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Abstract: Plasmonics, as a rapidly growing research field, provides new pathways to guide and
modulate highly confined light in the microwave-to-optical range of frequencies. We demonstrated
a plasmonic slot waveguide, at the nanometer scale, based on the high-transition-temperature (Tc)
superconductor Bi2Sr2CaCu2O8+δ (BSCCO), to facilitate the manifestation of chip-scale millimeter
wave (mm-wave)-to-terahertz (THz) integrated circuitry operating at cryogenic temperatures. We
investigated the effect of geometrical parameters on the modal characteristics of the BSCCO plasmonic
slot waveguide between 100 and 800 GHz. In addition, we investigated the thermal sensing of the
modal characteristics of the nanoscale superconducting slot waveguide and showed that, at a lower
frequency, the fundamental mode of the waveguide had a larger propagation length, a lower effective
refractive index, and a strongly localized modal energy. Moreover, we found that our device offered
a larger SPP propagation length and higher field confinement than the gold plasmonic waveguides at
broad temperature ranges below BSCCO’s Tc. The proposed device can provide a new route toward
realizing cryogenic low-loss photonic integrated circuitry at the nanoscale.

Keywords: Bi2Sr2CaCu2O8+δ quantum material; high-temperature superconductor; on-chip light
sources and detectors; plasmonic waveguides; quantum emitters; THz integrated circuitry; cryo-
genic circuitry

1. Introduction

The high-transition-temperature (Tc) superconducting Bi2Sr2CaCu2O8+δ (BSCCO)
intrinsic Josephson junctions (IJJs)-based THz emitters radiate intense, coherent, and con-
tinuous THz photons with frequencies ranging from 0.1 to 11 THz [1–28]. Such THz devices
can also be used as surface current-sensitive detectors due to the unique electrodynamics
of the BSCCO quantum material. Therefore, BSCCO-based devices are valuable for many
applications, including THz imaging, interferometry, and absorption measurement [29].
The design of low-loss mm-wave-to-THz components, e.g., waveguides, capable of being
integrated with such superconducting emitters, and detectors, are vital to accomplishing
all BSCCO-made chip-integrated mm-wave-to-THz circuitry. Moreover, the exploitation of
superconducting quantum materials into the architectures of waveguides enables the im-
plementation of the real-time sensing and controlling of waveguides, due to the sensitivity
of the quantum mechanical phases of superconductors to external stimuli such as magnetic
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fields, temperature, light, and current [30]. Cooper pairs in superconductors have an equiv-
alent response to that of electrons in plasmonic metals at high frequencies [30]. Plasmonics
deals with propagating surface plasmon polaritons (SPPs) such as the coupled oscillation
of electrons and electromagnetic waves [31]. The innovative physical effect of plasmonic
devices such as subwavelength localization of the electromagnetic field provides a new
route in novel chip-scale integrated photonic devices [32–34]. In superconductors, the
coherent oscillation of plasmonic waves is a result of the formation of Cooper pairs and the
absence of scattering [35]. The surface plasmon oscillations in superconducting metals have
been extensively investigated for single and multiple-film systems, and microstructure
arrays [36–41]. It was shown that extraordinary transmission through a subwavelength
hole array in a superconducting NbN film arises from the enhancement of SPPs below the
transition temperature [39]. Moreover, it was demonstrated that the existence of super-
conducting plasmons in the YBCO subwavelength hole array is due to the dominance of
kinetic resistance over inductance resistance in superconductors [40]. Furthermore, it was
shown that YBa2Cu3O7 (YBCO) and niobium (Nb) plasmonic superconducting waveguides
offer a superior long plasmon propagation distance in comparison to noble metals at THz
frequencies [35,41] due to the intrinsic low-loss plasmonic properties of superconductors.

In this paper, we propose a mm-wave-to-THz superconducting plasmonic slot waveg-
uide (PSW) based on BSCCO. We first studied the modal characteristics of the BSCCO PSW,
including the effective refractive index, the propagation loss of SPPs, and mode energy
confinement. Furthermore, we investigated thermal tuning of the modal characteristics
of such waveguides at temperature ranges between T = 10 and 100 K at the selected fre-
quencies of f = 0.1, 0.3, 0.5, and 0.8 THz. The proposed waveguide can be integrated with
BSCCO-based THz sources and detectors. It is also suitable for various applications such
as tunable modulators and photodetectors.

2. Structure Design and Methods

A 3D schematic of the proposed BSCCO PSW is shown in Figure 1a. The cross-sectional
view of the 3D SPW at the x-z plane in Figure 1b shows that the waveguide consists of a
deep subwavelength air slot of width w in a thin film of BSCCO with a thickness of h. The
generated SPPs propagate through the air slot.
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Figure 1. (a) Three-dimensional schematic diagram of the proposed suspended BSCCO-based
plasmonic slot waveguide, (b) and the cross-sectional view of the waveguide at the x-z plane.

We employed the numerical finite element simulation method (FEM)-based mode
solver to calculate the eigenmodes of the plasmonic waveguide at a specific frequency
ω. Here, an exp(−iβy) dependence for the electric field was considered because the
waveguide is uniform along the y-direction [42]. Therefore, the electric field E distribution
in the waveguide can be written as

E(x, y, z) = E(x, z) exp(−iβy) (1)
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where β = β1 + iβ2 is the complex propagation constant of the waveguide’s mode.
The electromagnetic wave equation is defined as [43]

∇×∇× E =
ω2

c2 εE (2)

where c is the speed of light in vacuum. For our waveguide whose structure is uniform in
the y-direction, the wave equation reduces to [44]

∇2
⊥E +

(
ω2

c2 ε− β2
)

E = 0 (3)

where we used the definition ∇2
⊥ = ∂2/∂x2 + ∂2/∂z2.

By calculating the eigenvalue of Equation (3), the propagation constant β is obtained.
Then, the modal characteristics of the waveguide, including the real part of the effective
refractive index (Neff) and propagation length (Lp) of SPPs for the fundamental mode of the
BSCCO PSW, can be calculated from equations [42,45]:

Ne f f = β/k0, (4)

Lp = 1(2 Imag(β)), (5)

where k0 is the free-space wavevector. Neff is an indicator of the localization of SPP’s
energy and wavelength. In addition, the dispersion relation of the waveguide is defined as
ω = ω(β) [42].

In Equation (2), ε is the permittivity of the relevant medium. The permittivity of air
εair is 1, and the temperature- and frequency-dependent a-b plane complex conductivity
of BSCCO film with Tc = 85 K is extracted from the experimental THz time-domain
spectroscopy data [46–48]. The complex permittivity of BSCCO can be obtained from its
complex conductivity [48].

For obtaining the eigenmode of the waveguide, the area of computation is considered
large enough, and the perfectly-matched-layer (PML) absorbing boundary conditions are
used along the x- and z-axis. Therefore, the reflection of fields from the boundaries is
negligible. In addition, the factor of mode confinement is calculated as a ratio of power
flow in the slot (w ∗ h area) to the total power flow in the waveguide normal to the x-z
plane [45].

Γ =

∫
slot Re{(E× H∗)·n} dA∫
total Re{(E× H∗)·n} dA

(6)

where power flow is Sn = (1/2)Re{(E× H∗)·n}. Here, E and H∗ are the electric and
complex conjugates of magnetic field vectors, respectively, and n is the normal unit vector
in the y-direction.

3. Results and Discussion

The highest possible mode quality of the waveguide was obtained through optimiza-
tion of the slot width w and BSCCO thin-film thickness h at the temperature T = 10 K and
frequency f = 0.1 THz. The modal characteristics are controllable by the structural size
of the waveguide. The effective refractive index (Neff) and propagation length (Lp) of the
BSCCO PSW as a function of BSCCO height h for different slot widths w are shown in
Figure 2a,b.



Materials 2021, 14, 4291 4 of 10

Materials 2021, 14, x FOR PEER REVIEW 4 of 10 
 

 

At each BSCCO/air interface within the air gap, SPPs are formed. These two formed 
SPPs are coupled and create a transverse electromagnetic (TEM) wave mode. Neff is larger 
than the air refractive index and is adjustable by the structural size. As h increases, Neff 
increases, but Lp decreases because the superconductor/air interface height in the slot in-
creases. The larger portion of BSCCO (whose Neff is higher than air) results in a larger Neff. 
Besides, as width w decreases, Neff increases, and Lp reduces. Once the slot width is narrow, 
the SPP related to the two BSCCO surfaces form the coupled SPPs [49]. Therefore, as the 
w of the slot decreases, the propagation constant β increases and leads to the increase in 
Neff and reduction in Lp [42]. The fall of Lp at very low h arises from the decoupling of two 
formed SPPs. 

 
Figure 2. (a) Real part of the mode effective refractive index (Neff), (b) propagation length (Lp), and 
(c) mode confinement of BSCCO THz plasmonic waveguide as a function of BSCCO thickness h for 
three slot widths of w = 40, 100, and 400 nm at f = 0.1 THz and T = 10 K. (d) Electric field distribution 
at slot widths of w = 40, 100, and 400 nm for BSCCO height h = 300 nm. All field distributions curves 
have the same color bar. 

The mode confinement of SPPs is shown in Figure 2c. It determines the enhancement 
of energy in the slot region. The mode confinement reduces with increasing slot width w. 
To clarify this, we show the electric field distribution at different slot widths w for a con-
stant h = 300 nm in Figure 2d. We see that the slot width of w = 400 nm has the lowest 
electric field distribution within the slot. Even though the narrower slot dimension has a 
large energy confinement, it suffers from the lower propagation length.  

There is a tradeoff between the energy confinement of SPPs within the slot and SPP’s 
propagation length. The largest Lp for SPW with thickness h = 300 nm is for a slot width of 
w = 100 nm. Hence, these values (w = 100 nm and h = 300 nm) were chosen as SPW opti-
mum dimensions. Based on this optimization, Neff is 1.42. The mode has a shorter wave-
length in comparison to the free space. Therefore, the SPP’s wavelength, which is defined 
as 𝜆଴ 𝑁௘௙௙⁄ , is 2.1 mm, and the SPP’s field is confined in the air slot as small as λ଴ଶ (3 × 10଼)⁄ . Here, λ଴ = 3 mm is the free-space wavelength. The propagation distance of 
SPPs is 12.73 mm, which is equal to six effective wavelengths. 

The modal characteristics of the waveguide are dependent on the plasmonic proper-
ties of BSCCO. Neff, Lp, and mode confinement are shown in Figure 3a–c as a function of 
temperature for four different frequencies of f = 0.1, 0.3, 0.5, and 0.8 THz. For each fre-
quency, it is found that Neff reduces but Lp and mode confinement increase significantly as 

Figure 2. (a) Real part of the mode effective refractive index (Neff), (b) propagation length (Lp), and
(c) mode confinement of BSCCO THz plasmonic waveguide as a function of BSCCO thickness h for
three slot widths of w = 40, 100, and 400 nm at f = 0.1 THz and T = 10 K. (d) Electric field distribution
at slot widths of w = 40, 100, and 400 nm for BSCCO height h = 300 nm. All field distributions curves
have the same color bar.

At each BSCCO/air interface within the air gap, SPPs are formed. These two formed
SPPs are coupled and create a transverse electromagnetic (TEM) wave mode. Neff is larger
than the air refractive index and is adjustable by the structural size. As h increases, Neff
increases, but Lp decreases because the superconductor/air interface height in the slot
increases. The larger portion of BSCCO (whose Neff is higher than air) results in a larger
Neff. Besides, as width w decreases, Neff increases, and Lp reduces. Once the slot width is
narrow, the SPP related to the two BSCCO surfaces form the coupled SPPs [49]. Therefore,
as the w of the slot decreases, the propagation constant β increases and leads to the increase
in Neff and reduction in Lp [42]. The fall of Lp at very low h arises from the decoupling of
two formed SPPs.

The mode confinement of SPPs is shown in Figure 2c. It determines the enhancement
of energy in the slot region. The mode confinement reduces with increasing slot width
w. To clarify this, we show the electric field distribution at different slot widths w for a
constant h = 300 nm in Figure 2d. We see that the slot width of w = 400 nm has the lowest
electric field distribution within the slot. Even though the narrower slot dimension has a
large energy confinement, it suffers from the lower propagation length.

There is a tradeoff between the energy confinement of SPPs within the slot and SPP’s
propagation length. The largest Lp for SPW with thickness h = 300 nm is for a slot width
of w = 100 nm. Hence, these values (w = 100 nm and h = 300 nm) were chosen as SPW
optimum dimensions. Based on this optimization, Neff is 1.42. The mode has a shorter
wavelength in comparison to the free space. Therefore, the SPP’s wavelength, which is
defined as λ0/Ne f f , is 2.1 mm, and the SPP’s field is confined in the air slot as small as
λ2

0/(3× 108). Here, λ0 = 3 mm is the free-space wavelength. The propagation distance of
SPPs is 12.73 mm, which is equal to six effective wavelengths.

The modal characteristics of the waveguide are dependent on the plasmonic properties
of BSCCO. Neff, Lp, and mode confinement are shown in Figure 3a–c as a function of
temperature for four different frequencies of f = 0.1, 0.3, 0.5, and 0.8 THz. For each frequency,
it is found that Neff reduces but Lp and mode confinement increase significantly as BSCCO
enters the superconducting state below Tc (the vertical dashed line). The magnitude of the
real part of BSCCO permittivity (|ε1|) increases below Tc (see Figure 3d). The continuity of
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the normal component of the electric field displacement (D) at the boundary of the BSCCO
and air interface as εBSCCOEBSCCO ⊥ = εairEair ⊥ results in the decrease in the electric field
in BSCCO, by increasing |ε1|, due to the material temperature reduction. Here, εBSCCO
and εair are the permittivities of BSCCO and air, respectively. E1⊥ and E2⊥ are normal
components of the electric field in BSCCO and air, respectively. The electric field reduction
in the BSCCO results in a lower modal propagation constant β and lower Neff. The growth
in Lp and mode confinement with the cooling of the waveguide is also the outcome of
lower β.
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Figure 3d shows the real part of the BSCCO permittivity at different frequencies.
Indeed, superconductors are intrinsically plasmonic media with a negative real part of com-
plex permittivity. Superconductor plasmonic properties are determined by the coexistence
of normal and superconducting plasma. Normal carriers are responsible for scattering
processes. At Tc and above, all carriers are in the normal phase. With a reduction in tem-
perature to below Tc, the ratio of superconducting carriers to normal carriers increases. At
zero temperature, all carriers turn into supercarriers according to the well-known two-fluid
model [40,50]. Above Tc (vertical dashed line in Figure 3d) in the normal state of BSCCO, ε1
has a very low value. The material is nevertheless in the plasmonic regime, with a signifi-
cant loss. At cryogenic temperatures below Tc of BSCCO, the absolute value of ε1 increases.
Therefore, loss of the material decreases due to the growth of supercarrier densities. The
growth of SPP’s propagation length by reducing the temperature in Figure 3b is a result of
loss reduction in BSCCO below Tc.

From Figure 3a–c, it could also be found that Neff increases and Lp decreases with
frequency. The growth in Neff (Figure 3a) is due to the reduction in the absolute value of
the real part of BSCCO permittivity with frequency (see Figure 3d), and also the larger
penetration of mode power in BSCCO. Larger modal penetration in BSCCO means lower
mode confinement within the slot (see Figure 3c). The reduction in Lp with frequency in
Figure 3b is a result of the increasing Ohmic loss and also due to the larger fraction of the
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modal power in BSCCO. However, there are less prominent differences between waveguide
characteristics below and above the transition temperature at higher frequencies. This
is first due to the increase in loss rate at higher frequencies. Moreover, in BSCCO, the
two-fluid model cannot explain the low-frequency conductivity, as well as that of other
layered superconductors such as YBCO with less anisotropy. In BSCCO, as an anisotropic
cuprate, there is an additional spectral weight at low frequencies that increases as the
material is cooled toward zero. This residual spectral weight (the so-called collective mode)
arises from the fluctuation in the condensate order parameters [46–48] and draws about
30% of the spectral weight from the condensate [46]. However, there is good agreement
between the BSCCO conductivity and the two-fluid model at higher frequencies.

For clarifying the effect of temperature, the dispersion relation of the mode of BSCCO
PSW is shown in Figure 4a. Compared to the light line (dispersion relation of vacuum,
shown with red color), it infers that the waveguide supports a bound mode because
the waveguide lines are on the right side of the light line [51]. With the reduction in
temperature, the slope of the curves becomes sharper. Therefore, cooling the waveguide
results in reducing the refractive index. Lower Neff for lower temperature dictates shorter
SPP wavelengths. Moreover, the dispersion curves show that the energy is less confined at
lower frequencies due to approaching the light line.
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Figure 4. (a) Dispersion curves for the mode of the BSCCO PSW at T = 10 K (purple), T = 60 K (blue),
and T = 80 K (green). The red line shows the dispersion relation of the THz waves propagating in
free space. (b) Electric field intensity at the red dashed line 5 nm above the waveguide, at different
temperatures between T = 10 and 90 K, at f = 0.1 THz. The cross-section of the waveguide shows
the relative position of the BSCCO film and the slot area in the electric field curves. The pale blue
area shows the gap, while the grey area shows the BSCCO part. (c) The electric field distribution
of the BSCCO THz PSW for width w = 100 nm and height h = 300 nm at f = 0.1 THz for selected
temperatures T = 10, 60, and 80 K. All field distributions have the same color bar.

For further investigation of the thermal tuning of confinement of the modal energy
within the slot, the electric field distribution at 5 nm above the waveguide’s surface along
the dashed line is shown in the bottom panel of Figure 4b, for selected temperatures,
at f = 0.1 THz, and for the optimized waveguide size. Here, the top curve is aligned
vertically with respect to the cross-sectional view of the waveguide. The pale blue area in
the schematic of the waveguide and within the curve of Figure 4b shows the air slot area,
while the grey area shows the BSCCO thin-film area. The electric field is enhanced within
the slot for all temperatures, whereas it grows as temperature reduces due to the reduction
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in the loss rate. The electric field distribution at different temperatures in Figure 4c also
shows the enhancement of the field within the slot with the reduction in temperature.

The comparison between the BSCCO waveguide and gold waveguide with the same
structural size of h = 300 nm and w = 100 nm at the frequency of f = 0.1 THz shows that
the BSCCO waveguide has a larger energy confinement and larger propagation length
below Tc (see Figure A1). Therefore, the propagation characteristics of the proposed
BSCCO waveguide are better than those of the gold waveguide below Tc. Above Tc, the
propagation length of SPPs for the BSCCO waveguide is comparable to that of the gold
plasmonic waveguide (see Figure A1 in Appendix A).

The absorption coefficient (α) of the waveguide can be calculated from α = 2 Imag(β) [52].
The absorption coefficients of BSCCO and the gold plasmonic waveguide as a function of
temperature and frequency are shown in Figure A2. For the BSCCO waveguide at the frequency
of f = 0.1 THz, the absorption coefficient is equal to 0.68 dB/mm at T = 10 K and it increases
to 3.34 dB/mm at T = 85 K (the Tc of BSCCO). For gold, the absorption coefficient is as high
as 6.85 dB/mm at the frequency of f = 0.1 THz. Nevertheless, the absorption coefficient of the
BSCCO waveguide is comparable to the gold waveguide above Tc. Additionally, the absorption
confinement of both waveguides increases with frequency as a result of increasing Ohmic losses.

4. Conclusions

We numerically investigated the temperature-dependent modal characteristics of a
high-Tc superconducting BSCCO plasmonic slot waveguide, including the refractive index,
propagation length, and the mode confinement in the slot region at the mm-wave-to-THz
range of frequencies. We showed that the propagation length of SPP increases as material
enters the superconducting phase. In addition, we investigated the frequency tuning of
the modal characteristics. Compared with the gold waveguide, the BSCCO waveguide at
T = 10 K offers higher mode confinement within the gap and a larger propagation length
below Tc. The proposed BSCCO plasmonic waveguide helps realize a fully integrated
BSCCO THz circuitry for applications in cryogenic on-chip quantum communication and
low-loss data processing.
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Appendix A

The conductivity of gold (σAu) is described by the Drude model expression as

σAu = ε0
ω2

p

γ + iω
(A1)

where plasma frequency ωp is 2π× 2175 THz and collision frequency γ is 2π× 6.5 THz [1].
Here, ε0 is the vacuum electric constant. It should be noted that no temperature tuning is
expected for the gold waveguide.
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