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Despite changes in guideline-based management of moderate/severe traumatic brain

injury (TBI) over the preceding decades, little impact on mortality andmorbidity have been

seen. This argues against the “one-treatment fits all” approach to such management

strategies. With this, some preliminary advances in the area of personalized medicine

in TBI care have displayed promising results. However, to continue transitioning toward

individually-tailored care, we require integration of complex “-omics” data sets. The past

few decades have seen dramatic increases in the volume of complex multi-modal data

in moderate and severe TBI care. Such data includes serial high-fidelity multi-modal

characterization of the cerebral physiome, serum/cerebrospinal fluid proteomics,

admission genetic profiles, and serial advanced neuroimaging modalities. Integrating

these complex and serially obtained data sets, with patient baseline demographics,

treatment information and clinical outcomes over time, can be a daunting task for the

treating clinician. Within this review, we highlight the current status of such multi-modal

omics data sets in moderate/severe TBI, current limitations to the utilization of such data,

and a potential path forward through employing integrative neuroinformatic approaches,

which are applied in other neuropathologies. Such advances are positioned to facilitate

the transition to precision prognostication and inform a top-down approach to the

development of personalized therapeutics in moderate/severe TBI.
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BACKGROUND AND CURRENT STATE

Traumatic brain injury (TBI) is one of the leading causes of
death and disability globally, carrying significant societal costs
(1, 2). Though across the severity spectrum mild TBI is the most
prevalent, moderate and severe TBI carry the highest mortality
and morbidity burden per case (1, 3). The cornerstone of the
clinical management of moderate/severe TBI relies on rapid
access to tertiary neurosurgical and neurocritical care services,
with the goal of reducing injury insult burden. The primary
injury in TBI refers to the structural damage incurred at the
time of injury and relies on public health level changes aimed at
prevention and risk reduction. Thus, the primary injury burden
cannot be changed by the treating clinician, other than policy-
level engagements aimed at population-level incidence reduction
strategies (1). However, secondary injury refers to the cascade
of host cellular responses to the primary injury, which exposes
the brain to ongoing insult over the acute and subacute phases
of care. The secondary injury cascade is theoretically amenable
to therapeutic intervention, with the goal of tissue preservation
leading to improved clinical outcomes in the long term (2).

The existing paradigm of clinical care provision in
moderate/severe TBI focuses on the “one-treatment fits all”
approach, with consensus-based physiologic targets applied
to all-comers, regardless of demographics and injury pattern
(2). Not surprisingly, recent retrospective evaluation of these
guideline-based therapeutic strategies has demonstrated little
impact on morbidity and mortality over the last 25-years, despite
adherence to such treatment targets (3). This is echoed by
additional studies highlighting the individual heterogeneity of
cerebral physiome responses in moderate/severe TBI, using high-
fidelity advanced multi-modal cerebral physiologic monitoring
(4–7). Such work has gone further to demonstrate that much of
the cerebral physiologic insult burden seen in moderate/severe
TBI is resistant to current therapeutic interventions, calling for
more personalized and directed approaches (8–12). Furthermore,
aside from the lack of efficacy of guideline-based approaches, the
ability to prognosticate in this population has been limited as
well, with current population-based standard models accounting
for less than half of the variance seen in outcomes (1, 13, 14).
Based on the above, it is readily apparent that the future
in moderate/severe TBI care provision calls for two main
advances: (1) Precision prognostication and (2) Development

of personalized therapeutics directed at secondary injury
mechanisms driving morbidity and mortality. Precision

prognostication of long-term outcomes would facilitate
improved communication between healthcare professionals

involved in care provision, and between the care team and
families, hopefully minimizing the uncertainty of the future.
Further, such prognostication can be applied to higher temporal
physiology/cellular states over the course of the patient’s
acute and subacute hospital stay, facilitating prediction of
upcoming events and hopefully early mitigation/prevention.
Personalized therapeutics directed at patient-specific secondary
injury mechanisms, targeting molecular pathways driving
such physiology or cellular dysfunction, would reduce insult

burden, alter tissue-fate, and hopefully improving morbidity and
mortality for moderate/severe TBI patients.

Though precision prognostication and personalized
therapeutics concepts are simply stated, in TBI the practical
steps involved in developments within these two areas is
complex. Both require integration of complex omics data sets
(1), consisting of comprehensive cerebral physiome (4–6),
advanced neuroimaging modalities (15–19), proteome (20–24),
and genome/epigenome (25–28). Such omics data would be
ideally sampled serially, and combined with detailed patient
demographics, treatment information, and clinical outcomes.
With proper integrative analyses, these complex data sets could
inform precise prognostication, tailored to the individual patient.
Similarly, these data sets could inform a “top-down” approach to
the development of personalized precision therapeutic regimens
in moderate/severe TBI care.

Over the past decade, there has been a rapid expansion
of omics data reported in the moderate/severe TBI literature.
The complexity of such data limits the ability of the bedside
clinician to interpret and translate this information into
improved prognostication or individualized management. As
such, there is a need for advanced integrative neuroinformatics
approaches, harnessing techniques in data science and machine
learning/artificial intelligence, so that precision prognostication
and personalized therapeutics development may become a reality
(29–31). Within this review, we begin with an overview of the
current state of omics data in moderate/severe TBI, highlighting
physiome, advanced neuroimaging, proteome, and genome
applications. Next, we outline the current limitation of such data
sets in clinical care provision. Finally, we outline a potential
path forward to achieve precision medicine in moderate/severe
TBI, using advanced integrative neuroinformatics, drawing from
recent advances in other neuropathologies.

CURRENT STATUS OF OMICS DATA IN
MODERATE/SEVERE TBI

Within the subsections below, we will highlight some of the
pertinent recent literature with relation to the various omics
data categories in human moderate/severe TBI. We outline
recent discoveries in the physiome, advanced neuroimaging,
proteome, and genome research. These sections are not meant
to be exhaustive collections of advances, so we direct interested
readers to the references and related publications in the field
for more details if additional information is desired. The figures
providing examples of high-frequency cerebral physiology
data were obtained from our existing, approved (University
of Manitoba REB: H2017:181, H2017:188, H2020:118) and
previously published database work in moderate/severe TBI (9,
10, 32–35).

High-Frequency Multi-Modal Cerebral
Physiome
Over recent decades there has been a dramatic expansion
of continuous bedside multi-modal cerebral physiologic
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monitoring, beyond the classic intra-cranial pressure (ICP) and
cerebral perfusion pressure (CPP) (4, 6). Such devices include
continuous multi-channel near infrared spectroscopy (NIRS)
based cerebral oximetry, (36) invasive parenchymal extracellular
oxygen partial pressure monitoring (PbtO2) (6, 37, 38), invasive
parenchymal thermal diffusion based cerebral blood flow (CBF)
monitoring (39), transcranial Doppler (TCD) based cerebral
blood flow velocity (CBFV) monitoring (40–42), and continuous
electroencephalogram (EEG) (4, 43–45). Many of these devices
output full-waveform level data, in high-frequency, with varying
levels of literature supporting their association with patient’s
long-term outcomes (3, 4, 6, 46–49) and variable support from
multi-disciplinary groups (4, 5, 50, 51). Some devices, such
as PbtO2 monitoring, have shown such robust relationships
between low PbtO2 and poor outcome, that randomized trials
into ICP vs. ICP and PbtO2 directed therapies are now being
undertaken (6). Thus, expanding the characterization of the
physiome at the bedside improves our understanding and
detection of secondary insult burden. Figure 1 provides an
example of a continuous, raw, multi-modal cerebral monitoring
data stream in moderate/severe TBI, and demonstrates both the
variety and complexity of currently utilized modalities.

Aside from the raw physiologic parameters provided
from these multi-modal devices, biomedical engineering
principles applied to signal analysis has led to additional
derived metrics of cerebral physiologic function. Such measures
include continuous assessments of autonomic function (52),
cerebrovascular reactivity/autoregulation (46, 47, 53), cerebral
compensatory reserve (54, 55), and entropy indices (56–58).
All such measures have demonstrated associations with patient
outcome, many showing strong independent associations and
an increased account of outcome variance beyond standard
ICP/CPP monitoring, when adjusting for baseline patient
characteristics (48, 49, 59). In addition, many of these measures
remain independent to current guideline-based therapeutic
interventions in moderate/severe TBI care (11, 12), highlighting
the need for additional precision therapeutics aimed at the
physiologic insult burden/dysfunction that such metrics are
monitoring. This ever-growing literature body is further
bolstered by the recent acceptance of these parameters by
multi-disciplinary consensus groups as important adjunct
monitoring variables for TBI care (4, 5, 51). Furthermore, in the
spirit of transitioning to more personalized treatment regimens,
there has also been recent work describing individualized
physiologic targets/thresholds. Such personalized thresholds
include continuously updating optimal CPP (CPPopt) (60–64),
individualized ICP thresholds (65, 66), and individualized
depth of sedation targeting (34), all based on cerebrovascular
reactivity monitoring and its relationships with CPP, ICP,
and EEG entropy index, respectively. These individualized
physiologic targets have shown stronger associations with patient
outcome, compared to current guideline “one target fits all”
thresholds for CPP and ICP (66, 67). Figure 2 provides an
example of continuous derived cerebral physiologic metrics
in TBI and demonstrates their ability to be computed in real
time, in concert with raw physiologic parameters, enabling
them to guide bedside management. Figure 3 provides an

example of personalized CPP targeting using cerebrovascular
reactivity metrics.

However, despite the promising nature of multi-modal
monitoring of the cerebral physiome, the sheer volume of
data presented to the clinician often leads to information
overload, clouding one’s ability to make informed changes
in therapeutic intervention for TBI patients. In attempts to
improve understanding of such complex high-fidelity data sets,
machine learning techniques have been applied (49, 68, 69).
Such work has preliminarily led to improved understanding
of the multi-variate relationships between multi-model data
sets, aided in deriving prognostic models based on patient
demographics and cerebral physiology, and set the stage
for potential forecasting of cerebral physiologic events into
the future using either invasive and non-invasive techniques.
Yet, such efforts remain in their infancy, often requiring
advanced data science and engineering skill sets for appropriate
analysis. Further, integration with other omics data streams
has been limited to only a few small biomarker (21, 70)
and neuroimaging studies (71–73). As such, there is a
desperate need for uniform and comprehensive integration
of these complex physiome data sets with other omics
data, to facilitate improved prognostication across different
time scales, and highlight potential molecular pathways of
cerebral physiologic dysfunction that are amenable to precision
therapeutic intervention.

Advanced Multi-Modal Neuroimaging
Modalities
TBI can be detected using various imaging techniques such as
plain head computed tomography (CT), CT angiography
(CTA), CT perfusion (CTP), and magnetic resonance
imaging (MRI), during the acute phase of care. In the
subacute and long-term phases of care, correlation between
imaging and clinical phenotype can involve an expanded
set of advanced neuroimaging modalities, such as: positron
emission tomography (PET), MRI perfusion imaging, functional
MRI (fMRI), and diffusion tensor imaging (DTI) to study
brain metabolism, CBF, as well as functional and structural
connectivity, respectively. Below, we briefly touch on these
main categories of imaging modalities in TBI. Table 1

provides a summary overview of selected imaging modalities
in TBI.

Computed Tomographic Based Approaches
Plain head CT evaluates the anatomical changes in the brain
structures and CTA evaluates anatomical changes in the brain
blood vessels, secondary to the traumatic injury. While plain
CT and CTA are a good quick assessment of the anatomical
changes, these do not provide any functional information of the
brain. Furthermore, many of the interpretations are qualitative,
as opposed to quantitative, though some advances in quantifiable
artificial intelligence based interpretation have emerged (16, 72).
In contrast to plain CT and CTA, CTP is an advanced imaging
technique that is useful in the detection of TBI and brain death
as it provides both an anatomical and functional assessment
of the brain (19). In most emergency departments CT is the
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FIGURE 1 | Example of raw continuous multi-modal cerebral physiologic monitoring in moderate/severe TBI. A rich variety of continuous physiologic parameters are

currently monitored, however, interpretation of these raw parameters in concert is complex. A.U., arbitrary units; ABP, arterial blood pressure; BIS_L, bispectral index

on left hemisphere; BIS_R, bispectral index on right hemisphere; ICP, intracranial pressure; mmHg, millimeters of Mercury; rSO2_L, regional oxygen saturations on left

frontal lobe (using near infrared spectroscopy); rSO2_R, regional oxygen saturations on right frontal lobe (using near infrared spectroscopy); PbtO2, extracellular partial

pressure of oxygen in the brain tissue; TBI, traumatic brain injury; %, percent. Data taken from previously published and approved studies (University of Manitoba REB:

H2017:181, H2017:188 and H2020:118) (9, 10, 32–35).

FIGURE 2 | Example of combined raw and derived continuous multi-modal monitoring metrics in moderate/severe TBI. These derived continuous parameters can be

computed in real time and made available to the treating clinician to help tailor management. A.U., arbitrary units; ABP, arterial blood pressure; CPP, cerebral perfusion

pressure; ICP, intracranial pressure; mmHg, millimeters of Mercury; PRx, pressure reactivity index for cerebrovascular reactivity monitoring (moving correlation between

ICP and ABP); RAP, compensatory reserve index (moving correlation between ICP and pulse amplitude of ICP). Data taken from previously published and approved

studies (University of Manitoba REB: H2017:181, H2017:188 and H2020:118) (9, 10, 32–35).

predominant imaging modality for patients with TBI as it is
fast, widely available, and has minimal contraindications. While
technologic improvements have reduced the degree of radiation
exposure, this still remains a notable disadvantage of CT imaging.

CTP at hospital admission has been proposed as a means
to predict the in-hospital mortality in patients with severe
traumatic brain injury. However, this needs to be further
validated and is currently the subject of an ongoing larger
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FIGURE 3 | Example of Individualized Optimal CPP, Upper and Lower Limits of Regulation Calculation in Moderate/Severe TBI. CPP, cerebral perfusion pressure;

mmHg, millimeters of Mercury; PRx, pressure reactivity index for cerebrovascular reactivity monitoring. The above plot shows an example of individualized optimal

CPP estimation, calculated through error-bar plots of PRx vs. CPP and the fitting of a parabolic curve to the relationship. The minimum of this parabolic distribution

represents the optimal CPP, based on the past 4-h of data. The shaded areas represent the lower limit of regulation (LLR; on the far left of the figure) and the upper

limit of regulation (ULR; on the far right of the figure). The area in-between these two shaded zones represent a theoretical safe CPP range where autoregulation is

mostly preserved (i.e., < +0.30), which in this example is a wide CPP range. Both the optimal CPP and LLR/ULR is continuously calculated over time using sliding

windows of data, leading to continuously updating individualized bedside targets. Data taken from previously published and approved studies (University of Manitoba

REB: H2017:181, H2017:188 and H2020:118) (9, 10, 32–35).

TABLE 1 | Categories of advanced neuroimaging in moderate/severe TBI.

Clinical tools Diagnoses

Plain head CT Plain head CT accurately and promptly diagnoses structural abnormalities such as skull fractures, intracranial bleeds, brain

contusions, and brain herniation. But does not provide any functional information about the brain.

CT angiography CTA provides anatomic information about the brain blood vessels such as injury or traumatic occlusion of the blood vessels.

CT perfusion It is an advanced CT scan that provides both functional and anatomic information about the brain, and it is mainly used in

triage patients with acute stroke. This imaging techniques quantifies perfusion parameters such as cerebral blood flow and

cerebral blood volume.

Magnetic resonance perfusion Magnetic resonance perfusion is non-invasive and can be used to detect intracranial arterial blood flow. It can also detect

perfusion parameters of affected brain tissues such as cerebral blood flow and cerebral blood volume.

Diffusion Tensor Imaging Diffusion tensor imaging (DTI) is a promising technique that can provide vital information about microstructural changes and

structural connectivity (e.g., white matter tracts) within the brain.

Positron emission tomography With right radiotracers, Positron Emission Tomography (PET) can estimate specific molecular abnormalities (e.g.,

phosphorylated tau and neuroinflammation) or brain glucose utilization with reasonable spatial resolution.

Functional magnetic resonance imaging With advanced analytic techniques, intrinsic connectivity networks (ICNs) can be derived from fMRI data, the abnormality of

which has been implicated in TBI and many other disorders of consciousness.

CT, computed tomography; CTA, computed tomographic angiography; DTI, diffusion tensor imaging.

prospective study (NCT04318665). If found to be accurate,
CTP may become a valuable initial prognostic tool at the
time of presentation that helps inform appropriate clinical
management. This is exemplified through the principle of brain
death declaration by CTP, where a marked decrease in the
CBF and cerebral blood volume (CBV) in the brainstem has
been shown to be the most sensitive and specific imaging
ancillary test with the highest positive predictive values (74–
77). This could help reduce resource intensive but futile
care in those who are already brain dead at the time of
hospital admission and may facilitate the precious gift of
organ donation.

Magnetic Resonance Imaging Approaches
Although MRI can provide superior tissue contrast and spatial
resolution compared to CT, MRI is not the preferred modality
of imaging in the emergency room setting due to its relatively
high cost, limited availability within or immediately adjacent
to the ER, and slow image acquisition. Additionally, screening
for the presence of contraindications is often not possible in
those with moderate and severe TBI at the time of presentation.
However, when available and when possible, MRI can provide
valuable anatomical information, and methods such as MRI-
based susceptibility weighted imaging (SWI) have been shown
to be particularly sensitive for detecting micro-hemorrhages in
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TBI patients. However, these microbleeds are not necessarily
colocalized with the microstructural changes (78). Nonetheless,
while CT continues to be predominantly used for assessment of
TBI patients in the ER at present, MRI techniques hold significant
promise for the future.

Magnetic Resonance Perfusion Approaches
Consideration of the dynamics of CBF/CBV and perfusion can
be facilitated through advanced magnetic resonance perfusion
(MRP). This is non-invasive and can be used to obtain the
functional information like that from CTP to detect CBF.
However, for the reasons listed above, MRP has yet to be
commonly used in the clinical setting for severe TBI patients (53).

Diffusion Tensor Imaging Approaches
Diffusion tensor imaging (DTI) is an advanced MRI technique
that is based on the diffusion of protons in neuronal axons and
provides vital information on the structural connectivity within
the brain. The two main clinically relevant DTI parameters
are fractional anisotropy (FA) and mean diffusivity (MD). FA
measures the anisotropic diffusion of protons within a voxel
and MD depicts the average diffusion of protons over all
sampled directions. Normal white matter of the brain usually
demonstrates anisotropic diffusion along the direction of the
axons resulting in a high FA and low MD. However, in patients
with TBI, traumatic axonal injury results in altered FA and MD
measurements in the various involved brain regions to a degree
dependent on the severity of the brain injury (79). In one study,
of the regions examined, 88 and 92% had significantly lower
FA in mild and moderate/severe TBI subgroups, respectively,
compared to the controls. MD was found to be higher in 95
and 100% of the brain regions examined in those with mild and
moderate/severe TBI, respectively, when compared to controls.
A recent meta-analysis showed that high FA and low MD is
associated with better cognitive outcomes (80). However, more
research is needed before this important technique is used in
routine clinical practice to inform individual patient decision
making (81).

Positron Emission Tomography Approaches
The biggest advantage of PET over other in vivo imaging
methods (e.g., MRI or CT) is the possibility to investigate
specific biochemical and cellular processes by modifying the
tracer used. Fluorodeoxyglucose (FDG), a radiolabeled glucose
analog, is the most widely used PET radiotracer as it allows one to
estimate regional glucose uptake, which is useful for delineating
hypermetabolic tumors. In TBI, FDG uptake is known to be
elevated immediately following trauma for a short period of
time (up to 3 h), followed by a longer term decrease lasting
days to weeks (82). A reduced degree of hypometabolism, in
the sub-acute phase, has been associated with better long term
outcomes (83, 84). However, precise mechanistic attribution of
FDG PET observations to singular events has been elusive as
FDG uptake can be affected by several processes, including
inflammation (increase), cell dysfunction (increase or decrease),
atrophy (decrease), and neurotransmitter activities (increase
or decrease).

Other radiotracers of interest in TBI research include those
that are sensitive to tau proteins and translocator proteins
(TSPO). Among many, tau PET tracers (e.g., [18F]flortaucipir)
has garnered the most interest as it enables quantification
of phosphorylated tau in vivo, and thus directly addresses
accumulation of the neuropathological hallmark of chronic
traumatic encephalopathy (85, 86). The biggest limitation of
tau PET imaging is its unspecific binding to beta-sheets
(e.g., beta-amyloid plaques and alpha-synuclein) and other
molecular structures (87). TSPO is a surrogate marker for
microglial activation and astrogliosis; thus, TSPO PET yields
a new opportunity to quantify neuroinflammation and has
gained traction in the field (88). However similar to tau
PET tracers, TSPO tracers have not demonstrated the desired
specificity (89), again limiting definitive mechanistic inferences.
Additionally, 2nd generation TSPO tracers have anrs6971
polymorphism-dependent binding affinity which further limits
their generalizability (90).

Functional Magnetic Resonance Imaging Approaches
Although there are actually different types of fMRI contrast
(91), blood oxygen level-dependent (BOLD) fMRI is by far
the most common, and is based on the principle that elevated
regional CBF (and there for increased oxygen delivery) follows
neuronal activation in the brain in order to meet locally increased
metabolic demand (92). The resulting spatiotemporal increase
in oxygenated/deoxygenated hemoglobin ratio can be sensitively
measured by acquiring a series of T2- or T2∗-weighted MRI
images, allowing signal changes over time to be interpreted as
changes in local neural (neuronal and astrocytic) activity (92, 93).
In 1997, Biswal and colleagues reported that BOLD fMRI signals
also fluctuate synchronously in distant brain regions even when
an individual is not engaged in a particular task (94). Those brain
regions with synchronously fluctuating activities form intrinsic
connectivity networks (ICNs) (95) ICNs are often characterized
by independent component analysis (ICA) of resting-state low-
frequency (typically ranging from ∼0.01 to 0.1Hz) fMRI data.
Among different ICNs, the abnormalities of default mode
network (DMN) have been frequently associated with TBI (96–
99), and a very recent systematic review revealed that the most
frequently studied MRI-based brain connectivity biomarkers for
mild TBI to date are global functional connectivity and DMN
functional connectivity (along with DTI measures of FA) (100).

The DMN is one of the most extensively studied brain
networks, the disturbance of which has been associated
with many neurological and psychiatric disorders that affects
consciousness (101, 102). The DMN is situated in the posterior
cingulate cortex (PCC) and medial prefrontal cortex (mPFC)
with prominent nodes in themedial temporal lobe (MTL) and the
angular gyrus (103). Following partial recovery of consciousness
after an acute TBI that resulted in coma, patients in a minimally
conscious or confused state showed partially preserved intra-
DMN connectivity while such connectivity was absent in those
that remained comatose (97). The DMN connectivity returned to
a normal level upon full recovery of consciousness (97), although
persistently altered DMN connectivity (>1 year since injury)
predicted poor emotion recognition and social integration (96)
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as well as cognitive dysfunction (104) in TBI patients. While
promising, more longitudinal studies with larger sample size are
warranted prior to the wide adoption of fMRI for clinical use
in TBI.

Machine Learning Approaches
The basic concept of most neuroimaging machine learning
techniques is to classify patients based on human-annotated
datasets. For example, Mitra et al. (105) trained a random forest
classifier that identifies diffuse axonal injury-containing FA maps
(DTI measurement) of TBI patients (n = 179) from healthy
controls (n = 146) with moderate accuracy (∼68%). Better
accuracy was achieved when resting-state fMRI (84.1%) was used
with support vector machine than when FA maps (75.5%) were
used in different cohort of TBI patients (n = 50; control n =

50) (106). While these studies demonstrate a proof-of-concept of
howmachine learning approaches, using neuroimaging data, can
be applied in TBI care, the true advantage of machine learning is
achieved if the human-annotated labels are taken from follow-
ups and linked to the baseline imaging data, which is used to
train a prognostic classifier that can be used at an earlier stage
(107, 108). To fully benefit from these recent technical advances,
a large longitudinal neuroimaging database is necessary. This will
allow for detailed phenotypic data to be linked to appropriately
sized training, validation, and test sets, therefore generating the
most robust neuroimaging based machine learning models.

Serial Proteome of Serum, Cerebrospinal
Fluid, and Extracellular Space
Protein biomarkers of tissue fate play a significant role in
diagnostics, prognostics, and monitoring across a wide array of
medical fields. In TBI, throughout the last decade, a number of
proteins in serum have been suggested as having clinical utility.
These include the primarily glial/astrocytic S100 calcium-binding
protein B (S100B) and glial fibrillary acidic protein (GFAP),
the neuronal Neuro-Specific Enolase (NSE) and Ubiquitin
C-terminal Hydrolase L1 (UCH-L1) as well as the axonal
Neurofilament-Light (NfL) and tau (109). By combining these
markers with different cellular origins, as well as different serum
kinetics (22), improved prognostication and assessment of injury
severity can be achieved following moderate-to-severe TBI (110).
S100B, which has been available in clinical assays for almost 20
years, has been implemented in guidelines in order to rule out
the need for CT scanning in mild TBI (111). Further, it is used
regionally to monitor unconscious TBI patients in order to detect
lesion progression or development of neuronal insults during
intensive care (112, 113). Other than S100B, only NSE exists in
clinical assays [thoughGFAPwas just approved in a point-of-care
device (114)] and is used in guidelines for anoxic brain injuries
following cardiac arrest (115). However, experimental clinical
studies of longitudinal, serial sampling show that the other
proteins exhibit similar capacity as S100B in detecting secondary
neuronal insults in unconscious TBI patients (22). Additionally,
S100B levels have been associated with the strength of resting-
state brain connectivity in multiple resting-state networks on
fMRI following severe TBI, highlighting its capacity as a global
brain injury marker (116).

In terms of multiplexing the proteome following TBI, these
studies are scarcer, and almost all have focused on profiling
the proteome of either the CSF (117–120) or brain tissue (121)
following injury. In a study of three TBI patients by Hanrieder
et al. serial sampling of CSF, in the first 2 weeks following
injury, using a shotgun proteomic approach showed that acute
phase reactants, fibrinogens, as well as brain enriched proteins
like GFAP and NSE demonstrated interesting temporal trends
as tentative biomarkers (118). Proteomic approaches have been
attempted by analyzing the brain extra-cellular fluid (ECF)
cytokine response using multiplex techniques (24, 122–125),
revealing interesting trends for some inflammatory proteins.
Altogether, the field of proteomic profiling of brain fluids
following TBI is still in its infancy as these mass spectrometry-
based approaches are difficult to conduct on a larger scale,
but new techniques in preliminary reports of both CSF and
brain-ECF from TBI patients reveal several tentative markers of
brain injury that may have clinical utility in the management of
these patients.

Similarly, blood brain barrier (BBB) integrity and function
may also be surveyed utilizing advanced proteomic approaches
in TBI. Lindblad et al. demonstrated that the brain to blood
clearance of S100B was associated with BBB integrity, while that
for NSE was not (126), hence suggesting that different proteins
might be more associated with BBB disruption than others.
In another recent work by Lindblad et al. utilizing a protein-
array targeting brain enriched and inflammatory proteins in
186 TBI patients, the extent of BBB damage was associated
with increased complement proteins in CSF, presumably
indicating an association between ongoing secondary injury,
BBB disruption and a subsequent neuroinflammatory response
(127). A similar trend could be seen in blood, but was more
evident in the CSF compartment, highlighting the need for
appropriate compartmental monitoring in order to accurately
monitor pathology. Several inflammatory and structural proteins
provided independent information in outcome prediction
models. Thus, novel proteomic approaches reveal that BBB-
disruption is a key event following TBI and seems to be associated
with neuroinflammation, both clinically relevant secondary
injuries that should be acknowledged for future research.

Finally, metabolic failure following TBI has been associated
with different pathophysiological conditions, however the most
detrimental is considered to be mitochondrial dysfunction (128).
This is a condition that has been identified following TBI
in animal models (129, 130), where different techniques exist
to detect mitochondrial dysfunction. However, many of these
laboratory techniques are not applicable in vivo in humans
(131). Instead, in order to assess biochemical substances in
the ECF in vivo, cerebral microdialysis (CMD) is commonly
used (70). CMD consists of a probe of a semi-permeable
membrane where a carrier fluid is being pumped through it,
and in the process, extracting ECF substances through diffusion.
This allows for serial sampling and thus consecutive bedside
monitoring of focal cerebral metabolism. There have been several
consensus meetings dealing with how to best optimize CMD
as a clinical tool for metabolism monitoring, the most recent
published in 2015 (132). The primary markers of metabolism
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that are monitored clinically in brain ECF are glucose, lactate
and pyruvate.

In the case of a deranged cerebral metabolic redox state
because of impaired mitochondria, there will be an accumulation
of ECF brain lactate (as a surrogate marker for NADH) and
a subsequent decrease of ECF pyruvate levels (a marker of
NAD+) (133). An ECF lactate/pyruvate ratio (LPR)>25 has been
independently associated with an unfavorable outcome following
TBI (21). A deranged LPR retrieved from CMD has also been
associated with an impaired phosphocreatine/ATP ratio, as a sign
of an effect on the brain energy state (134). The association of
brain ECF LPR and mitochondrial dysfunction is also supported
in large animal experiments where cyanide is administrated,
resulting in a prompt LPR increase (135). However, in CSF, while
being suggested as a marker of mitochondrial disease (136), LPR
has not been seen to be a similar marker of deranged metabolism
following TBI. Studies either do not show any difference between
TBI and healthy controls (137), or fail to see an association
with outcome (138), stressing the necessity for compartmental
monitoring in order to tailor treatment strategies following
TBI (139).

Candidate Gene Studies and
Genome-Wide Association Work
The role of genetic variations, such as single nucleotide
genetic polymorphisms (SNPs), in the heterogeneity of outcomes
following TBI has been known for some time and has been
the focus of a recent review by Gomez and colleagues.
Polymorphisms in candidate genes involved in neural repair,
BBB integrity, neurotransmission, inflammation, as well as
those associated with neurodegenerative disease have all been
examined for their association with global, cognitive, and
physiologic outcomes following injury (27). Table 2 provides a
general overview of major categories of candidate SNPs that have
been explored in TBI to date. We refer the interested reader to
comprehensive reviews on the topic in TBI for more information
if desired (25–28).

The APOE gene has been the subject of numerous outcome
association studies due to its role in neurodegenerative diseases
such as Alzheimer’s disease. Three polymorphisms of the gene
are commonly found, ε2, ε3, and ε4, of which the ε4 allele has
been found to be associated with increased risk of late onset
Alzheimer’s disease (140). This led to its examination by Teasdale
et al. in 1997, who found that those with an APOE ε4 allele
were significantly more likely to have poor global outcomes at
6 months post-injury as measured by Glasgow Outcome Scale
(GOS) (141). Since this seminal work, numerous studies, and
meta-analyses have found the APOE ε4 allele to be associated
with worse global outcomes following TBI (28, 142, 143). The
ε4 allele has also been linked to worse cognitive outcomes
following TBI with some studies finding the allele associated
with worse memory, processing speed, and overall increased
cognitive impairment (144–146). However, not all studies have
found an association with worse cognitive outcome and so
further work is needed (147–149). Currently, the association
of the APOE ε4 allele with poor outcomes is thought to be

mediated by abnormal lysing of its protein product resulting in
neurotoxic byproducts that worsen secondary injury and impair
recovery (28).

Genes involved in neuronal repair and survival have also
been examined for their association with outcomes following
TBI. The BDNF gene, which encodes brain-derived neurotropic
factor (BDNF), has been examined for association between its
polymorphisms and global and cognitive outcomes. Early work
by Failla et al. point to an association with certain SNPs and global
outcomes mediated by interactions with age and serum BDNF
levels (150, 151). When examining associations with cognitive
outcomes following injury, the rs6265 allele was found to be
linked to improved recovery of executive function, working
memory, processing speed and other cognitive domains when
compared to wild-type alleles (152–154). However, conflicting
results have also been reported with the variant allele being
associated with worse cognitive outcomes (155, 156). The
mechanism by which this may be mediated is poorly understood.

Association studies have also been conducted on genes
encoding ATP-binding cassette (ABC) transporter proteins,
which are integral in the function of the BBB. SNPs of the
genes encoding some ABC proteins have been found to be
associated with global and cognitive outcomes while others have
not (157–159). Notably, polymorphisms in the gene encoding
ABCC8, a member of the ABC transport protein family, have
been associated with elevated ICP and CT findings of cerebral
edema in the acute phase of TBI (158, 160).

Similarly, polymorphisms in the genes that encode proteins
involved in neurotransmitter metabolism, such as catechol-O-
methyltransferase (COMT), have yielded contradictory results
(160, 161). Association studies examining polymorphisms in
genes integral to inflammation have also failed to provide
uniform results (162–164). However, one study did find
that polymorphisms in the gene encoding the inflammation
associated protein IL-1β carried different risks for post-traumatic
seizures/epilepsy (165).

Conflicting results and replication issues in candidate gene
studies are well-documented in the field of human genetics
(166) and reflect the need for unbiased genome-wide association
studies (GWAS) to be performed in large, comprehensively
phenotyped TBI cohorts. GWAS findings for complex traits have
been shown to be more reliably replicated and are able to give
insights into novel biology (167). For example, they can identify
novel drug targets, infer the most relevant cell types and define
the genetic heritability of the traits being studied. Future studies
should genotype TBI cohorts to assess the predictive capabilities
of polygenic scores derived large-scale GWAS from TBI-related
traits in stratifying clinical outcomes in a standardized manner
(168). Large TBI cohorts would also allow for the identification of
genome-wide significant loci that have the potential to be novel
therapeutic targets (169). Current initiatives that can facilitate
GWAS in TBI include the Genetic Associations in Neurotrauma
(GAIN) Consortium, the Enhancing Neuroimaging Genetics
through Meta-Analysis (ENIGMA) Consortium, and the TBI-
related focus of the Psychiatric Genomics Consortium-PTSD
Working Group (PGC-PTSD) (17, 170) However, more focus
needs to be placed on efforts to recruit and genotype research
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TABLE 2 | SNP categories from candidate genes explored in TBI to date.

Gene function Example genes* Possible polymorphism outcome associations

Neurodegeneration APOE • Strong evidence for association with Global outcomes.

• Equivocal association with neurocognitive outcomes.

Neuronal repair BDNF • Evidence for association with global outcomes mediated by age and BDNF levels.

• Moderate evidence of association with neurocognitive outcomes.

Blood-brain barrier ABCB1, ACBG2,

ABCC8

• Equivocal evidence of association with global or neurocognitive outcomes.

• Association with cerebral edema and ICP in acute phase.

Neurotransmitter metabolism COMT • Equivocal evidence of association with global or neurocognitive outcomes.

Inflammation IL-1α, IL-1β, IL-6 • Equivocal evidence of association with global or neurocognitive outcomes.

• Association with risk of post-traumatic seizures/epilepsy.

ABC, ATP binding cassette; APOE, apolipoprotein epsilon; BDNF, brain derived neurotrophic factor; COMT, catechol-O-methyltransferase; IL, interleukin; SNP, single nucleotide

polymorphism. *Above SNP categories are not exhaustive, but merely represent general categories with examples of SNP’s investigated in TBI to date.

participants that have experienced moderate/severe cases of TBI.
Further, significant work needs to be done before the evaluation
of target gene polymorphisms are integrated into TBI care.
However, a better understanding of the contribution of genotypic
variation in global and cognitive outcomes following injury
may aid in prognostication and eventually may allow for more
personalized therapeutic targets.

LIMITATIONS IN THE APPLICATION OF
CURRENT COMPREHENSIVE OMICS DATA
IN TBI

The main limitation associated with omics data streams in
TBI is the overall complexities inherent with each data type.
In general, integration of each omics data type is difficult
given different temporal and spatial resolutions, requiring multi-
disciplinary expert collaboratives in order to achieve such goals.
This is also the case when adding baseline patient characteristics,
treatment information, and serially assessed comprehensive
outcomes. Aside from this, each data stream has its own specific
considerations, which have limited their integration for precision
medicine approaches in moderate/severe TBI.

Multi-modal high frequency physiologic data sets carry a
few limitations. Data is typically streamed in full physiologic
waveform format, leading to high data storage requirements,
specialized data management, and biomedical engineering skills
for processing and analysis. This is particularly the case for
some of the more advanced derived metrics of cerebrovascular
function, compensatory reserve assessments, and individualized
CPP and ICP target characterization (34, 60–62, 65, 66).
Further, with expansion of the various continuous cerebral
physiologic monitoring possibilities, there now exists substantial
volume of concurrent continuous data streams presented to
the treating clinician, leading to information overload, and
difficulties in knowing which information to act on. Finally,
many of these physiologic data streams are only available during
the acute phase of care, given their invasive nature. Thus,
serial follow-up assessments of continuous cerebral physiology
have classically not occurred. Though this has recently changed
with advances in non-invasive monitoring and biomedical
engineering techniques (171–174).

Advanced neuroimaging platforms suffer from a lack of
temporal resolution, sacrificed for the sake of spatial resolution.
As such, these snapshots of cerebral structure and connectome,
have limited translatability to bedside care and integration
with more continuous omics data streams. This is especially
the case in the setting of critically ill moderate/severe TBI
patients, where transport and care provision during lengthy
advanced neuroimaging sequences are often not feasible, except
for a few centers globally with advanced imaging platforms and
critical care units co-located. Consequently, the costs associated
with facility development, maintenance, need for specialized
personnel (such as radiochemists for advance PET tracers, or
MRI physicists for novel sequence development) and image
acquisition at the individual study level, can be prohibitive for
many centers globally.

Proteome biomarker data suffers from slightly different

complexities. The lower sampling frequency of such serially
measured samples makes it difficult to integrate with higher

resolution physiologic data streams that typically drive bedside

decision making in the acute phase of moderate/severe TBI

(20, 22, 70). Though sampling frequency typically outstrips that

of neuroimaging. Furthermore, given the above limitation of
follow-up continuous physiologic assessments, many long-term
serial biomarker studies have failed to be linked to cerebral
physiology, limiting interpretability. Finally, most work to date
has focused on small sets of protein biomarkers of interest,
such as pro-inflammatory cytokine profiles (23, 123, 125), given
the need for expertise in sample management, processing, and
interpretation biologic significance. As such, proteome-wide
analysis has not been conducted and may shed further light on
molecular pathways driving secondary injury in TBI.

Finally, genomic and epigenomic data suffers two main issues
in the TBI population. Sample size in TBI research has classically
been quite small, in comparison to other genomic studies in
non-neurological populations. Most moderate/severe TBI studies
have <1,000 patients (26, 28). Thus, genome-wide approaches
are left as exploratory initiatives, with limited conclusions
drawn at the population level. Further to this, the volume of
information obtained through current sequencing platforms is
extensive and has limited investigations in this area to a few
specialized centers. Integrating such data sets with other serially
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sampled omics data streams is also a challenge, particularly when
attempting to comment on potential molecular pathways driving
secondary injury.

INTEGRATIVE NEUROINFORMATICS:
FUTURE OF PRECISION MEDICINE IN TBI

Based on the above-mentioned complex data streams, and
limitations associated with their application, there exists a
clear need for the use of advanced data science strategies to
facilitate better understanding. As mentioned, some preliminary
application of machine learning techniques has been conducted
in high-frequency multi-modal cerebral physiologic data,
development of automated neuroimaging-based predictions,
and prognostic model derivation in moderate/severe TBI.
However, such advances have yet to translate to wide
sweeping changes in bedside care, or personalized precision
medicine. Given the intrinsic complexity of TBI and the
massive amount of information “encrypted” in most data
modalities, in practice, there are multiple challenges for
patient screening and for obtaining a better explanation of the
individual neuropathological mechanisms. That is, collecting
the above-mentioned data streams is a necessary but not
sufficient condition for achieving a better understanding of
the underlying neuropathological mechanisms and preventing
clinical deterioration. In practice, comprehensive integrative
neuroinformatics platforms are required to drive precision
prognostication and derivation of personalized therapeutics
targeting secondary injury mechanisms. As such approaches
would be novel in moderate/severe TBI, here we propose
a brief roadmap for the adaptation of significant advances
recently made in other neuropathological conditions, such as
neurodegenerative processes.

First, predicting the individual course of a progressive
neurological condition, such as moderate/severe TBI, is of
crucial importance for early diagnosis and optimum treatment
selection. The last decade has seen a tremendous advance
in neuroinformatic methods aiming to track disease advance
in the context of most-prevalent neurodegenerative disorders
(175–178). Sophisticated mathematical and statistical models,
including novel Artificial Intelligence (AI) techniques, are
increasingly allowing to decode the “encrypted” patterns in
big neuroscience data. In general, neuroinformatic models
of disease progression (DP) combining multi-modal data
(electrophysiological, peripheral, genetics, imaging, clinical, etc.)
with advanced computational techniques can be classified in
two main categories: empirical and mechanistic. Empirical
DP models (177) focus on making disease predictions (e.g.,
which subjects will develop the disease vs. which subjects will
not) but without offering a detailed biological explanation of
the underlying neuropathological causes. On the other hand,
mechanistic DP models (29, 179–181) may make predictions,
but their primary goal is to clarify disease mechanisms
(e.g., which genes or brain areas are driving the disease,
and why).

In the moderate/severe TBI context, it is critical to consider
the distinction between these two DP modeling categories,
while empirical approaches can represent powerful predictive
tools, they constitute “black-boxes.” This handicap is not
common to mechanistic models, which (in part to remain
interpretable) often achieve a lower predictive capacity. In TBI
applications, in order to maximize the tradeoff between the
models’ clinical predictability and biological interpretability, it
will be essential to combine the advantages of empirical and
mechanistic brain disease models (182). For example, in a
recent neurodegeneration study (183), state-of-the-art machine
learning advances for exploring and visualizing high dimensional
data (184) were used to define contrasted disease trajectories and
clinically screen the patients. This semi-unsupervised method
(named contrasted Trajectories Inference [cTI]) uncovers the
underlying neurodegenerative path in large-scale omics data,
accurately identifying the series of sequential molecular states
(genetic alterations) covering decades of disease progression, and
subsequently revealing the relative position of each individual
subject in that path. When applied to in-vivo microarray
gene expression data from the blood of 744 subjects in the
late-onset Alzheimer’s disease (LOAD) spectrum (ADNI data;
Figures 4A,B), cTI automatically identifies disease-associated
patterns of genes that mirror neuropathological and clinical
alterations (Figure 4C), and subsequently detects the relative
ordering of individuals that better align with those patterns
(Figure 4D). That is, by finding the relative position of each
subject on the long-term disease “timeline” (Figure 4D), cTI
provides a personalized molecular disease index that significantly
predicts individual neuropathology (tau, amyloid and infarct
positivity), cognitive deterioration and future clinical conversion
(Figures 4E,F). Similarly, when evaluated on 1225 post-mortem
brains in the spectrum of AD and Huntington’s disease
(ROSMAP and Harvard Brain Tissue Resource Center data
[HBTRC]), it strongly predicts neuropathological severity and
comorbidity (Braak, Amyloid, and Vonsattel stages). A notable
attribute of the cTI approach is that it allows estimating
the specific contribution of each gene on the identified
disease “timeline” and the obtained personalized molecular
disease index, based on the analysis of the model’s resulting
weights/loadings for each biomarker included in the original data
(i.e., ∼40,000 gene transcripts). Simply put, this predictive and
semi-mechanistic technique overcomes the traditional AI “black-
box” limitation, allowing the direct discovery of genes and related
molecular pathways underlying disease evolution.

Computationally, it is also feasible to go in the inverse
methodological direction (from characterizing mechanisms to
performing treatment-effect predictions). In another recent
neurodegeneration study by the same group, a neuroimaging-
based personalized Therapeutic Intervention Fingerprint
(pTIF; Figure 5) was introduced, aiming to characterize brain
mechanisms for subsequently predicting individual treatment
needs (185). Based on spatiotemporal analysis of multi-modal
imaging data (i.e., PET, MRI, etc.), the pTIF demonstrates that
the patients may need different treatments, not only depending
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FIGURE 4 | Schematic approach for detecting molecular disease-associated patterns and patient staging. In-vivo blood (N = 744; ADNI) and post-mortem brain (N =

1,225; ROSMAP, HBTRC) tissues (A) are screened to measure the activity of ∼40,000 transcripts (B). This high dimensional data is reduced to a set of

disease-associated components (C) via contrastive PCA and/or variational autoencoders 0.171. This allows to represent each subject in a disease-associated space

(D) where the corresponding position reflects her/his pathological state (with proximity to the left bottom corner implying a pathology-free state and to the right top

corner implying advanced pathology). An individual molecular disease score is then calculated, reflecting how advanced is each subject in his/her disease-trajectory.

This score significantly predicts neuropathological (E) and cognitive measurements (F). Finally, the resulting model weights allow the direct identification and posterior

functional analysis of most influential genes (G). Image adapted with permission from Iturria-Medina et al. (183).

on their brain’s unifactorial alterations (e.g., tau and amyloid
accumulation or not, dopamine alteration or not, atrophy or
not) but also on their individual multifactorial brain dynamics:
how the different biological factors interact and how they
would respond (at the individual level) to potential clinical
perturbations. In summary, after quantitatively characterizing
basic disease mechanisms at the individual level (e.g., intra-brain
spreading of tau and amyloid proteins, and their toxic interaction
with vascular and structural factors), the pTIF integrates large
amounts of data (e.g., millions of multi-modal brain imaging
measurements) into a simplified individual patient profile of the
quantitative biological factor modifications needed to control
disease evolution. Results in aging and LOAD (ADNI data, N
= 331; see Figure 5) support that pTIF allows to categorize the

patients into distinctive therapy-based subtypes. These subtypes
were relevant by comparing them to the patients’ individual
genetic profiles, finding that each pTIF-subtype presents a
distinctive/characteristic pattern of gene expression alterations
in the blood.

In summary, to achieve true personalized care in
moderate/severe TBI, it is vital to use advanced neuroinformatic
tools. For this, the combination of both empirical (highly
predictive) and mechanistic (biologically interpretable)
disease progression models is an indispensable associated
step, as important as the acquisition of multifactorial
data (molecular, electrophysiologic, neuroimaging, clinical,
etc). Deep mathematical and computational modeling
of multidimensional neurological disorders is, however,

Frontiers in Neurology | www.frontiersin.org 11 September 2021 | Volume 12 | Article 729184

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zeiler et al. Integrative Neuroinformatics for TBI

FIGURE 5 | Imaging-based therapeutic intervention fingerprinting approach (A) Amyloid, tau, and F-fluorodeoxyglucose (FDG) PET, and Cerebral Blood Flow (CBF),

functional activity at rest and gray matter density from MRI. A network-based approach allows individual characterization of the intra-brain direct factor-factor

biological interactions and the spreading mechanisms through vascular/anatomical connections. Inverting the model’s equations allow estimation of the optimum

required to produce a desired clinical state (e.g., healthy). (B) Different pTIF patterns for three participants with similar clinical status. Note that Patient 1 requires lower

cost-energy values for vascular and metabolic interventions, while Patient 2 requires lower values for anti-Aß and anti-tau interventions, suggesting the identification of

specific single-target therapies that may benefit these patients (e.g., physical exercise and aducanumab, respectively). However, Patient 3 requires high cost-energy

for all the single-target interventions, suggesting that combinatorial (and not single-target) treatments will be most beneficial. Image adapted with permission from

Iturria-Medina et al. (185).

complex and time demanding. The TBI research and clinical
community could take advantage of the growing number of
techniques initially developed for other neurological conditions
(Alzheimer’s, Parkinson’s, depression), which have been tested
and validated in large-scale heterogenous datasets. As such,
the use of already available Open-Access neuroinformatic tools
(177, 178, 182, 186), integrating a large variety of biological data
for a better understanding of individual disease progression and
treatment needs, may accelerate the adaptation and improvement
of advance computational approaches in the moderate/severe
TBI context.

LEVERAGING INTEGRATIVE
NEUROINFORMATICS DISCOVERIES FOR
PRECISION MEDICINE

Integrating comprehensive serial physiome, neuroimaging and
proteome information, with genome/epigenome data from
multicenter clinical data sets, will facilitate highlighting various
pathways of cerebral physiologic dysfunction of interest which
are driving current poor outcomes. Using this information in
a top-down fashion, cellular/small animal and large animal

models could then be developed to explore these in more
detail. Here, detailed probing of molecular drivers of secondary
injury could occur, with comprehensive pathway elucidation
and characterization of connectomic and histopathological
consequences of dysfunction. Understanding here would be
expected to lead to discovery of precision targets aimed
at prevention and intervention for such secondary injury
mechanisms. Precision therapeutics would then need to be
further explored in controlled healthy and TBI small animal
models, to gain understanding of connectomic, physiologic, and
tissue consequences of such interventions. However, in order to
circumvent past failure of clinical translation from cellular/small
animal models, large animal TBI models would need to be
employed as well.

Cellular/small animal and large animal platforms would
be complementary and poised to inform one another in
the process of target elucidation and precision therapeutics
development. Comprehensive multi-modal high-resolution
cerebral physiologic monitoring would be applied in large
animal models, with serial serum and extracellular fluid
sampling for protein biomarkers and whole brain explantation
post-experiment for evaluation of histopathological correlates.
Such platforms would facilitate directed validation of emerging

Frontiers in Neurology | www.frontiersin.org 12 September 2021 | Volume 12 | Article 729184

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Zeiler et al. Integrative Neuroinformatics for TBI

personalized medicine approaches to TBI care, exploration of
precision therapeutics directed at secondary injury pathways,
and assessment of histopathological consequences of various
interventions in detail on a model which closely represents the
human cerebrum in structure and physiology. Such large animal
platforms would focus on moderate/severe TBI simulation
and therapeutics development, to bridge the existing gap in
translating small animal model discoveries to humans. Further,
this platform would serve as the ultimate pre-clinical means of
precision therapeutics investigation prior to implementation in
humans. Discoveries here would lead to translatable changes
to bedside care, focused on individualized care plans, and
transitioning away from failed guideline approaches toward
personalized medicine in TBI care.

FUNDAMENTAL REQUIREMENTS FOR
FUTURE WORK

Based on the integrative neuroinformatics framework presented
here, there are some basic requirements to facilitate this
in moderate/severe TBI. First, the comprehensive clinical
phenotyping requires multi-center collaborations, in order to
build enough power to adequately inform such prognostic
models and top-down exploration of molecular pathways of
secondary injury. This requires that each site has the capacity for
serial high-resolution data capture for the physiome, proteome
and neuroimaging. Similarly, it requires the basic infrastructure
and personnel support to ensure complete data acquisition and
proper bio sample storage. With the aid of existing specialized
TBI research groups, such as the Canadian Traumatic Brain
Injury Research Consortium (CRTC) and the CAnadian High-
Resolution TBI (CAHR-TBI) research collaborative (33), such
comprehensive data collection strategies are feasible. Second,
multi-disciplinary groups of specialist clinicians and scientists
are required. Expertise in epidemiology, data science, genetics,
proteomics, advanced neuroimaging, biomedical engineering,
cerebral physiology, and neuroscience are required to facilitate
success with such integrative neuroinformatics approaches.
Third, comprehensive pre-clinical platforms are necessary to
facilitate exploration of molecular pathways of secondary injury.
It is through cellular, small and large animal models of
neural injury, that pathways uncovered by neuroinformatic
approaches applied to comprehensive clinical data, can be
explored in more detail. Cellular and small animal platforms
would facilitate exploration of such molecular pathways, derive
therapeutic targets, and highlight histopathological correlates.
Similarly, given issues with translatability of findings from
cellular/small animal TBI platforms in the past, large animal
models of TBI are also needed to allow for further pre-
clinical investigation of therapeutic targets, interventions and
histopathological outcomes on cerebral structures more closely
related to humans (187). Such large models are key in bridging
the current bench-to-bedside gap in TBI research. Fifth, based on
discoveries from the top-down approach to precision therapeutic
development, translation to bedside care and trials is necessary.
Study of such personalized approaches will differ from standard

clinical trials, as intervention for each patient will be based on
their individual phenotypic signature identified from presenting
and early-phase omics data. Finally, clinical end-users are critical
to involve in the entire top-down process, as their real-world
bedside experience in caring for such complex patients can
provide crucial insight into what may or may not be feasible for
personalized precision medicine in this population.

CONCLUSIONS

Current therapeutic treatment paradigms in moderate/severe
TBI have failed to lead to substantial impacts on morbidity
or mortality in the past three decades. Similarly, the ability
to prognosticate in this population currently accounts
for limited variance seen in outcomes. Recent expansions
in phenotypic characterization of this population using
current omics approaches have led to a rapid expansion
to the data available to treating clinicians. The future of
moderate/severe TBI care necessitates precision prognostication
and therapeutics, tailored to the individual patient based on
comprehensive physiome, advanced neuroimaging, proteome,
and genome/epigenome. Such work will rely on integrative
neuroinformatics platforms for precision prognostication
and a “top-down” development of personalized therapeutics
directed as secondary injury mechanisms driving morbidity
and mortality.
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