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Supplementary Note 1

Additionally to the details mentioned in the main text we provide details on the systems

studied. The 900 substrates consist of the following subsets (a more detailed description can

be found in Supplementary Table 1):

• OH group patterns (prefix OH_): comprised of oxygen atoms placed in various sym-

metries on top of a 12-6 Lennard-Jones wall. We employed two wall strengths (0.2

and 0.05 kcal mol−1) and OH patters with triangular, square, hexagonal and octagonal

symmetry and combinations thereof. Some of these substrates have been studied in

Ref. 1. Oxygen-water interaction was modelled the same way as water-water. Addi-

tionally we added the names of the authors as OH group patterns (suffixes _ANGE,

_MART and _PHIL), but to our disenchantment found them to be bad nucleators.

• Inorganic fcc substrates (prefix LJ_): The crystalline substrates of Ref. 2, compris-

ing of exposed (111), (100), (110) and (211) surfaces. Distances between atoms and

Lennard-Jones interaction between substrate-water were varied to obtain 100 sub-

strates per symmetry.

• Graphitic surfaces (prefix GRA_): Similar to Ref. 3 we use a graphene geometry and

vary the (Lennard-Jones) interaction strength.

• Graphene oxide (prefix GRAO_): Taking the graphene geometry, we assign some of

the carbons to be oxygens based on a virtual overlay of a rectangular grid of various

densities (following Ref. 4). The closes carbon to a virtual grid atom is replaced by an

oxygen. The carbon-water interaction is modelled as Lennard-Jones interaction and

the oxygen-water interaction is modelled the same as for water-water.

When not described differently we used the following computational settings. The water-

water interaction was given by the coarse-grained mW force field.5 Temperature was main-

tained by a 10-fold Nosé-Hoover chain6,7 with a relaxation time of 1 ps. No barostat was



applied. Equations of motion were integrated with a timestep of 10 fs using the LAMMPS8

software.

Supplementary Figure 1

Supplementary Figure 1: a) Distribution of the nucleation temperature Tn sorted by sub-
strate type. b) Exemplary top and side views of different substrate types. LJ atoms are
grey, C atoms are blue and oxygens are red.



Supplementary Table 1

Supplementary Table 1: Acronyms of the systems as displayed in Supplementary
Figure 1 explained. The interaction of water with the LJ substrates, the back
wall and the carbon atoms in graphene were modelled with a Lennard-Jones
interaction. The interaction of OH groups with water was treated as mW-mW5

interaction.

Acronym Description Interaction Ref.
LJ_fcc111 Fcc crystal with (111) surface exposed LJ 2
LJ_fcc100 Fcc crystal with (100) surface exposed LJ 2
LJ_fcc110 Fcc crystal with (110) surface exposed LJ 2
LJ_fcc211 Fcc crystal with (211) surface exposed LJ 2
OH_HEX Back wall + hexagonal OH patterns LJ + mW 1
OH_SQU Back wall + square OH patterns LJ + mW 1
OH_TRI Back wall + triangular OH patterns LJ + mW 1
OH_SQU-OCT Back wall + OH squares and octagons LJ + mW 1
OH_TRI-HEX Back wall + OH triangles and hexagons LJ + mW 1
OH_TRI-SQU Back wall + OH triangles and squares LJ + mW 1
OH_SQ-HE-OCT Back wall + OH squares, hexagons and octagons LJ + mW 1
OH_TR-SQ-HE Back wall + triangles, squares and hexagons LJ + mW 1
GRA Graphene structure of varied interaction strength LJ 3
GRAO Graphene structure + OH patterns LJ + mW 4
OH_REC Back wall + rectangular OH patterns LJ + mW -
OH_SHEX Back wall + stretched hexagonal OH patterns LJ + mW -
OH_SREC Back wall + stretched rectangular OH patterns LJ + mW -
OH_ANGE Name of the author as OH pattern LJ + mW -
OH_MART Name of the author as OH pattern LJ + mW -
OH_PHIL Name of the author as OH pattern LJ + mW -



Supplementary Note 2

We give a brief overview of the initial features we consider an how they were computed.

Supplementary Figure 2 shows an illustration of the different feature classes and how the

corresponding acronym is formed. Each graph starting from a blue box can be considered a

new class of features which we then pre-process to obtain statistical measures (stat in red in

Supplementary Figure 2) for the corresponding quantities while also distinguishing different

layers perpendicular to the surface (layers in green in Supplementary Figure 2, see also the

inset on the top right) for some of them. Features are organized in different families as

follows:

• dyn:

Starting point is a simulation of liquid water interfacing with the substrate. We run

two sets, one which is 100 ns long where we save every 1 ps (for Steinhardt ql,9 local

Steinhardt lql 10 and number of nearest neighbors nn) and one which is 100 ps where

we save every 10 fs (for forces and velocities).

• disp:

Displacements in either dimension (x, y, z, lateral xy and total r) after 1, 2, 5, 10, 20,

35, 50, 75, 100 and 150 ps.

• rssA:

Random structure search approach similar to Ref. 11 where we probe the adsorption

energy of hemispherical ice seeds (Ih(001), Ih(100), Ih(110), Ic(001) and Ic(111)) for

different sizes (100, 300 and 500 molecules).

• rssB_flex :

Energies from minimization of n-mer water clusters and cages positioned in many

random positions above the surface. The ice structures are free to relax and adjust.

• rssB_rigid :



Similar to the flexible approach but keeping the structure of the deposited ice structure

rigid. Since energy minimization with rigid bodies is highly not-trivial we performed

short MD simulations with rigid constraints,12,13 slightly pushing the ice-structure

downwards while draining out the kinetic energy with a friction term in the equations

of motion. In this manner we find that the ice structures have enough room to find a

local minima with respect to position and orientation.

• lmatch:

Generalized lattice match calculated as in Ref.:1

ζ = min
r0,θ


√√√√ 1

NM

Nice∑
i=1

(
ri(r0, θ)− rs

)2 (1)

Here we place ice layers corresponding to a certain face randomly over the surface and

compute the shortest distance to a substrate atom for each ice molecule provided this

is shorter than a certain cutoff (yielding NM contacts). We considered 2D projections

of the ice lattices as well as their actual 3D structure and different cutoffs for neighbor

choices. Ice faces considered were Ih(001), Ih(100), Ih(110) and Ic(001).

• dens :

Number density of liquid water in different layers obtained from the dyn runs.

Here are four examples of acronyms and their actual meaning:

1. lmatch2D_Ih001_c2:

Generalized lattice match calculated with the second cutoff (c2 = 3.2 Å) of the 2D

projected basal face (Ih001)

2. dyn_nn_all_median:

Median number of nearest neighbors in the whole liquid (cutoff 3.4 Å)

3. rssBr_4mer_Eall_range:



Total range of all adsorption energies of the water tetramer obtained with the rigid

random structure search approach

4. dyn_lq3_l12_var:

Variance of the lq3 parameter in the water layer l12 (definition in Supplementary

Figure 2)
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Supplementary Figure 2: Overview of the different feature families and their automatic nam-
ings. The meanings of “dyn”, “disp”, “rssA”, “rssB_rigid”, “rssB_flex”, “dens” and “lmatch”
are explained in the text. Names are created by following the arrows, e.g. “disp_xy_l3_50”
or “dyn_lq3_l1_mean” are possible names describing “the xy-displacement in the 3rd layer
after 50ps” and “the mean lq3 vaues in the first layer” respectively. The illustration on the
top right shows the definition of layers, where each single layer has a z-extension of 3.68Å.



Supplementary Note 3

We provide a few more details on the algorithms and metrics used in the machine learning

workflow.

After the cooling ramps are performed and after all possible features have been computed

we train a random forest model.14 To this end we specifying a substrate as good when the

average Tn was > 225 K and as bad otherwise. The model is trained to predict whether a

substrate is good or bad, which is a binary classification problem.

A random forest is a collection of decision trees. A single decision tree can be created

by performing binary splits regarding certain variables, where in each step the variable is

chosen that gives the best improvement in the training metric. This is done until a maximum

number of splits is reached or if the metric improvement is below a certain threshold. The

random forest is now created by fitting many such decision trees, but randomly selecting a

subset of all data for each tree. The substrates are selected via bootstrapping but also the

features used in each decision tree are a subset of all possible features, randomly selected to

equal around
√
N , where N is the total number of features.

As training metric we choose the gini index 1 −
∑

i(pi)
2, where pi are the probabilities

of being classified as class i (lower is better). Since the metric is evaluated on out-of-bag

samples (i.e. the ones that are not used for training that particular tree) there is little

danger of overtraining the random forest. We train the forest several times with 10000

trees and gather the mean feature importance of all features. The feature importance is

calculated by randomly permuting the values of a feature and comparing the decrease in the

performance metric compared to the unpermuted case. We additionally choose to restrict

this evaluation to the performance metric calculated to the class of good nucleators to get

the most important features for being able to tell what is a good nucleator.

To deal with feature correlations we cluster the features by hierarchical clustering, a

classical and simple clustering algorithm which relies on a distance metric. We want to

consider two features f1 and f2 as close when they are strongly correlated. Thus, we define



the distance as d(f1, f2) = 1−MIC(f1, f2), where MIC(f1, f2) is the maximum information

coefficient.15 The MIC is essentially a variant of mutual entropy that measures common

information in two features, additionally screens through many different grid sizes that are

needed to calculate the necessary histograms, and is also bound between 0 and 1. Most

importantly (and contrary to standard Pearson correlation) it is able to recognize non-linear

and periodic correlations and thus suited very well for our distance metric.

The clustering algorithm works in a simple manner. It starts by assigning two two closes

data points to a cluster. This is repeated until all possible components are connected. After

data points are assigned to a cluster, this cluster is regarded as new data point, and distances

to this new point are calculated in different ways. When a new distance to that cluster should

be calculated we take the mean distance to all the data points in that cluster. The choice

of this is called average linkage. We also tested other feature selection approaches that are

not based on clustering, see Supplementary Note 4.

The feature clustering allows for a systematic identification of n clusters, in that connected

components with the largest distance are iteratively cut until n clusters are left. This can

be used to select n features by generating n clusters in this manner and selecting out of

each cluster the feature with the highest importance. The features selected in such a way

are to some degree decorrelated, but also important for the prediction task (in our case

to the target variable Tn). Supplementary Figure 4 shows a matrix with MIC correlations

between features that is ordered by the feature distances together with several choices of

how n clusters would be selected.

We have tried several models for training the prediction task for Tn. We treat this problem

as a regression problem, i.e. the exact value of Tn should be predicted. We have used random

forest,14 a XGBoost16 and support vector machines.17,18 The former was explained in detail

in the previous subsection. XGBoost is a popular variant for gradient boosting with trees.

It is also based on single decision trees, however the model is not averaging the votes of all

trees like in a random forest. Rather, the model ŷi is built iteratively, adding new trees t̂ that



are fit to predict the residual error between the previous model and the prediction target y:

ŷi = ŷi−1+ η · t̂i =
∑i

k η · t̂k, where η is the so called learning rate. In this manner the model

learns how to correct its own errors. The support vector machine uses a kernel to map points

into a space in which they a separable in a manner corresponding to the separation in the

target variable. For the details the reader is referred to the literature.

All models come with a variety of hyperparameters, for instance the number of trees to

use for a random forest or the learning rate for boosting. We are using a Bayesian tree-

structured method from the pyhton package hyperopt19 to guide the search for the optimal

hyperparameters in all cases allowing for 200 search iterations. This search is done in the

inner cross-validation loop and the best found hyperparameters are used to evaluate on the

test set.
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Supplementary Figure 3: Illustration of random forest models consisting of single decision
trees for a classification problem. fi are possible features that are split on thresholds δi.



Supplementary Figure 4

Supplementary Figure 4: Feature correlation matrix. Red squares correspond to clusters
formed when forming n = 2, 10, 30 clusters (from left to right).



Supplementary Note 4

In Supplementary Figure 5 we show the feature selection results for different methods. We

can see that the results differ slightly. But the differences are not major and remarkably,

there are families of features that appear frequent.

Besides the clustering method described earlier to select features (here referred to as

method 1) we have also tried two other methods. Method two iteratively selects features by

descending importance, if the mean MIC with already selected features is below 0.4. Method

3 is the same but checks the maximum MIC rather than the mean. We find that results

can differ (see Supplementary Figure 5), especially for the less important features. Overall,

similar choices of particular features are made and most importantly, the selected features

are from similar families, which demonstrates a degree of consistency.



Supplementary Figure 5

Supplementary Figure 5: Selected features for the three tested feature selection methods.
Features are ordered by selection appearance from top to bottom. Tile background colors
correspond to feature families as indicated on the bottom.



Supplementary Note 5

In the main text we have assessed the model performance on a regression problem. We have

also probed a classification problem and show the results in Supplementary Figure 6. We

split the substrates in good and bad nucleators (Tn threshold at 225 K) and calculated the

F1 score. The F1 is the harmonic average of precision and recall and thus is less suscepti-

ble to class imbalance. Generally, values above 0.8 are considered good and values above

0.9 are considered excellent. The baseline model we compare to is the 5-nearest neighbor

classification. As we can see we can achieve almost excellent results if the first four features

are included which reaffirms the finding for the regression task. The classification problem

is also easier since we are closer to the perfect score and also the baseline model does not

perform as badly as for the regression.

Supplementary Figure 6
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Supplementary Figure 6: Model performance for the classification problem of identifying
good and bad nucleators (split by Tn value at 225 K). Source data are provided as a Source
Data file.



Supplementary Note 6

It is beyond the scope of this work to benchmark many different machine learning models,

however a brief assessment was done in order to get a feeling of the difficulty of the task.

We find that random forest and XGBoost perform best (the latter is discussed in the main

text) and also considerably better than the mean guess and linear model (elastic net). The

trend of decreased improvement after 4 included features is also clear.

Supplementary Figure 7
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Supplementary Figure 7: RMSE of different machine learning models as a function of the
number of features included. We compare a linear elasic net (ElasticNet), the mean-guess
for Tn (GuessMean), a support vector machine with radial kernel (SVM), XGBoost and a
random forest (rForest). Search for hyperparameters was done with hyperopt19 and 200
iterations. Source data are provided as a Source Data file.



Supplementary Note 7

More evidence that the descriptors identified in this work are capable of distinguishing good

and bad nucleators can be seen in Supplementary Figure 8. In there we show a linear

(PCA) and non-linear (ISOMAP) dimensionality reduction plot of the 9 features shown in

Supplementary Figure 9.

Supplementary Figure 8
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Supplementary Figure 8: Dimensionality reduction plots for all substrates using the 9 fea-
tures shown in Supplementary Figure 9. Shown are the first two components. Points are
colored by their Tn where we split the data into three classes as indicated by the color bar
on the right.



Supplementary Note 8

We provide the SHAP value20 distributions of a few more features in Supplementary Figure 9.

They are ordered by mean SHAP value impact and while that order generally follows the

trend from Supplementary Figure 5 it does not necessarily lead to the exact same order.

Supplementary Figure 9

Supplementary Figure 9: SHAP value distribution for the first 9 features identified with the
cluster-based feature selection method. Bold entries are discussed in the main text.



Supplementary References

(1) Pedevilla, P.; Fitzner, M.; Michaelides, A. What makes a good descriptor for heteroge-

neous ice nucleation on OH-patterned surfaces. Phys. Rev. B 2017, 96, 115441.

(2) Fitzner, M.; Sosso, G. C.; Cox, S. J.; Michaelides, A. The Many Faces of Heterogeneous

Ice Nucleation: Interplay Between Surface Morphology and Hydrophobicity. J. Am.

Chem. Soc. 2015, 137, 13658–13669.

(3) Cox, S. J.; Kathmann, S. M.; Slater, B.; Michaelides, A. Molecular simulations of

heterogeneous ice nucleation. II. Peeling back the layers. J. Chem. Phys. 2015, 142,

184705.

(4) Lupi, L.; Molinero, V. Does Hydrophilicity of Carbon Particles Improve Their Ice Nu-

cleation Ability? J. Phys. Chem. A 2014, 118, 7330–7337.

(5) Molinero, V.; Moore, E. B. Water Modeled As an Intermediate Element between Carbon

and Silicon. J. Phys. Chem. B 2009, 113, 4008–4016.

(6) Martyna, G. J.; Klein, M. L.; Tuckerman, M. Nosé-Hoover chains: The canonical en-

semble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643.

(7) Nosé, S. A unified formulation of the constant temperature molecular dynamics meth-

ods. J. Chem. Phys. 1984, 81, 511–519.

(8) Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput.

Phys. 1995, 117, 1–19.

(9) Steinhardt, P. J.; Nelson, D. R.; Ronchetti, M. Bond-orientational order in liquids and

glasses. Phys. Rev. B 1983, 28, 784–805.

(10) Li, T.; Donadio, D.; Russo, G.; Galli, G. Homogeneous ice nucleation from supercooled

water. Phys. Chem. Chem. Phys. 2011, 13, 19807–19813.



(11) Pedevilla, P.; Fitzner, M.; Sosso, G. C.; Michaelides, A. Heterogeneous seeded molecular

dynamics as a tool to probe the ice nucleating ability of crystalline surfaces. J. Chem.

Phys. 2018, 149, 072327.

(12) Miller III, T.; Eleftheriou, M.; Pattnaik, P.; Ndirango, A.; Newns, D.; Martyna, G. Sym-

plectic quaternion scheme for biophysical molecular dynamics. J. Chem. Phys. 2002,

116, 8649–8659.

(13) Zhang, Z.; Glotzer, S. C. Self-assembly of patchy particles. Nano Lett. 2004, 4, 1407–

1413.

(14) Breiman, L. Random forests. Machine learning 2001, 45, 5–32.

(15) Reshef, D. N.; Reshef, Y. A.; Finucane, H. K.; Grossman, S. R.; McVean, G.; Turn-

baugh, P. J.; Lander, E. S.; Mitzenmacher, M.; Sabeti, P. C. Detecting novel associa-

tions in large data sets. Science 2011, 334, 1518–1524.

(16) Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing. 2016; pp 785–794.

(17) Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297.

(18) Ben-Hur, A.; Horn, D.; Siegelmann, H. T.; Vapnik, V. Support vector clustering. J.

Mach. Learn. Res. 2001, 2, 125–137.

(19) Bergstra, J. S.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter

optimization. Advances in Neural Information Processing Systems. 2011; pp 2546–2554.

(20) Lundberg, S. M.; Lee, S.-I. A unified approach to interpreting model predictions. Ad-

vances in Neural Information Processing Systems. 2017; pp 4765–4774.


