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Abstract
Photosynthetic microalgae are an attractive source of food, fuel, or nutraceuticals, but commercial production of microalgae 
is limited by low spatial efficiency. In the present study we developed a simple photosynthetic hydrogel system that cultivates 
the green microalga, Marinichlorella kaistiae KAS603, together with a novel strain of the bacteria, Erythrobacter sp. We 
tested the performance of the co-culture in the hydrogel using a combination of chlorophyll-a fluorimetry, microsensing, and 
bio-optical measurements. Our results showed that growth rates in algal–bacterial hydrogels were about threefold enhanced 
compared to hydrogels with algae alone. Chlorophyll-a fluorimetry–based light curves found that electron transport rates 
were enhanced about 20% for algal–bacterial hydrogels compared to algal hydrogels for intermediate irradiance levels. We 
also show that the living hydrogel is stable under different environmental conditions and when exposed to natural seawater. 
Our study provides a potential bio-inspired solution for problems that limit the space-efficient cultivation of microalgae for 
biotechnological applications.

Keywords  Co-culture · Algae-bacteria · Hydrogel · Photosynthesis · Biopolymer · Erythrobacter · Marinichlorella · 
Synthetic consortia

Introduction

Microscopic photosynthesizing algae produce a range 
of high value products including lipids and pigments 
(Borowitzka 2013). In addition, algal biomass is of great 

interest for use as feedstocks in aquaculture and for the 
generation of biofuels (Villarruel-Lopez et al. 2017; Khan 
et al. 2018). However, commercial large-scale production 
of microalgae is still limited by low spatial efficiency and 
associated high production and processing costs (e.g., 
Borowitzka and Vonshak 2017). Algal cultivation techniques 
can generally be divided into open pond systems, closed 
photobioreactors, and biofilm-based systems (Posten 
2009). Open pond systems cultivate algae in raceway ponds 
and have low maintenance cost but generate only limited 
biomass per area (Tan et al. 2020). Photobioreactor systems 
allow for controlled conditions of irradiance, gas flux and 
temperature, and yield higher algal growth efficiencies, 
but have high operation and maintenance costs (Lee 2001; 
Tan et al. 2020). Biofilm-based systems cultivate algae as 
surface-attached biofilms rather than in liquid suspensions. 
Algal biofilm cultivation can lead to reduced operation costs 
due to limited water and energy use, as well as improved 
algal harvesting efficiencies (Ozkan et al. 2012; Berner 
et al. 2015). Biofilm systems also demonstrate greater CO2 
utilization efficiency and reduced harvesting cost (Blanken 
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et al. 2017; Roostaei et al. 2018). These systems, however, 
are also constrained, often relying on sophisticated artificial 
architectures to compete with the efficiency of natural 
systems and are much harder to scale up.

More recently, algae have also been cultivated while 
immobilized in hydrogels (Berner et al. 2015). Hydrogel 
immobilization enables reduced water usage during algal 
cultivation and provides a potential physical barrier against 
bacterial infections (Brenner et al. 2008; Covarrubias et al. 
2012). 3D bioprinting has been used to create different 
hydrogel structures growing a range of microalgal strains 
(Krujatz et al. 2015; Lode et al. 2015; Wangpraseurt et al. 
2020). To optimize light propagation in hydrogels with 
high microalgal densities, coral-inspired biomaterials have 
recently been developed (Wangpraseurt et al. 2020). How-
ever, the cultivation of microalgae in hydrogel-based systems 
still requires further development regarding the exchange 
of gases and metabolites that are essential for microalgal 
growth (Podola et al. 2017).

To overcome diffusion limitation in attached cultivation 
systems, previous efforts have included the development of 
porous substrate-based bioreactors that make use of a porous 
membrane to deliver nutrients and promote gas exchange, 
while the surface of the biofilm is in direct contact with the 
ambient gas phase (Podola et al. 2017). In nature, benthic 
photosynthetic symbiotic organisms (e.g., corals, anemones) 
have faced similar challenges as photosynthesis in thick tissues 
can theoretically become limited by the diffusion-limited 
provision of HCO3

− from the ambient water phase (Schrameyer 
et al. 2014). However, it has been shown that coral animal and 
bacterial respiration promote photosynthesis of their symbiotic 
microalgae, suggesting that the coral host provides essential 
metabolites and nutrients locally to the microalgae (e.g., Kuhl 
et al. 1996; Schrameyer et al. 2014).

In corals, the microbial community performs critical 
functions for the coral holobiont including pathogen protection, 
sulfur, and nitrogen cycling as well as beneficial modulations 
of the host microhabitat (Rosenberg et al. 2009; Ceh et al. 
2013; Krediet et al. 2013). Benefits of bacterial communities 
for an algal host have been documented in free-living algae as 
well (e.g., Kazamia et al. 2012). Some bacteria can provide 
a local supply of essential nutrient compounds required by 
the algae, including nitrogen, inorganic carbon, vitamin B12 
(cobalamin), and growth-promoting hormones (Kouzuma 
and Watanabe 2015). For example, one study estimated that 
50% of algal species are cobalamin auxotrophs, implying a 
reliance on bacterial-produced cobalamin (Croft et al. 2005). 
More generally, symbiotic relationships between microalgae 
and bacteria often employ a mutually beneficial exchange of 
carbon and nitrogen (Thompson et al. 2012; de-Bashan et al. 
2016). Experiments working with the microalgae Chlorella 
in co-culture with a known growth-promoting bacteria in 
alginate beads demonstrated enhanced growth which can be 

utilized for biotechnological applications (Gonzalez and Bashan 
2000). Likewise, Chlorella minutissima was co-cultured with 
Escherichia coli under mixotrophic conditions and resulted 
in enhanced production of biofuel precursors (Higgins and 
VanderGheynst 2014). Accordingly, there is a growing interest 
in exploiting the potential of algal–bacterial co-cultures for 
algal biotechnology (Lian et al. 2021; Sánchez-Zurano et al. 
2020; Padmaperuma et al. 2018; Meyer and Nai 2018).

Here, we aimed to develop a simple gelatin-based hydro-
gel system by combining microalgae and bacteria for space-
efficient microalgal cultivation. We hypothesized that co-
cultivation of algae and bacteria would result in improved 
growth and performance of the algae in hydrogels. For this, 
we chose the green microalga Marinichlorella kaistiae 
KAS603 and screened 14 marine bacterial strains for benefi-
cial effects on algal biomass. Based on these results, we fur-
ther measured the bio-optical properties and photosynthetic 
performance of a synthetic co-culture between M. kaistiae 
KAS603 and a novel strain of Erythrobacter sp. We also 
aimed to evaluate the beneficial effects of the Erythrobacter 
strain on a range of microalgae covering coccolithophorids, 
red algae, and other species of green microalgae. Finally, the 
mechanical stability of our hydrogel system was tested under 
different environmental conditions.

Methods

Experimental approach

To test for beneficial effects of algal–bacterial co-culture, 
we assessed a range of bacterial and algal strains. 
Marinichlorella kaistiae KAS603 (Sánchez-Alvarez et al. 
2017) was used as model algal strain. Marinichlorella 
kaistiae KAS603 is a robust algal strain that is 
morphologically similar to Chlorella and has high lipid 
and biomass production rates (Sánchez-Alvarez et  al. 
2017). Marinichlorella kaistiae KAS603 has been 
successfully grown in 3D bioprinted gelatin-based hydrogels 
(Wangpraseurt et al. 2020). The beneficial impact of 14 
different bacterial strains isolated from Californian coastal 
waters (see Table S1) on M. kaistiae KAS603 growth was 
investigated over 3-day co-culture experiments in gelatin-
based hydrogels (see cultivation methods and conditions 
below for details). These preliminary experiments suggested 
enhanced growth with the strain SIO_La6, closely related 
to Erythrobacter sp. (Table S1), which was then used as 
our bacterial model for co-culture experiments. Finally, 
to test whether these beneficial effects of SIO_La6 were 
transferrable across a diverse range of microalgal taxa 
(including diatoms, red algae, and coccolithophores), 
co-cultures between SIO_La6 and Micromonas sp., 
Porphyridium cruentum, Pleurochrysis carterae, and 
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Amphidinium carterae were also investigated. Co-culture 
experiments with M. kaistiae KAS603 were conducted 
also in liquid culture to assess the relative effect of algae 
immobilization in hydrogels (Fig. S1).

Stock cultures

All bacterial strains were isolated from Californian coastal 
waters off Ellen Browning Scripps Memorial Pier and 
maintained in our bacterial culture collection at Scripps 
Institution of Oceanography. Bacterial stock cultures were 
cultivated in Zobell broth at 25 °C under sterile conditions. 
Bacterial cultures used for hydrogel immobilization were 
harvested during exponential growth in Zobell broth as 
determined via optical density (OD) measurements (Begot 
et al. 1996) and flow cytometry (Gasol and Del Giorgio 
2000). Bacterial cultures were identified by 16S rDNA 
Sanger sequencing (using the primer pair 27F–1492R) to 
determine their closest phylogenetic relations (Table S1). 
Algal stock cultures were grown in artificial seawater 
medium (ASW, Darley and Volcani 1969) at 25 °C under 
a continuous irradiance regime of 150  μmol photons 
m−2 s−1 provided by white LED light panels (AL-H36DS, 
Ray2; Finnex). Microalgae were harvested from liquid 
stock cultures in the exponential growth phase for hydro-
gel immobilization. Cell density was measured using a 
hemocytometer, with three technical replicate counts per 
algal stock sample.

Algal–bacterial hydrogel fabrication and cultivation

Hydrogels were made by using a 10% solution of porcine 
gelatin (type-A; Sigma-Aldrich, USA) in artificial 
seawater (ASW). The solution was prepared by heating the 
gelatin–ASW mixture on a hot plate under continuous stirring 
to 90 °C until it was optically clear. The solution was cooled 
to 30 °C and 2.5 mL of the gel solution was rapidly mixed 
with 2 mL of the algal stock solution (at a concentration of 
1.36 × 107 cells mL−1 for main M. kaistiae experiments) and 
0.5 mL of either sterile Zobell medium (for monoculture 
control gels) or Zobell medium containing a chosen bacterial 
strain (for co-culture gels) (Fig. 1). Bacterial density for 
cultivation experiments was chosen at an OD600 of 0.02. 
We also performed preliminary growth experiments using 
different starting concentrations of microalgal cell density 
(Fig. S2). The solution was vortexed for 30 s to ensure proper 
mixing of algae and bacteria, before it was poured into Petri 
dishes. Gelation was facilitated by keeping the Petri dishes 
at 18 °C for 1 h, which resulted in gels that were ~ 10 mm 
thick. Gels were then cultivated at 25 °C under a continuous 
irradiance regime of 150 μmol photons m−2 s−1 provided by 
white LED light panels (AL-H36DS, Ray2; Finnex). For the 
main M. kaistiae growth experiments, 15 hydrogels were 
fabricated per treatment (monoculture or co-culture), yielding 
a total of 30 hydrogels of which 5 hydrogels were sampled 
on each of 3 experimental days. Additional co-cultivation 
experiments were performed to ensure reproducibility of the 
observed effects (see Supplementary information).

Fig. 1   Development of a 
synthetic co-culture between 
microalgae and Erythrobacter 
sp. in a gelatin-based hydrogel. 
Algae were grown in mono-
culture and in co-culture with 
Erythrobacter sp. both in liquid 
culture and in hydrogel configu-
ration. Arrows indicate potential 
interactions between algae and 
bacteria that were hypothesized 
to enhance algal growth. Micro-
algal photosynthesis generates 
O2 and dissolved organic carbon 
(DOC) that fuels bacterial 
metabolism. In turn, bacterial 
activity provides an inorganic 
carbon source (HCO3

−) for pho-
tosynthesis, vitamins, or growth 
hormones (GH). This synthetic 
co-culture enhances the stabil-
ity of the biopolymer when 
exposed to potential pathogens
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Performance testing

Microalgal cell density

Hydrogels were liquefied by heating to 30 °C on a hot plate. 
The liquid algal suspension was then diluted with ASW and 
the cell density was determined with a hemocytometer (see 
above). The accuracy of this approach was tested using stock 
cultures of known cell density, showing an error of less than 
3% between expected and measured cell densities.

O2 microsensor measurements

Clark-type O2 microsensors (tip size of 25 μm, a 90% response 
time of < 0.5 s and a stirring sensitivity of ∼1%; Unisense A/S, 
Aarhus, Denmark) were used to measure net photosynthesis 
and dark respiration of the algal–bacterial hydrogels as 
described previously (Wangpraseurt et al. 2012). Briefly, 
microsensors were connected to a picoammeter (Unisense, 
Denmark) and operated by an automatic microsensor profiler 
(MU1; Pyroscience GmbH, Germany). Hydrogels were 
placed in a black acrylic flow chamber and flowing seawater 
was supplied at a flow velocity of 0.5 cm s−1 at 25 °C and a 
salinity of 35‰. Microsensors were positioned at the surface 
of the hydrogel by observing the microsensor tip with the 
aid of a dissecting microscope and the use of an automated 
micromanipulator (MU1; Pyroscience GmbH, Germany). 
Steady-state O2 concentration profiles from the hydrogel 
surface through the diffusive boundary layer (DBL) and into 
the mixed turbulent water phase above were performed in 100-
μm steps under an incident photon irradiance of Ed(PAR) = 0 
and 550 μmol photons m−2 s−1. O2 microsensors were linearly 
calibrated from readings at 100% air saturated seawater at 
experimental temperature and using anoxic water (flushed 
with N2). Percent air saturation in seawater at experimental 
temperature and salinity was transformed to O2 concentration 
(μmol O2 L−1) using gas tables (Ramsing and Gundersen 
2011).

Variable chlorophyll a fluorimetry

We used a variable chlorophyll a fluorometer (diving PAM 
II, Walz, Germany) to characterize PS II performance (Baker 
2008). The fiber of the PAM system was mounted on a labo-
ratory stand and directed vertically toward the surface of 
the hydrogels at a fixed distance of 1 cm. Hydrogels were 
dark adapted for at least 30 min before experimental meas-
urements. Rapid light curves (RLC) (Ralph and Gademann 
2005) were performed over a range of 8 irradiances span-
ning 0–1500 μmol photons m−2 s−1 of incident downwelling 
irradiance. For each RLC, the dark-adapted hydrogels were 
incubated at each experimental irradiance regimes for 15 s 
followed by a saturation pulse.

Bio‑optical properties of the hydrogels

Irradiance reflectance of the gels were measured with a 
0.7-mm-wide flat-cut fiber-optic reflectance probe (Ocean 
Optics, USA) with the hydrogels positioned in the black 
acrylic flow-through system described above. The hydrogel 
was illuminated vertically incident by a light source emitting 
broadband white light. Reflectivity was determined with the 
reflectance probe positioned at a distance of 500 μm from 
the hydrogel surface. All reflectivity measurements were 
normalized to the reflectivity of a 10, 20, and 99% white dif-
fusing reflectance standard (Spectralon; Labsphere, USA). 
These measurements occurred under identical configuration 
and distance to light source as on the hydrogel surface but 
were performed in air. Measurements of scalar irradiance 
(i.e., the integral quantum flux from all directions around a 
given point) were measured with fiber-optic microsensors 
(zensor, Denmark) as described previously (Wangpraseurt 
et al. 2012).

Bacterial contamination experiment

To test whether the co-culture with Erythrobacter sp. SIO_
La6 strain would provide protection from other microbes, we 
exposed hydrogels (n = 8 for each treatment for M. kaistiae 
KAS603 and n = 1 per treatment for each Micromonas sp., 
P. cruentum, P. carterae, and A. carterae) to natural unster-
ilized seawater supplied from the Scripps Pier. For these 
tests, 3-day-old hydrogels were incubated with the natural 
seawater for 1.5 h in a beaker under low turbulent flow. The 
gels were then removed, and cultivation in the environmental 
growth room continued as described above. The gels were 
visually examined at every day after exposure and photo-
graphed to assess visual differences, such as noticeable cell 
death, bacterial growth, or hydrogel liquefaction, indicative 
of gelatin-degrading bacteria.

Data analysis  The variable chlorophyll fluorescence data 
was analyzed as described previously (Ralph and Gademann 
2005). Briefly, the maximum quantum yield of PSII was 
calculated as

and the effective quantum yield of PSII was calculated as

where F0 and F describe the minimum and transient fluo-
rescence and Fm′ describes the maximum fluorescence in 
the light adapted state. The electron transport rate was cal-
culated as ETR = ΦPSII × Ed × 0.5 × AF, where Ed is the inci-
dent downwelling irradiance (400–700 nm), 0.5 assumes the 
equal distribution between PSI and PSII, and AF denotes the 

Fv∕Fm =
[

Fm − F
0

]

∕Fm

PSII = ΔF∕Fm’ =
[

Fm’ − F
]

∕Fm
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absorption factor which was assumed to be 0.83 (Ralph and 
Gademann 2005). It is important to note that AF will vary as 
a function of pigment and cell density and thus serves only 
as an approximation (Wangpraseurt et al. 2019). The photo-
synthetic light curves were fitted to the empirical equations 
of Platt and Gallegos (1980), using a Marquardt–Levenberg 
regression algorithm:

where Ps is a scaling factor defined as the maximum poten-
tial rETR, α describes the light use efficiency, i.e., the initial 
slope of the RLC and β characterizes photoinhibition and 
indicates the slope of the RLC where PSII declines. The 
maximum electron transport rate ETRmax and the light inten-
sity at half saturation Ek were calculated as

The fitting procedure was sensitive to initial guesses of 
PS, α, and β, which were adjusted for each curve fitting. 
All fitting was done with custom codes written in Matlab 
(2018b).

Marinichlorella kaistiae KAS603 cell density, Fv/Fm, 
and O2 turnover were analyzed for significant differences 
(α < 0.05) between co-culture and monoculture hydrogels 

P = Ps

(

1 − exp−(�Ed∕Ps)
)

exp−(�Ed∕Ps)

ETRmax = PS(�∕[� + �])(�∕� + �)�∕�

Ek = ETRmax∕�

using unpaired t tests. All statistical results are provided 
in the supplementary information (Table S2).

Results and discussion

Here, we developed a simple hydrogel system for the space-
efficient co-culture of microalgae. We found that a novel 
strain of Erythrobacter sp. (SIO_La6, Fig. 2) isolated from 
Southern California coastal waters (off Scripps Pier) has 
beneficial effects on growth and photosynthetic performance 
of microalgae immobilized in hydrogels.

Cell density differences between treatments

Microalgal cell density was on average 2.3-fold enhanced 
for M. kaistiae KAS603 gels co-cultured with SIO_La6 
(mean = 2.85 × 107 cells mL−1, SD = 5.94 × 106, n = 5) 
compared to monoculture gels (1.18 × 107 cells mL−1, 
SD = 4.06 × 106, n = 5) after 72 h of cultivation (unpaired t 
test, p < 0.01, Fig. 3a). The cell doubling time was 16.75 h for 
co-cultures compared to 33.11 h for monocultures (Fig. 3). 
The beneficial effects of co-culture with Erythrobacter sp. 
SIO_La6 were also evident in liquid culture, although the 
relative growth-stimulating effect was 15% higher in hydrogel 
cultivation (Supplementary Fig. 2). In a stagnant hydrogel, 
gas exchange is likely to become a limiting growth factor, 
while such limitation is unlikely to occur in a liquid mixed 
culture. Thus, the relative enhancement for hydrogel cultures 

Fig. 2   Maximum likelihood 
tree of Alpha-proteobacteria 
sequences closely related to the 
tested isolates (SIO_La6). Ref-
erence sequences from NCBI 
are indicated in italic. Bootstrap 
values (n = 1000) are indicated 
at nodes; scale bar represents 
changes per position
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could suggest that bacterial colonies stimulate gas exchange 
and provide nutrients and/or growth-promoting hormones 
locally within the hydrogel. Indeed, bacteria observed during 
confocal microscopy were observed forming aggregates 
around algal cells (Supplementary Fig. 3). Likewise, it is 
known that different Erythrobacter strains induce aggregation 
of different diatom species (Tran et  al. 2020). Previous 
research into immobilized algae-bacteria co-cultures have 
observed similar formations of aggregates and biofilms, 
which resulted in improved growth and stability (de-Bashan 
et al. 2011, 2016 ). This proximity, in a gel compared to liquid 
culture, may facilitate and/or stabilize the interactions between 
the algae and bacteria for provision of photosynthate from the 
algae and in return growth-enhancing micronutrients (e.g., 
vitamins) and gases (e.g., CO2) from bacteria (Kazamia et al. 
2012; Paerl et al. 2015; Higgins et al. 2016; Helliwell 2017).

Following the successful tests with M. kaistiae KAS603, 
other common microalgae were tested in co-culture with 
SIO_La6. The bacterial co-culture enhanced microalgal 
growth for three of the five microalgal strains compared 
to monoculture controls (Fig.  3b). Cell densities after 
3 days of cultivation were at least twofold higher for the 
coccolithophorid alga P. carterae and the red alga P. 
cruentum when grown in co-culture hydrogels (Fig. 3b). 
Interestingly, cultures that did not perform well in co-culture 
(e.g., Micromonas sp. and A. carterae) also showed limited 
growth when encapsulated in the gelatin-based hydrogel 
in monoculture, suggesting that hydrogel immobilization 
interfered with the growth dynamics of these algae (Fig. 3b). 
This suggests that Micromonas sp. and A. carterae might 
not be suitable candidates for biotechnological applications 
using hydrogel immobilization. Understanding the metabolic 

and molecular mechanisms underlying this beneficial 
interaction is a complex task that would require potential 
metabolomic and proteomic approaches (see, e.g., Kazamia 
et al. 2016; Helliwell et al. 2018) which was beyond the 
scope of the present study. However, it is noteworthy that we 
found growth-enhancing effects of Erythrobacter SIO_LA6 
on vitamin B12–independent algae (M. kaistiae KAS603) 
and vitamin B12–dependent algae (P. carterae, Croft et al. 
2005). This suggests that the beneficial effects are unlikely 
due to vitamin production by Erythrobacter SIO_LA6 and 
rather related to other benefits (e.g., growth hormones or 
gas exchange).

Co‑culture effects on microalgal photosynthesis 
and bio‑optics

Compared to M. kaistiae KAS603 monocultures, O2 
microsensor measurements in co-cultures indicated 4.9-
fold enhancements of net photosynthesis at high light 
(550 μmol photons m−2 s−1) irradiance regimes (Fig. 4a). 
In addition, co-cultures exhibited about 4.3-fold greater 
rates of dark respiration (Fig. 4a). Variable chlorophyll-a 
fluorimetry measurements showed significant enhance-
ments in the maximum quantum yield of PSII (Fv/Fm) for 
co-culture hydrogels compared to monoculture hydrogels 
during 7 days of growth (mean = 0.603, SD = 0.022 vs. 
mean = 0.535, SD = 0.004, respectively; Fig. 4b, unpaired 
t test p = 0.0339). Fv/Fm is a key parameter used to assess 
the healthiness of photosynthesizing microalgae (e.g., 
Baker 2008) and thus suggests that algae in co-culture 
displayed superior photosynthetic capacities. Likewise, 
relative electron transport rates showed clear differences 

Fig. 3   Effect of algal–bacterial hydrogel co-culture on microalgal 
cell density growth. a 3-Day growth dynamics of Marinichlorella 
kaistiae KAS603 in monoculture (light blue) and in co-culture with 
Erythrobacter sp. SIO_La6 (dark blue). Insets show example top 
view images of hydrogels each day. Data are means ± SD, n = 5. b 

Cell density of Pleurochrysis carterae, Porphyridium cruentum, Mic-
romonas sp., and Amphidinium carterae after 8  days of growth in 
monoculture and co-culture. Images show top view images of hydro-
gel after 8 days. Data are means ± SD n = 2. * indicates a significant 
difference between treatments (p < 0.05, unpaired Student’s t test)
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in key photosynthetic parameters including α and ETRmax 
(Fig. 4d–f, Table 1). For instance, at day 3 ETRmax was 
about 71.6% higher for cocultures versus monocultures 
(Fig. 4d–f, Table 1).

Although areal net photosynthetic (Pn) rates were 
strongly enhanced in co-culture, these differences were 
also affected by the greater algal growth in co-culture 
(Fig. 3). However, normalizing Pn rates to the differences 
in biomass still suggests an approximate doubling in net 
photosynthesis in co-culture versus monoculture (compare 
Figs. 3a and 4a). As Erythrobacter spp. are anoxygenic 
phototrophic bacteria and thus does not produce O2 
(Koblizek et al. 2003), such differences strongly suggest 
cell-specific enhancements of photosynthetic activity by 
M. kaistiae KAS603 in the presence of Erythrobacter. 
It is important to note that these measurements include 
respiratory activity by the bacteria, further strengthening 
the argument of enhanced algal photosynthesis in 

co-culture. PAM measurements can detect potential 
electron transport by Eyrythrobacter sp. (Chandaravithoon 
et  al. 2020); however, we did not find any measurable 
quantum yield of PSII from SIO_LA6 in monoculture (Fv/
Fm = 0, data not shown). In addition, diffuse reflectance 
measurements did not show characteristic absorption 
peaks of bacteriochlorophyll a at ~ 750 nm (Fig. 5, Yurkov 
and Beatty 1998), suggesting that pigment synthesis and 
photosynthetic electron transport might be low by this 
Erythrobacter strain. In turn, reflectance in the near-
infrared region (~ 750 nm) was about 2.5-fold enhanced 
which could be indicative of the production of light-
scattering microbial extracellular polymeric substances 
(EPS; Flemming and Wingender 2001). Such EPS has 
previously been shown to scatter light and could potentially 
enhance the internal actinic irradiance intensity which 
would further promote photosynthesis (Decho et al. 2003; 
Fisher et al. 2019). Clearly, there are various potential 

Fig. 4   Photosynthetic perfor-
mance of hydrogels in mono- 
and co-culture. a O2 turnover 
(nmol O2 cm-2 s-1) based on 
O2 microsensor measurements 
of the linear O2 flux from the 
surface into the diffusive bound-
ary layer performed at 0 (dark 
respiration) and at 550 µmol 
photons m−2 s−1 (net photosyn-
thesis). b Maximum quantum 
yield of PSII (Fv/Fm) and 
electron transport rates (ETR) 
at c day 2, d day 3, and e day 
7 of algal cultivation. Data are 
means ± SD (n = 4 for panel a 
and n = 3 for panels b–e). Note 
that y-axis scale was adjusted 
for clarity in panels c–e. * 
indicates a significant difference 
between treatments (p < 0.05, 
unpaired Student’s t test)

Table 1   Photosynthetic 
performance of Marinichlorella 
kaistiae KAS603 grown in the 
hydrogel alone (monoculture) or 
together with Erythrobacter sp. 
SIO_La6 (co-culture)

Parameters are derived from the best fit from all replicate measurements (n = 3, lines in Fig. 4c–e)

Day 2 Day3 Day7

Monoculture Co-culture Monoculture Co-culture Monoculture Co-culture

α 0.07 0.10 0.17 0.21 0.21 0.20
β 0.04 0.015 0.03 0.034 0.06 0.05
ETRmax 11.64 17.03 30.59 52.30 45.26 52.5
Ek 158 169 180 245 220 261
R2 0.8 0.90 0.91 0.93 0.93 0.94
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mechanisms underlying the enhanced photosynthetic 
performance of the co-culture hydrogels and a detailed 
understanding of the mechanisms was beyond the scope 
of this first study. However, taken together, our results 
indicate that Erythrobacter sp. SIO_La6 enhances M. 
kaistiae KAS603 photosynthesis (Table 1) which could 
explain the enhanced algal biomass in co-culture.

Contamination resistance in hydrogels

A potential key problem in cultivating microalgae in hydrogels 
is that most biopolymers are readily degraded by various 
bacterial communities (Pathak et al. 2017). We hypothesized 
that co-cultivation might provide protection from such 
degradation by occupying microbial habitats within the 
hydrogel and potentially producing antibiotics. Such concept 
is analogous to the role of the microbial community in the 
coral mucus, which protects from opportunistic microbes 
(Shnit-Orland and Kushmaro 2009). Following exposure 
to natural seawater, co-culture gels remained viable and no 
visible degradation of the gelatin matrix was noticeable even 
after 7 days of cultivation (Fig. 6a–e). However, monocultures 

showed clear degradation and liquefaction of the polymer 
matrix within 24 h (Fig. 6a–e). Likewise, previous experiments 
using Chlorella–bacteria co-cultures in alginate beads 
found reduced contamination by foreign bacteria from the 
environment and concluded that co-cultured bacteria provide 
a physical barrier (Covarrubias et al. 2012). Here, it is likely 
that DOC produced by the algae might enhance virulence 
factors (present in SIO_La6 genomes, J. Dinasquet personal 
communication) and toxin production as observed in other 
Erythrobacter species in the presence of algal DOC (Cárdenas 
et al. 2018). This induced pathogenicity might have antagonistic 
effects against environmental contaminants. Although the 
mechanisms warrant further investigation, these initial 
results suggest protective effects of our synthetic co-culture 
hydrogel from external microbes. Thus, co-cultivation with 
Erythrobacter SIO_LA6 stabilizes the biopolymer matrix 
and reduces the chance for bacterial degradation. This could 
therefore reduce the need for costly measures to prevent 
invasion by adventitious bacteria or other predators that might 
be attracted by the breakdown products. Given that surface-
associated/biofilm-based cultivation methods are increasing 
in various algal biotechnological applications, our study 

Fig. 5   Hydrogel diffuse reflec-
tance (%) after a day 1, b day 2, 
and c day 3 of algal cultivation. 
Data are means from 3 hydro-
gels, error bars are omitted for 
clarity (SD was less than 5%)

Fig. 6   Biopolymer stability after exposure to natural seawater. Images 
show top view of hydrogels after 7  days of the seawater exposure 
experiment. Monocultures (top panels, light blue) are liquefied while 

co-cultures remain solid (bottom panels, dark blue) for a Marinichlo-
rella kaistiae KAS603, b Porphyridium cruentum, c Pleurochrysis 
carterae, d Micromonas sp., and e Amphidinium carterae 
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potentially provides a simple and cheap cultivation system 
with minimal maintenance requirements. This approach can be 
further developed as a viable bio-inspired alternative to costly 
antibiotic treatments that are currently used in such cultivation 
approaches (Berner et al. 2015).

Conclusions

This study developed a simple hydrogel system for microalgal 
cultivation in co-culture with a novel strain of Erythrobacter sp. 
Our findings demonstrate enhanced photosynthetic activity and 
growth rates of microalgae in co-culture when immobilized in 
our hydrogel system. We further show that our gelatin-based 
hydrogel is easy to fabricate, requires low maintenance, and 
remains stable when the co-culture is exposed to natural con-
taminants. Our study suggests that co-cultivation in hydrogels of 
microalgae with Erythrobacter sp. enhances microalgal growth 
and density, and could potentially reduce the need for costly 
antibiotics. We conclude that hydrogel algal–bacterial co-culture 
is a simple, bio-inspired approach that can be further developed 
to solve some problems that currently limit microalgal cultiva-
tion. These improvements compared to conventional cultivation 
methods demonstrate potential practical applications of our find-
ings toward more efficient micro-algal cultivation.
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