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Abstract. Ackermann’s function can be expressed using an iterative
algorithm, which essentially takes the form of a term rewriting sys-
tem. Although the termination of this algorithm is far from obvious,
its equivalence to the traditional recursive formulation—and therefore
its totality—has a simple proof in Isabelle/HOL. This is a small exam-
ple of formalising mathematics using a proof assistant, with a focus on
the treatment of difficult recursions.
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1 Introduction

The past few years have seen significant achievements in the mechanisation of
mathematics [3], using proof assistants such as Coq and Lean. Here we examine a
simple example involving Ackermann’s function: on how to prove the correctness
of a system of rewrite rules for computing this function, using Isabelle. The article
also includes an introduction to the principles of implementing a proof assistant.

Formal models of computation include Turing machines, register machines
and the general recursive functions. In such models, computations are reduced
to basic operations such as writing symbols to a tape, testing for zero or adding
or subtracting one. Because computations may terminate for some values and
not others, partial functions play a major role and the domain of a partial
function (i.e. the set of values for which the computation terminates) can be
nontrivial [10]. The primitive recursive functions—a subclass of the recursive
functions—are always total.

In 1928, Wilhelm Ackermann exhibited a function that was obviously com-
putable and total, yet could be proved not to belong to the class of primitive
recursive functions [10, p. 272]. Simplified by Rózsa Péter and Raphael Robinson,
it comes down to us in the following well-known form:

A(0, n) = n+ 1

A(m+ 1, 0) = A(m, 1)

A(m+ 1, n+ 1) = A(m,A(m+ 1, n)).

In 1993, Szasz [16] proved that Ackermann’s function was not primitive recursive
using a type theory based proof assistant called ALF.

http://arxiv.org/abs/2104.11157v2


Isabelle/HOL [13,14] is a proof assistant based on higher-order logic. Its
underlying logic is much simpler than the type theories used in Coq for example.
In particular, the notion of a recursive function is not primitive to higher-order
logic but is derivable. We can introduce Ackermann’s function to Isabelle/HOL
as shown below. The specification invokes internal machinery to generate a low-
level definition and derive the claimed identities from it. Here Suc denotes the
successor function for the natural numbers (type nat).

fun ack :: "[nat,nat] ⇒ nat" where

"ack 0 n = Suc n"

| "ack (Suc m) 0 = ack m 1"

| "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"

It is easy to see that the recursion is well defined and terminating. In every
recursive call, either the first or the second argument decreases by one, suggest-
ing a termination ordering: the lexicographic combination of < (on the natural
numbers) for the two arguments.

Nevertheless, it’s not straightforward to prove that Ackermann’s function be-
longs to the class of computable functions in a formal sense. Cutland [6, p. 46–7]
devotes an entire page to the sketch of a construction to show that Ackermann’s
function could be computed using a register machine, before remarking that “a
sophisticated proof” is available as an application of more advanced results, pre-
sumably the recursion theorem. This raises the question of whether Ackermann’s
function has some alternative definition that is easier to reason about, and in
fact, iterative definitions exist. But then we must prove that the recursive and
iterative definitions are equivalent.

The proof is done using the function definition facilities of Isabelle/HOL and
is a good demonstration of their capabilities to the uninitiated. But first, we
need to consider how function definitions are handled in Isabelle/HOL and how
the later relates to symbolic logic.

2 Recursive function definitions in Isabelle/HOL

Isabelle’s higher-order logic is a form of Church’s simple type theory [5]. As
with Church, it is based on the typed λ-calculus with function types (written
α → β: Greek letters range over types) and a type of booleans (written bool).
Again following Church, the axiom of choice is provided through Hilbert’s epsilon
operator ǫx.φ, denoting some a such that φ(a) if such exists and otherwise any
value.

For Church, all types were built up from the booleans and a type of indi-
viduals, keeping types to the minimum required for consistency. Isabelle/HOL
has a multiplicity of types in the spirit of functional programming, with nu-
meric types nat, int, real, among countless others. Predicates have types of the
form α → bool, but for reasons connected with performance, the distinct but
equivalent type α set is provided for sets of elements of type α.

Gordon [8] pioneered the use of simple type theory for verifying hardware. His
first computer implementation, and the later HOL Light [9], hardly deviate from



Church. Constants can be introduced, but they are essentially abbreviations. The
principles for defining new types do not stretch things much further: they allow
the declaration of a new type corresponding to what Church would have called “a
non-empty class given by a propositional function” (a predicate over an existing
type). These principles, some criticisms of them and proposed alternatives are
explored by Arthan [2].

The idea of derivations schematic over types is already implicit in Church
(“typical ambiguity”), and in most implementations is placed on a formal ba-
sis by including type variables in the calculus. Then all constructions involving
types can be schematic, or polymorphic, allowing for example a family of types of
the form α list, conventionally written in postfix notation. Refining the notion
of polymorphism to allow classes of type variables associated with axioms—so-
called axiomatic type classes—is a major extension to Church’s original concep-
tion, and has required a thoroughgoing analysis [12]. However, those extensions
are not relevant here, where we are only interested in finite sequences of integers.

There are a number of ways to realise a logical calculus on a computer. At
one extreme, the implementer might choose a fast, unsafe language such as C
and write arbitrarily complex code, implementing algorithms that have been
shown to be sound with respect to the chosen calculus. Automatic theorem
provers follow this approach. Most proof assistants, including Isabelle, take the
opposite extreme and prioritise correctness. The implementer codes the axioms
and inference rules of the calculus in something approaching their literal form:
providing syntactic operations on types and terms while encapsulating the logical
rules within a small, dedicated proof kernel. This LCF architecture [7] requires
a safe programming language so that the proof kernel—which has the exclusive
right to declare a formula to be a theorem—can be protected from any bugs in
the rest of the system.

Formal proofs are frequently colossal, so most proof assistants provide au-
tomation. In Isabelle, the auto proof method simplifies arithmetic expressions,
expands functions when they are applied to suitable arguments and performs
simple logical reasoning. Users can add automation to Isabelle by writing code
for say a decision procedure, but such code (like auto itself) must lie outside
the proof kernel and must reduce its proofs to basic inferences so that they can
pass through the kernel. In this way, the LCF architecture eliminates the need
to store the low-level proofs themselves, a vital space saving even in the era of
32 GB laptops.

Sophisticated principles for defining inductive sets, recursive functions with
pattern matching and recursive types can be reduced to pure higher-order logic.
In accordance with the LCF architecture, such definitions are translated into
the necessary low-level form by Isabelle/HOL code that lies outside the proof
kernel. This code defines basic constructions, from which it then proves desired
facts, such as the function’s recursion equations.

In mathematics, a recursive function must always be shown to be well de-
fined. Non-terminating recursion equations cannot be asserted unconditionally,
since they could yield a contradiction: consider f(m,n) = f(n,m) + 1, which



implies f(0, 0) = f(0, 0)+1. Isabelle/HOL’s function package, due to Alexander
Krauss [11], reduces recursive function definitions to inductively defined rela-
tions. A recursive function f is typically partial, so the package also defines its
domain Df , the set of values for which f obeys its recursion equations.1

The idea of inductive definitions should be familiar, as when we say the set
of theorems is inductively generated by the given axioms and inference rules.
Formally, a set I(Φ) is inductively defined with respect to a collection Φ of rules
provided it is closed under Φ and is the least such set [1]. In higher-order logic,
I(Φ) can be defined as the intersection of all sets closed under a collection of rules:
I(Φ) =

⋂
{A | A is Φ-closed}. The minimality of I(Φ), namely that I(Φ) ⊆ A

if A is Φ-closed, gives rise to a familiar principle for proof by induction. Even
Church [5] included a construction of the natural numbers. Isabelle provides a
package to automate inductive definitions [15].

Krauss’ function package [11] includes many refinements so as to handle
straightforward function definitions—like the one shown in the introduction—
without fuss. Definitions go through several stages of processing. The specifica-
tion of a function f is examined, following the recursive calls, to yield inductive
definitions of its graph Gf and domain Df . The package proves that Gf cor-
responds to a well-defined function on its domain. It is then possible to define
f formally in terms of Gf and to derive the desired recursion equations, each
conditional on the function being applied within its domain. The refinements
alluded to above include dealing with pattern matching and handling easy cases
of termination, where the domain can be hidden. But in the example consid-
ered below, we are forced to prove termination ourselves through a series of
inductions.

For a simple example [11, §3.5.4], consider the everywhere undefined function
given by U(x) = U(x) + 1. The graph is defined inductively by the rule

(x, h(x)) ∈ GU =⇒ (x, h(x) + 1) ∈ GU .

Similarly, the domain is defined inductively by the rule

x ∈ DU =⇒ x ∈ DU .

It should be obvious that GU and DU are both empty and that the evaluation
rule x ∈ DU =⇒ U(x) = U(x) + 1 holds vacuously. But we can also see how less
trivial examples might be handled, as in the extended example that follows.

3 An Iterative Version of Ackermann’s Function

A list is a possibly empty finite sequence, written [x1, . . . , xn] or equivalently
x1# · · ·#xn#[]. Note that # is the operation that extends a list from the front

1 Since there are no partial functions in higher-order logic, f(x) yields an arbitrary
value if x 6∈ Df .



with a new element. We can write an iterative definition of A in terms of the
following recursion on lists:

n# 0# L −→ Sucn# L

0 # Sucm# L −→ 1 #m# L

Sucn# Sucm# L −→ n# Sucm#m# L

the idea being to replace the recursive calls by a stack. We intend that a com-
putation starting with a two-element list will yield the corresponding value of
Ackermann’s function:

[n,m] −→∗ [A(m,n)].

An execution trace for A(2, 3) looks like this:

3 2
2 2 1
1 2 1 1
0 2 1 1 1
1 1 1 1 1
0 1 0 1 1 1
1 0 0 1 1 1
2 0 1 1 1
3 1 1 1
2 1 0 1 1
1 1 0 0 1 1
0 1 0 0 0 1 1
1 0 0 0 0 1 1
2 0 0 0 1 1
3 0 0 1 1
4 0 1 1
5 1 1
4 1 0 1
3 1 0 0 1
2 1 0 0 0 1
1 1 0 0 0 0 1
0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1
2 0 0 0 0 0 1
3 0 0 0 0 1
4 0 0 0 1
5 0 0 1
6 0 1
7 1
6 1 0
5 1 0 0
4 1 0 0 0
3 1 0 0 0 0
2 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0



1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0
6 0 0 0
7 0 0
8 0
9

We can regard these three reductions as constituting a term rewriting sys-
tem [4], subject to the proviso that they can only rewrite at the front of the list.
Equivalently, each rewrite rule can be imagined as beginning with an anchor
symbol, say �:

�# n# 0# L −→ �# Sucn# L

�# 0# Sucm# L −→ �# 1#m# L

�# Sucn# Sucm# L −→ �# n# Sucm#m# L

A term rewriting system is a model of computation in itself. But termina-
tion isn’t obvious here. In the first rewrite rule above, the head of the list gets
bigger while the list gets shorter, suggesting that the length of the list should
be the primary termination criterion. But in the third rewrite rule, the list gets
longer. One might imagine a more sophisticated approach to termination based
on multisets or ordinals; these however could lead nowhere because the second
rewrite allows 0 # 1 # L −→ 1 # 0 # L and often these approaches ignore the
order of the list elements.

Although some natural termination ordering might be imagined to exist,2

this system is an excellent way to demonstrate another approach to proving
termination: by explicit reasoning about the domain of definition. It is easy,
using Isabelle/HOL’s function definition package [11].

4 The Iterative Version in Isabelle/HOL

We would like to formalise the iterative computation described above as a recur-
sive function, but we don’t know that it terminates. Isabelle allows the following
form, with the keyword domintros, indicating that we wish to defer the termi-
nation proof and reason explicitly about the function’s domain. Our goal is to
show that the set is universal (for its type).

function (domintros) ackloop :: "nat list ⇒ nat" where

"ackloop (n # 0 # L) = ackloop (Suc n # L)"

2 René Thiemann has kindly run some tests using rewrite system termination checkers.
Without the anchors, the rewrite system is non-terminating because rewrite rules
can be applied within a list. With the anchors, no currently existing termination
checker reaches a conclusion.



| "ackloop (0 # Suc m # L) = ackloop (1 # m # L)"

| "ackloop (Suc n # Suc m # L) = ackloop (n # Suc m # m # L)"

| "ackloop [m] = m"

| "ackloop [] = 0"

The domain, which is called ackloop dom, is generated according to the re-
cursive calls. It is defined inductively to satisfy the following properties:3

ackloop dom (Suc n # L) =⇒ ackloop dom (n # 0 # L)

ackloop dom (1 # m # L) =⇒ ackloop dom (0 # Suc m # L)

ackloop dom (n # Suc m # m # L) =⇒ ackloop dom (Suc n # Suc m # L)

ackloop dom [m]

ackloop dom []

For example, the first line states that if ackloop terminates for Suc n # L then
it will also terminate for n # 0 # L, as we can see for ourselves by looking at the
first line of ackloop. The second and third lines similarly follow the recursion.
The last two lines are unconditional because there is no recursion.

It’s obvious that ackloop dom holds for all lists shorter than two elements.
Its properties surely allow us to prove instances for longer lists (thereby estab-
lishing termination of ackloop for those lists), but how? At closer examination,
remembering that ackloop represents the recursion of Ackermann’s function, we
might come up with the following lemma:

ackloop dom (ack m n # L) =⇒ ackloop dom (n # m # L)

This could be the solution, since it implies that ackloop terminates on the list
n # m # L provided it terminates on A(m,n) # L, a shorter list. And indeed
it can easily be proved by mathematical induction on m followed by a further
induction on n. If m = 0 then it simplifies to the first ackloop dom property:

ackloop dom (Suc n # L) =⇒ ackloop dom (n # 0 # L)

In the Sucm case, after the induction on n, the n = 0 case simplifies to

ackloop dom (ack m 1 # L) =⇒ ackloop dom (0 # Suc m # L)

but from ackloop dom (ack m 1 # L) the induction hypothesis yields ackloop dom

(1 # m # L), from which we obtain ackloop dom (0 # Suc m # L) by the second
ackloop dom property. The Sucn case is also straightforward:

ackloop dom (ack (Suc m) (Suc n) # L) =⇒ ackloop dom (Suc n # Suc m # L)

It needs the third ackloop dom property and both induction hypotheses. The
details are left as an exercise.

In Isabelle, the lemma proved above can be proved in one line, thanks to
a special induction rule: ack.induct. The definition of a function f in Isabelle
automatically yields an induction rule customised to the recursive calls, derived

3 For clarity, Suc 0 has been replaced by 1.



from the inductive definition of Gf . For ack, it allows us to prove any formula
P (x, y) from the three premises

∀nP (0, n)

∀m [P (m, 1) =⇒ P (m+ 1, 0)]

∀mn [P (m+ 1, n) ∧ P (m,A(m+ 1, n)) =⇒ P (m+ 1, n+ 1)]

Using this induction rule, our lemma follows immediately by simple rewriting:

lemma ackloop dom longer:

"ackloop dom (ack m n # L) =⇒ ackloop dom (n # m # L)"

by (induction m n arbitrary: L rule: ack.induct) auto

Let’s examine this proof. In the induction, P (m,n) is the formula

∀L [ ackloop dom (ack m n # L) =⇒ ackloop dom (n # m # L) ]

In most difficult case, P (m+ 1, n+ 1), the left-hand side is

ackloop dom (ack (Suc m) (Suc n) # L)

→ (by evaluation)
ackloop dom (ack m (ack (Suc m) n) # L)

→ (second induction hypothesis)
ackloop dom (ack (Suc m) n # m # L)

→ (first induction hypothesis)
ackloop dom (n # Suc m # m # L)

→ (definition of ackloop dom)
ackloop dom (Suc n # Suc m # L)

And this is the right-hand side of P (m+ 1, n+ 1).
It must be stressed that when typing in the Isabelle proof shown above for

lemma ackloop dom longer, I did not have this or any derivation in mind. Experi-
enced users know that properties of a recursive function f often have extremely
simple proofs by induction on f.induct followed by auto (basic automation),
so they type the corresponding Isabelle commands without thinking. We are
gradually managing to shift the burden of thinking to the computer.

5 Completing the Proof

Given the lemma just proved, it’s clear that every list L satisfies ackloop dom

by induction on the length l of L: if l < 2 then the result is immediate, and
otherwise it has the form n#m#L′, which the lemma reduces to A(m,n)#L′

and we are finished by the induction hypothesis.
A slicker proof turns out to be possible. Consider what ackloop is actually

designed to do: to replace the first two list elements, n and m, by A(m,n). The
following function codifies this point.

fun acklist :: "nat list ⇒ nat" where

"acklist (n#m#L) = acklist (ack m n # L)"

| "acklist [m] = m"

| "acklist [] = 0"



As mentioned above, recursive function definitions automatically provide us
with a customised induction rule. In the case of acklist, it performs exactly the
case analysis sketched at the top of this section. So this proof is also a single
induction followed by automation. Note the reference to ackloop dom longer, the
lemma proved above.

lemma ackloop dom: "ackloop dom L"

by (induction L rule: acklist.induct) (auto simp: ackloop dom longer)

It is possible to reconstruct the details of this proof by running it interactively,
as was done in the previous section. But perhaps it is better to repeat that these
Isabelle commands were typed without having any detailed proof in mind but
simply with the knowledge that they were likely to be successful.

Now that ackloop dom is known to hold for arbitrary L, we can issue a com-
mand to inform Isabelle that ackloop is a total function satisfying unconditional

recursion equations. We mention the termination result just proved.

termination ackloop

by (simp add: ackloop dom)

The equivalence between ackloop and acklist is another one-line induction
proof. The induction rule for ackloop considers the five cases of that function’s
definition, which—as we have seen twice before—are all proved automatically.

lemma ackloop acklist: "ackloop L = acklist L"

by (induction L rule: ackloop.induct) auto

The equivalence between the iterative and recursive definitions of Ackermann’s
function is now immediate.

theorem ack: "ack m n = ackloop [n,m]"

by (simp add: ackloop acklist)

We had a function that obviously terminated but was not obviously com-
putable (in the sense of Turing machines and similar formal models) and an-
other function that was obviously computable but not obviously terminating.
The proof of the termination of the latter has led immediately to a proof of
equivalence with the former.

Anybody who has used a proof assistant knows that machine proofs are
generally many times longer than typical mathematical exposition. Our example
here is a rare exception.

Acknowledgements. This work was supported by the ERC Advanced Grant
ALEXANDRIA (Project GA 742178). René Thiemann investigated the termi-
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