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Abstract: Slender-body approximations have been successfully used to explain many phenomena
in low-Reynolds number fluid mechanics. These approximations typically use a line of singularity
solutions to represent flow. These singularities can be difficult to implement numerically because
they diverge at their origin. Hence, people have regularized these singularities to overcome this issue.
This regularization blurs the force over a small blob and thereby removing divergent behaviour.
However, it is unclear how best to regularize the singularities to minimize errors. In this paper, we
investigate if a line of regularized Stokeslets can describe the flow around a slender body. This is
achieved by comparing the asymptotic behaviour of the flow from the line of regularized Stokeslets
with the results from slender-body theory. We find that the flow far from the body can be captured if
the regularization parameter is proportional to the radius of the slender body. This is consistent with
what is assumed in numerical simulations and provides a choice for the proportionality constant.
However, more stringent requirements must be placed on the regularization blob to capture the near
field flow outside a slender body. This inability to replicate the local behaviour indicates that many
regularizations cannot satisfy the no-slip boundary conditions on the body’s surface to leading order,
with one of the most commonly used blobs showing an angular dependency of velocity along any
cross section. This problem can be overcome with compactly supported blobs, and we construct one
such example blob, which can be effectively used to simulate the flow around a slender body.

Keywords: regularized Stokeslets; Stokeslets; slender-body theory; asymptotic methods

1. Introduction

Slender bodies immersed in fluids are frequently studied in biology, polymer mechan-
ics and colloids. These bodies typically have arc length much larger than their radius and
can be difficult to resolve numerically. Let a denote the ratio of the radius of a slender
body to its length. In the small a limit, asymptotic theories have been developed for the
flow around slender bodies [1–10]. These theories are called slender-body theories (SBTs),
and they expand the system in powers of a or 1/ ln a. Algebraically accurate SBTs have
proven to be very accurate and provide exact results for prolate spheroids [3,5,7,11–16],
while logarithmically accurate SBTs are useful for analytical estimations [17–24]. Many of
these theories place the singularity solutions of Stokes equations along the centreline of
the body. This singularity representation diverges on the centreline of the body, and it can
become difficult to implement numerically.

One approach to overcome these problems is to regularize the singularities by dis-
tributing the force over a small blob [25–27]. This regularization of singularities was
introduced by Cortez [25] with applications to the boundary integral representation for the
flow [26,28–30]. It has since been extended to describe the flow around slender bodies by
using different regularized slender-body theories [31–36].
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Two major versions of these regularized SBTs exist: one in which both regularized
point forces and source dipoles are distributed over the centreline [31,32,36] and one
that consists of placing a series of regularized point forces along the centreline of the
body [34,35,37–40]. The former uses asymptotic methods to match the boundary conditions
in SBT, while the latter assumes that the regularized singularities will produce the correct
flow outside the slender body with a suitable choice of regularization parameter. This is
argued from unit analysis but has not been mathematically proven. Here, we investigate
the accuracy of the latter representation but note that recent analysis has looked into the
accuracy of the former [41].

In this paper, we compare the asymptotic flows around a line of regularized singular-
ities to the flow around a slender body as predicted by slender-body theory. We show that
the asymptotic flow far from the body can be captured by any regularization provided that
the regularization parameter satisfies a specific equation that depends on the shape of the
blob. This justifies the linear relationship between ε and the thickness of the slender body,
which is typically assumed in numerical simulations. We also show that the flow close to
the slender body can only be asymptotically captured for specific types of blobs. As such,
not all regularization choices are capable of satisfying the no-slip boundary conditions
on the body and so cannot capture the behaviour of the slender body itself. This is an
issue for a commonly used power-law decaying blob but not for compactly supported
blobs. We construct one such compact blob, which could be effectively used for numerical
simulations.

In Section 2, we briefly review Stokes flow with a focus on classical and regularized
singularity solutions and slender-body theories. Section 3 then identifies the conditions
under which the asymptotic flow far from a line of regularized Stokeslets is the same as
that far from a slender body before we identify the conditions necessary to capture the near
flow in Section 4. Finally, we look at how these conditions apply to typical blob types in
Section 5 before we conclude the paper.

2. Background into Viscous Flows around Slender Bodies
2.1. Stokes Flow and Classical Singularity Solutions

At microscopic scales the ratio of fluid inertia to fluid viscosity, the Reynolds number
tends to be very small. In these cases, the behaviour of the resultant slow viscous flow can
be accurately described by the incompressible Stokes equations [42–44]:

−∇p + µ∇2u + f = 0, (1)

∇ · u = 0, (2)

where p is the pressure of the fluid, u is the velocity of the fluid and f is the force per
unit volume on the fluid. Throughout this paper, we will set µ = 1 without any loss of
generality. Although these equations are linear and time independent, they display a strong
dependence on the geometry of the system considered. As a result, analytical solutions
to these equations are rare except in very specific geometries [42–44]. Hence, for a typical
problem, they must be evaluated numerically or asymptotically. Both of these approaches
often use the point force solution to the flow.

The fluid flow from a point force, f = Fδ(r) where δ(r) is the three dimensional
Dirac delta function supported at the origin, in a viscous fluid is called the Stokeslet and,
in free space, generates the following flow:

u(r) = S(r) · F =

(
r2 I + rr

8πr3

)
· F, (3)

p(r) = P(r) · F =
( r

4πr3

)
· F, (4)

where r is the position vector, r = |r| is its norm, S(r) is the Oseen tensor, I is the identity
tensor and all tensor product symbols are omitted. The Stokeslet is the Green’s function of
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the flow and satisfies the Stokes equations everywhere outside the origin at which point it
diverges. As a result, it can be used to solve the Stokes equations in two different ways:
the boundary integral representation and the representation by fundamental singulari-
ties [42,44]. In the boundary integral representation, the Green’s function nature of the
Stokeslet is used to convert the equations into an integral over the boundary of the domain.
These integrals can then be discretized to solve for the unknowns in the problem in a
method called the boundary element method (for more information on this method see
Reference [44]).

The representation by fundamental singularities method, on the other hand, seeks
to place the Stokeslet and its derivatives outside of the flow region (i.e., within the body)
such that the boundary conditions are satisfied [45]. If such a distribution can be found,
it is guaranteed to be the solution due to the uniqueness of Stokes flow. In general, the
specific singularities needed depend on the geometry of the problem, the region they are
distributed over and the motion of the body. However, due to the biharmonic nature of the
Stokes equations, singularity representations involving the Stokeslet are consistently found
to occur in combination with another singularity solution called the source dipole. The
source dipole is proportional to the Laplacian of the Stokeslet and generates the following
flow:

u(r) = D(r) · A =
r2 I − 3rr

8πr5 · A, (5)

p(r) = 0, (6)

where A is the strength of the source dipole, and D(r) = ∇2S(r)/2 is the source dipole
tensor. Similar to the Stokeslet, this fundamental singularity satisfies the Stokes equations
everywhere except at the origin where it diverges.

2.2. Regularized Singularity Solutions

The divergent nature of the Stokeslets requires special care when integrating over
or determining the flow close to the origin. However this integration is necessary for the
boundary integral representation, and the nearby flow is often required when constructing
representations using fundamental singularities. Cortez proposed the regularization of
these singularities to overcome this issue [25]. This was achieved by replacing the Dirac
delta function in the point force representation by a suitable mollifier (hereafter called a
blob), fε(r) = ε−3 f (r/ε) where

∫∫∫
fε(r) dr = 1, that depends on some regularization

parameter ε. As ε→ 0, these blobs become the Dirac delta function; thus, the flow from a
Stokeslet is recovered. The flow from a specific blob can be found by solving the forced
Stokes equations or represented as a convolution with the relevant singularity. For example,
the regularized Oseen tensor can be generally expressed as:

Sε(r) = S ∗ fε =
∫

S(r− r′) fε(r′)dr′ (7)

but a popular regularization takes the following form:

Sε(r) =
I(r2 + 2ε2) + rr

8πr3
ε

, rε =
√

r2 + ε2 (8)

when the blob is fε(r) = 15ε4/(8πr7
ε). The flow from these tensors define the regularized

Stokeslet.
The substitution of this regularized Stokeslet into the boundary integral representation

develops the regularized boundary element method. This method overcomes any singu-
larity issues caused by the Stokeslet but introduces an error related to the regularization
parameter ε [26]. Careful analysis of this error showed that, for spherically symmetric
blobs, the additional error in the boundary integral representation is proportional to ε2

[30].
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This error can be understood through the additional flows generated by the regular-
ization process [27]. We previously showed that when r � ε, the regularized Stokeslet
Sε can be written as an infinite sum of singularity solutions, and when r � ε it becomes
isotropic. Furthermore, when f is spherically symmetric, the regularized Oseen tensor can
be expressed exactly [27] as:

Sε(r) = S(r)
∫ r/ε

0
4πt2 f (t)dt + ε2D(r)

∫ r/ε

0

4π

3
t4 f (t)dt +

2I
3ε

∫ ∞

r/ε
t f (t)dt, (9)

where we have now expressed it in terms of fundamental singularity solutions to the
Stokes equations. The above representation shows that the flow far from a regularized
Stokeslet can always be expressed as that of a Stokeslet and a source dipole proportional to
ε2 regardless of the choice of blob. Hence, a spherically symmetric blob generally produces
additional flows at order ε2.

This ε2 error can be controlled by keeping ε much smaller than all other length
scales within a given problem, thereby allowing the benefits of regularization to outweigh
any drawbacks. As such, regularized boundary element simulations have become an
increasingly popular tool to explore the behaviour of micro-swimmers [28,34,37–39,46,47]
and have been extended beyond free space singularities [46,48,49]. This process has
proved very popular and has been extended to create regularised slender-body theories
[31–33,35,36,40].

2.3. Classical Slender-Body Theory

The slow viscous hydrodynamics of long thin bodies is important in many systems [2].
However, this slender-body hydrodynamics can be hard to simulate thanks to the very
large aspect ratio 1/a (major/minor lengths) of the body. This large aspect ratio causes
boundary element methods to typically require high surface resolutions. Hence, asymptotic
methods, called slender-body theories (SBTs), have been developed to overcome these
issues [1–7,10]. These theories seek to expand the governing equations in terms of the large
aspect ratio 1/a to produce simplified models for the hydrodynamics. Broadly, SBTs have
been divided into two types: those that expand the system in powers of 1/ ln(a) [1,3] and
those that expand the system in powers of a [4–7]. The former is often called resistive force
theory and provides useful analytical estimates [17–24], while the latter has been shown to
provide highly accurate results in numerous situations [11–16].

Probably the most commonly used algebraically accurate SBT was first developed
by Keller and Rubinow [4]. This version was developed by matching the flow around
an infinite cylinder to that of a line of Stokeslets. These equations were later rederived
and extended by Johnson [5] and Gotz [6] by using the representation of fundamental
singularities and matched asymptotic expansions. They achieved this by parametrizing
the surface of the slender body, xS(s, θ), as:

xS(s, θ) = x0(s) + aer(s, θ)ρ0(s), (10)

where s ∈ [0, 1] is the arclength parameter of the centreline, x0(s) is the centreline of the
body,
0 ≤ aρ0(s) ≤ a is the body radius at s, et = ẋ0/|ẋ0| is the unit tangent vector along
the centreline and er(s, θ) is the local radial vector perpendicular to et (Figure 1). The
radial vector, er, is often represented through the Frenet–Serret coordinates as er(s, θ) =
cos(θ)n̂ + sin(θ)b̂, where n̂ and b̂ are the normal and bi-normal vectors relative to the
centreline, respectively. Johnson and Gotz assumed that the leading-order flow around
such a body could be captured by a system of Stokeslets with strength αS(s) and source
dipoles with strength βS = 1

2 a2ρ2
0αS placed along the body’s centreline, x0(s). This choice of
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singularity representation comes from the exact solutions known for a prolate spheroid [45]
and generates the following flow:

u(x) =
∫ 1

0
S(x− x0(t)) · αS(t) + D(x− x0(t)) · βS(t)dt. (11)

The uniqueness of Stokes flow tells us that this representation must be the solution if the
fluid velocity u(x) matches the surface velocity of the body when x = xS. They then
assumed that the surface velocity, U(s), is uniform along each cross-section (i.e., it only
depends on the position along the centreline x0) and performed a matched asymptotic
expansion for u(xS) in the limit a→ 0 while keeping s, and θ fixed.

Figure 1. Example geometry of a slender body. x0(s) is the centreline, xS is the surface, et(s) is the
tangent to the centreline, er(s) is a radial vector perpendicular to the tangent and 2aρ0(s) represents
the thickness at s.

This matched asymptotic expansion divided the system into an outer and an inner
region, and it expanded the behaviour in each region in the limit a → 0. The different
regions are then matched together by using Van Dyke’s matching rule, and a composite
representation formed [50]. We will provide a summary of the major results of this expan-
sion here and refer readers to the thesis of Gotz [6] for the full derivation. In the inner
region, ξ = (t− s)/a is held constant, and the integral kernels expand to:

S(i)(xS− x0(t)) =
I

8πaδ0
+

ρ2
0erer − ρ0ξ(eret + eter) + ξ2etet

8πaδ3
0

+ O(1), (12)

D(i)(xS− x0(t)) =
I

8πa3δ3
0
− 3

ρ2
0erer − ρ0ξ(eret + eter) + ξ2etet

8πa3δ5
0

+ O(a−2), (13)

αS(t) = αS(s) + O(a), (14)

where the superscript (i) denotes the inner region expanded form and δ0(t, s, a) =√
ξ2 + ρ2

0(s). Similarly, the outer limit fixes t and produces the expanded forms:

S(o)(xS− x0(t)) · αS(t) =
1

8π

αS(t)
R0

+
1

8π

R0R0αS(t)
R3

0
+ O(a), (15)

D(o)(xS− x0(t)) · βS(t) = 0 + O(a), (16)

where the superscript (o) denotes the outer region expanded term, R0(t, s) = x0(s)− x0(t),
and its norm is R0 = |R0|. The common part of these two asymptotic forms is found by
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expanding the outer form in terms of the inner regions variables or equivalently the inner
form in terms of the outer regions variables [50], and it is given by:

S(o)∈(i)(xS− x0(t)) · αS(t) = S(i)∈(o)(xS− x0(t)) · αS(t) =
αS(s)

8π|s− t| +
etet · αS(s)
8π|s− t| + O(a), (17)

D(o)∈(i)(xS− x0(t)) · βS(t) = D(i)∈(o)(xS− x0(t)) · βS(t) = 0 + O(a), (18)

where the superscript (o) ∈ (i) denotes the outer asymptotic representations,
Equations (15) and (16), expanded in the inner region variables ξ, and (i) ∈ (o) denotes
the inner asymptotic representations, Equations (12) and (13), expanded in the outer region
variable t.

Since these regions match a composite representation, the integral can be formed by
adding the inner and outer limits, subtracting the common part and then integrating the
representation over the entire length. By integrating this composite representation, we find
that the flow on the surface of the body is asymptotically given by:

u(xS) = U(s) =
∫ 1

0

[
S(xS− x0(t)) · αS(t) + D(xS− x0(t)) · βS(t)

]
dt

=
∫ 1

0

[
S(o)(xS− x0(t)) · αS(t) + D(o)(xS− x0(t)) · βS(t)

]
dt

+
∫ 1

0

[
S(i)(xS− x0(t)) · αS(s) + D(i)(xS− x0(t)) · βS(s)

]
dt

−
∫ 1

0

[
S(o)∈(i)(xS− x0(t)) · αS(s) + D(o)∈(i)(xS− x0(t)) · βS(s)

]
dt (19)

+O(a)

=
1

8π

∫ 1

0

[
αS(t)

R0
+

R0R0 · αS(t)
R3

0
− I + etet

|s− t| · α
S(s)

]
dt

+
∫ 1

0

[
S(i)(xS− x0(t)) · αS(s) + D(i)(xS− x0(t)) · βS(s)

]
dt

+O(a),

where we have explicitly substituted the forms of the outer and common parts of the
expansion. The remaining integrals over the inner region expansion can be asymptotically
evaluated [6,7] in order to find the following:

8πU(s) =
∫ 1

0

[
αS(t)

R0
+

R0R0 · αS(t)
R3

0
− I + etet

|s− t| · α
S(s)

]
dt

+[L(I + etet) + (I − 3etet)] · αS(s)+O(a), (20)

where L = ln[4s(1− s)/a2ρ2
0]. The above equation is the classical slender-body theory inte-

gral equation for the unknown Stokeslet strengths αS(t). These equations have been used
successfully in the modeling of several systems [12–16,51–53], and have been rederived
from the boundary integral representation [7] and extended to treat bodies of different
shapes [54,55]. Recent studies have also studied the effectiveness of these equation in
different situations and bounded error on the flow from a given force to O(a ln a) [56–58].

Once the force per unit length along the slender body is found from Equation (20), the
resultant flow can be determined with Equation (11). This predicted flow has been shown
to compare well with experiments of rotating helices [11] and should generally be accurate
in regions close to the slender body or far away from the slender body. This is because it
must asymptotically satisfy the no-slip boundary condition on the surface of the body, and
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the flow can be represented by a multipole expansion with Stokeslets and source dipoles
far away.

Although the classic SBT equations, Equations (11) and (20), have been very successful,
the components of the integrand within Equation (20) are individually divergent. Held
together, these divergent factors asymptotically cancel, but this makes them difficult to
treat numerically. Furthermore, the operator is known to encounter numerical instabilities
related to eigenvalues changing sign. Hence, people have created regularized slender-body
theories to overcome these issues.

2.4. Regularized Slender-Body Theories

The numerical issues in implementing the classical SBT equations have prompted
people to create classical SBT like models using regularized Stokeslets. Two methods have
been developed for this process: one where the flow is represented by a line of regularized
Stokeslets and regularized source dipoles [31,32,36] and one where the flow is represented
by a line of regularized Stokeslets alone [35]. Although both are based on regularized
singularities, these methods treat the no-slip boundary condition and the regularization
parameter very differently.

The former method, with regularized Stokeslets and regularized source dipoles, seeks
to choose the source dipole strength such that the no-slip boundary condition asymptot-
ically applies at the surface of the body. This can be shown with a similar asymptotic
expansion, as is performed in the classical case. These methods can leave the regularization
parameter free [32] or use it to help with the expansion [31]. In both cases, however, the
regularization parameter, ε, helps remove the numerical issue with the implementation.
The flow predicted by this method, therefore, satisfies the boundary conditions at the sur-
face of the body and far from it but has been shown to exhibit an additional O(1) difference
between it and the classical SBT that cannot be fixed with the choice of regularization
parameter [41]. In practice, this difference may be small and likely stems from the fact
that the flow outside the body is not described by the unforced incompressible Stokes
equations.

The latter method, with a line of regularized Stokeslets alone, tries to use the regu-
larization parameter itself to capture the thickness of the slender body [35]. As such, the
regularization parameter is typically chosen to be ε = kaρ0(s), where k is some arbitrary
constant. The strength of the Stokeslets is then set by applying the velocity condition on an
effective line in space. Often this line is chosen to be the centreline of the body, although
it could be applied on a line along the surface as well. This writes the problem as a line
integral similar to that of classical SBT. Similarly to the previous representation, the use of
regularized Stokeslets means that the flow predicted by this model will not satisfy the un-
forced incompressible Stokes equations outside the body for all regularizations. However,
the difference between the classical SBT prediction and that from this representation has
not been determined.

In the remaining sections of this paper, we will investigate how well a line distribution
of regularized Stokeslets replicates the flow around a slender body for a general spherically
symmetric blob and regularization parameter. This will provide us with a set of conditions
that must be met in order for the far and near field flows to asymptotically reflect that
around a slender body. Importantly we show that one common power-law blob cannot
satisfy the no-slip condition on the body’s surface, while compactly supported blobs do.

3. Regularizations for the Flow Far from a Slender Body

Far away from the slender body, the flow, predicted by SBT, is well approximated
by Equation (11). This is the because it is a leading order multipole representation [11].
Similarly, the flow far from a line of regularized Stokeslets placed along the centreline
of the body can be approximated by expanding Sε(x− x0(t)) in the limit |x| � 1, ε and
integrating over the length. This expansion provides the following:
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uεfar(x) =
∫ 1

0
S(x− x0(t)) · γ(t) dt + O

(
1
|x|2

)
+

[
ε2
(∫ ∞

0

4π

3
u4 f (u) du

)] ∫ 1

0
D(x− x0(t)) · γ(t) dt + O

(
ε2

|x|4

)
, (21)

where uεfar(x) is the far field flow from the line of regularized Stokeslets, and we have used
Equation (9). The above approximation assumes that the functions are well behaved enough
to interchange limits and integrals. We note that the source dipole term is subdominate
to the Stokeslet in the far-field limit. However, we retain both contributions here because
the Stokeslet and source dipole generate different flows, and the far-field contributions of
both singularities, from the motion of a slender body, are asymptotically determined by
Equation (11). If we compare the Stokeslet and source dipole flows, we observe that the
above equation approximates Equation (11) if the following holds:

γ(t) = α(t), (22)

2h(s)2
(∫ ∞

0

4π

3
u4 f (u)du

)
= ρ0(s)2, (23)

where we have set ε = ah(s) + O(a2). The first condition tells us that, in order for the
flow around a line of regularized Stokeslets to replicate that of a slender body, the strength
of the regularized Stokeslets must be equal to the force per unit length along the body.
This is unsurprising. The second equation, however, provides a relationship between
the regularization parameter, ε = ah(s), the blob used for the regularization, f (v), and
the cross section of the body, ρ0(s). It shows that, as assumed in the existing literature,
the regularization parameter is proportional to the radius of the cross-section and this
proportionality constant depends on the fourth moment of the regularizing blob. Provided
this moment exists, the far field contributions from any regularized Stokeslet can be made
to approximate the Stokeslet and source dipole flow contributions far from a slender body.

4. Regularization’s for the Flow Near a Slender Body

The flow from a line of regularized Stokeslets near the boundary of the slender body
can be approximated by using a similar matched asymptotic expansion as that in slender-
body theory. This involves expanding the regularised Stokeslet kernel in the limit of small
a for an inner region, where ξ = (t− s)/a, s and θ are fixed, and outer region, where t is
fixed, and then matching the solutions. The composite representation of the integral is then
found by adding the outer and inner regions and subtracting the common part, similarly
to before, to find the following:∫ 1

0
Sε(x− x0(t)) · α(t)dt =

∫ 1

0
Sε(o)(x− x0(t)) · α(t)dt

+
∫ 1

0
Sε(i)(x− x0(t)) · α(s)dt

−
∫ 1

0
Sε(o)∈(i)(x− x0(t)) · α(s)dt + O(a), (24)

where the superscripts (o), (i) and (o) ∈ (i) again denote the expansion in the outer, inner
and the outer subsequently expanded in the inner (common), respectively. In the above,
x = x0(s) + eraρ is a point close to the surface of the body, and ρ is a radial distance from
the centreline that is of the same order as ρ0(s). Setting ρ = ρ0(s) corresponds to the flow
on the boundary, while ρ > ρ0(s) represents the flow close to the boundary.

In the previous section, we established that far from the line of regularised Stokeslets,
the kernel, Sε, behaves as a line distribution of point forces and source dipoles (refer to
Equation (9)). As a consequence, the outer region expansion of the regularised kernel is
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asymptotically equivalent to that of a Stokeslet and a source dipole in the same limits.
Hence, the kernel can be expressed as:

Sε(o)(x− x0(t)) · α(t) = S(o)(x− x0(t)) · α(t)

+

[
ε2
(∫ ∞

0

4π

3
u4 f (u) du

)]
D(o)(x− x0(t)) · α(t)

+O(a)

=
1

8π

αS(t)
R0

+
1

8π

R0R0 · αS(t)
R3

0
+ O(a), (25)

which is identical to the outer expanded kernel in classical SBT. In the above, we have
assumed that ε is linearly related to a, as suggested by the analysis of the previous section.
Since this outer kernel is the same as that found in classical SBT, the expansion of it in terms
of the inner region variables will also be the same. The common behaviour can, therefore,
be expressed as:

Sε(o)∈(i)(x− x0(t)) · αS(s) = S(o)∈(i)(x− x0(t)) · αS(s) + O(a)

=
αS(s)

8π|s− t| +
etet · αS(s)
8π|s− t| + O(a). (26)

These results can be substituted back into our composite representation for the flow near
the surface of the body to find the following:

∫ 1

0
Sε(x− x0(t)) · α(t)dt =

1
8π

∫ 1

0

[
α(t)
R0

+
R0R0 · α(t)

R3
0

− I + etet

|s− t| · α(s)
]

dt

+
∫ 1

0
Sε(i)(x− x0(t)) · α(s)dt + O(a). (27)

The remaining inner region expansion can be deduced from Equation (9), and it takes
the following form:

Sε(i)(x− x0(t)) = S(i)(x− x0(t))
∫ δ/h(s)

0
4πr2 f (r)dr

+a2h2(s)D(i)(x− x0(t))
∫ δ/h(s)

0

4π

3
r4 f (r)dr

+
2I

3ah(s)

∫ ∞

δ/h(s)
r f (r)dr + O(a), (28)

where ε = ah(s), δ(t, s, a) =
√

ξ2 + ρ2(s), and we noted that r/ε = aδ(t, s, a)/ε + O(a) =
O(1). If we consider a point on the surface δ = δ0. The above relation expresses the inner
region representation of the regularized Stokeslet in terms of the inner region representation
of the Stokeslet and source dipole. Similar inner region expansions were stated in the
summary of SBT for flow on the surface of the body, Equations (12) and (13). The expanded
form of the Stokeslet and source dipole near the surface are structurally equivalent to these
but with δ0, ρ0 replaced with δ, ρ. Explicitly, this provides the following:

S(i)(x− x0(t)) =
I

8πaδ
+

ρ2erer − ρξ(eret + eter) + ξ2etet

8πaδ3 , (29)

D(i)(x− x0(t)) =
I

8πa3δ3 − 3
ρ2erer − ρξ(eret + eter) + ξ2etet

8πa3δ5 . (30)

These equations can be combined with Equations (28) and (27) to asymptotically determine
the flow close to the surface of the slender body from a line of regularised Stokeslets.
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The difference in the near body flow from a line of regularized Stokeslets and the flow
around a slender body asymptotically predicted by SBT can be determined by subtracting
Equation (27) from Equation (19). Since the outer and common limits are the same in each
case, the difference between the leading order contributions at x = x0(s) + aer(s)ρ(s) is:

∫ 1

0
∆SBTε dt =

∫ 1

0

[
S(i)(x− x0(t)) +

1
2

a2ρ2
0(t)D(i)(x− x0(t))− Sε(i)(x− x0(t))

]
dt · α(s)

=
∫ 1

0
S(i)(x− x0(t))

[
1−

∫ δ/h(s)

0
4πr2 f (r)dr

]
dt · α(s)

+
1
2

a2ρ2
0(s)

∫ 1

0
D(i)(x− x0(t))

[
1− 2

h2

ρ2
0

∫ δ/h(s)

0

4π

3
r4 f (r)dr

]
dt · α(s)

−
∫ 1

0

2I
3ah(s)

[∫ ∞

δ/h(s)
r f (r)dr

]
dt · α(s)

=
∫ 1

0
S(i)(x− x0(t))

[∫ ∞

δ/h(s)
4πr2 f (r)dr

]
dt · α(s)− 2I

3ah(s)

∫ 1

0

[∫ ∞

δ/h(s)
r f (r)dr

]
dt · α(s)

+a2h2(s)
∫ 1

0
D(i)(x− x0(t))

[∫ ∞

δ/h(s)

4π

3
r4 f (r)dr

]
dt · α(s)

+a2
[

1
2

ρ2
0(s)− h2

∫ ∞

0

4π

3
r4 f (r)dr

] ∫ 1

0
D(i)(x− x0(t)) dt · α(s) (31)

where
∫ 1

0 ∆SBTε dt is the difference between the leading order contributions relative to
the near field flows from a line of regularized Stokeslets and classical SBT. This difference
needs to be O(a) for the flow around a line of regularized Stokeslets to asymptotically
replicate the flow predicted by SBT to the same order. Since α(s) is typically unknown, this
condition must hold for arbitrary α(s). The integrand of the above integral can be expressed
as:

− ∆SBTε = E1 I + E2erer + E3etet + E4(eret + eter), (32)

where

E1 =
δ2

ah3

∫ ∞

1

(
2
3

$− 1
2

$2 − 1
6

$4
)

f
(

$δ

h

)
d$ +

1
8πaδ3

[
h(s)2

(∫ ∞

0

4π

3
u4 f (u)du

)
− 1

2
ρ0(s)2

]
, (33)

E2 =
ρ2

2ah3

∫ ∞

1
($4 − $2) f

(
$δ

h

)
d$− 3ρ2

8πaδ5

[
h(s)2

(∫ ∞

0

4π

3
u4 f (u)du

)
− 1

2
ρ0(s)2

]
, (34)

E3 =
ξ2

2ah3

∫ ∞

1
($4 − $2) f

(
$δ

h

)
d$− 3ξ2

8πaδ5

[
h(s)2

(∫ ∞

0

4π

3
u4 f (u)du

)
− 1

2
ρ0(s)2

]
, (35)

E4 =
ρξ

2ah3

∫ ∞

1
($2 − $4) f

(
$δ

h

)
d$ +

3ρξ

8πaδ5

[
h(s)2

(∫ ∞

0

4π

3
u4 f (u)du

)
− 1

2
ρ0(s)2

]
. (36)

In the above we used the integral substitution r = $h(s)/δ to change the lower
bounds of the first integrals to one and Equations (29) and (30). These Ei values represent
the relative error between the flow predicted by SBT and that from the line of regularized
Stokeslets in each direction. We require all four terms to integrate to O(a) for the flow to
match. The integral of E4 can be shown to be O(a) by parity arguments. This is because E4
is odd in ξ, and in the asymptotic limit a→ 0 the integral bounds become ±∞. However,
the other three terms provide non-trivial conditions on f (u).
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If we assume that Equation (23) is satisfied, then the conditions
∫

E1,2,3 dt = O(a)
simplify to:

3h3

2ρ3

∫ 1

0

[
E1 +

1
3
(E2 + E3)

]
dt =

∫ (1−s)/(aρ)

−s/(aρ)
(ζ2 + 1)

[∫ ∞

1

(
$− $2

)
f

(
$ρ
√

1 + ζ2

h

)
d$

]
dζ = O(a), (37)

2h3

ρ3

∫ 1

0
E2 dt =

∫ (1−s)/(aρ)

−s/(aρ)

[∫ ∞

1
($4 − $2) f

(
$ρ
√

1 + ζ2

h

)
d$

]
dζ = O(a), (38)

2h3

ρ3

∫ 1

0
E3 dt =

∫ (1−s)/(aρ)

−s/(aρ)
ζ2

[∫ ∞

1
($4 − $2) f

(
$ρ
√

1 + ζ2

h

)
d$

]
dζ = O(a), (39)

where ζ = ξ/ρ = (t − s)/(aρ), and the equality needs to hold for ρ & ρ0. The above
conditions provide a set of restrictions on the types of blobs, f (v), that can replicate the
near field flow around a slender body. These conditions are necessary and sufficient for
the line regularized Stokeslets to agree with classical SBT to O(a) near the boundary as the
integrals of Ei represent the difference between the two representations. These conditions,
therefore, specify the types of regularizations that can be used in numerical simulations
to asymptotically capture the flow near a slender boy. These conditions can be viewed as
an integral transform into ρ, which depends on the tails of the blobs. Although the range
over which these equations apply can change from blob to blob, these equations must be
true when ρ = ρ0. If this condition is not satisfied, the no-slip boundary condition on the
surface of the body cannot be satisfied. In these cases the solutions found with the line of
regularized Stokeslets cannot be assumed to relate to the real solution a priori.

5. Testing the Conditions on Common Blob Types

In the previous sections, we identified one condition on the regularization parameter,
Equation (23), required to approximately match the far field flow and three conditions
on the blob type, Equations (37)–(39), in order to asymptotically match the flow near the
surface of the body. These conditions apply in limit that the body is long and slender and
were found by comparing the asymptotic behaviour around a line of regularised Stokeslets
to that predicted by SBT. Furthermore, although these latter conditions can hold for a range
of ρ, we know they must hold when ρ = ρ0 if the resultant flow is to approximate that of a
slender body. In this section, we apply these conditions to three common regularization
blob types: power-law blobs, compact blobs and exponential blobs. In each case, we
identify if a line of them can be used to represent the flow from a slender body.

5.1. Power-Law Blobs

Probably the most common blob type used within the literature is the power-law type
blob. These blobs are given by:

fp(v) =
Γ(n/2)

π3/2Γ((n− 3)/2)
1

(v2 + 1)n/2 , (40)

where n is a integer greater then five, and Γ(x) is the gamma function. We remind the
reader that the above blob relates to the regularizing function through fε = ε−3 f (r/ε). The
above representation reduces to one of the most popular examples, Equation (8), when
n = 7.

By inserting this blob into the far field flow condition, Equation (23), we find the
following:

h(s) = ρ0(s)

√
n− 5

2
. (41)
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This, therefore, sets the regularization the blobs must use to satisfy the far field condition.
Significantly, we observe that when n = 7, h(s) = ρ0(s). This indicates that the regularisa-
tion parameter ε should be taken as half the thickness of the slender body, as is typically
assumed in numerical simulations. Similarly, the near field conditions, Equations (37)–(39),
asymptotically evaluate to the following:

∫ (1−s)/(aρ)

−s/(aρ)
(ζ2 + 1)

[∫ ∞

1

(
$− $2

)
fp

(
$ρ
√

1 + ζ2

h

)
d$

]
dζ = −

(n− 5)n(n− 2)
(
(n− 5)2 + 4ρ′2

) 3−n
2

16π(n− 3)ρ′3

− (n− 5)n((n− 10)n− 25)F2(ρ
′)

2n+3ρ′n+2π(n− 1)

+
(n− 5)nF1(ρ

′)

2nρ′nπ
+

(n− 5)n+2F3(ρ
′)

2n+2ρ′n+2πn
+O(a), (42)∫ (1−s)/(aρ)

−s/(aρ)

[∫ ∞

1
($4 − $2) fp

(
rρ
√

1 + ζ2

h

)
d$

]
dζ =

(n− 5)n−1((n− 5)2 + 4ρ′2
) 5−n

2

32πρ′5
+ O(a), (43)

∫ (1−s)/(aρ)

−s/(aρ)
ζ2

[∫ ∞

1
($4 − $2) fp

(
$ρ
√

1 + ζ2

h

)
d$

]
dζ =

(n− 5)n−1((n− 5)2 + 4ρ′2
) 5−n

2

64πρ′5

− (n− 5)nF4(ρ
′)

2n+1ρ′nπ(n− 3)
+ O(a), (44)

where ρ′ = ρ/ρ0, 2F1(a, b; c, x) is the ordinary hypergeometric function, and

F1(ρ
′) = 2F1

(
n− 2

2
,

n− 1
2

;
n
2

;− (n− 5)2

4ρ′2

)
, (45)

F2(ρ
′) = 2F1

(
n− 1

2
,

n− 1
2

;
n + 1

2
;− (n− 5)2

4ρ′2

)
, (46)

F3(ρ
′) = 2F1

(
n− 1

2
,

n
2

;
n + 2

2
;− (n− 5)2

4ρ′2

)
, (47)

F4(ρ
′) = 2F1

(
n− 3

2
,

n− 3
2

;
n− 1

2
;− (n− 5)2

4ρ′2

)
. (48)

Clearly the above forms are not O(a) to leading order; thus, the power law blobs do not
formally capture the flow. Furthermore, since the conditions are also not satisfied when
ρ′ = 1, the power-law blobs are incapable of capturing the no-slip boundary conditions.
However, when these functions are plotted against ρ′ for different n (Figure 2), we find
that they are small for small n and increase as n increases. This suggests that although
these representations cannot replicate the boundary conditions directly, when n = 6 or
n = 7, the error induced by these terms may be small. This may explain why n = 7 blobs
have seemingly been successfully used in many problems, although in practice further
validation is needed to be certain that they actually represent real flow.
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Figure 2. The value of near flow conditions for power-law blobs of n = 6 (blue), n = 7 (orange) and n = 8 (green).
(a) Displays the result from condition Equation (37) (Equation (42)), (b) displays the result from condition Equation (38)
(Equation (43)) and (c) displays the result from condition Equation (39) (Equation (44)).

Finally, we note that the same conclusion can be drawn by completing the inner region
expansion of the resultant regularized Stokeslet. For example, when n = 7 the regularized
Stokeslet from this blob has the form of Equation (8). If we expand this in the inner limit,
we find the following:

Sε(i)(x− x0(t)) =
I(δ2 + 2h2) + ρ2erer − ρξ(eret + eter) + ξ2etet

8πa
√

δ2 + h23 + O(a), (49)

which can then be integrated to give:

8π
∫ 1

0
Sε(i)(x− x0(t)) dt = I

(
L2 +

2ρ2 + 4h2(s)
ρ2 + h2(s)

)
+

2ρ2

ρ2 + h2(s)
erer + L2etet, (50)

where L2 = ln[4s(1− s)/(a2(ρ2 + h2))]. The inner structure clearly has a non-zero erer
term that cannot be eliminated by any choice of h. Hence, this blob cannot remove this
angular dependence and cannot satisfy the boundary conditions on the surface of the
slender body when ρ = ρ0. Therefore, it cannot be assumed a priori that the flow from
a line of these regularized Stokeslets approximates the flow around a slender body. The
presence of this erer term is directly related to Equation (43) containing an O(1) contribution.
This is because the condition used in Equation (43) comes from the E2 terms, which contain
the difference in the leading order terms from a line of regularised Stokeslets and SBT in
the erer direction.

5.2. Compact Blobs

Another class of blobs that can be used for regularized singularities are compact blobs.
These blobs are zero beyond a certain radius and can significantly simplify the integration.
Although such compact blobs regularize the singularity, they often generate discontinuities
in the flow; thus, they are not used as often. For example, consider the following blob:

fc(v) =


15

32π
(21v2 − 11) v < 1

0 v ≥ 1
. (51)

This blob isolates the regularization to within the slender body and is chosen such that the
total dipole strength is the same as in classical slender-body theory. Given these conditions
we expect that the flow outside the body should solve the unforced Stokes equations and
identically match the slender-body flow. This can be verified directly with the far field
condition, Equation (23), which sets the regularization parameter as

h = ρ0, (52)
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and the near field conditions become∫ (1−s)/(aρ)

−s/(aρ)
(ζ2 + 1)

[∫ ∞

1

(
$− $2

)
fc

(
$ρ
√

1 + ζ2

h

)
d$

]
dζ = 0, (53)

∫ (1−s)/(aρ)

−s/(aρ)

[∫ ∞

1
($4 − $2) fc

(
$ρ
√

1 + ζ2

h

)
d$

]
dζ = 0, (54)

∫ (1−s)/(aρ)

−s/(aρ)
ζ2

[∫ ∞

1
($4 − $2) fc

(
$ρ
√

1 + ζ2

h

)
d$

]
dζ = 0, (55)

because rρ′
√

1 + ζ2 ≥ 1; thus, fc

(
rρ′
√

1 + ζ2
)
= 0. Again, we observe that the regular-

ization parameter ε equals half the body thickness, similar to those used in simulations;
however, this representation also replicates all the near field conditions identically. Hence,
a line of these compactly supported blobs could be used to asymptotically determine the
flow around a slender body.

5.3. Gaussian Blobs

Finally we consider Gaussian blobs. These blobs decay to zero rapidly but are contin-
uous and so can be thought of similar to an intermediate between the power law and the
compact blobs. Gaussian blobs have the following form:

fg(v) =
1

π3/2 e−v2
. (56)

The far field condition for these blobs becomes

h = ρ0, (57)

similarly to the compact blob and power-law blob with n = 7 solution. However, in this
case the near surface conditions become

∫ (1−s)/(aρ)

−s/(aρ)
(ζ2 + 1)

[∫ ∞

1

(
$− $2

)
fg

(
$ρ
√

1 + ζ2

h

)
d$

]
dζ = − 1

4πρ′3

∫ ∞

ρ′2

e−u

u
du + O(a), (58)

∫ (1−s)/(aρ)

−s/(aρ)

[∫ ∞

1
($4 − $2) fg

(
$ρ
√

1 + ζ2

h

)
d$

]
dζ =

e−ρ′2

2πρ′5
+ O(a), (59)

∫ (1−s)/(aρ)

−s/(aρ)
ζ2

[∫ ∞

1
($4 − $2) fg

(
$ρ
√

1 + ζ2

h

)
d$

]
dζ =

1
4πρ′5

(
e−ρ′2 − ρ′2

∫ ∞

ρ′2

e−u

u
du
)
+ O(a). (60)

Again, the above evaluation shows that the exponential blobs do not satisfy the
conditions; however, this error is exponentially small in ρ′2 with the largest term being
1/2π when ρ′ = 1. This again suggests that the asymptotic error from this regularization
could be small; thus, it may still work for simulating the flow around the slender body.
However, it would be important to validate the simulation sufficiently beforehand. We note
that the difference between the SBT model and the line of Gaussian regularized Stokeslets
at the surface can be constructed from the above conditions by using them to reconstruct
the Ei when ρ′ = 1.

6. Conclusions

In this paper, we compared the asymptotic flow from a line of regularized Stokeslets to
that from a slender body. This was possible by comparing SBT with a matched asymptotic
expansion of the flow from a generalised line of regularized Stokeslets. We focused on the
flow far from the body and near the body surface as the SBT asymptotic representations
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are expected to be the most valid in these regions. We found that any line of regularized
Stokeslets can approximate the flow far from the body provided that the regularization
parameter, ε, is equal to the thickness of the body, aρ0, multiplied by a constant that
depends on the regularization blob, (8π

∫ ∞
0 u4 f (u) du/3)−1/2, Equation (23). This constant

can be used for the unknown proportionality constant used in numerical simulations. The
asymptotic flow near the surface of a slender body, however, could only be captured by
specific regularisation blobs.

The regularized Stokeslets which are capable of asymptotically describing the flow
near the surface of a slender body are found to satisfy three conditions (Equations (37)–(39)).
These conditions depend on the tails of the regularization blob and are required to apply
over a region. Importantly, these conditions must be met at the surface of the slender
body if the drag from the line of regularized Stokeslets is to correctly predict the same
force and torque on the body from a given motion. If it does not, then the representation
cannot be assumed to describe the flow around a slender body. This restricts the types
of regularization blobs that could be used when simulating a slender body with a line of
regularised Stokeslets.

Finally, we tested these conditions on three blob types: power-law blobs, compact
blobs and Gaussian blobs. While all could satisfy the far field condition without issue, we
found that power-law blobs and Gaussian blobs could not satisfy the near field conditions
anywhere. As such, these blobs cannot match the correct no-slip condition on the bodies
surface and so models using these regularization’s may not describe the desired system.
Plots of the error suggested that these differences are small; thus, they may not make
a large difference practically. The compact blobs investigated were found to satisfy all
the conditions without issue. This means that, out of the three blobs considered, the
compact blob is the best suited for modelling the behaviour of slender bodies with a line of
regularised Stokeslets.

In this article, we restricted ourselves to spherically symmetric regularizations and
focused on slender bodies with circular cross sections. It would be of interest to extend the
results to non-spherically symmetric regularizations and slender bodies with non-circular
cross sections to observe how the conditions change. Furthermore, slender-body theory
has also been used in potential flow and diffusion problems; thus, the method could
be extended to investigate the accuracy of a line of singularities for a slender body in
those systems. Finally, we note that the only regularization we found that satisfied all the
conditions was a compact blob; thus, it would be of interest to investigate any non-compact
examples that can work.
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