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Summary

� Soil fungi establish mutualistic interactions with the roots of most vascular land plants.

Arbuscular mycorrhizal (AM) fungi are among the most extensively characterised mycobionts

to date. Current approaches to quantifying the extent of root colonisation and the abundance

of hyphal structures in mutant roots rely on staining and human scoring involving simple yet

repetitive tasks which are prone to variation between experimenters.
� We developed Automatic Mycorrhiza Finder (AMFinder) which allows for automatic com-

puter vision-based identification and quantification of AM fungal colonisation and intraradical

hyphal structures on ink-stained root images using convolutional neural networks.
� AMFinder delivered high-confidence predictions on image datasets of roots of multiple

plant hosts (Nicotiana benthamiana, Medicago truncatula, Lotus japonicus, Oryza sativa)

and captured the altered colonisation in ram1-1, str, and smax1 mutants. A streamlined pro-

tocol for sample preparation and imaging allowed us to quantify mycobionts from the genera

Rhizophagus, Claroideoglomus, Rhizoglomus and Funneliformis via flatbed scanning or digi-

tal microscopy, including dynamic increases in colonisation in whole root systems over time.
� AMFinder adapts to a wide array of experimental conditions. It enables accurate, repro-

ducible analyses of plant root systems and will support better documentation of AM fungal

colonisation analyses. AMFinder can be accessed at https://github.com/SchornacklabSLCU/

amfinder.

Introduction

Soil fungi establish mutualistic interactions with the roots of
> 85% of vascular land plants (Brundrett & Tedersoo, 2018).
These interactions, termed mycorrhizas, lead either to the for-
mation of a dense hyphal sheath surrounding the root surface
(ectomycorrhizas) or to fungal hyphae penetrating host tissues
(endomycorrhizas) (Brundrett, 2007). The best-characterized
type of endomycorrhiza, called arbuscular mycorrhiza (AM),
involves species from the subphylum Glomeromycotina
(Schüßler et al., 2001; Spatafora et al., 2016). Arbuscular myc-
orrhizal fungal hyphae grow toward plant roots following the
exchange of diffusible chemical cues (Luginbuehl & Oldroyd,
2017). At root surface penetration points, hyphae differentiate
into swollen or branched structures termed hyphopodia. Fol-
lowing entry and crossing of the root epidermis, hyphae spread
between cortical cells (Arum-type colonization) or via intracel-
lular passages of cortical cells (Paris-type colonization)

(Dickson, 2004). The differentiation of highly branched intra-
cellular exchange structures, the arbuscules, accompanies
hyphal growth and enables a reciprocal transfer of nutrients
between symbionts (Luginbuehl & Oldroyd, 2017). Post-
arbuscular development includes the differentiation of vesicles
and spores. While these successive differentiation events reflect
a precise morphogenetic program, the whole hyphal network is
not synchronized. As a result, the various types of intraradical
hyphal structures occur simultaneously inside plant roots
(Montero et al., 2019).

Rhizophagus irregularis (formerly Glomus intraradices) is one of
the most extensively characterised mycobionts in endomycorrhiza
research. To date, genetic manipulation of R. irregularis remains
challenging (Helber & Requena, 2008) and the main advances in
AM fungal symbiosis research relate to the experimentally more
tractable plant hosts. The extent of root colonisation and the rela-
tive abundance of intraradical hyphal structures in mutant roots
are essential parameters for characterising host genes that underlie
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mycorrhiza establishment and accommodation (Montero et al.,
2019). Mycorrhiza-responsive host genes facilitate the molecular
quantification of fungal colonisation. For instance, expression of
the Medicago truncatula Phosphate transporter 4 (MtPT4) gene is
limited to the root tip in the absence of mycorrhiza (Volpe et al.,
2016), while cells with arbuscules express MtPT4 to enable plant
acquisition of inorganic phosphate (Harrison et al., 2002; Maeda
et al., 2006; Javot et al., 2007). Likewise, the abundance of tran-
scripts encoding M. truncatula Blue Copper-Binding Protein 1
and Lotus japonicus apoplastic subtilase SbtM correlate with stage
transitions during arbuscule development (Hohnjec et al., 2005;
Takeda et al., 2009; Parádi et al., 2010). Complementary to
molecular methods and independent of gene sequence knowledge
is the visual diagnosis of AM fungal colonisation. It involves dif-
ferential staining of fungal cell walls (Vierheilig et al., 1998,
2005; Hulse, 2018) followed by random sampling and counting
using a grid-intersect method (Giovannetti & Mosse, 1980). This
method is considered a standard in mycorrhiza research (Sun &
Tang, 2012).

Deep learning encompasses an extensive class of computational
models that learn to extract information from raw data at multi-
ple levels of abstraction, thereby mimicking how the human
brain perceives and understands information (Voulodimos et al.,
2018). In supervised learning problems, where example data
labelled with correct outputs are available, these models can be
iteratively improved to minimise discrepancies between correct
and model-predicted outputs considering all possible interfering
factors (O’Mahony et al., 2020). With the increase in computing
power over recent years, deep learning has fostered tremendous
data analysis advances. Computer vision is one of the most iconic
examples, with the development of convolutional neural net-
works (CNNs), a class of deep learning methods inspired by
models of the visual system’s structure (LeCun et al., 1998). A
basic image classification CNN begins with a stack of convolu-
tional and pooling layers, each providing the input to the next;
these allow detection of increasingly large and complex features
in the input image whilst preserving the grid-like nature of the
input (Voulodimos et al., 2018; Dhillon & Verma, 2020). This
is followed by one or more fully connected layers of neurons
which take the resulting feature map and implement the high-
level reasoning needed to classify the image. Convolutional neu-
ral networks underlie breakthrough advances in diverse techno-
logical and biomedical domains including face recognition,
object detection, diagnostic imaging, and self-driving cars (Mat-
sugu et al., 2003; Szarvas et al., 2005; Bojarski et al., 2016;
Yamashita et al., 2018). Convolutional neural networks also ben-
efit botany by enabling the identification of flowers (Liu et al.,
2017) and ornamental plants (Sun et al., 2017), while CNN-
based plant pathology diagnostic tools identify crop diseases
based on leaf symptoms (Mohanty et al., 2016; Ferentinos, 2018;
Thapa et al., 2020).

We took advantage of CNNs to develop the Automatic Myc-
orrhiza Finder (AMFinder), an automatic, user-supervised tool
suite for in silico analysis of AM fungal colonisation and recogni-
tion of intraradical hyphal structures. Using AMFinder, we quan-
tified fungal colonisation dynamics on whole Nicotiana

benthamiana root systems using low-resolution, flatbed scanner-
acquired images of ink-stained roots. AMFinder accurately quan-
tified changes in the extent of R. irregularis colonisation in
M. truncatula ram1-1, str, and Oryza sativa smax1 plant mutants
compared to their wild-type lines. Moreover, AMFinder robustly
identified colonised root sections and intraradical hyphal struc-
tures in several plant species commonly used in mycorrhiza
research, including M. truncatula, L. japonicus, and O. sativa,
and is compatible with the AM fungi Claroideoglomus claroideum,
Rhizoglomus microaggregatum, Funneliformis geosporum and Fun-
neliformis mosseae. We developed a command-line tool paired
with a standalone graphical browser to enable efficient browsing
of large images and manual curation of computer predictions.
Overall, our work provides a framework for reproducible auto-
mated phenotyping of AM fungal colonisation of plant roots.

Materials and Methods

Plant material

The N. benthamiana line used here is a laboratory cultivar
obtained from The Sainsbury Laboratory, Norwich, UK, origi-
nating from Australia (Bally et al., 2018). M. truncatula R108
seeds were provided by Giles Oldroyd (The Sainsbury Labora-
tory). L. japonicus cv Gifu seeds were provided by Simona Radu-
toiu (Aarhus University, Denmark). The rice (O. sativa subsp.
japonica) plant material has been described elsewhere (Choi et al.,
2020).

Seed germination

Nicotiana benthamiana seeds were germinated on Levington F2
compost (ICL, Ipswich, UK) for 1 wk at 24°C with a 16 h : 18
h, light : dark photoperiod. M. truncatula seeds were scarified in
sulphuric acid for 5 min, rinsed in sterile water and surface-
sterilized in bleach for 5 min. Seeds were then soaked in water
for 30 min and stratified for 3 d at 4°C in the dark. L. japonicus
seeds were scarified with sandpaper, surface-sterilized in bleach
for 15 min and soaked overnight in water at 4°C. Germination
was induced at 20°C. O. sativa seed germination was described
elsewhere (Choi et al., 2020).

Growth conditions for arbuscular mycorrhizal colonisation

One-week-old seedlings were transferred to 6 × 5 cellular trays
containing silver sand supplemented with a 1 : 10 volume of AM
fungal crude inoculum and grown at 24°C with a 16 h : 8 h,
light : dark photoperiod. R. irregularis, C. claroideum and
F. geosporum crude inocula were obtained from PlantWorks (Sit-
tingbourne, UK). Funneliformis mosseae crude inoculum was
obtained from MycAgro (Bretenière, France). N. benthamiana
plants were watered with a low-phosphate Long Ashton nutrient
solution (Hewitt, 1966), while milliQ (Merck Millipore, Wat-
ford, UK) water was used for L. japonicus and M. truncatula
plants. O. sativa growth conditions and AM colonisation condi-
tions were described elsewhere (Choi et al., 2020). Plant roots
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were harvested at either 4 or 6 wk post-inoculation (wpi) and
directly used for staining or total mRNA extraction.

Fungal staining

A modified ink-vinegar method (Vierheilig et al., 1998) was used
to stain fungal structures within plant roots. Briefly, roots from
4- and 6-wk-old plants were incubated in 10% (w/v) potassium
hydroxide (KOH) for 10 min at 95°C and rinsed in 5% (v/v)
acetic acid before staining in staining solution (5% (v/v) Sheaffer
Skrip black ink, 5% (v/v) acetic acid) (A. T. Cross Co.,
Providence, RI, USA) for 10 min at 95°C. Stained roots were
rinsed in distilled water, followed by clearing in ClearSee (Kuri-
hara et al., 2015) for 1 min (Supporting Information Fig. S1).
Cleared roots were mounted in a glycerol-containing mounting
medium (20% (v/v) glycerol, 50 mM Tris–HCl pH 7.5, 0.1%
(v/v) Tween-20).

Scanning and bright field imaging

Low-magnification images of ink-stained roots were acquired
with an Epson Perfection flatbed scanner (Epson UK, Hemel
Hempstead, UK) using default settings and a resolution of 3200
dots per inch (Fig. S2). High-magnification images were
acquired with a VHX-5000 digital microscope (Keyence, Milton
Keynes, UK) equipped with a ×50–200 zoom lens set to ×200
magnification, using transillumination mode and focus stacking.
Images of M. truncatula arbuscules were obtained with an Axio
Imager M2 (Zeiss) microscope equipped with a ×64 numerical
aperture (NA) 1.4 oil immersion objective lens using differential
interference contrast illumination.

Quantitative reverse-transcription polymerase chain
reaction (qRT-PCR)

Total RNA was extracted from 100 mg root material using an
RNeasy Mini Kit (Qiagen) according to the manufacturer’s
instructions. Quality was assessed by electrophoresis on an
agarose gel. One microgram was reverse transcribed to generate
first-strand complementary DNA (cDNA) using an iScript
cDNA Synthesis Kit (Bio-Rad). Quantitative reverse-
transcription polymerase chain reaction experiments were per-
formed with 2.5 μl of a 1 : 20 dilution of first-strand cDNA and
LightCycler 480 SYBR Green I Master mix, according to the
manufacturer’s instructions (Roche). Gene-specific oligonu-
cleotides were designed using the BATCHPRIMER3 software (You et
al., 2008), and their specificity was validated by analysing
dissociation curves after each run. Genes encoding L23
(Niben101Scf01444g02009) and FBOX (Niben101Scf04495g02005)
were selected as constitutive internal controls for N. benthamiana
(Liu et al., 2012). Primers for transcripts encoding RiEF1a and
NbBCP1b (Niben101Scf07438g04015.1) are listed in Table S1.
Six biological replicates of the entire experiment were performed.
Gene expression was normalised with respect to constitutively
expressed internal controls (Vandesompele et al., 2002) and plot-
ted using R (https://www.r-project.org/).

Software design

Implementation AMFinder implements a semi-automatic pipeline
for quantification of fungal colonisation and intraradical hyphal
structures in root pictures. It comprises a command-line program
(amf) for root image analysis and a standalone interface (amf-
browser) for user supervision and validation of amf predictions
(Fig. 1). amf is written in PYTHON (https://www.python.org/)
(van Rossum & Drake, 2009; Srinath, 2017) and uses the widely
used TENSORFLOW (https://www.tensorflow.org/) and KERAS

(https://keras.io/) machine learning libraries (Chollet, 2015;
Abadi et al., 2016). amfbrowser is written in OCAML (https://oca
ml.org/) (Leroy et al., 2020) using the 2D graphics library CAIRO

(https://www.cairographics.org/) and the cross-platform widget
toolkit GTK (https://www.gtk.org/). Both programs communi-
cate through a standard ZIP archive file that stores amf probabili-
ties, user annotations, and image settings. AMFinder deploys on
Microsoft WINDOWS, MACOS and GNU/LINUX.

Analysis pipeline The AMFinder pipeline consists of three or
five steps depending on image resolution. First, image segmenta-
tion is performed by amf during an initial pre-processing step.
Images are divided into square tiles using a user-defined tile size
depending on image magnification and resolution (Fig. 1a).
Next, tiles are analysed individually to label colonised root seg-
ments (Fig. 1a). The third step of the analysis consists of the
user-supervised conversion of amf predictions (i.e. probabilities)
to annotations using amfbrowser (Fig. 1a,b). If resolution allows,
a second round of amf predictions can be achieved to assess the
occurrence of intraradical hyphal structures on colonised tiles
only. As for the first round of predictions, computer-generated
probabilities are then converted to annotations under user super-
vision using amfbrowser (Fig. 1a,b).

Deep learning

Classifier design Identifying AM fungal colonisation and
intraradical hyphal structures on images of stained roots consti-
tutes a computer vision problem that is efficiently solved by
CNNs. AMFinder implements two independent CNN-based
classifiers to predict colonisation (CNN1) and intraradical hyphal
structures (CNN2) (Fig. S3). As the features we are interested in
are mainly small, local structures, CNN1 was chosen to be a
fairly shallow network. It comprises four blocks of 3 × 3 filters
(convolutions) interleaved with size-reduction layers (maximum
pooling) (Fig. S3a), followed by a classifier made of three fully
connected layers which compute the probabilities of each tile
belonging to the mutually exclusive classes ‘colonised root sec-
tion’ (M+), ‘noncolonised root section’ (M−), and ‘background/
not a root/other’ (Figs 1a, S3b).

The CNN2 classifier predicts the occurrence of arbuscules
(A), vesicles (V), hyphopodia (H), and intraradical hyphae
(IH) on tiles labeled as ‘colonised root section’ (M+) during
CNN1 analysis. Its architecture is essentially the same as that
of CNN1 (Fig. S3a). However, the probability that each dif-
ferent type of intraradical hyphal structure is present is
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computed by a separate stack of three fully connected layers
atop the convolutional and pooling layers (Fig. S3c). This
design was chosen to facilitate future extensions of AMFinder,
for instance to predict other types of structures (e.g. spores) or
variations of a given structure (e.g. different degrees of arbus-
cule branching), by allowing additional expressive power to be
quickly added to the network.

Datasets The CNN1 training dataset comprised 32 images of
ink-stained, ClearSee-treated N. benthamiana roots colonised

with R. irregularis, acquired using either a flatbed scanner (five
images) or a digital microscope (27 images), yielding 17 5105
tiles annotated as follows: 15 364 tiles belonged to the ‘colonised
root section’ annotation class, 19 455 tiles corresponded to non-
colonised roots, and 140 286 tiles consisted of background, small
debris, and air bubbles (Table S2).

The CNN2 training dataset consisted of 55 high-resolution
images of colonised N. benthamiana roots prepared as described
in the earlier section. It comprised 20 564, 16 420, and 25 077
tiles containing arbuscules, vesicles and intraradical hyphae,

(a)

(b)

Fig. 1 AMFinder enables a semi-automated, user-supervised analysis of arbuscular mycorrhizal fungal colonisation in silico. (a) AMFinder uses a two-stage
prediction pipeline for image annotation. First, input images are split into tiles and processed by amf neural network 1 (CNN1) to identify colonised root
sections. Computer predictions are displayed as pie charts and are converted to annotations under user supervision. If resolution allows, tiles corresponding
to colonised areas can be further analysed by amf CNN2 to identify intraradical hyphal structures. The probabilities of occurrence of the different structures
are shown in a radar plot. (b) Representative screenshot of an amfbrowser annotation session. (1) Buttons to switch the display between prediction stages.
(2) Clickable buttons to define the annotations present in the active tile. (3) Magnified view of the active tile (red square) and eight surrounding tiles. (4)
Annotation mosaic overview. (5) Layer toolbar to filter the display. Numbers indicate annotation counts for the whole image. (6) Prediction toolbar to load
predictions, fix ambiguous cases and generate annotations. (7) Export functions.
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respectively. Only 508 tiles contained hyphopodia, preventing us
from achieving efficient hyphopodia training due to the scarcity
of this hyphal structure (Table S3).

A bootstrap method (a highly simplified type of uncertainty
sampling as used in active learning) was used to annotate images.
First, 10 images were manually annotated through amfbrowser
and used to train a development (pre-alpha) version of AMFinder
CNNs. Trained CNNs were then used to annotate the remaining
images. Computer predictions were individually inspected
through amfbrowser to correct certain low-confidence predic-
tions (namely those with all network outputs < 0.5).

Datasets were randomly split into two subsets for training and
validation in an 85 : 15 ratio. When data augmentation was
used, the tiles in the training set were augmented by randomly
applying the following modifications: horizontal flips, vertical
flips, brightness adjustment (�25%), colour inversion (image
negation), desaturation (to create a grayscale image), or random
adjustment of hue (rotating colours around a colour wheel).

An independent test set was used for independent assessment
of CNN capabilities (Table S4). It consisted of 20 manually
annotated images of 81 tiles each, acquired with either a flatbed
scanner (10 images, used with CNN1 only) or a digital micro-
scope (10 images, used for both CNNs).

Classifier parameters and training Both classifiers were trained
for 100 epochs (i.e. complete training cycles) with a batch size of
32 during both the initial bootstrapping stage described in the
previous paragraph and the main training stage. For optimal
training, background over-representation was compensated for
by randomly removing excess background tiles. Training weights
were assigned based on tile count in each annotation class to
account for any residual imbalance. Consistent with their respec-
tive output, categorical cross-entropy was used as the CNN1 loss
function, while binary cross-entropy was used for each CNN2
classifier (Gordon-Rodriguez et al., 2020). To prevent overfit-
ting, an early stopping mechanism was used to prematurely ter-
minate training and to restore the best-performing model
parameters if the loss did not decrease for 12 training cycles in a
row. Both classifiers relied on the Adam optimizer (Kingma &
Ba, 2015) with an initial learning rate of 0.001, which was expo-
nentially decayed with a factor of 0.9. In addition, learning rate
was further decreased to one fifth if the loss did not decrease for
two successive epochs, until it reached a minimum rate of 10−6.
AMFinder training was achieved on a High-Performance Com-
puting (HPC) system running Linux Ubuntu, using 10 cores and
20 Gb RAM.

Classifier evaluation Three parameters were determined to eval-
uate the classifier results. The accuracy is given by the following
relation:

Accuracy¼ TPþTN

TPþFPþTNþFN

where TP (true positive rate) indicates accurate positive identifi-
cations (e.g. a tile containing intraradical hyphal structure is

identified as colonised), TN (true negative rate) indicates accurate
negative identifications (e.g. a tile containing root tissues only is
identified correctly as noncolonised), FP (false positive rate) indi-
cates that the observation is different but predicted as true (e.g. a
noncolonised root tile is identified as colonised), and FN (false
negative rate) indicates that a true observation is predicted to be
different (e.g. a colonised root tile is identified as noncolonised).
Accuracy counts all kinds of errors with the same costs and classi-
fiers were thus further analysed using sensitivity and specificity:

Sensitivity¼ TP

TPþFN
Specificity¼ TN

TNþFP

A high sensitivity indicates that the annotation class is correctly
recognised (i.e. there are few false negatives), while high speci-
ficity indicates that a high number of tiles not labelled with a
given annotation class x indeed do not belong to class x (i.e. there
are few false positives).

Results

AMFinder robustly identifies intraradical structures in AM
fungi

Convolutional neural network-based classifiers require training to
recognise the desired image classes. We trained the AMFinder
CNNs using images of ink-stained roots of N. benthamiana
plants inoculated with R. irregularis (Fig. 2a,b; Tables 1, 2). To
improve CNN generalisation and reduce overfitting, we indepen-
dently trained CNNs with augmented data (Fig. 2c,d; Tables 1,
2). We then assessed the performance of the CNNs on an inde-
pendent test dataset (Tables 1, 2, S4). CNN1 labelled colonised
(M+) and noncolonised (M−) root sections, and background
(Other) with an overall accuracy of 97% (Fig. 2a,b; Table 1).
The classifier performed similarly on low- (Fig. 2a) and high-
magnification (Fig. 2b) images. Training on augmented data
(CNN1v2) reduced the overall performance of the network to
94% when evaluated on ink-stained images (Table 1). However,
CNN1v2 was able to accurately predict colonisation on grayscale
and inverted images (Fig 2d), suggesting network generalisation
was improved compared to CNN1v1.

CNN2 classifiers accurately identified intraradical hyphal
structures on high-magnification images (Figs 2b, S4; Table 2).
The overall CNN2 performance was 94% but dropped to 81%
when data augmentation was active (Table 2), suggesting this
method did not improve CNN2 generalisation.

To gain more insights into AMFinder performance, we gener-
ated CNN1 confusion matrices and extracted representative sets
of mispredicted tiles (Figs S4, S5). The most frequent type of
CNN1 misprediction consisted of ‘colonised root sections’ (M+)
that were incorrectly identified as ‘noncolonised root sections’
(M−) (Fig. S4a,b). These tiles contained low-contrasted fungal
structures (Fig. S4a,c). The presence of extraradical hyphae was
an additional source of mispredictions (Fig. S4a,c). We then
repeated the analysis with CNN2 classifiers (Fig. S5). As implied
by the sensitivity and specificity results (Table 2), most CNN2v1
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mispredictions consisted of false positives, such as vesicles or
intraradical hyphae predicted in tiles not containing these struc-
tures, and confusion between arbuscules and vesicles (Fig. S5a,c).

CNN2 training on augmented data (CNN2v2) triggered the
same mispredictions, but also increased the proportion of false
negatives (nondetected structures), in particular truncated

(a) (b)

(c) (d)

Fig. 2 AMFinder accurately labels Rhizophagus irregularis colonisation and intraradical hyphal structures in Nicotiana benthamiana roots. (a) Schematic
view of neural network 1 (CNN1) predictions on a low-resolution image of ink-stained N. benthamiana roots acquired with a flatbed scanner. (b)
Schematic view of CNN1 (left) and CNN2 (right) predictions on a high-resolution image of ink-stained N. benthamiana roots acquired with a digital
microscope. (c) Examples of augmented tiles used for CNN1 and CNN2 training. (d) Comparison of CNN1 and CNN2 performance on images of ink-
stained N. benthamiana roots colonised with R. irregularis, either unaltered, desaturated (grayscale), or inverted. Mispredictions (red asterisks) were
manually corrected using amfbrowser. Arrowheads indicate the direction of AMFinder processing. Bars: (a) 100 μm; (b, d) 50 μm.

Table 1 CNN1 performance assessed on the test set.

Network

Data augmentation

Accuracy (%) Sensitivity (%) Specificity (%)

M+ M− Other M+ M− Other M+ M− Other

CNN1v1 No 98 96 98 94 99 95 100 95 100
CNN1v2 Yes 94 91 97 86 86 96 98 92 98

M+, colonised root sections; M−, noncolonised root sections; Other, background and nonroot sections (dusts, air bubbles, etc.).
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arbuscule or vesicle shapes occurring at tile edges, and low-
contrasted intraradical hyphae (Fig. S5b,c).

CNN1 consistently labels fungal colonisation of N. benthami-
ana roots irrespective of the image resolution and can annotate
highly dissimilar image datasets, suggesting it may be compatible
with a wide range of acquisition devices and staining techniques.
CNN2 enables a detailed analysis of fungal hyphal structures,
suggesting it may be used to monitor intraradical hyphal struc-
ture abundance within host roots. The AMFinder graphical inter-
face allows users to inspect computer predictions and correct
mispredictions to work around the limitations of tile-based image
segmentation. Thus, AMFinder can robustly identify AM fungal
colonisation and intraradical structures.

AMFinder performs consistently on multiple host model
species

A wide range of plants is used in endomycorrhiza research,
including legumes and monocot species with various root sizes
and morphology. We assessed the suitability of AMFinder pre-
trained models trained on N. benthamiana root images to pre-
dict AM fungal colonisation and intraradical hyphal structures
on colonised root images from M. truncatula ecotype R108
(Fig. 3a), L. japonicus cv Gifu (Fig. 3b), and O. sativa cv Nip-
ponbare (Fig. 3c). The image contrast of ClearSee-treated
L. japonicus and M. truncatula roots was similar to N. ben-
thamiana. Conversely, large lateral roots of O. sativa showed
higher staining background and were more challenging to
destain (Fig. 3c). AMFinder correctly identified roots and back-
ground in the tested images, with colonised and noncolonised
root areas being accurately resolved (Fig. 3a–c), including in
cases where colonisation was restricted to inner cortical cell files
(Fig. 3b). Overall, CNN1 accuracy reached 97% (Fig. 3; Table
S5). Two mispredicted tiles were manually edited with amf-
browser (Fig. 3b). We then used pre-trained CNN2 to identify
and label intraradical hyphal structures (Fig. 3a–c). CNN2 cor-
rectly identified arbuscules, vesicles, and intraradical hyphae
within roots of the three host plants, reaching an overall accu-
racy of 90% (excluding hyphopodia) (Fig. 3; Table S6).
Together, these findings suggest AMFinder is compatible with
multiple host plants. Roots with high staining background, such
as O. sativa large lateral roots, may require prolonged destaining
for optimal analysis, or specific refinement of AMFinder pre-
trained models.

AMFinder is compatible with multiple Glomeraceae species

More than 100 AM fungal species have been reported (Chen et
al., 2018). To determine whether AMFinder pre-trained models
are compatible with other fungal mycobionts, we analysed roots
from N. benthamiana plants colonised with different Glomer-
aceae species (Fig. 4). Colonised and noncolonised root sections
were labelled by CNN1 with an overall accuracy of 97% (Fig. 4;
Table S7). Mispredictions (10 tiles among 160) were manually
edited with amfbrowser (Fig. 4). Then, colonised root sections
were analysed with CNN2. All colonised root sections contained
arbuscules and intraradical hyphae. Vesicles were abundant in
sections colonised with either C. claroideum (Fig. 4a) or R. mi-
croaggregatum (Fig. 4b), while they were scarce upon colonisation
by Funneliformis spp. (Fig. 4c,d). CNN2 correctly identified
intraradical hyphal structures in all four species, reaching an over-
all accuracy of 87% (excluding hyphopodia) (Fig. 4; Table S8).
In particular, CNN2 predictions mirrored the low abundance of
vesicles in Funneliformis-colonised roots (Fig. 4c,d) compared to
C. claroideum (Fig. 4a) and R. microaggregatum (Fig. 4b). Thus,
AMFinder trained models are compatible with AM fungal species
forming similarly shaped intraradical hyphal structures.

AMFinder enables in silico quantification of arbuscular
mycorrhizal fungal colonisation dynamics

We next investigated whether AMFinder could be used to reli-
ably quantify AM colonisation changes of plant roots over time.
To that end, we assessed AM fungal colonisation extent on
N. benthamiana roots harvested after a 4- or 6-wk co-cultivation
with R. irregularis (Fig. 5). First, we monitored the accumulation
of transcripts encoding a N. benthamiana ortholog of the
mycorrhiza-responsive gene MtBCP1b (Parádi et al., 2010) (Fig.
5a) and quantified fungal biomass by monitoring R. irregularis
EF1α transcript levels (Fig. 5b). Both methods showed a signifi-
cant, two- to three-fold increase in fungal content at 6 wpi com-
pared to 4 wpi (Fig. 5a,b). Then, using the gridline intersect
method (Giovannetti & Mosse, 1980) we studied the colonisa-
tion extent within randomly sampled root fragments (Fig. 5c).
Consistent with the molecular analysis, more colonisation was
observed at 6 wpi. The analysis of the same samples with AMFin-
der gave similar results (Fig. 5d). We then tested AMFinder’s
ability to predict fungal colonisation on low-resolution flatbed
scanner pictures of whole root systems (Fig. 5e). Consistent with
random sampling and molecular data, AM fungal colonisation
levels were significantly higher at 6 wpi, although the colonisa-
tion extent values were lower than those obtained through ran-
dom sampling (Fig. 5e). We generated root system maps to gain
insights into the distribution of colonised areas (Fig. 5e). We
found that while some root sections were entirely colonised, other
areas were devoid of colonisation, in particular at 4 wpi (Fig. 5e),
suggesting that careful mixing of root fragments is required for
quantification based on a fraction of the root systems. We show-
cased the usefulness of CNN2 by quantifying intraradical hyphal
structures on whole root systems harvested at 2, 3 and 4 wpi (Fig.
5f). Together, these results demonstrate that AMFinder allows

Table 2 CNN2 performance assessed on the test set.

Network

Data augmentation

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

A V IH A V IH A V IH

CNN2v1 No 94 95 93 94 97 94 94 89 88
CNN2v2 Yes 77 88 77 72 86 76 91 91 80

A, arbuscules; IH, intraradical hyphae; V, vesicles.
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for in silico quantification of AM fungal colonisation of plant
roots over time, including in whole root systems.

AMFinder accurately quantifies colonisation levels of ram1,
str, and smax1mutants

To determine whether AMFinder can identify altered colonisa-
tion levels in plant mutants, we quantified colonisation levels of
M. truncatula roots, either wild-type or carrying the mutations
ram1-1 (Gobbato et al., 2012) and str (Zhang et al., 2010)
(Fig. 6a–c). Consistent with the phenotypes reported for these
mutants, we found that the extent of root colonisation by R. ir-
regularis was reduced in ram-1-1 and str backgrounds compared
to wild-type (Fig. 6a). Similarly, both mutants showed reduced
amounts of arbuscules, vesicles, and intraradical hyphae com-
pared to wild-type, and arbuscules and vesicles were rare in the
str mutant (Fig. 6b,c). Microscopic inspection of the colonised
roots showed stunted arbuscules in the ram1-1 and str mutant
backgrounds compared to wild-type, with a more severe reduc-
tion in arbuscule branching in str (Fig. 6c). Next, we investigated
whether AMFinder can detect an increased colonisation. We
assessed the extent of R. irregularis colonisation of O. sativa roots
in either wild-type plants or those carrying a mutation that abol-
ishes expression of the suppressor of AM symbiosis SMAX1
(Choi et al., 2020). We found that colonisation level was signifi-
cantly increased in the smax1mutant compared to wild-type (Fig.
6d,f). In addition, CNN2 analysis showed that all types of

intraradical hyphal structures were more abundant in smax1 roots
(Fig. 6e). Thus, AMfinder accurately detects the AM fungal
colonisation phenotypes of well-established plant mutants, sug-
gesting it can adapt to multiple host genetic backgrounds.

Discussion

We developed the software AMFinder, which uses two CNNs to
annotate and quantify AM fungi in plant roots. AMFinder per-
forms consistently well on root images of several model plant and
fungal species used in endosymbiosis research. AMFinder-
mediated quantification of AM fungal colonisation gives similar
results to those obtained using current standard counting meth-
ods. We further show that AMFinder can process whole root sys-
tems using low-resolution flatbed scans obtained from an
optimised ink-staining protocol which relies on ClearSee as a
contrast enhancer. We illustrate the usefulness of this approach
to the study of fungal colonisation dynamics over time in wild-
type and mutant plants.

AMFinder enables computer-assisted quantification of AM
fungal colonisation. A pioneering attempt to automate the quan-
tification of AM fungal colonisation relied on pixel-based image
segmentation to determine projected root and fungal surface
areas using the proprietary software WINRHIZO, developed by
Regent Instruments (Kokkoris et al., 2019). Like AMFinder, this
method enabled whole-root-system analyses and showed that
quantification based on gridline intersects was generally

(a) (b) (c)

Fig. 3 AMFinder accurately identifies
arbuscular mycorrhizal fungal colonisation
and intraradical structures in roots of various
host model species. (a–c) Roots from
Medicago truncatula (a), Lotus japonicus (b),
andOryza sativa (c) were stained with ink
and cleared with ClearSee before analysis
with AMFinder. amf mispredictions (red
asterisks) were manually edited with
amfbrowser. Arrowheads indicate the
direction of AMFinder processing. Bars,
50 μm.
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overestimated (Kokkoris et al., 2019). In contrast to pixel-based
methods, CNNs are trainable and can thus adapt to a wide range
of images, including environmental samples colonised with both
AM and nonAM fungal species. Furthermore, CNNs further
enable the quantification of different types of intraradical hyphal
structures, which are important parameters of plant mutant phe-
notypes. Thus, deep learning ensures AMFinder versatility and
enables a more detailed analysis of mycorrhizal phenotypes.

AMFinder’s design adequately addresses limitations arising
from its computer vision approach while still enabling a low- to
medium-throughput workflow. Specifically, we implemented a
semi-automatic pipeline that requires user supervision of com-
puter predictions. High-throughput AMFinder analyses, such as
large-scale field experiments, would require the entire prediction
pipeline to be fully automatic, including the conversion to
annotations. However, input image parameters can influence
pre-trained model accuracy and may require user adjustments.
Automatic analyses assuming image suitability without quality
control may overestimate CNN model accuracy. CNN2 predic-
tions on mispredicted M+ tiles without intraradical hyphal
structures have not been investigated in this study. Besides, this
AMFinder implementation does not discriminate between mul-
tiple root types. As a result, image data from experiments rely-
ing on crude inoculum (Habte & Byappanhalli, 1998) or nurse
root systems such as chives (Demchenko et al., 2004) as an
inoculation method may pose problems when contaminating
root fragments remain in root images. To that end, AMFinder
offers manual curation of predictions to avoid systematic intro-
duction of errors.

We used an uncertainty sampling-like bootstrap method,
wherein CNNs are trained on a small amount of manually anno-
tated images, and then the user is prompted to label further train-
ing images which the model is unsure about, for rapid creation of
a large training dataset. Despite misannotations in the resulting
training dataset, AMFinder trained networks showed high accu-
racy on a large set of images featuring different plant and fungal
species, confirming the suitability of this strategy. Further
improvements could possibly be achieved using an active learning
approach (Shen et al., 2018).

We trained and tested AMFinder on ink-vinegar stained
N. benthamiana roots. Ink-vinegar is an inexpensive, nontoxic
fungal staining method compatible with various plant and myco-
biont species (Vierheilig et al., 1998). Thus, pre-trained CNNs
generated from ink-stained roots ensure immediate workability of
AMFinder for most endosymbiosis host systems without the need
to generate manually annotated training datasets. We augmented
AMFinder capabilities by implementing optional data augmenta-
tion consisting of image flipping and colour alteration. Data aug-
mentation is performed on the fly during training and does not
affect AMFinder performance. We showed that enabling such
image transformations during training allows for accurate
labelling of images with altered hue, intensity, and background
colours. If needed, AMFinder can be trained with datasets
obtained using other dyes and fluorophores for fungal staining
(Vierheilig et al., 2005) or for the annotation of other tissues
colonised by fungi such as liverwort thalli (Ligrone et al., 2007;
Carella & Schornack, 2018; Kobae et al., 2019). Computer-
intensive computations required for ab initio training can be

(a) (b) (c) (d)

Fig. 4 AMFinder accurately identifies
colonisation and intraradical hyphal
structures formed by different Glomeraceae
species. (a–d) Roots from Nicotiana

benthamiana plants growing in the presence
of either Claroideoglomus claroideum (a),
Rhizoglomus microaggregatum (b),
Funneliformis geosporum (c), or
Funneliformis mosseae (d) were stained with
ink and cleared with ClearSee before analysis
with AMFinder. amf mispredictions (red
asterisks) were manually edited with
amfbrowser. Arrowheads indicate the
direction of AMFinder processing. Bars,
50 μm.
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avoided by refining the existing pre-trained networks. Thus,
AMFinder is highly versatile and can be adapted for the study of
many aspects of fungal colonisation; it may also be of interest to
researchers of pathogenic fungi.

AMFinder sensitivity is best on vesicles, likely because AM
fungal vesicles are fairly invariant, globular-shaped structures sur-
rounded by a thick, multi-layered wall (Jabaji-Hare et al., 1990),
resulting in high contrast signals within the surrounding plant tis-
sues. By contrast, the arbuscular shape is more diverse, with
branching extent and cell volume occupancy increasing during
the initial development stages (Toth & Miller, 1984) and a size
that is ultimately defined by host cell size. Intraradical hyphae
show different diameters, orientations, and staining intensities,
and occasionally overlay other intraradical structures. The limited
pixel information of a single tile may not always discriminate
between intraradical and extraradical hyphae. An approach using
information from a wider area of the original image, rather than
treating each tile in isolation, may help to address this issue. In
particular, it would be interesting to apply deep learning image
segmentation techniques (Ghosh et al., 2019) to this problem, as
researchers have often found success with this approach in other
types of biological imaging. Another possible issue is that CNNs
do not retain relative spatial information (Patrick et al., 2019).
Solutions to overcome this limitation include the combination of
CNNs and multi-layer perceptrons (Haldekar et al., 2017), and

capsule networks (CapsNets) (Sabour et al., 2017; Patrick et al.,
2019). Future work will explore the usefulness of such
approaches to achieve even higher prediction accuracy.

Obtaining contrasted fungal structures within root tissues is
pivotal for accurate AMFinder predictions. The first report of
ink-vinegar staining of AM fungi suggests that black and blue
inks allow for high-contrast images in at least four plant species
(Vierheilig et al., 1998). Background destaining in tap water with
a few vinegar droplets requires at least 20 min incubation and is
only effective against excess ink (Vierheilig et al., 1998). By con-
trast, ClearSee treatment works in seconds and allows for both
destaining and clearing (Kurihara et al., 2015). Such a feature is
of particular interest for thick or pigmented roots, and soil sam-
ples. Also, ClearSee preserves fluorescence (Kurihara et al., 2015)
and is thus compatible with immunohistochemical fungal
labelling techniques such as wheat germ agglutinin–fluorophore
conjugates (Bonfante-Fasolo et al., 1990).

AMFinder can improve the robustness and reproducibility of
AM fungal quantification. In the gridline-intersect method, gridli-
nes have been primarily used as guides for the systematic selection
of observation points (Giovannetti & Mosse, 1980), and the dis-
tance between adjacent lines has been studied to estimate the total
root length, but not to improve quantification accuracy (New-
man, 1966; Marsh, 1971; Giovannetti & Mosse, 1980). As a
result, a low number of root fragments is considered prejudicial to

(a) (b) (c) (d)

(e) (f)

Fig. 5 Computer vision enables quantification of arbuscular mycorrhizal (AM) fungal colonization on whole root systems. (a–f) Nicotiana benthamiana

plants were inoculated with Rhizophagus irregularis. Colonisation levels were determined 4 and 6 wk post-inoculation (wpi). (a, b) Quantification of
transcripts corresponding to the N. benthamianamycorrhizal marker gene Blue Copper Protein 1 (BCP1) (a) and the Rhizophagus irregularis Elongation
Factor 1α (EF1α) (b). Data are expressed relative to both N. benthamiana L23 and F-box reference genes. (c, d) Quantification of AM fungal colonization
on ink-stained root pictures using the gridline intersect method (c), or AMFinder (d). (e) Quantification of AM fungal colonisation on whole root systems
using AMFinder, and representative images of computer-generated maps featuring colonized (M+, magenta) and noncolonized (M−, grey) root areas at 4
and 6 wpi. (f) Intraradical hyphal structures were quantified on whole root systems at 2, 3, and 4 wpi using neural network 2 (CNN2). Dots correspond to
biological replicates. Bars represent SE. Statistical significance was assessed using Student’s t-test (*, P < 0.05; **, P < 0.01). Squares, triangles, and circles
indicate actual values. Lowercase letters indicate statistical grouping.
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quantification accuracy (Giovannetti & Mosse, 1980). Also, the
shape of the area surrounding the grid-root intersection used for
visual scoring has not been formally described and may account
for variations between experimenters. By contrast, AMFinder
analyses well-defined tiles, and tile size can adjust to image resolu-
tion without impairing prediction accuracy. Intraradical hyphal
structures cannot be identified from flatbed scans due to the lim-
ited resolution of the images produced. However, machine
learning-based algorithms have been recently developed to achieve

data-driven image super-resolution (Park et al., 2003; Wang et
al., 2019). In contrast to standard image interpolation techniques,
super-resolution algorithms predict missing details by learning
common patterns from training datasets. Whether such algo-
rithms can enable a detailed analysis of AM fungal hyphal struc-
tures from flatbed scans could be explored in future AMFinder
developments.

Conclusions

We have demonstrated that AMFinder adapts to different plant
and fungal species, fungal staining methods, and acquisition
devices. Its design ensures user control over the annotation pro-
cess and facilitates data visualisation in the context of the root
images. As such, it improves documentation and reproducibility
of AM fungal colonisation analyses.
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Fig. 6 AMFinder accurately quantifies altered colonisation levels of ram1,
str, and smax1mutants. (a–c)Medicago truncatula A17 (wild-type),
ram1-1, and str were grown on sand for 6 wk in the presence of
Rhizophagus irregularis. Bar plots show overall colonisation level obtained
using neural network 1 (CNN1) (a) and a detailed analysis of root content
in arbuscules, vesicles, and intraradical hyphae obtained by CNN2 analysis
(b). Representative images of colonised roots and arbuscule shape (c). (d–
f)Oryza sativa wild-type and smax1were grown on sand for 6 wk in the
presence of R. irregularis. Bar plots show overall colonisation levels (d) and
quantification of intraradical hyphal structures (e). (f) Representative
images of colonised large lateral roots. Statistical significance was assessed
using ANOVA and Tukey’s HSD (P < 0.05). Letters indicate statistical
groupings. Bars represent the SE. Bars: (c) 100 μm (left panels), 10 μm
(right panels); (f) 100 μm.
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unrestricted usage. Source code, pre-trained models and detailed
installation instructions are available on the AMFinder GitHub
webpage (https://github.com/SchornacklabSLCU/amfinder.git).
Training datasets are available on Zenodo (https://doi.org/10.
5281/zenodo.5118948).
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