictions of ERPs with 95% CIs by binned-age for elite hockey players (Group A—orange) and
heterogeneous control group (Group B—blue) groups. Sample size for each bin is indicated adjacent to each CI. Best-fit line is drawn for both groups across the
lifespan, with R-squared values also indicated.

The increasing utilization of objective, physiological
evaluation in concussion is encouraging, and not just in
EEG/ERPs (Corbin-Berrigan et al., 2020). Consensus is
emerging that a variety of additional modalities can be useful,
such as blood and fluid biomarkers, genetic profiling, and
vestibular and oculomotor assessments (Kontos et al., 2017;
McCrea et al., 2017; McCrory et al., 2017; Wood et al., 2019;
Slavoaca et al., 2020). Recently, machine learning techniques

have demonstrated high sensitivity to logistic classification
of injury status based on single or multimodal assessments
(Jacquin et al., 2018; Boshra et al., 2019; Bazarian et al.,
2021). While further validation and integration is required,
there is an increasing urgency to develop portable, practical
medical technologies based on these scientific findings to
better enable point-of-care evaluations (Smith et al., 2017;
Yue et al., 2020).
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Caveats
Several caveats to this study should be considered: (1) The sample
sizes in this study provided a good start, but continued normative
data collection is required. For instance, the current analysis
was limited by the age range of the sampled population(s) and
further studies to expand the age range are important. Building
larger normative databases will also enable further diversification
along with more robust conclusions. On-going larger sample
data collection continues beyond the scope of this study. Future
comparisons will refine and stratify norms, such as closely
matched norms for elite athletes in non-contact sports. This
is a valuable next step given that, while no prior concussion
was reported by any participant, existing subconcussive and/or
undisclosed prior injuries may have affected the results (Covassin
et al., 2003; Haider et al., 2018; Fickling et al., 2019b, 2021);
(2) The inverse problem with specific reference datasets is that
they cannot be applied broadly. Indeed, a specific comparison
to the general reference databases was selected, in part, to
address this issue. Nonetheless, given that the brain vital sign
evaluation can be done in under 10-min, it may be advisable
to collect specific subsets where possible. In this respect, the
current dataset represents the first in the planned aggregation of
an open-access large-scale reference value dataset for quantitative
EEG (QEEG) (Fickling et al., 2019b); (3) As with all reference
comparisons, assumptions cannot be made about an individual’s
specific pre-morbid brain vital sign profile, with valuable
insight contributed from baseline data where possible. Similar
to establishing a profile of hypertensive blood pressure, post-
morbid management can often proceed to establish a profile
of recovery to reference ranges; (4) While age was modeled
as a covariate to best control for differences between groups
as a factor of age, a more robust comparison would have
been to compare the elite athletes with an appropriately sized
sample of age-matched controls. Further increasing the size and
diversity of the reference database would better enable these
comparisons; and (5) Finally, the specific norms were technically
influenced by the situation-specific EEG signal quality at the
time of acquisition. Variation in EEG signal quality can have
a minor influence the resulting brain vital sign measurements
and can therefore introduce some uncontrolled variance during a
clinical test. Advances in signal processing and classification have
addressed EEG quality assessment and standardization, enabling
management of signal quality in the future (Fickling et al., 2019a;
Ghosh Hajra et al., 2020).

CONCLUSION

The current study reports brain vital sign norms for 58 elite,
healthy, male ice-hockey players compared to 135 general
control subjects to provide an important clinical alternative
to baselining limitations. Reference values for elite, ice-
hockey players showed strong predicted test-retest reliability.
As expected, there were significant age-related changes across
the lifespan, with additional small but significant differences
between the elite athlete group and the general reference
group after controlling for age as a covariate. The findings

support the concept that normative physiological data specific
to age, skill level, and experience can be used in concussion
evaluation, and combined with general norms and/or individual
baseline assessments where appropriate and/or possible. As an
objective, physiological measure of cognitive brain function,
brain vital sign monitoring can enable both clinical management
and performance optimization empirical comparison against a
growing open-access reference value dataset.
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