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Classical molecular dynamics (MD) and imaginary-time path-integral dynamics methods underestimate the infrared
absorption intensities of overtone and combination bands by typically an order of magnitude. Plé et al. [J. Chem.
Phys. xx, xxx (2021)] have shown that this is because such methods fail to describe the coupling of the centroid to the
Matsubara dynamics of the fluctuation modes; classical first-order perturbation theory (PT) applied to the Matsubara
dynamics is sufficient to recover most of the lost intensity in simple models, and gives identical results to quantum
(Rayleigh–Schrödinger) PT. Here, we show numerically that the results of this analysis can be used as post-processing
correction factors, which can be applied to realistic (classical MD or path-integral dynamics) simulations of infared
spectra. We find that the correction factors recover most of the lost intensity in the overtone and combination bands of
gas-phase water and ammonia, and much of it for liquid water. We then re-derive and confirm the earlier PT analysis by
applying canonical PT to Matsubara dynamics, which has the advantage of avoiding secular terms, and gives a simple
picture of the perturbed Matsubara dynamics in terms of action-angle variables. Collectively, these variables ‘Matsubara
heat’ the amplitudes of the overtone and combination vibrations of the centroid to what they would be in a classical
system with the oscillators (of frequency Ωi) held at their quantum effective temperatures (of ~Ωi coth(β~Ωi/2)/2kB).
Numerical calculations show that a similar neglect of ‘Matsubara heating’ causes path-integral methods to underestimate
Fermi resonance splittings.

I. INTRODUCTION

Imaginary-time path-integral dynamics methods1–11 can
be used to include zero-point energy in simulations of vi-
brational spectra.9,12–27 When used within their range of
applicability,9,28–30 these methods give typically slightly
blueshifted estimates of the fundamental band origins,31 and
good estimates of the intensities. However, path-integral meth-
ods fail badly when applied to overtone and combination
bands. Unlike fundamental bands, overtone and combina-
tion bands show a large quantum effect in being much more
intense (typically by an order of magnitude) than their classical
counterparts. Path-integral dynamics methods predict reason-
able overtone and combination frequencies (although they are
typically more blue-shifted than the fundamental frequencies),
but they fail completely to account for the quantum increase
in the intensities, giving similar results to classical molecu-
lar dynamics (MD).25 It is tempting to blame this failing on
the neglect by path-integral dynamics methods of real-time
quantum coherence. However, a recent study by Plé et al.

has shown that the main culprit is the approximations that
imaginary-time path-integral methods (and also classical MD)
make to the underlying Matsubara dynamics.32,33

Matsubara dynamics is a theory which explains how clas-
sical dynamics can be combined consistently with quantum
Boltzmann statistics. It is derived by assuming that the quan-
tum Boltzmann distribution remains a smooth function of
imaginary time. This condition forces the dynamics to become
classical, yet quantum Boltzmann–conserving.28,34,35 Matsub-
ara dynamics is not practical because the fluctuation modes,
which describe the dynamics of the shape of the distribution,
need to be sampled over a large phase factor. However, it is
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useful for analysing practical methods such as centroid molec-
ular dynamics (CMD), [thermostatted] ring-polymer molecu-
lar dynamics ([T]RPMD) and the planetary model.8,21,36,37 It
was also recently used to devise the quasi-centroid molecular
dynamics (QCMD) method,38 as well as multi-time gener-
alisations of CMD and [T]RPMD.39 Each of these methods
can be obtained by making a (different) drastic approximation
to the Matsubara dynamics of the fluctuations, which effec-
tively decouples the dynamics of the fluctuations from that of
the centroid: TRPMD does this by converting the fluctuation
modes into thermostatted springs, and CMD and QCMD by
mean-field averaging over the fluctuations. Classical MD can
also be thought of in this way, as a (severe) approximation to
Matsubara dynamics in which the fluctuation-dependence of
the centroid force is set to zero.

In ref. 32, Plé et al. showed that it is precisely these approx-
imations which cause path-integral methods and classical MD
to underestimate the intensities of overtone and combination
bands (and, paradoxically, to overestimate the intensities of
difference bands). They showed that, for a system of cubi-
cally coupled harmonic oscillators, and with a linear dipole
moment, first-order Rayleigh–Schrödinger (RS) perturbation
theory (PT) gives a good approximation to the exact quantum
intensity, and that perturbed Matsubara dynamics reproduces
this intensity exactly (as also does the linearised semiclassi-
cal initial value representation (LSC-IVR) method40–48). The
coupling with the fluctuation modes was found to increase
the amplitudes of the overtone and combination vibrations
of the centroid, and thus the absorption intensities, to what
they would be in a classical system with the oscillators (of
frequency Ωi) held at their quantum effective temperatures
~Ωi coth(β~Ωi/2)/2kB.32 We will refer to this effect below as
‘Matsubara heating’.

In Section II of this article, we test whether the PT results of
ref. 32 can be used as post-processing correction factors, to re-
cover the quantum intensities of the overtone and combination
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bands. To save computational time, we mainly compare the
results of classical MD with exact quantum results (gas-phase
water and ammonia) or experiment (liquid water, using the
MB-pol and MB-µ surfaces of Paesani and co-workers17,49–51),
since the correction factor repairs the inensity loss in classical
MD calculations in the same way as in path-integral calcu-
lations (by accounting for the neglected centroid-fluctuation
coupling). However, to demonstrate the quality of the spec-
trum that is obtained when the correction factor is combined
with state-of-the-art path-integral calcuations, we also apply it
to the QCMD spectrum of gas-phase water.52

Classical PT is well known to be much less straightforward
than quantum PT.53 Plé et al. obtained the perturbed Matsub-
ara results by smoothing the quantum Dyson series; this gave
secular terms that needed to be discarded.32 In Section III, we
apply canonical PT directly to Matsubara dynamics. This ap-
proach avoids the secular terms and obtains perturbed overtone
and combination intensities that agree with those of Plé et al.

A further advantage of the canonical PT derivation is that it
gives a clear picture of the perturbed Matsubara dynamics in
terms of action-angle variables, and allows one to formalise
the notion of a quantum effective temperature.

A related difficulty experienced by path-integral methods in
vibrational spectroscopy is predicting Fermi resonance split-
tings. Tests on simple models have shown that path-integral
methods essentially reproduce the classical splittings,6,32

which agree with the quantum splittings at high temperatures,
but underestimate them at low temperatures, predicting an
erroneous T1/2 dependence.54 In Section IV, we show nu-
merically that this failing is also caused by the neglect of
‘Matsubara heating’, whereby the coupling of the fluctuation
modes increases the amplitudes of the perturbed centroid vi-
brations. Further possible examples of dynamics which could
be affected by coupling between the centroid and fluctuation
modes are discussed briefly in Section V, which concludes the
article.

II. INTENSITY CORRECTION FACTOR FOR OVERTONE AND

COMBINATION BANDS

A. Rayleigh–Schrödinger derivation

The results derived by Plé et al. can be obtained by apply-
ing Rayleigh–Schrödinger perturbation theory (PT)56 to the
Hamiltonian

Ĥ = Ĥ(0)
+ εV̂ (1), (1)

where

Ĥ(0)
=

1
2

F∑
i=1

(
p̂2
i + Ω

2
i q̂2

i

)
, (2)

V̂ (1) ≡ V (1)(q̂) =1
6

F∑
i=1

F∑
j=1

F∑
k=1

ηijk q̂i q̂j q̂k, (3)

and q̂ = (q̂1, . . . , q̂F)T are the mass-weighted normal-mode
position operators of the molecule, with conjugate momentum

operators p̂. The constants ηijk are invariant under permuta-
tions of indices. As usual in PT, a real, dimensionless constant
ε has been factored out of the perturbing potential, and the
calculation rests on the assumption that |ε | is small. It is also
assumed that the unperturbed system is non-degenerate. The
vibrational states

��ψn

〉
and energy levels En are then approxi-

mated in the usual way as��ψn

〉
≃

��ψ(0)
n

〉
+ ε

��ψ(1)
n

〉
, (4)

and

En ≃ E
(0)
n + εE

(1)
n = E

(0)
n , (5)

where the F quantum numbers n = (n1, . . . ,nF)T specify the
vibrational states, and the second equality in Eq. (5) follows
because E

(1)
n = 0 for a cubic perturbation. Thus to first order

in ε, the overtone frequencies are exact multiples of the har-
monic frequencies and the combination frequencies are linear
combinations.

According to Fermi’s Golden Rule, the net energy absorp-
tion spectrum is given by

Sq(β;ω) = 2π |E |2
~Zq(β)

∑
n

∑
n′

(
e−βEn − e−βEn′

)
×

(
En′ − En

) ��〈ψn | µ̂|ψn′〉
��2δ (En′ − En + ~ω

)
,

(6)

where β = 1/kBT , E is the electric field strength, Zq(β) =∑
n e−βEn is the quantum partition function, and µ̂ is the dipole

moment operator,57 which is taken to be

µ̂ = µ(q̂) = µ0 + ξ · q̂, (7)

where ξ = (ξ1, . . . , ξF )T and µ0 are constants.58 The integrated
infrared absorption intensities are then given by59

I[q]
∆n

(β) = 2π |E |2
~2Zq(β)

∑
n∈orig(∆n)

(
e−βEn − e−βEn+∆n

)

×
(
En+∆n − En

) ��〈ψn | µ̂|ψn+∆n〉
��2,

(8)

where∆n denotes the change in quantum numbers correspond-
ing to a stimulated transition with energy gap En+∆n − En =

~∆n·Ω, and orig(∆n) is the set of possible initial quantum num-
bers corresponding to a given ∆n (of which typically only the
lowest-energy states contribute appreciably to the intensity).
We will use ∆n as a label for absorption bands interchange-
ably with the more conventional notation ∆n1ν1+ · · ·+∆nFνF

(so that, e.g., I[q]
∆n

≡ I[q]
∆n1ν1+· · ·+∆nFνF ), where νi ≃ Ωi/2π

represents the fundamental (ordinary) frequency of mode i.
Because V̂ (1) is cubic and µ̂ is linear, the sole effect of the

first-order perturbation is to give non-zero O(ε2) intensities
to the |∆n| = 2 first overtones and binary combination and
difference bands. The intensities of the fundamental bands are
unchanged, as are the intensities of the |∆n| > 2 bands (which
remain zero). Evaluating the first-order RS wave function and
substituting into Eq. (8) gives the |∆n| = 2 intensities as

I[q]
νi±νj (β) = ε

2I
[q]
νi±νj (β) + O(ε3), (9)
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FIG. 1. Damped infrared absorption spectra of gas-phase water at 300 K computed using (a) classical MD and (b) quasi-centroid molecular
dynamics (QCMD), compared with quantum results obtained using the code of ref. 55. The dashed lines are obtained by scaling the classical
intensities by the ‘Matsubara heating’ correction factors of Eq. (13), with Ωi and Ωj taken to be the mean frequencies of the corresponding
fundamental bands. The absorbances in the three panels of the graph are scaled in the ratio 1 : 5 : 70 (left-to-right).

where

I
[q]
νi±νj (β) =

1
2
|E |2

F∑
k=1

F∑
l=1

(2 − δij )ηijkηijlξkξl
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(10)
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2
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] . (11)

This is the result derived in ref. 32 (which is equivalent to an
expression obtained earlier by Yao and Overend60).

We can obtain a quantum–classical correction factor by di-

viding Eq. (11) by its classical limit,

Ĩ [c](β;Ωi,Ωj,Ωk,Ωl) = lim
~→0

Ĩ [q](β;Ωi,Ωj,Ωk,Ωl)

=

π(Ωi +Ωj )2

2βΩ2
i
Ω

2
j

[
(Ωi +Ωj )2 −Ω2

k

] [
(Ωi +Ωj )2 − Ω2

l

] , (12)

to obtain

I
[q]
νi±νj (β)

I
[c]
νi±νj (β)

=

β~ΩiΩj

2(Ωi ±Ωj )

[
coth

(
β~Ωj

2

)
± coth

(
β~Ωi

2

)]
.

(13)
It is easy to show that this correction factor increases the
intensities of overtone and combination bands and (somewhat
paradoxically) decreases the intensities of difference bands.

B. Numerical tests of the intensity correction factor

We carried out numerical tests to determine whether the
simple correction factor of Eq. (13) can be used as a post-
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FIG. 2. Damped infrared absorption spectra of gas-phase ammonia at 300 K computed using classical MD, compared with the quantum results
of ref. 61. The dashed lines are obtained by scaling the classical intensities by the ‘Matsubara heating’ correction factors of Eq. (13), as in
Fig. 1. Note that the scaling factor reduces the intensity of the ν1 − ν2 difference band (see inset). The absorbances in the two panels of the
graph are scaled in the ratio 1 : 15 (left-to-right).

processing step to bring the intensities of overtone and com-
bination bands calculated by classical MD or path-integral
methods into closer agreement with the quantum intensities.62

Fig. 1 compares classical MD, quasi-centroid molecular dy-
namics (QCMD), and quantum simulations of the infrared
spectrum of gas-phase water, computed using the PES63 and
DMS64 of Partridge and Schwenke. The spectra were damped
by convolving with a Hann filter as described in Appendix C
(which also gives details of the classical MD simulations and
the quantum calculations; the QCMD results are taken from
refs. 9 and 25). We assigned the transitions up to |∆n| = 2
following ref. 63. As shown in refs. 9 and 25, QCMD im-
proves considerably on classical MD for the positions of the
bands, but does not improve on the intensities, which are in
good agreement with the quantum results for the fundamen-
tals, but an order of magnitude too small for the overtone
and combination bands. However, when Eq. (13) is used to
correct the intensities of the latter (taking each Ωi to be the
mean frequency of the corresponding fundamental band or
band system), it brings the intensities of these bands into near-
quantitative agreement with the quantum results.

As a slightly more challenging test, Fig. 2 shows the same
comparison for gas-phase ammonia, calculated using the PES
and DMS of Yurchenko et al.61 (see Appendix C for details).
We assigned the transitions up to |∆n| = 2 following ref. 61.
Ammonia has a more crowded non-fundamental spectrum with

several systems of overlapping bands, one of which (at 2600
cm−1) includes a difference band. With the exception of two
bands at 6000 and 7800 cm−1 (which are |∆n| > 2 bands and
thus not captured by the cubic perturbation), the correction
factor again brings the MD intensities into much closer agree-
ment with the quantum results. These include the intensity of
the ν1 − ν2 difference band, which is reduced from being an
order of magnitude too big, to being about 80% of the exact
quantum intensity (see Fig. 2 inset, in which the assignments
of ref. 61 were used to isolate the ν1 − ν2 contribution to the
quantum spectrum).

We would expect Eq. (13) to be much less reliable for the
condensed phase, where the intensities are affected by an-
harmonic coupling through hydrogen bonds; such effects are
clearly missing from the simple perturbative model of Eqs. (1–
3). Also, bands in the condensed phase often involve over-
lapping transitions, each of which would require a different
correction formula. Nevertheless, Fig. 3 shows that the correc-
tion formula gives big improvements to the non-fundamental
intensities obtained by applying classical MD to liquid water
at 298 K (see Appendix C for numerical details). These cor-
rections were made by treating the 5000 cm−1 band as purely a
stretch-bend combination, and the 6800 cm−1 band as a stretch
overtone (with the stretch and bend frequencies taken to be
the mean frequencies of the fundamental bands). The quality
of the MB-pol PES49–51 and MB-µ DMS17 suggest that the
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main differences between the MD results and the experimental
results of Bertie and Lan65 arise from the approximate treat-
ment of the quantum statistics and dynamics. The fundamen-
tal band intensities are mostly in reasonable agreement with
experiment, with the ∼40% underestimate of the integrated
stretch intensity probably resulting mostly from neglect of
quantum statistical sampling of the non-linear dipole moment
(and perhaps partly from the neglect of the bend overtone com-
ponent). As expected, classical MD strongly underestimates
the intensities of the stretch overtone and the bend-libration
and stretch-bend combination bands. The correction factor of
Eq. (13) brings these intensities much closer to experiment.

III. DERIVATION USING CANONICALLY PERTURBED

MATSUBARA DYNAMICS

In ref. 32, Plé et al. showed that an identical expression to
Eq. (11) can be obtained by applying PT to Matsubara dynam-
ics, by smoothing the Dyson series in imaginary time. Here,
we rederive this result by applying canonical PT to Matsubara
dynamics, which has the advantages of avoiding secular terms,
and interpreting the dynamics in terms of the action-anglevari-
ables. We summarise Matsubara dynamics in Section III A,
then give the key results of applying canonical PT to a purely
classical system in Section III B and to Matsubara dynamics in
Section III C. Details of the complete canonical PT derivations
are given in Appendices A and B.

A. Summary of Matsubara dynamics

We start with the exact quantum Kubo-transformed dipole
moment autocorrelation function (ACF)

C̃µµ(β; t) = 1
βZq(β)

∫ β

0
dλ

× Tr
[
e−(β−λ)Ĥ µ̂e−λĤeiĤt/~ µ̂e−iĤt/~],

(14)

where Tr[. . . ] denotes the quantum mechanical trace and
Zq(β) = Tr[e−βĤ ] is the quantum partition function. The
(exact) energy absorption spectrum may be obtained from C̃µµ

using

Sq(β;ω) = βω2 |E |2
∫ ∞

−∞
dt e−iωtC̃µµ(β; t), (15)

which is equivalent to using Eq. (6) with the exact eigenstates
and eigenvalues.57

The Matsubara dynamics approximation34 to C̃µµ repre-
sents the particles by imaginary-time loops in phase space
(q(τ),p(τ)) ≡ {qi(τ), pi(τ)}Fi=1, where 0 < τ ≤ β~ and
q(τ) = q(τ + β~) (and similarly for p(τ)). The loops are
smooth functions of τ that can be expanded in terms of M

Fourier components

Qk =




1
β~

∫ β~

0
dτq(τ) k = 0

√
2

β~

∫ β~

0
dτ sin(ωkτ)q(τ) k ∈ {1, . . . ,M}

√
2

β~

∫ β~

0
dτ cos(ωkτ)q(τ) k ∈ {−1, . . . ,−M},

(16)

where M = (M − 1)/2, and

ωk =
2πk

β~
(17)

are the Matsubara frequencies.34 We will refer to Qk ≡
{Qi,k }Fi=1 as the ‘Matsubara modes’. The modes Q0 are the
‘centroid’ variables, which locate the centres-of-mass of the
loops; the other ‘non-centroid’ or ‘fluctuation’ modes Qk,0
specify the shapes of the loops, and become localised at zero
in the high-temperature (β → 0) limit. Analogous Pk are
defined in terms of p(τ). One can alternatively represent q(τ)
in terms of the ‘bead’ coordinates

ql =

√
M

M∑
k=−M

TlkQk, l ∈ {1, . . . ,M} (18)

where

Tlk =




√
1/M k = 0√
2/M sin(2πlk/M) k ∈ {1, . . . ,M}√
2/M cos(2πlk/M) k ∈ {−1, . . . ,−M},

(19)

such that ql = q(τ = lβ~/M); if used to describe a ring-
polymer distribution, qi,l would correspond to the l-th ring-
polymer bead coordinate of oscillator i.

‘Matsubara dynamics’ refers to the dynamics within this
smooth space, which is classical and generated by the Hamil-
tonian

HM (P,Q) = 1
2

M∑
k=−M

|Pk |2 +UM (Q), (20)

with potential

UM (Q) = 1
β~

∫ β~

0
dτ V

[
q(τ)

]
, (21)

where Q ≡ {Qk}M
k=−M

and similarly for P. We should em-
phasise that the only approximation made to the dynamics is
to have confined it to the smooth space (P,Q); the classicality
is entirely a consequence of excluding the non-smooth modes.
Such ‘jagged’ modes (which give the unsmoothed imaginary-
time paths a fractal appearance66) were shown in ref. 34 to be
responsible for real-time quantum coherence.

The Matsubara approximation to C̃µµ can be shown to be

C̃
[M]
µµ (β; t) =

αF
M

(2π~)FZM (β)

∫
dFMP

∫
dFMQ

× e−β[HM (P,Q)−iθM (P,Q)]µM (Q)eLM t µM (Q),
(22)

where

LM = {· ,HM } =
M∑

k=−M

[
Pk ·

∂

∂Qk

− ∂UM(Q)
∂Qk

· ∂

∂Pk

]
, (23)
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FIG. 3. Infrared absorption spectrum of liquid water at 298 K computed using the MB-pol potential energy surface49–51 and MB-µ dipole
moment surface,17 compared with the experimental spectrum of ref. 65. The dashed lines are obtained by scaling the classical intensities by
the ‘Matsubara heating’ correction factor of Eq. (13), as in Fig. 1. The absorbances in the two panels of the graph are scaled in the ratio 1 : 70.

ZM (β) =
αF
M

(2π~)F
∫

dFMP

∫
dFMQ e−β[HM (P,Q)−iθM (P,Q)],

(24)

and αM = ~
1−MM!2 is the system-independent contribution to

the partition function from the non-smooth modes per physical
degree of freedom (which have been integrated out). The
dipole moment estimator is

µM (Q) = 1
β~

∫ β~

0
dτ µ

[
q(τ)

]
(25)

in the general case, and reduces to

µM (Q) = µ0 + ξ · Q0 (26)

when the DMS is linear as in the simple model of Eq. (7). The
‘Matsubara phase’,

θM (P,Q) =
M∑

k=−M

ωkPk · Q−k, (27)

converts the classical-like distribution over (P,Q) into the
quantum Boltzmann distribution.34 The Matsubara phase can
be removed by analytic continuation at t = 0, where it gives
the familiar ring-polymer springs of path-integral MD/MC.
But for t > 0, the phase cannot be eliminated, which makes

the integral in Eq. (22) impossible to sample numerically, ex-
cept for toy models.

Ring-polymer methods such as CMD, [T]RPMD and
QCMD are (drastic) approximations to Matsubara dynamics,
which eliminate the phase factor by analytically continuing or
averaging over the fluctuation modes. They therefore focus
only on the dynamics of the centroid (which does not appear
in θM (P,Q)).8,36–38 The simplest approximation to Matsubara
dynamics is to set all the fluctuation variables (Pk,Qk), k , 0
to zero, which recovers the classical time-correlation function

Cµµ(β; t) = 1
(2π~)FZc(β)

∫
dFp

∫
dFq e−βH (p,q)

× µ(q)eLct µ(q),
(28)

with

Zc(β) =
1

(2π~)F
∫

dFp

∫
dFq e−βH (p,q). (29)

B. Canonical pertubation theory on the classical system

Let us consider first the F = 1 classical counterpart, H(p,q),
of Ĥ in Eq. (1), writing

H(0)(p,q) = 1
2

(
p2
+Ω

2q2) (30)
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and

V (1)(q) = 1
6
ηq3. (31)

The dynamics of the unperturbed oscillator can be described
formally using ‘action-angle variables’ J(0) and φ(0), which are
related to (p,q) by

p =
√

2ΩJ(0) cos
(
φ(0)

)
(32a)

q =

√
2J(0)

Ω
sin

(
φ(0)

)
. (32b)

The action variable J(0) = H(0)/Ω is a constant of the motion
(of the unperturbed system), whereas the angle φ(0) evolves
according to

φ(0)(t) = φ(0) + Ωt (33)

and thus describes the phase of the oscillator.53

Canonical PT assumes that the perturbed dynamics is de-
scribable in terms of a pair of new action-angle variables
(J, φ) = (J(0), φ(0)) + O(ε).53 By analogy with Eq. (32), we
define

̟ =
√

2ΩJ cos(φ) (34a)

χ =

√
2J

Ω
sin(φ), (34b)

which satisfy (̟, χ) = (p,q)+O(ε). To lowest order in ε, one
can show that

φ(t) = φ +Ωt. (35)

In other words, when expressed in terms of the new vari-
ables (̟, χ), the perturbed system oscillates with the same
frequencyΩ as the unperturbed harmonic oscillator (to lowest
order in ε). When expressed in terms of the old variables
(p,q), however, the perturbed oscillations have overtone com-
ponents. In Appendix A, the relation between the old and new
variables for the oscillator of Eqs. (30–31) is shown to be

q =

√
2J

Ω
sin(φ) − εηJ

6Ω3

[
cos(2φ) + 3

]
+ O(ε2). (36)

Not surprisingly, q has an O(ε0) component oscillating at the
fundamental frequency,Ω, and an O(ε) component at the first
overtone frequency, 2Ω.

Writing the F = 1 linear dipole of Eq. (7) as

µ = µ0 + ξq, (37)

we can substitue q of Eq. (36) into the classical dipole moment
ACF of Eq. (28). After Fourier-transforming as in Eq. (15),
and integrating over ω, we obtain the classical integrated ab-
sorption intensities

I[c]
ν (β) = πξ2 |E |2 + O(ε) (38)

and

I[c]
2ν (β) = ε2I

[c]
2ν (β) + O(ε3), (39)

where (see Appendix A)

I
[c]
2ν (β) =

η2ξ2 |E |2β2

144Ω5

∫
d̟

∫
dχ

× exp

{
− β

2

(
̟2
+Ω

2χ2
)} (

̟2
+Ω

2χ2)2
(40)

=

πη2ξ2 |E |2
9βΩ6

. (41)

This is identical to the expression for I
[c]
2ν (β) given in Eq. (12)

(with F = 1, Ω1 = Ω).

C. Generalisation to Matsubara dynamics

We now generalise the above treatment to Matsubara dy-
namics, which we show gives the quantum intensities I

[q]
2ν (β)

and I
[q]
νi±νj (β) of Eq. (11). The Matsubara Hamiltonian cor-

responding to the one-dimensional oscillator of Eqs. (30–31)
is

HM (P,Q) = H
(0)
M
(P,Q) + εU

(1)
M
(Q), (42)

where

H
(0)
M
(P,Q) = 1

2

M∑
k=−M

P2
k + Ω

2Q2
k, (43)

and the perturbation U
(1)
M
(Q) is given by subsituting V[q(τ)] =

ηq(τ)3/6 into Eq. (25). To describe the dynamics of the un-
perturbed oscillator, we can introduce M sets of action-angle
variables (J (0)

k
, ϕ

(0)
k
), k = −M, . . . ,M, each of which is related

to (Pk,Qk) by

Pk =

√
2ΩJ (0)

k
cos

(
ϕ
(0)
k

)
(44a)

Qk =

√
2J (0)

k

Ω
sin

(
ϕ
(0)
k

)
. (44b)

Clearly, each J (0)
k

is independently a constant of the motion,
and the time evolution of each oscillator is given by

ϕ
(0)
k
(t) = ϕ(0)

k
+ Ωt. (45)

Using canonical PT, we can also describe the perturbed
system in terms of M action-angle variables (Jk, ϕk) =
(J (0)

k
, ϕ

(0)
k
) + O(ε), and by analogy with Eq. (44), we can

define

Πk =

√
2ΩJk cos(ϕk), (46a)
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Xk =

√
2Jk

Ω
sin(ϕk), (46b)

which satisfy (Πk,Xk) = (Pk,Qk) + O(ε). One can also show
that, to lowest order in ε,

ϕk(t) = ϕk +Ωt. (47)

To O(ε0), the k-th set of action-angle variables (Jk, ϕk) depend
only on the k-th Matsubara mode, but to O(ε), they depend
also on the k ′

, k Matsubara modes. One may therefore refer
to (Jk, ϕk) as describing the ‘perturbed dynamics of the k-th
Matsubara mode’, but must bear in mind that the perturbation
mixes in contributions from all the other modes. As a result,
the centroid coordinate Q0 can be expected to depend on all
of the action-angle variables, not just on (J0, ϕ0). For the
one-dimensional oscillator of Eqs. (30–31), this dependence
is shown (in Appendix B) to be

Q0 =

√
2J0

Ω
sin(ϕ0) −

εη

6Ω3

M∑
k=−M

Jk

[
cos(2ϕk) + 3

]
+ O(ε2),

(48)
which shows that all the modes k = −M, . . . ,M make equal
contributions to the overtone component of Q0. This symmet-
ric dependence is perhaps to be expected from the form of the
perturbative force on the centroid, which is

−∂UM(Q)
∂Q0

= −η
2

M∑
k=−M

Q2
k . (49)

Substituting for Q0 in Eqs. (22) and (26), taking the Fourier
transform using Eq. (15) and integrating over ω, we obtain the
integrated absorption intensities

I[M]
ν (β) = πξ2 |E |2 + O(ε) (50)

and (see Appendix B)

I[M]
2ν (β) = ε2I

[M]
2ν (β) + O(ε3), (51)

where

I
[M]
2ν (β) = αMη

2ξ2β|E |2

144~Ω6Z
(0)
M
(β)

M∑
k′=−M

M∑
k=−M

∫
dM
Π

∫
dMX

× e−β[H
(0)
M
(Π,X)−iθM (Π,X)] (

Πk′ − iΩXk′
)2 (
Πk + iΩXk

)2
.

(52)

Defining (̟l, χl) to be the perturbed analogues of (pl,ql), i.e.

̟l =

√
M

M∑
k=−M

TlkΠk (53a)

χl =
√

M

M∑
k=−M

TlkXk, (53b)

we show in Appendix B that the integral over action-angle
variables can be manipulated to give

I
[M]
2ν (β) =

η2ξ2 |E |2
(
β[M])2

144Ω5

∫
d̟0

∫
dχ0

× exp

{
−1

2
β[M] (̟2

0 +Ω
2χ2

0

)} (
̟2

0 + Ω
2χ2

0

)2

(54)

=

πη2ξ2 |E |2
9β[M]Ω6

. (55)

This is the same as the classical result Eqs. (40–41), except
that β is replaced by an effective inverse temperature β[M],
defined by

1

β[M] =
1
β

M∑
k=−M

Ω
2

Ω2
+ ω2

k

. (56)

We can therefore write

I
[M]
2ν (β) = I

[c]
2ν

(
β[M]), (57)

which in the infinite-mode limit gives the quantum result

lim
M→∞

I
[M]
2ν (β) = I

[c]
2ν

(
β[∞] )

= I
[q]
2ν (β), (58)

since

lim
M→∞

1

β[M] =
1

β[∞] =
~Ω

2
coth

(
β~Ω

2

)
. (59)

To generalise this result to combination and difference
bands, we first need to generalise the expression for the classi-
cal intensity to the scenario in which each normal mode (pi,qi)
is prepared at a different inverse temperature βi . As shown in
Appendix A, for the second-order intensity this gives

I
[c]
νi±νj (β) =

1
2
|E |2

F∑
k=1

F∑
l=1

(2 − δij )ηijkηijlξkξl

× Ĩ [c](β;Ωi,±Ωj,Ωk,Ωl),
(60)

where

Ĩ [c](β;Ωi,Ωj,Ωk,Ωl)

=

π(Ωi +Ωj )(βiΩi + βjΩj )
2βiβjΩ2

i
Ω

2
j

[
(Ωi +Ωj )2 −Ω2

k

] [
(Ωi +Ωj )2 − Ω2

l

] (61)

and where we have defined a set of mode-specific inverse
temperatures β = (β1, . . . , βF )T. The Matsubara intensity is
then related to this generalised classical intensity by

I
[M]
νi±νj (β) ≃ I

[c]
νi±νj

(
β[M]), (62)

where

1

β
[M]
i

=

1
β

M∑
k=−M

Ω
2
i

Ω
2
i
+ ω2

k

. (63)
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Pure Matsubara
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FIG. 4. Velocity autocorrelation spectra of the CO2 Fermi resonance,
computed using the simple model of Eqs. (64–66) at 150 K, using
different numbers of Matsubara modes M per physical degree of
freedom. The upper panel shows the results of unapproximated Mat-
subara dynamics calculations, the lower panel the results of using the
harmonic decorrelated (HD) approximation to Matsubara dynamics
(see Section IV A).

The coupling with the fluctuation modes therefore ‘Matsubara
heats’ the amplitudes of the overtone and combination vibra-
tions of the centroid, such that the intensities of the |∆n| = 2
bands are the same as what they would be in the classical
system if the oscillators were held at the quantum effective
temperatures T

[∞]
i
= 1/kBβ

[∞]
i

. More formally, the O(ε) dy-
namics of the ensemble of perturbed centroid trajectories at
temperature T is equivalent to the O(ε) dynamics of an en-
semble of perturbed ‘bead’ trajectories with the oscillators at
their quantum effective temperatures.

IV. FERMI RESONANCES

Fermi resonances occur when a stretch mode of frequency
Ω1 splits by coming into resonance with a bend overtone of
frequency 2Ω2 ≃ Ω1. A simple model of a Fermi resonance,
which is sufficient to demonstrate the failure of classical and
path-integral methods to predict the splitting, is32,54

Ĥ = Ĥ(0)
+ V̂ (1), (64)

HD Matsubara

1100 1150 1200 1250 1300 1350 1400

Wavenumber / cm−1

Imitated Matsubara heating

M=3
M=7

M=11
M=15

M=∞
Quantum

In
te

ns
ity

FIG. 5. Same as Fig. 4, with the upper panel showing the results of
HD Matsubara dynamics, and the lower panel the results of classical
calculations with ‘imitated Matsubara heating’, in which the oscil-

lators are prepared at the effective inverse temperatures β
[M]
i

(see
Section IV B).

TABLE I. Parameters used in the CO2 model Fermi resonance Hamil-
tonian, taken from ref. 32.

Parameter Value in atomic units

Ω1 5.74554 × 10−3

Ω2 2.88872 × 10−3

η112 1.479 × 10−7

with

Ĥ(0)
=

1
2

(
p̂2

1 + p̂2
2 + p̂2

3

)
+

1
2
Ω

2
1q̂2

1 +
1
2
Ω

2
2

(
q̂2

2 + q̂2
3

)
(65)

V̂ (1)
=

1
2
η122q̂1

(
q̂2

2 + q̂2
3

)
. (66)

The numerical values used for Ω1, Ω2, and η122 are those
given in Table I (taken from ref. 32), which model the Fermi
resonance in CO2.

The classical and (Kubo-transformed)quantum velocity au-
tocorrelation spectra67 of the stretching coordinate q1 were
computed using this model, at a temperature (150 K) for which
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the classical Fermi splitting is only 54% of the quantum split-
ting (see Fig. 4; Matsubara dynamics with M = 1 is equiva-
lent to classical dynamics). This underestimation worsens as
the temperature is lowered, with the classical splitting scal-
ing as approximately T1/2. Only at much higher temperatures
(>500 K) do the classical and quantum results agree.54

Since Eqs. (64–66) are a special case of Eqs. (1–3) (with
F = 3,Ω2 = Ω3, ε = 1), it seems likely that Matsubara heating
(similar to that discussed in Section III) is also responsible for
the failure of path-integral methods to reproduce the Fermi
splittings. To investigate this, we carried out numerical Mat-
subara dynamics calculations on the model of Eqs. (64–66).68

A. Harmonic decorrelated Matsubara calculations

We first attempted to carry out brute-force Matsubara dy-
namics simulations of the 150 K Fermi resonance. These cal-
culations were computationally feasible only up to M = 3 (a
total of 9 Matsubara modes). For M > 3, the phase θM (P,Q)
became too oscillatory to integrate over numerically. Nonethe-
less, including just the M = 3 modes is already sufficient to
increase the 150 K Fermi splitting from 54% to 76% of the
quantum splitting (see Fig. 4).

To include more Matsubara modes in the simulation, we
introduce a simple ‘harmonic decorrelation’ (HD) approxima-
tion that allows us to integrate out θM (P,Q) analytically. The
HD approximation is a modification of an approximation in-
troduced in ref. 69. It is based on the observation that, in a
harmonic system, the terms

exp

{
− β

2

(
P2
i,k +Ω

2
i Q

2
i,−k − 2iωkPi,kQi,−k

)}
(67)

in the quantum Boltzmann distribution can be replaced by the
product of the marginal distributions in Pi,k and Qi,−k ,

exp

{
−
β(Ω2

i
+ ω2

k
)

2Ω2
i

(
P2
i,k +Ω

2
i Q

2
i,−k )

}
, (68)

provided the function to be integrated over does not con-
tain mixed products of Pi,k and Qi,−k . We approximate
the harmonic parts of the quantum Boltzmann distribution by
Eq. (68), but propagate the Matsubara dynamics exactly. We
expect this to be a very good approximation for the Fermi reso-
nance model, because the perturbative dependence of the cen-
troid on Pi,k and Qi,−k is likely to be dominated by quadratic
terms, whereas mixed products involving Pi,k and Qi,−k can
appear only at quartic or higher powers70 (which are O(η2

122)
and thus small).71

Fig. 4 shows that the HD approximation yields M = 3 Fermi
splittings at 150 K that are indistinguishable from those cal-
culated using unapproximated (‘pure’) Matsubara dynamics.
We repeated these calculations with larger values of M, up to
M = 15 (i.e., a total of 45 Matsubara modes). The addition
of each pair of Matsubara modes pushes the HD Matsubara
Fermi splitting closer to the exact quantum result, bringing it
to within 96% of the quantum splitting by M = 15.

1 3 5 7 9 11 13 15

M
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70

80

90

100

110

Fe
rm

i s
pl

itt
in

g 
/ c

m
−1

Pure Matsubara
HD Matsubara
Imitated Matsubara heating

FIG. 6. Fermi splittings as a function of M, defined as the differences
between the mean frequencies of the peaks in Figs. 4 and 5 (and
including splittings for the intermediate values of M not shown in
Figs. 4 and 5). The dashed lines represent the exact quantum splitting
(black), and the M → ∞ limit of the imitated Matsubara heating
splittings (green).

B. Quantum effective temperatures

In Section III, we showed that the coupling of the Matsub-
ara fluctuation modes to the centroid increases the overtone
and combination intensities to what would be obtained from a
classical calculation with the oscillators prepared at the quan-
tum effective inverse temperatures β[∞]

i
= 2 tanh(β~Ωi)/~Ωi.

To show that the increase in the Fermi resonance frequency at
low temperatures behaves analogously, we plot in Fig. 5 the
velocity autocorrelation spectra obtained from purely classi-
cal calculations with ‘imitated Matsubara heating’, in which
(pi,qi) were sampled from the harmonic oscillator Boltzmann
distribution with frequency Ωi and inverse temperature β[M]

i
as defined in Eq. (63). For M = 1 (not shown), this is equiv-
alent to HD Matsubara dynamics. For M > 1, the spectra are
still very close to the corresponding HD Matsubara spectra,
and the two sets of splittings (plotted against M in Fig. 6) are
almost indistinguishable. Fig. 6 also shows that the remain-
ing convergence with respect to M > 15 is slow (as expected
from the Matsubara convergence ‘tails’ found in calculations
of static properties66), but that the M → ∞ limit appears to be
tending to within a few cm−1 of the exact quantum splitting.
To verify this, we repeated the calculations with the oscillators
at the quantum effective inverse temperatures β[∞]

i
, obtaining

a Fermi splitting blueshifted by a few cm−1 from the exact
quantum splitting (see Figs. 5 and 6).
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V. CONCLUSIONS

The results of ref. 32 and of this work show that imaginary-
time path-integral dynamics methods and classical MD under-
estimate the vibrational amplitudes of overtone, combination
and Fermi resonance vibrations, because they neglect cou-
pling between the Matsubara dynamics of the centroid and
the fluctuation modes. In a full Matsubara dynamics cal-
culation, this coupling would increase the amplitudes of the
non-fundamental vibrations of the centroid by causing them
to resonate in concert with the entire delocalised quantum
Boltzmann distribution. This increase in vibrational amplitude
magnifies the intensities of overtone and combination bands
(typically by an order of magnitude), and increases the widths
of Fermi splittings. Real-time coherence (which usually gets
the blame when path-integral methods do not work) thus plays
no major role here (and treatments more sophisticated than
harmonic PT would be required to determine whether it plays
a minor role). These findings are consistent with earlier stud-
ies based on the LSC-IVR method72 which, like path-integral
methods, omits real-time coherence.42

It is probably unrealistic to expect that practical path-integral
methods can be generalised to include Matsubara heating,
given that the Matsubara fluctuation modes carry large phases.
However, the predictions of the cubic perturbation model can
be used as post-processing scaling factors, to correct overtone
and combination intensities computed using path-integral dy-
namics methods or classical MD. Clearly one cannot expect
quantitative accuracy from a correction based on harmonic
perturbation theory, but the results of Section II show that the
corrections to the intensities of gas-phase overtone and combi-
nation bands are almost quantitative, and that the corrections
for liquid water recover much of the lost intensity (including
that of the bend-libration combination band, explaining why
this band is usually missing from simulated water spectra).73

The dynamics responsible for overtones, combination bands
and Fermi resonances is by definition anharmonic, and, in the
examples discussed above, the dynamics is also (Boltzmann-
statistically) highly quantum. We expect that this ‘deadly
combination’ will always cause trouble for path-integral meth-
ods, since the Matsubara dynamics will then inevitably couple
the centroid with the fluctuation modes, and methods such
as TRPMD, CMD and QCMD will therefore not be reliable.
This could explain, for example, why TRPMD calculations
show large blue shifts in the fundamental bands of highly an-
harmonic stretch potentials.23 It may also make it difficult for
path-integral methods to compute some (but hopefully not all)
of the observables measured by non-linear spectroscopy. This
limitation of path-integral methods is only to be expected,
given that they were developed to interpolate between dynam-
ics which is either mildly anharmonic and quantum (such as
the vibrations of water), or strongly anharmonic and classical
(such as the librations in liquid water).

An unanswered question is whether there remain any (sig-
nificant) observable features in condensed-phase vibrational
spectra that one might attribute to real-time coherence. One
possible candidate might be the small blueshifts that path-
integral methods cannot remove from fundamental stretch

peaks,28 and which tend to be larger (see e.g. Fig. 2 of ref. 25
and Fig. 1 of this article) for overtone and combination bands.
Closely related to this are the larger blueshifts found in the pro-
tonated water clusters mentioned above. Further work would
be needed to determine whether these difficult-to-compute fea-
tures are caused by real-time coherence, or by coupling of the
centroid to the Matsubara fluctuation modes.

ACKNOWLEDGMENTS

We thank Thomas Plé, Simon Huppert, Fabio Finocchi,
Philippe Depondt, and Sara Bonella for making available the
results of ref. 32 prior to publication, and George Trenins for
providing the classical MB-pol/MB-µ liquid water spectrum
presented in Fig. 3. R.L.B. gratefully acknowledges the re-
ceipt of a studentship from the UK Engineering and Physical
Sciences Research Council, award reference 1942965.

SUPPLEMENTARY MATERIAL

See supplementary material for a Mathematica74 deriva-
tion of the Rayleigh–Schrödinger perturbation theory results
of Sec. IIA.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Appendix A: Classical intensities from canonical perturbation

theory

In this section, we summarise the standard procedure in mul-
tidimensional classical canonical perturbation theory (CPT)
and indicate, for completeness, how this may be followed
to calculate the second-order classical integrated intensity
I
[c]
νi±νj (β) directly (rather than taking the classical limit of

Eq. (10)). We also show how this procedure can be gen-
eralised to the case that each normal mode is prepared at a
different temperature.

1. Summary of action-angle variables and classical CPT

Consider the classical analogue of the Hamiltonian in
Eq. (1),

H(p,q) = H(0)(p,q) + εV (1)(q), (A1)

with H(0) defined as the classical analogue of Eq. (2) but for
now we leave the form of V (1) unspecified. Assuming that the
Hamilton–Jacobi equation is completely separable in (p,q),
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there exists a set of canonical action-angle variables (J,φ)
with the actions defined by

Ji =
1

2π

∮
dqi pi, (A2)

where
∮

dqi implies a line integral over a complete period of
the orbit in the (pi,qi) plane.53 The Hamiltonian is independent
of each conjugate angle φi and may be written as

H(p,q) = E(J). (A3)

The classical Liouvillian is thus given by

L = γ(J) · ∂

∂φ
, (A4)

where

γ(J) = ∂E(J)
∂J

, (A5)

which implies that each φi varies linearly in time according to

eLtφ = φ + γ(J)t. (A6)

In general, each of the position variables qi is a periodic func-
tion of all φ, with a period of 2π, so qi may be represented by
the Fourier series

q =
∑

n

qn(J)ein·φ, (A7)

and similarly for p. Note that in order for q to be real, we
require qn = q∗

−n. The dipole moment, being a function of
position, can likewise be expanded as

µ

[∑
n

qn(J)ein·φ
]
=

∑
n

µn(J)ein·φ, (A8)

where µn = µ
∗
−n.

Since the system is non-degenerate we can assume that, as
ε approaches zero, the action-angle variables vary smoothly
from (J,φ) to (J(0),φ(0)), where

pi =

√
2ΩiJ

(0)
i

cos
(
φ
(0)
i

)
(A9a)

qi =

√
2J

(0)
i

Ωi

sin
(
φ
(0)
i

)
, (A9b)

with

H(0)(p,q) = E (0) (J(0)) = Ω · J(0). (A10)

It follows that

γ(J) = Ω + O(ε). (A11)

In classical CPT, one first re-expresses the Hamiltonian in
terms of the action-angle variables (J(0),φ(0)) for the unper-
turbed system,53 giving

H̃
(
J(0),φ(0))

= H(p,q) = E (0) (J(0)) + εṼ (1) (J(0),φ(0)), (A12)

where

Ṽ (1) (J(0),φ(0))
= V (1)(p,q). (A13)

Since pi and qi are periodic in φ(0)
i

, the perturbation Ṽ (1) must
have the Fourier-series representation

Ṽ (1) (J(0),φ(0))
=

∑
n

Ṽ
(1)
n

(
J(0)

)
ein·φ(0)

, (A14)

where Ṽ
(1)
n = [Ṽ (1)

−n ]∗. We then assume that the transformed
Hamiltonian can be expressed as a power series in ε,

E(J) =
∞∑
α=0

εαE (α)(J). (A15)

The aim of CPT is to find a series of canonical transformations,
starting from (J(0),φ(0)), that remove the angle-dependence of
the Hamiltonian to progressively higher orders of ε. For our
purposes, however, only first-order corrections are required.
Introducing the type-II generating function

Y
(
J,φ(0))

=

∞∑
α=0

εαY (α) (J,φ(0)), (A16)

where

Y (0) (J,φ(0))
= J · φ(0), (A17)

the perturbed (‘new’) and unperturbed (‘old’) variables are
related by

J(0) =
∂Y

(
J,φ(0))
∂φ(0) = J +

∞∑
α=1

εα
∂Y (α) (J,φ(0))

∂φ(0) (A18a)

φ =
∂Y

(
J,φ(0))
∂J

= φ(0)
+

∞∑
α=1

εα
∂Y (α) (J,φ(0))

∂J
. (A18b)

Assuming that each term in the perturbation expansion of
Y
(
J,φ(0)) has a Fourier-series representation

Y (α) (J,φ(0))
=

∑
n

Y
(α)
n (J)ein·φ(0)

, (A19)

one can show53 that the coefficients in the first-order term are
given by

Y
(1)
n (J) = iṼ (1)

n (J)
n ·Ω (A20)

for n , 0, and that the first-order energy correction is

E (1)(J) = Ṽ
(1)
0

(J), (A21)

which is the average of the perturbation over one period of
oscillation. The zero-frequency component of the generating
function, Y

(1)
0

(J), gives only a constant phase shift, thus we

can choose to set Y
(1)
0

(J) = 0 without loss of generality. Using
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Eq. (A18), the old variables expressed in terms of the new ones
are

J(0) = J − ε
∑
n,0

nṼ
(1)
n (J) ein·φ

n ·Ω + O(ε2) (A22a)

φ(0)
= φ − iε

∑
n,0

∂Ṽ
(1)
n (J)
∂J

ein·φ

n ·Ω + O(ε2). (A22b)

Finally, these expression can be substituted in Eq. (A9) to
obtain the original dynamical variables, (p,q), in terms of the
new action-angle variables, (J,φ). For the one-dimensional
system of Eqs. (30–31), this procedure generates Eq. (36).

2. Classical integrated absorption intensities

It is convenient to start from the expression for the quantum
energy absorption spectrum in terms of the standard quantum
ACF, which is

Sq(β;ω) = ω

~
|E |2(1 − e−β~ω)

∫ ∞

−∞
dt e−iωtCµµ(β; t). (A23)

Taking the classical limit of Eq. (A23) gives

Sc(β;ω) = lim
~→0

Sq(β;ω)

= βω2 |E |2
∫ ∞

−∞
dt e−iωtcµµ(β; t),

(A24)

where

cµµ(β; t) = 1
(2π~)FZc(β)

∫
dFp

∫
dFq e−βH (p,q)

× µ(q) eLt µ(q)
(A25)

is the classical dipole moment autocorrelation function, with

Zc(β) =
1

(2π~)F
∫

dFp

∫
dFq e−βH (p,q), (A26)

and

L = {· ,H} = p · ∂
∂q

− ∂V(q)
∂q

· ∂

∂p
. (A27)

Transforming to action-angle variables (J,φ), and using Liou-
ville’s theorem (that the Jacobian for a canonical transforma-
tion must be unity), we can also write

cµµ(β; t) = 1
~F Zc(β)

∑
n

∫
dFJ e−βE(J)��µn(J)

��2ein·γ(J)t

(A28)
and

Zc(β) =
1
~F

∫
dFJ e−βE(J). (A29)

Substituting Eq. (A28) into Eq. (A24) gives

Sc(β;ω) = 2πβ|E |2
~F Zc(β)

∑
n

∫
dFJ e−βE(J)

×
��µn(J)

��2 [n · γ(J)
]2
δ
[
ω − n · γ(J)

]
,

(A30)

from which it follows (relabelling n as ∆n) that the integrated
classical intensity of an absorption band is given by

I[c]
∆n

(β) ≡ I[c]
∆n1ν1+· · ·+∆nFνF (β)

=

2πβ|E |2
~FZc(β)

∫
dFJ e−βE(J)��µ∆n(J)

��2 [∆n · γ(J)
]2
.

(A31)

It is evident that the Fourier components of the dipole mo-
ment for |∆n| > 1 must satisfy |µ∆n |2 = O(ε2). Thus, for
non-fundamental bands, Eq. (A31) simplifies to

I[c]
∆n

(β) = ε2I
[c]
∆n
(β) + O(ε3), (A32)

where

I
[c]
∆n
(β) =

2πβ|E |2
(
∆n ·Ω

)2

~FZ
(0)
c (β)

×
∫

dFJ e−βΩ·J lim
ε→0

1

ε2

��µ∆n(J)
��2,

(A33)

and

Z
(0)
c (β) =

F∏
i=1

1
β~Ωi

(A34)

is the zeroth-order classical partition function. Because the
distribution in Eq. (A33) is factorisable into independent con-
tributions from each oscillator, the expression is easily gener-
alisable to the multi-temperature case, in which each oscillator
(Ji, φi) is prepared with the inverse temperature βi = 1/kBTi.
The zeroth-order partition function becomes

Z
(0)
c (β) =

F∏
i=1

1
βi~Ωi

, (A35)

and in the integrand of Eq. (A33) we make the replacement

e−βΩ·J → e−BΩ·J, (A36)

where B = diag(β). To take care of the frequency-dependent
prefactor, we recognise its origin as the classical limit of
the ω(1 − e−β~ω) factor that accounts for detailed balance in
Eq. (A23). Hence the replacement that we need to make is

β(∆n ·Ω)2 → lim
~→0

1
~
∆n ·Ω

(
1 − e−~∆n·BΩ)

= (∆n ·Ω)(∆n · BΩ).
(A37)

The (second-order) multi-temperature classical intensity is
therefore given by

I
[c]
∆n
(β) =

2π |E |2
(
∆n ·Ω

) (
∆n · BΩ

)
~F Z

(0)
c (β)

×
∫

dFJ e−BΩ·J lim
ε→0

1

ε2

��µ∆n(J)
��2 + O(ε3).

(A38)



14

3. Application to the |∆n| = 2 bands

The cubic perturbation of Eq. (3) may be written in terms
of the old action-angle variables as

Ṽ
(
J(0),φ(0))

=

√
2

3

F∑
i=1

F∑
j=1

F∑
k=1

ηijk

√√
J
(0)
i

J
(0)
j

J
(0)
k

ΩiΩjΩk

× sin
(
φ
(0)
i

)
sin

(
φ
(0)
j

)
sin

(
φ
(0)
k

)
,

(A39)

giving

E (1)
= 0 (A40)

and

J
(0)
i
= Ji +

ε
√

8

F∑
j=1

F∑
k=1

ηijk

√
Ji Jj Jk

ΩiΩjΩk

×
[
sin(φi + φ j + φk)
Ωi +Ωj +Ωk

+

sin(φi − φ j − φk)
Ωi −Ωj −Ωk

−
sin(φi + φ j − φk)
Ωi + Ωj −Ωk

−
sin(φi − φ j + φk)
Ωi − Ωj +Ωk

]
+ O(ε2)

(A41a)

φ
(0)
i
= φi +

ε
√

32

F∑
j=1

F∑
k=1

ηijk

√
Jj Jk

ΩiΩjΩkJi

×
[
cos(φi + φ j + φk)
Ωi +Ωj +Ωk

+

cos(φi − φ j − φk)
Ωi −Ωj − Ωk

−
cos(φi + φ j − φk)
Ωi +Ωj −Ωk

−
cos(φi − φ j + φk)
Ωi − Ωj +Ωk

]
+ O(ε2).

(A41b)

The position coordinates then become

qk =

√
2Jk

Ωk

sin(φk) −
ε

2

F∑
i=1

F∑
j=1

ηijk

√
JiJj

ΩiΩj

×
[

cos(φi + φ j )
(Ωi +Ωj )2 −Ω2

k

−
cos(φi − φ j)

(Ωi −Ωj )2 − Ω2
k

]

+ O(ε2).

(A42)

Using these results with Eq. (A38) gives Eq. (60), which re-
duces to the classical limit of Eq. (10) in the single-temperature
scenario, B = βI.

Appendix B: Matsubara intensities from canonical perturbation

theory

1. Matsubara action-angle variables and CPT

Analogous to the multidimensional classical system, let us
assume it is possible to define a set of Matsubara action-angle
variables (J,ϕ), with

Jk =
1

2π

∮
dQkPk . (B1)

HM (P,Q) = EM (J), (B2)

LM = γM (J) · ∂

∂ϕ
, (B3)

θM (P,Q) = ΘM (J,ϕ), (B4)

Q =
∑
m

Qm(J)eim·ϕ, (B5)

and

µM

[∑
m

Qm(J)eim·ϕ
]
=

∑
m

µM ,m(J)eim·ϕ, (B6)

where

γM (J) = ∂EM(J)
∂J

. (B7)

The labels m = (m0,m1,m−1, . . . ,mM
,m−M)T take non-

negative integer values.
For the unperturbed Matsubara Hamiltonian H

(0)
M
(p,q) =

E
(0)
M
(J(0)), we have

Pk =

√
2ΩJ (0) cos

(
ϕ
(0)
k

)
(B8a)

Qk =

√
2J (0)

k

Ω
sin

(
ϕ
(0)
k

)
, (B8b)

with

H
(0)
M
(P,Q) = E (0) (J(0))

= Ω

M∑
k=−M

Jk . (B9)
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It follows that

γM (J) = (Ω, . . . ,Ω)T + O(ε). (B10)

The application of classical CPT to the Matsubara Hamil-
tonian is, in the general case, complicated by the fact that
∂E

(0)
M
(J(0))/∂J (0)

k
= Ω is the same for all k ∈ {−M, . . . ,M},

meaning the reference system is degenerate. The arguments
outlined in Appendix A can formally break down, with the
first-order Fourier coefficients of the generating function

Y
(1)
M ,m

(J) = i
Ω


M∑

k=−M

mk


−1

Ũ
(1)
M ,m

(J) (B11)

becoming undefined when m ∈ totM (0), where YM is under-
stood to be the Matsubara analogue of Y from Appendix A
and

totM (∆n) =
{
m

��� ∑M

k=−M mk = ∆n
}
. (B12)

However, in the case of cubic perturbations we will find that

∀m ∈ totM (0), Ũ(1)
M ,m

(J) = 0, (B13)

implying that the resonances are only manifested at second
order in ε. We are interested for now only in first-order cor-
rections to the dynamical variables, so it is justified to pro-
ceed as if the system were non-resonant. The corresponding
zero-frequency components of the generating function will be
undetermined in principle, but each of them produces only a
constant phase shift and can thus be set to zero without loss of
generality i.e.,

∀m ∈ totM (0),Y (1)
M ,m
= 0. (B14)

Another important result is that the first-order perturbation
to the Matsubara phase vanishes. That is,

ΘM (J,ϕ) = Θ(0)
M
(J,ϕ) + O(ε2), (B15)

where

Θ
(0)
M

(
J

(0),ϕ(0))
= θM (P,Q)

= 2
M∑
k=1

ωk

√
J (0)
k

J (0)
−k sin

(
ϕ
(0)
−k − ϕ

(0)
k

)
.

(B16)

To show this, consider that the phase is itself a constant
of the motion. Thus we expect there to exist a canonical
transformation from (P,Q) to a set of action-angle variables
(L, . . . , φL, . . .), where

L = − β~
2π
ΘM =

M∑
k=−M

kP−kQk (B17)

is one of the action coordinates and φL its conjugate angle,
such that

∂

∂φL
= {· , L} =

M∑
k=−M

k

[
Pk

∂

∂P−k
+Qk

∂

∂Q−k

]
. (B18)

The Matsubara coordinates depend on the imaginary-time ori-
gin, τ0, implicitly through

p(τ + τ0) = P0(τ0)

+

√
2

M∑
k=1

[
Pk(τ0) sin(ωkτ) + P−k(τ0) cos(ωkτ)

]
(B19a)

q(τ + τ0) = Q0(τ0)

+

√
2

M∑
k=1

[
Qk(τ0) sin(ωkτ) +Q−k(τ0) cos(ωkτ)

]
,

(B19b)

from which it follows that

Pk(τ0) = Pk(0) cos(ωkτ0) − P−k(0) sin(ωkτ0) (B20a)

Qk(τ0) = Qk(0) cos(ωkτ0) − Q−k(0) sin(ωkτ0), (B20b)

and therefore

∂Pk

∂τ0
= −ωkP−k (B21a)

∂Qk

∂τ0
= −ωkQ−k . (B21b)

By applying the chain rule we can construct an ‘imaginary-
time Liouvillian’,

∂

∂τ0
=

M∑
k=−M

ωk

[
Pk

∂

∂P−k
+Qk

∂

∂Q−k

]
, (B22)

which, when compared with Eq. (B18) implies that

φL =
2πτ0
β~
+ δL, (B23)

where δL is an arbitrary constant phase shift. Since the Mat-
subara potential is imaginary-time translation invariant, and
thus independent of φL , Eq. (B15) follows from Eq. (A22a).

2. Matsubara integrated absorption intensities

In terms of action-angle coordinates, the Matsubara approx-
imation to the Kubo-transformed ACF is

C̃
[M]
µµ (β; t) = αM

2π~ZM(β)
∑
m,m′

∫
dMJ

∫
dMϕ

× e−β[EM (J)−iΘM (J,ϕ)]µ∗M ,m′(J)µM ,m(J)
× ei(m−m′)·ϕeim·γM (J)t

(B24)
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with

ZM (β) = αM

2π~

∑
m,m′

∫
dM

J

∫
dMϕ e−β[EM (J)−iΘM (J,ϕ)],

(B25)

from which it follows that the energy absorption spectrum is
given by

SM(β;ω) = αM β|E |2
~ZM (β)

∑
m,m′

∫
dMJ

∫
dMϕ

× e−β[EM (J)−iΘM (J,ϕ)]µ∗M ,m′(J)µM ,m(J)

× ei(m−m′)·ϕ [
m · γM (J)

]2
δ
[
ω − m · γM (J)

]
.

(B26)

To partition the spectrum into distinct bands, we must recog-
nise that any term in Eq. (B26) that contributes to the∆nν band
must satisfy m ∈ totM (∆n), such that m·γM(J) = ∆nΩ+O(ε).
Furthermore, conservation of the Matsubara phase ensures
that any Fourier component of eiβΘM (J,ϕ) with non-zero fre-
quency must vanish, giving the additional constraint m − m ∈
totM (0) =⇒ m′ ∈ totM (∆n). It follows that the integrated
intensity is given by

I[M]
∆n

(β) = αM β|E |2
~ZM (β)

∑
m,m′∈totM (∆n)

∫
dMJ

∫
dMϕ

× e−β[EM (J)−iΘM (J,ϕ)]µ∗M ,m′(J)µM ,m(J)

× ei(m−m′)·ϕ [
m · γM (J)

]2
,

(B27)

In the case of a cubic perturbation, we have EM (J) =
E
(0)
M
(J) + O(ε2) as well as ΘM (J,ϕ) = Θ(0)

M
(J,ϕ) + O(ε2),

hence Eq. (B27) can be expanded to second order as

I[M]
∆n

(β) = ε2I
[M]
∆n

(β) + O(ε3), (B28)

where

I
[M]
∆n

(β) = αM β|E |2(∆nΩ)2

~Z
(0)
M
(β)

∑
m,m′∈totM (∆n)

∫
dM

J

∫
dMϕ

× ei(m−m′)·ϕe−β[E
(0)
M
(J)−iΘ(0)

M
(J,ϕ)] lim

ε→0

1

ε2
µ∗M ,m′(J)µM ,m(J)

(B29)

and

Z
(0)
M
(β) = αM

β~Ω

M∏
k=1

4π2

β2
(
Ω2
+ ω2

k

) . (B30)

3. Application to |∆n| = 2 bands

For the cubic perturbation of Eq. (3) with F = 1, the pertur-
bation to the Matsubara potential is

U
(1)
M
(P,Q) = η

6
Q3

0 +
η

2
Q0

M∑
k=1

(
Q2

k +Q2
−k

)
+ . . . , (B31)

which gives

Ũ
(1)
M

(
J(0),ϕ(0))

= U
(1)
M
(P,Q)

=

√
2
(
J (0)

0

)3

9Ω3
sin3 (ϕ(0)0

)

+

√
2J (0)

0

Ω3
sin

(
ϕ
(0)
0

) M∑
k=1

[
J (0)
k

sin2 (ϕ(0)
k

)
+ J (0)

−k sin2 (ϕ(0)−k
) ]

+ . . . ,

(B32)

where ‘. . . ’ has been used to denote a sum of centroid-
independent terms. Following the standard CPT procedure
outlined in Appendix A, we find

J (0)
0 = J0 − εη

√
J0

72Ω5

M∑
k=−M

Jk

×
[
6 sin(ϕ0) − sin(ϕ0 + 2ϕk) + 3 sin(ϕ0 − 2ϕk)

]
+ O(ε2)

(B33a)

ϕ
(0)
0 = ϕ0 −

εη√
288Ω5J0

M∑
k=−M

Jk

×
[
6 cos(ϕ0) − cos(ϕ0 + 2ϕk) + 3 cos(ϕ0 − 2ϕk)

]
+ O(ε2),

(B33b)

which gives Eq. (48).
The intensity of the first overtone (∆n = 2) band is obtained

by substituting Eq. (48) into Eq. (B29). Using the definitions
of (Π,X) from Eq. (46), this leads to Eq. (52). To make this
expression more ‘bead-centric’, we substitute in the definitions
of the bead-like variables (̟, χ) from Eq. (53), and exploit the
cyclic permutational symmetry of the Matsubara distribution
(i.e., invariance under the relabelling l → l + 1) to yield

I
[M]
2ν =

πη2ξ2 |E |2β
72MΩ6

M∑
l=1

1√
det(2πΣ)

∫
d2M
Γ

× exp

{
−1

2
Γ · Σ−1

Γ

}
(̟0 − iΩχ0)2(̟l + iΩχl)2,

(B34)

where

Γ =

(
̟

χ

)
. (B35)

The (complex) covariance matrix is given by

Σ =

(
Ω

2λ iζ
iζT λ

)
, (B36)
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where

λl,l′ =
1

Mβ

M∑
k=−M

Tl,kTl′,k

Ω2
+ ω2

k

=

1
β

M∑
k=−M

1

Ω2
+ ω2

k

cos

[
2πk(l − l ′)

M

] (B37a)

ζl,l′ =
1

Mβ

M∑
k=−M

ωkTl,−kTl′,k

Ω2
+ ω2

k

=

1
β

M∑
k=−M

ωk

Ω2
+ ω2

k

sin

[
2πk(l ′ − l)

M

]
.

(B37b)

Within each summand of Eq. (B34), for l ′ < {0, l} the
only dependence on (̟l′, χl′) lies in the Gaussian distri-
bution function of Γ. We can therefore immediately inte-
grate these variables out to yield the marginal distribution of
Γl = (̟0,̟l, χ0, χl)T, giving

I
[M]
2ν =

πη2ξ2 |E |2β
72MΩ6

M∑
l=1

1√
det(2πΣl)

∫
d4
Γl

× exp

{
−1

2
Γl · Σ−1

l Γl

}
(̟0 − iΩχ0)2(̟l + iΩχl)2,

(B38)

where

Σl =

©­­­­
«

Ω
2λ0,0 Ω

2λ0,l 0 iζ0,l
Ω

2λ0,l Ω
2λl,l −iζ0,l 0

0 −iζ0,l λ0,0 λ0,l

iζ0,l 0 λ0,l λl,l

ª®®®®
¬
. (B39)

Integrating out (̟l, χl), and simplifying using

Ω
2λ0,0 = Ω

2λl,l =
βΩ2

M

M∑
l=1

(
Ωλ0,l + ζ0,l

)2
=

1

β[M] , (B40)

leads to Eq. (54) as required.
This result generalises straightforwardly to multidimen-

sional systems, but the algebra is more cumbersome when
combination and difference bands are considered. The key
result analogous to Eq. (52) that one requires is

I
[M]
νi±νj (β) ∝

(
Ωi ±Ωj

)2
M∑

k=−M

M∑
k′=−M

∫
dFM
Π

∫
dFMX

× e−β[H
(0)
M
(Π,X)−iθM (Π,X)]

×
(
Πi,k − iΩiXi,k

) (
Πj ,k ∓ iΩjXj ,k

)
×

(
Πi,k′ + iΩiXi,k′

) (
Πj ,k′ ± iΩjXj ,k′

)
.

(B41)

To obtain the correct prefactor, one also requires

Ωi +Ωj

β

M∑
k=−M

ΩiΩj + ω
2
k(

Ω
2
i
+ ω2

k

) (
Ω

2
j
+ ω2

k

) = β
[M]
i
Ωi + β

[M]
i
Ωj

β
[M]
i

β
[M]
j
ΩiΩj

,

(B42)

which is analogous to the last equality of Eq. (B40).

Appendix C: Computational details

1. Gas-phase infrared spectra

a. Quantum calculations

The quantum infrared spectrum of gas-phase water plotted
in Fig. 1 was calculated, as in refs. 9 and 25, using Eq. (6) with
a set of eigenstates generated by the DVR3D package of Ten-
nyson and co-workers.55 We employed the PES63 and DMS64

due to Partridge and Schwenke. The quantum spectrum of
gas-phase ammonia in Fig. 2 was obtained directly using the
line list data supplied as supplementary material to ref. 61, cal-
culated using the PES-2 surface and AQZfc DMS described
therein. In both cases, the effects of quantum decoherence
were mimicked by convolving the spectrum with the function

f̃H(ω) =
π sin(wω)

2ω(π2 − w
2ω2)

, (C1)

where w = 0.75 ps. This is equivalent to damping the Kubo-
transformed dipole-derivative ACFs using the Hann window75

fH(t) =
{

cos2 ( πt
2w

)
|t | ≤ w

0 |t | > w.
(C2)

b. Classical calculations

To obtain the classical spectra of gas-phase water and ammo-
nia, plotted respectively in Figs. 1 and 2, the dipole moments of
100 independent molecules were recorded along 1000 Newto-
nian trajectories, each of length 1 ps. Prior to each trajectory,
the molecules were independently thermalised at 300 K by
propagating for an average of 0.1 ps under a local Langevin
thermostat76,77 (OBABO propagator splitting78) with friction
coefficient 10 ps−1. A time step of 0.125 fs was used through-
out. The dipole-derivative ACF was calculated by time aver-
aging over the 105 single-molecule Newtonian trajectories. To
be consistent with the quantum spectra, each ACF was damped
with a Hann window of width w = 0.75 ps prior to Fourier
transformation.

2. Classical infrared spectrum of liquid water

The classical spectrum of liquid water plotted in Fig. 3 was
obtained using the MB-pol PES49–51 and MB-µ DMS17 due
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to Paesani and co-workers. Eight independent cubic simula-
tion cells of side length 18.6428 Å, each containing 216 wa-
ter molecules subject to periodic boundary conditions, were
first equilibrated at a temperature of 298.15 K by propagating
for 250 ps under a global Langevin thermostat77,79 (BAOAB
propagator splitting78) with friction coefficient 10 ps−1. The
dipole-derivative ACF was calculated for 0 ≤ t ≤ 0.6 ps by
time averaging over a 100 ps production run in which each cell
was propagated under the same conditions as for equilibration.
A time step of 0.2 fs was employed throughout, and the ACF
was damped with a Hann window of width w = 0.6 ps prior
to Fourier transformation.

3. Fermi resonance spectra

a. Quantum calculations

To obtain the quantum spectrum included in Figs. 4 and 5,
the Hamiltonian Ĥ of Eq. (64) was diagonalised in the eigen-
basis of the harmonic oscillator Hamiltonian Ĥ(0) of Eq. (65),
truncated so as to include only states for which the three vibra-
tional quantum numbers n1,n2,n3 are less than or equal to 10.
The Kubo-transformed velocity autocorrelation spectrum of
the stretching coordinate, q1, was then evaluated from the en-
ergies and matrix elements of the 50 lowest-energy eigenstates
of Ĥ.

b. Matsubara dynamics calculations

The Matsubara forces were computed analytically as de-
scribed in the supplementary material of ref. 34. To obtain
the spectra plotted in the top panel of Fig. 4, the centroid ve-
locity ÛQ1,0 was recorded along 128000 trajectories of length
10 ps. These were each preceded by propagation for 0.5 ps
with a local Langevin thermostat76,77 attached to each mode
(OBABO propagator splitting78, friction coefficient 0.25 fs−1).
A time step of 0.1 fs was used throughout. The Langevin ther-
mostatting enabled sampling of the strictly positive part of
the Matsubara distribution, e−βHM (P,Q), at 150 K. The phase
factor, however, had to be accounted for explicitly, using

C̃
[M]
Ûq1 Ûq1

(β; t) =

〈
eiβθM (P,Q) ÛQ1,0eLM t ÛQ1,0

〉
M , p.d.〈

exp
{
−β∑

i,k ω
2
k
Q2

i,k
/2

}〉
M , p.d.

(C3)

to approximate the Kubo-transformed velocity ACF, where
〈. . .〉M , p.d. denotes an expectation value according to the
strictly positive part of the Matsubara distribution. The av-
eraging was performed over time as well as initial conditions.
Each ACF was damped with a Gaussian window

fG(t) = exp

{
− t2

2w2

}
(C4)

of width w = 0.5 ps, prior to computing the velocity autocor-
relation spectrum by Fourier transformation.

c. HD Matsubara calculations

The HD Matsubara spectra were obtained in a similar fash-
ion to the pure Matsubara spectra, from the velocity ACF
computed by averaging over 128000 trajectories. However,
in this case the initial phase-space points were sampled from
the (much simpler) HD Matsubara distribution defined in Sec-
tion IV A; the phase is accounted for implicitly (albeit ap-
proximately) within this distribution, so did not need to be
averaged over explicitly as in the pure Matsubara simulations
(see Eq. (C3)). Furthermore, since Matsubara trajectories do
not rigorously conserve the HD distribution, time averaging
could not be performed, hence the ACFs were computed by
averaging over the initial conditions only.

d. Classical dynamics with imitated Matsubara heating

The classical dynamics with Matsubara heating was algo-
rithmically equivalent to HD Matsubara with M set to unity,
except that the sampling of each pair of dynamical variables
was performed at the appropriate Matsubara effective temper-
ature T

[M]
i
= 1/kBβ

[M]
i

(rather than the actual temperature
T = 1/kBβ). Furthermore, because (pi,qi) represent, in this
case, approximations to the dynamical variables of a Matsub-
ara ‘bead’, the resulting spectra had to be scaled by β

[M]
1 /β

relative to those obtained from centroid trajectories (such that
the spectral intensities are comparable to those of HD Matsub-
ara calculations).
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