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Abstract

First-principle metabolic modelling holds potential for designing
microbial chassis that are resilient against phenotype reversal due
to adaptive mutations. Yet, the theory of model-based chassis
design has rarely been put to rigorous experimental test. Here, we
report the development of Saccharomyces cerevisiae chassis strains
for dicarboxylic acid production using genome-scale metabolic
modelling. The chassis strains, albeit geared for higher flux
towards succinate, fumarate and malate, do not appreciably
secrete these metabolites. As predicted by the model, introducing
product-specific TCA cycle disruptions resulted in the secretion of
the corresponding acid. Adaptive laboratory evolution further
improved production of succinate and fumarate, demonstrating
the evolutionary robustness of the engineered cells. In the case of
malate, multi-omics analysis revealed a flux bypass at peroxisomal
malate dehydrogenase that was missing in the yeast metabolic
model. In all three cases, flux balance analysis integrating tran-
scriptomics, proteomics and metabolomics data confirmed the flux
re-routing predicted by the model. Taken together, our modelling
and experimental results have implications for the computer-aided
design of microbial cell factories.
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Introduction

Design of an efficient yet robust microbial strain for producing mole-

cules of interest is a major challenge in industrial biotechnology.

Redirection of the nutrient influx to the target molecule requires

multiple rounds of design and testing, and thereby substantial time

and resources (Nielsen & Keasling, 2016). Advances in genetic engi-

neering and systems biology have ushered in a spectrum of possibil-

ities in the strain design process that goes beyond classical genome

engineering, random mutagenesis and screening methods (Otero &

Nielsen, 2010; Lee et al, 2011; Long et al, 2015). Yet, the identifi-

cation of metabolic engineering strategies for re-routing intracellular

fluxes towards a desired high production phenotype is not a

straightforward task, mainly due to the complexity of metabolic

networks. In the light of this challenge, the concept of chassis

strains, i.e. microbial hosts pre-optimized for the production of a

range of molecules, has been proposed towards reducing the cost of

strain development (Vickers et al, 2010; Trinh et al, 2015; Jouhten

et al, 2016). The concept of chassis builds upon the fact that despite

the large chemical diversity of desired industrial compounds, most

are derived from a limited set of precursor metabolites (Nielsen &

Jewett, 2008). Consequently, modulation of native cellular metabo-

lism to channel the carbon flux towards the required precursor and

co-factors is key for the design of an optimal chassis strain (Vickers,

2016; Calero & Nikel, 2018).

Rational modulation of cellular metabolism requires accounting

for the complexity of metabolic and regulatory networks. To this

end, genome-scale metabolic models (GSMM), when combined

with constraint-based algorithms (Savinell & Palsson, 1992; Segr�e

et al, 2002; Kauffman et al, 2003; Shlomi et al, 2005; Long et al,

2015), offer exciting possibilities for designing enhanced microbial

strains (Patil et al, 2004; Adrio & Demain, 2006; Oberhardt et al,

2009; Agren et al, 2013). The advantages of strain engineering
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strategies based on metabolic models include reduced trial-and-

error, the possibility to integrate molecular and omics data in a

structured manner, and the possibility to align cell growth with

product formation. The latter is of particular interest since the

product formation is often negatively correlated with cell fitness;

consequently, productivity tends to drop over time due to fixation

of adaptive mutations.

In Saccharomyces cerevisiae, a well-established microbial cell

factory (Liu et al, 2013; Borodina & Nielsen, 2014; Li et al, 2015),

model-guided strain design has been used for improving production

of diverse compounds, including vanillin (Brochado et al, 2010),

sesquiterpenes (Asadollahi et al, 2009) and dicarboxylic acids (Xu

et al, 2012; Otero et al, 2013; Blazeck et al, 2014). Dicarboxylic acids

are used as platform chemicals in the production of numerous high

value-added compounds with widespread applications in the food,

chemical and pharmaceutical industries (Werpy & Peterson, 2004;

Patel et al, 2006; Roa Engel et al, 2008; Sauer et al, 2008). In this

study, we report model-guided development of two yeast chassis

strains for C4-dicarboxylic acids, such as succinate, malate and

fumarate. The producer cells derived from the chassis were chal-

lenged for their evolutionary stability and characterized at multiple

omics levels to assess how closely the molecular changes aligned

with the in silico predictions.

Results

Metabolic modelling for C4-dicarboxylic acid chassis

We used a genome-scale metabolic model-based strategy to identify

genetic targets for chassis design. Yeast metabolic model iMM904

(Mo et al, 2009) was used to represent the biochemical capabilities

and inter-connectivity of the yeast metabolism. The iMM904 model

was updated according to the yeast consensus model (Yeast

7.11) and to include known mitochondrial transporters. The result-

ing modified iMM904 model consists of 1,417 reactions, 1,064

internal metabolites and 904 genes (Materials and Methods,

Appendix Table S1). We then used a multi-objective metaheuristic

approach to search for gene knockouts that would couple cell

growth to product formation. In brief, the algorithm searches for

network modifications (in this case, one or more gene knockouts)

such that the optimal flux distribution for biomass formation gener-

ates overflow of the target molecule (Burgard et al, 2003; Patil et al,

2005; Rocha et al, 2008) (Materials and Methods and Fig EV1).

These solutions were then clustered to identify frequently occurring

sets of gene targets common to all three products (Fig 1A). The solu-

tions with > 95% of maximum carbon yield for each target

compound were ranked by the ratio between predicted carbon yield

and the required number of gene knockout (Chassis score)

(Appendix Tables S2–S4). This raking thus prioritizes solutions with

higher carbon yield per network modification (Materials and Meth-

ods). The developed framework was applied to search for solutions

to engineer a yeast chassis strain towards enhanced biosynthesis of

three target C4-dicarboxylic acids: succinic acid, fumaric acid and

malic acid. The robustness of the predictions was verified across dif-

ferent versions of yeast genome-scale metabolic models (iMM904,

iND750 and Yeast6) and against different simulation methods (pFBA

and lMOMA) (Appendix Tables S5–S6).

A common observation in the identified in silico solutions was

that ZWF1 deletion had a significant contribution to the biomass-

coupled production of all three target products. The top-scoring

chassis design solution suggested deletion of three genes, ZWF1,

SER3 and SER33, with predicted product yields of nearly half of the

maximum theoretical values and biomass yield only reduced to

about one third of the reference (Appendix Fig S1). ZWF1 encodes

glucose-6-phosphate dehydrogenase, the first enzyme in the pentose

phosphate pathway (PPP) (Nogae & Johnston, 1990), while SER3

and SER33 (3-phosphoglycerate dehydrogenase isozymes) catalyse

the first reaction in the serine biosynthetic pathway starting from

the glycolytic intermediate 3-phosphoglycerate (Fig 1A and B)

(Albers et al, 2003). In a Δser3,33 mutant, serine, an essential amino

acid, needs to be synthesized from glycine through the serine

hydroxymethyltransferase reaction. The required glycine needs then

to be produced either from the high NADPH demanding threonine

biosynthetic pathway, via the low-specificity threonine aldolase

(Gly1p,) or from glyoxylate by alanine:glyoxylate aminotransferase

(Agx1p). Increased flux through the glyoxylate shunt—which

converts acetyl-CoA into succinate, glyoxylate and malate—can thus

couple serine biosynthesis to succinate and malate production.

Indeed, the Δser3,33 mutant was previously shown to couple succi-

nate production to growth when combined with the deletion of

SDH3 (Otero et al, 2013). However, it was not previously suggested

or tested whether the same strategy would work for the production

of fumarate and malate.

The next model-predicted solution, the inactivation of the oxida-

tive pentose phosphate pathway through ZWF1 deletion, would

disrupt the main source of cytosolic NADPH. This is predicted to

result in an increased flux through other cytosolic NADPH generat-

ing reactions, such as isocitrate dehydrogenase, aldehyde dehydro-

genase and succinate semialdehyde dehydrogenase (last enzyme in

GABA catabolism, generating both NADPH and succinate). Since a

significant growth impact is expected in a ZWF1 knockout strain

(Partow et al, 2017), we implement two chassis designs: (i) deletion

of SER3,33 (“Chassis”); and (ii) deletion of SER3,33 combined with

that of ZWF1 (“Chassis_z”). The latter strategy would simultane-

ously interrupt the oxidative branch of the pentose phosphate path-

way and the serine/glycine production from glycolysis to increase

flux to TCA cycle and glyoxylate shunt.

To convert the chassis strains into producer strains, additional

knockout targets were predicted for each product: succinate dehy-

drogenase (SDH-complex: SDH1, SDH2, SDH3 or SDH4) for succi-

nate, fumarate hydratase (FUM1) for fumarate and malate

dehydrogenase (MDH1 and MDH2) and MAE1 (which catalyses the

oxidative decarboxylation of malate to pyruvate) for malate (Fig 1A

and B, Appendix Fig S1B–G and Appendix Table S2–S4). All these
product-specific solutions will disrupt the conversion of the target

molecule in the TCA cycle and thereby predicted to result in the

secretion the target compound.

Chassis strains do not accumulate dicarboxylic acids

Deletions of the identified targets for the two chassis designs—SER3,

SER33 and ZWF1—were engineered in a S. cerevisiae CEN.PK back-

ground strain (Fig 1C, Materials and Methods). The resulting “Chas-

sis” (Δser3,33) and “Chassis_z” (Δser3,33Δzwf1) strains were

characterized for growth and target compound production in
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Figure 1. Gene frequency analysis of chassis-strain design, engineering of knockout solutions in vivo and compound production phenotype.

A Hierarchical clustering of gene clusters (rows) computed over the gene frequencies for each of the target products (column)—malic acid, fumaric acid and succinic
acid. Frequencies below 20% were excluded. The selected Chassis_z backbone is represented in grey (Δser3, Δser33 and Δzwf1). The blue, green and orange clusters
denote suggested gene deletions to obtain producer strains from the chassis, for succinate, malate and fumarate, respectively.

B Metabolic pathways involved in target compound production and predicted carbon fluxes in Chassis_z. Gene targets predicted by the model for chassis design are
coloured in red. Red arrows represent deleted reactions, and arrow thickness represents relative flux values for Chassis_z (simulated with pFBA). Green, orange and blue
gene names show the knockout reactions to obtain the producing strains for malate, fumarate and succinate, respectively. Dashed arrows represent multiple reactions.

C Scheme of strains engineered in this study.
D Growth rate and maximum OD obtained for engineered chassis_z-derived Producer, Chassis_z and wild-type strains (Each symbol represents an independent

biological replicate, n = 3).
E–G Production of the target organic acid compound—succinic acid (E), fumaric acid (F) and malic acid (G)—by wild-type, TCA disrupted (S1: Δsdh3, F1: Δfum1 and M1:

Δmae1,Δmdh1,2), Chassis_z, chassis- and chassis_z-derived producing strains. Each symbol represents an independent biological replicate—n = 3, bars are average
values and error bars denote standard deviation. ND—metabolite not detected; and §—metabolite identified but not quantified due to low AUC. All cultures were
performed in minimal media with 2% glucose, and chassis_z-derived Producer strains were supplemented with glycine.

Source data are available online for this figure.
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minimal media with 2% glucose (Figs 1D and EV2A and E–G).
While the growth rate of the Chassis_z strain decreased compared

with the wild-type and Chassis strains, the biomass yield of these

strains remained similar (Figs 1D and EV2A). As predicted by the

model, both Chassis and Chassis_z strains did not accumulate any

appreciable amounts of extracellular C4-dicarboxylic acids (succinic,

malic and fumaric acid) (Figs 1E–G and EV2E–G).

Strains built from the chassis secrete dicarboxylic acids in
concordance with model predictions

As per predictions from flux modelling, product-specific gene dele-

tions would be required to generate producer strains from the chas-

sis. We engineered the corresponding gene deletions (Δsdh3,

Δfum11 or Δmae1, Δmdh1,2) in both chassis strains to test for the

production of succinic, fumaric and malic acids, respectively (Fig 1

C, Appendix Table S7). All engineered strains were characterized

for growth (Figs 1D and EV2A–D) and metabolite production in

minimal media (Figs 1E–G and EV2E–G, Appendix Tables S10 and

S11). As secretion of target products can be expected by mere TCA

cycle disruption, the product-specific gene deletions were also engi-

neered in a wild-type yeast strain. These control strains, S1 (Δsdh3),

M1 (Δmdh1,2 Δmae1) and F1 (Δfum1) are able to secrete 0.13 g/l

succinic, 0.11 g/l malic and 0.11 g/l fumaric acid, respectively

(Figs 1E–G and EV3E–G). As predicted, the disruption of the TCA

cycle in the chassis background led to a substantial further increase

in the secretion of the three target compounds. The highest succinic

acid titre (0.47 g/l) was observed for the Producer_Sz strain

(Δser3,33Δsdh3Δzwf1), a threefold increase over the S1 strain and

twofold over the strain without ZWF1 deletion (Producer_S: Δser3,

ser33 Δsdh3) (Figs 1E and EV2E). Similarly, the malic acid producer

strain, Producer_Mz (Δser3,33 Δzwf1 Δmdh1,2 Δmae1), showed a

2.5-fold increase in malic acid titre (0.47 g/l) compared with Produ-

cer_M (Δser3,33 Δmdh1,2 Δmae1) and a 4.7-fold increase compared

with the control strain M1 (Figs 1G and EV2G). Deletion of FUM1 in

Chassis and Chassis_z background led to a 2.3- and 1.2-fold

increased secretion of fumaric acid when compared to F1 control

strain, respectively. Despite in silico predictions, the deletion of

FUM1 in Chassis_z background (Producer_Fz: Δser3,33 Δzwf1

Δfum1) resulted in 1.5-fold less titre than in the Producer_F strain

(Δser3,33 Δfum1) (0.25 g/l) (Figs 1F and EV2F). Nevertheless, the

contribution of both chassis designs is evident for the enhanced

production of the target molecules.

The best producing strains—Producer_Sz, Producer_Mz and

Producer_F—were characterized at transcriptomics and proteomics

level to assess whether the changes at molecular level are in accor-

dance with model predictions. Wild-type strains cultivated under

the same conditions were used as control. A key model prediction

was increased flux through the glyoxylate shunt due to disruption of

serine biosynthesis via glycolysis. Glyoxylate is produced from isoci-

trate by isocitrate lyase (encoded by ICL1). Next, glyoxylate is

converted to glycine by alanine:glyoxylate aminotransferase (en-

coded by AGX1). All three engineered producer strains showed

upregulation of AGX1 at the transcriptome and proteome level. On

the other hand, ICL1 expression levels were not found significantly

altered in the engineered producer strains. In the presence of

glucose, deletion of the regulatory subunit of the protein phos-

phatase type 1 (REG1) has a higher impact on Icl1p enzymatic

activity than ICL1 overexpression (Koivistoinen et al, 2013). Inter-

estingly, overexpression of ICL1 was previously described to

enhance succinate production, but only in strains previously

evolved to improve flux trough glyoxylate shunt (Otero et al, 2013).

Producer_Sz and Producer_Mz strains had significantly lower Reg1

protein abundances than the wild-type strain (1.8 and 1.7 log2fold

change, respectively, with adjusted P < 0.05). Producer_F also

present a lower Reg1 protein abundance albeit less significantly (0.9

log2fold change, adjusted P < 0.05). In engineered strains, the

observed downregulation of Reg1p can positively affect Icl1p activ-

ity. These results suggest that the predicted increased isocitrate-to-

glycine flux was attained at both enzymatic steps (Icl1p and Agx1p).

The second key model prediction is the increased flux though the

GABA shunt for NADPH production in ZWF1 deleted strains. In

accord, the chassis-derived producer strains deleted in ZWF1 (Pro-

ducer_Sz and Producer_Mz) have Uga1p and Uga2p (second and

third enzymatic steps in GABA shunt) up-regulated, while in the

engineered strain not deleted in ZWF1, Producer_F, the protein

amounts of these enzymes are not changed. These results show

concordance between in silico model predictions and altered tran-

script and enzyme abundances in glyoxylate and GABA shunts.

While the enhanced production in concordance with model

predictions was encouraging, the combination of TCA cycle and

serine biosynthesis disruption caused the strains to be auxotrophic

for serine. While serine auxotrophy can be alleviated by glycine

supplementation, it is not desirable from application perspective.

Further, all chassis-derived producing strains exhibited lower

growth rates than the chassis, the wild-type and control strains

(Figs 1D and EV2A–D). The serine auxotrophy and reduced growth

rates show that, despite increased production and concordant

protein abundance changes, significant divergence between the

model predictions and in vivo changes remained.

Adaptive laboratory evolution restored glycine prototrophy and
improved fumaric and succinic acid production

The model predictions were based on assumption of optimal flux re-

routing in the engineered strains. However, re-organization of the

metabolic fluxes to compensate for the effect of gene knockouts

may require evolutionary adaptation (Szamecz et al, 2014). There-

fore, to overcome the growth deficiencies of the engineered strains,

we resorted to another aspect of the model predictions, namely the

coupling between growth and production. We hypothesized that

adaptive evolution would lead to mutants with not only improved

fitness, but also production. Additionally, adaptive evolution would

allow us to assess the stability of compound production in producer

strains. To test this, we subjected the engineered Chassis_z and

Chassis_z-derived producer strains to adaptive laboratory evolution.

From the Chassis-derived strains, Producer_F (Δser3,33 Δfum1) was

also included in the adaptive laboratory evolution experiment, since

this strain had the best fumarate producing phenotype among all

our engineered strains. Cells from three single colonies of Chassis_z,

Producer_Sz, Producer_Mz, Producer_Fz and Producer_F were

evolved in parallel in minimal media, only supplemented with

glycine in the first 4 serial passages (Appendix Fig S2A). At each

passage, optical density (OD 600nm) and transfer time were

recorded (Appendix Fig S2B–E). All three independent populations

of Producer_Fz lost the ability to produce fumaric acid (< 0.01 g/l)
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after only 8 passages. After 24 serial passages, adapted populations

were grown on minimal media agar plates and 3 isolated colonies

were evaluated for fitness and target compound production

(Appendix Fig S3A–C). The isolate showing the highest target

compound production, per parental strains, was further character-

ized for growth and metabolite production (Figs 2A–D and EV3A–D,
Appendix Table S11). The evolved strains not only exhibited

improvement in the specific growth rate, but also, in accord with

the model predictions, could grow without glycine supplementation

(Fig EV3A–D). The evolved succinate producer strain (E_Pro-

ducer_Sz) showed a notable sixfold improvement in the specific

growth rate (Appendix Fig S3B and Appendix Table S10). The

evolved fumarate and malate-producing strains, E_Producer_F and

E_Producer_Mz, showed a 4.6-fold and 1.4-fold improvement,

respectively (Appendix Fig S3C and D, Appendix Table S10). Adap-

tive laboratory evolution also resulted in a substantially improved

production of succinate and fumarate (circa 1.5-fold), but not in

malate (Fig 2A–C, Appendix Table S10). Moreover, the improve-

ment in succinate titre (> 1.1 g/l) was maintained in the evolved

strains when tested in batch reactors under controlled conditions

(Appendix Table S10).

Production of non-target dicarboxylic acids (i.e. fumarate and

malate) was not observed in the succinate producer strains before

nor after evolution (Appendix Table S11). On the other hand, fuma-

rate producer strain (Producer_F) also secreted succinate, albeit in

much less amounts than the succinate producing Producer_Sz

strain. Nevertheless, after evolution, fumarate production in Produ-

cer_F increased by 70%, while the succinate production decreased

by 60%. The robustness of growth-coupled malate production was

only predicted when fumarate drain was impaired (Appendix Fig

S1G). In vivo, malate producer strain secreted fumarate in low

amounts (~0.04 g/l), which further dropped after evolution

(Appendix Table S11). Overall, these results support the evolution-

ary robustness of the growth-coupled strain design.

Metabolic changes after evolution approach in silico predictions

The improved growth rates and changes in compound production

after evolution (Fig 2D) prompted us to explore how the evolved

strains responded to the growth-production dependency. We charac-

terized the evolved producer strains and the corresponding parental

strains using multi-omics analyses (Fig EV4).

Whole genome sequencing of the evolved strains revealed only a

small number of single nucleotide (SNV) and insertion-deletion (in-

del) variants in coding sequences (CDS); structural variations or

aneuploidy were not detected (Appendix Fig 7B). We did not find

any SNVs and indel that recurred in all evolved strains. The evolved

succinate producer strain, E_Producer_Sz, harboured the highest

number of mutations (6 in total). Three of the six mutations concern

regulatory proteins, including GCN5 (Subunit of SAGA complex)

and UBC8 that are known players in glucose utilization and redox

balance. Two SNVs were identified in metabolic genes, ERG5 and

GLY1. A SNV in GLY1 was also identified in the evolved malate

producer strain E_Producer_Mz. Three out of four mutations identi-

fied in this strain are in regulatory proteins. One of these is a frame-

shift mutation in CTI6—a regulatory protein required to relieve

transcriptional repression of glucose-repressed genes. The evolved

fumarate producer strain, E_Producer_F, has also 4 SNVs (TRS85,

STE20, RTK1 and TOR1), with no targets shared with the other

evolved producer strains. However, a frameshift mutation in the

putative kinase RTK1 was also identified in the evolved chassis

strain E_Chassis_z. In general, the observed number of mutations,

as well as the proportion of metabolic/regulatory targets are similar

across the different evolved strains, hinting that the re-routing of

metabolic fluxes towards optimality was mainly driven by changes

at regulatory level.

At the gene expression level, the numbers of significantly (1 ≥ or

−1 ≤ log2fold change with adjusted P < 0.05) up- and down-

regulated genes in the evolved strains were similar (succinate: 86/

263, fumarate: 225/210, malate 280/194). Principle component

analysis (PCA) showed that all parental strains cluster together with

some separation along PC2 driven by ZWF1 deletion (Fig EV4C).

After evolution, succinate and fumarate producer strains cluster

closer together, separated from their parental strains. In contrast,

the evolved malate-producing strain moved closer to the wild-type

(Fig EV4C).

The number of proteins with significantly (1 ≥ or −1 ≤ log2fold

change with adjusted P < 0.05) changed abundances are smaller

than the changes at the gene expression level (succinate: 389, fuma-

rate: 186, malate: 186). As in the case of gene expression, parental

succinate and malate producer strains, both deleted in ZWF1, were

more similar to each other than to the parental fumarate strain (Fig

EV4D). After evolution, succinate and fumarate producer strains

cluster closer together, again reflecting the trend observed in the

transcription data (Fig EV4C). In the case of the malate-producing

strain, the evolved and parental strains were very similar (Fig

EV4D). Gene-set enrichment analysis showed that most changes in

the evolved strains, at gene expression as well as protein abundance

levels, were related with amino acid, energy, glycolysis and

carboxylic acid metabolism (Appendix Fig S4). Overall, the small

number of identified genetic mutations and relatively high number

of differentially regulated transcript and protein abundances suggest

that the phenotypic changes following evolution are driven by

changes in the regulatory network. Targeted metabolomics analysis

(Fig EV4E) showed that evolution did not dramatically change the

exometabolome, except for the target product, and the evolved

strains cluster with the respective parental, with the exception of

the E_Producer_Mz. In this strain, the exometabolome after evolu-

tion is closer to wild-type than to its parental strain (Producer_Mz),

in accord with the transcriptomics and the decreased malic acid

secretion.

Next, we integrated the multi-omics data with flux balance analy-

sis to refine flux phenotype prediction. For this, we used relative

changes in transcript and protein abundances between two condi-

tions as constraints on the corresponding reaction rate (Machado

et al, 2016). In addition, changes in extracellular metabolite concen-

trations were used to constrain the uptake/secretion of the corre-

sponding metabolites. A flux balance solution consistent with these

constraints was obtained using linear programming. The flux pheno-

type of the parental strain was predicted by comparing the omics

data of the engineered producer strains to those of the wild-type,

whereas the evolved strains were compared with their respective

parental strains (Materials and methods). PCA of the predicted flux

distributions shows that the multi-omics data are consistent with

model predictions (Fig 2E). Moreover, after evolution all producer

strains are closer to the model predictions than the parental
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producer strains (Fig 2E). The metabolic changes driven by evolu-

tion are thus in line with the in silico predictions, validating the

theory underlying the chassis-strain design.

Omics data uncover model shortcomings in fumarate and malic
acid metabolism

Multi-omics data were also used to find the metabolic routes taken

by the best performing strains E_Producer_F and E_Producer_Sz,

and to identify the mechanisms underlying the decreased production

observed in the evolved E_Producer_Mz and E_Producer_Fz strains

(Fig 3). In the evolved succinate producer strain, increased tran-

scription of GAD1 and UGA2 (encoding glutamate decarboxylase

and succinate semialdehyde dehydrogenase, respectively) suggested

an increased α-ketoglutarate-to-succinate conversion through the

GABA shunt yielding more NADPH. Increased abundances of GAD1

and UGA2 was also observed in the strain E_Producer_F at both

transcript and proteome level, as well as increased levels of GABA

transporters (UGA4, PUT4 and GAP1). Thus, even though the oxida-

tive phosphate pentose pathway, the main source of NADPH

production in yeast, was not disrupted, the flux through the GABA

shunt was increased to enhance NADPH availability.

Two proteins were up-regulated in all 3 evolved producer strains,

namely Arg4p and Gly1p (Fig 3). Argininosuccinate lyase (Arg4p)

catalyses the conversion of L-arginino-succinate to L-arginine and

fumarate, while threonine aldolase (Gly1p) converts L-threonine to

glycine and acetaldehyde. Characterization of the parental producer

strains was performed in media supplemented with glycine, which is

in contrast to the evolved and wild-type strains that are not auxo-

trophic for glycine. Yet, increased abundance of GLY1p was not

observed in wild-type cells suggesting that the increase in Gly1p in

the evolved producer strains is not associatedwith growth conditions,

but with its use for glycine biosynthesis. In E_Producer_Sz and E_Pro-

ducer_Mz, the increased protein abundance is coupled with a SNV in

the GLY1 coding sequence. The E_Producer_Mz strain also had AGX1

down-regulated at the protein level, suggesting a reduction in glycine

biosynthesis via glyoxylate shunt. Increased abundances of Mdh3p,

in both parental and evolvedmalate-producing strains comparedwith

WT, suggest that in the absence of Mdh1p and Mdh2p, this enzyme is

able to carry flux (Steffan & McAlister-Henn, 1992). We conclude that

A

D E

B C

Figure 2. Target compound production in evolved and parental producer strains, and multi- metabolic flux predictions based on omics data.

A–C Production of respective target compounds by Chassis_z strains parental and evolved. (A) Succinic acid production by parental (Producer_Sz) and evolved
(E_Producer_Sz) succinate producer strain. (B) Fumaric acid production by parental (Producer_F) and evolved (E_Producer_F) fumarate producer strain. (C) Malic
acid production by parental (Producer_Mz) and evolved (E_Producer_Mz) producer malate strain.

D Specific target compound production and growth rates of evolved and parental succinate (blue), fumarate (orange) and malate (green) producing strains. Grey
arrows connect parental to the evolved strains. Average of independent replicates are shown, n = 3. Error bars denote standard deviation.

E Principle component analysis of metabolic flux simulations, integrating multi-omics data, for parental (squares) and evolved (circles) producer strains. Triangles
show in silico model predictions on which the producer strains were based.

Data information: (A–C) Each symbol represents an independent biological replicate—n = 3, bars are average values and error bars denote standard deviation. All
cultivations were performed in minimal media with 2% glucose, and parental strains were supplemented with glycine. §—metabolite identified but not quantified due
to low AUC.
Source data are available online for this figure.
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the improved glycine production from L-threonine, together with

decreased Agx1p and increased Mdh3p abundances, allowed the

Producer_Mz strain to circumvent the growth-coupling of malate

production during directed evolution (Fig 3).

Gdh2p (NADH-dependent glutamate dehydrogenase) was down-

regulated in both E_Producer_Mz and E_Producer_Sz, with the later

strain also featuring Gdh1p (NADPH-dependent glutamate dehydro-

genase) upregulation. Divergently, Gdh2p was up-regulated in the

Figure 3. Metabolic network showing genomics, transcription and proteomics analysis of relevant pathways in chassis-derived organic acid producer strains
after evolution.

Proteomics, transcriptomics and genomics data are shown next to the corresponding reaction as abundance ratios between the evolved and the parental strains (The
three squares next to reaction represent fumaric, succinic and malic acid producer strains—left to right). Only enzymes with protein changes observed in at least one of
the three strains are shown. Significant changes (1 ≥ or −1 ≤ log2fold change with adjusted P-value (moderated t-test with Benjamini–Hochberg false discovery rate
adjustment) < 0.05) in protein abundances are depicted by coloured squares. Genes with identified SNVs in CDS are marked with (*). Gene expression changes are
marked with (O) if transcriptomics data are in concordance with proteomics data. §—Metabolites represented twice. Dashed arrows represent series of enzymatic steps
and full arrows one enzymatic step. Abbreviations: DHAP—dihydroxyacetone phosphate, GABA—γ-aminobutyric acid.

Source data are available online for this figure.
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strain E_Producer_F (Fig 3). Engineering of GDH1 deletion and GDH2

overexpression has been shown to rescue phenotypes associated

with low NADPH availability (Asadollahi et al, 2009; Brochado et al,

2010). We therefore investigated whether the fumarate producing

strain deleted in ZWF1, Producer_Fz, decreased fumaric acid produc-

tion during evolution due to low NADPH availability (Fig 4A).

Engineering glutamate dehydrogenase node improved fumarate
production and evolutionary stability

The glutamate dehydrogenase node was engineered in Producer_Fz

(Δser3,33 Δzwf1 Δfum1) by deleting GDH1 and overexpressing

GDH2. Supporting our prediction, the resulting strain, Producer_FzG

(Δser3,33 Δzwf1 Δfum1 Δgdh1::GDH2), produced 0.165 g/l of

fumaric acid, an improvement of 1.3-fold. Importantly, this increase

in production was not offset by growth rate reduction; moreover, the

lag-phase was considerably shortened (Fig 4B and C). To test evolu-

tionary stability, both Producer_Fz and the Producer_FzG were

subject to adaptive laboratory evolution (Materials and Methods,

Appendix Fig 2A). After 24 passages, isolates from the evolved popu-

lations were characterized in minimal media without glycine supple-

mentation. While a striking loss of fumarate production was

observed in the case of Producer_Fz, the evolved isolates of E_Pro-

ducer_FzG showed ~1.5-fold improvement in fumarate production

over their parental strain (Fig 4D). These results, in combination

with the observation that the fumarate strain not deleted in ZWF1

(i.e. Δser3,33 Δfum1) successfully adapted for improved fumarate

production and fitness (Fig 2C), suggest that fumaric acid production

requires higher NADPH supply than predicted in silico. Re-

engineering of the glutamate dehydrogenase node (Δgdh1::GDH2)

was able to buffer the redox changes during evolution, leading to an

improved growth and production phenotype (Fig 4C and D).

We observed a very high number of mutations (> 300 SNV and

Indels), distributed throughout the genome, in E_Producer_Fz

strain. The number of mutations observed in this strain is around

100 times higher than identified in any other evolved strains and

consistent with the loss of fumarate production (uncoupling growth

and production). The deletion of FUM1 has been associated with

A D

B C

E

Figure 4. Impact of glutamate node engineering in fumarate producer strain.

A Glutamate node, identified by multi-omics strain characterization as target for engineering, is a major hub of NADPH metabolism (Abbreviations: G6P—glucose 6-
phopsphate, R6P—ribulose 6-phosphate, GABA—γ-aminobutyric acid, PPP—pentose phosphate pathway).

B Growth phenotype of parental (Producer_Fz) and evolved (E_Producer_Fz) fumarate producer strains. Parental strain was supplemented with glycine (n = 3
biological replicates, average values are presented and error bars represent standard deviations).

C Growth phenotype of parental (Producer_FzG) and evolved (E_Producer_FzG) fumarate producer strains engineered in glutamate node (Δgdh1::GDH2). Parental strain
was supplemented with glycine (n = 3 biological replicates, average values are presented and error bars represent standard deviations).

D Fumaric acid production by parental (Producer_Fz) and evolved (E_Producer_Fz) producer strain compared with parental (Producer_FzG) and evolved
(E_Producer_FzG) producer strain engineered in glutamate node. Each symbol represents an independent biological replicate—n = 3, Bars are average values, and
error bars denote standard deviation. All cultures were performed in minimal media with 2% glucose, and parental strains were supplemented with glycine.

E Adapted model of Tup1/Cyc8-Cti6-Gcn5 interaction for altered transcription of glucose-repressed genes (Papamichos-Chronakis et al, 2002). Dashed proteins represent
indel mutations identified in evolved strains, Gcn5p (blue—E_Producer_Sz), Cit6p (green—E_Producer_Mz) and Tup1p (pink—E_Producer_FzG).

Source data are available online for this figure.
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increased sensitivity to DNA damage which can manifest into

hyper-mutation phenotype (Yogev et al, 2010). In our evolution

experiments, the hyper-mutation phenotype (300 SNVs) is apparent

only in one of the three Δfum1 strains (E_Producer_Fz: Δser3,33

Δzwf1 Δfum1). In the remaining Δfum1 strains, the one lacking

ZWF1 deletion (E_Producer_F) and the one engineered for improved

NADPH availability (Producer_FzG), the number of identified muta-

tions is comparable to the low number of mutations in the other

evolved producer strains (< 5 SNVs) (Fig EV4B). The hyper-

mutation phenotype in the E_Producer_Fz yeast strain thus appears

to be contingent on redox imbalance. In E_Producer_FzG strain (Fig

EV4B), a SNV was identified in the coding region of HOM3, the

second enzymatic step in the aspartate-to-threonine pathway, and

two frameshift mutations were identified in NMD2 and TUP1. Tup1p

is a general transcriptional repressor, which forms a complex with

Cyc8p involved in catabolite repression. In high glucose conditions,

the complex Tup1-Cyc8 associates with transcriptional regulators

repressing the expression of target genes. The interaction between

the Tup1-Cyc8 complex with Cti6 and the SAGA complex is respon-

sible for de-repression under low glucose conditions (Papamichos-

Chronakis et al, 2002). Interestingly, indel mutations were observed

in CIT6 and GCN5 (catalytic subunit of SAGA complex) of E_Pro-

ducer_Mz and E_Producer_Sz, respectively (Fig 4E, Appendix Fig

S4B). These suggest that a modified assembly of this complex—
driven by the identified indel mutations—allowed a fine-tuned tran-

scription of glucose-repressed genes towards an optimal metabolic

flux distribution during evolution.

Discussion

Model-guided design of chassis microbial strains has the potential to

overcome the cost and time burden associated with cell factory

development, but so far has only been explored theoretically (Layton

& Trinh, 2014; Trinh et al, 2015; Jouhten et al, 2016). In this work, a

rational strategy based on first-principle modelling was used to

develop two S. cerevisiae chassis strains for the enhanced production

of dicarboxylic acids. The contribution of the chassis background to

the production of the three dicarboxylic acids is evident for all the

target products. Disruption of single reaction steps in the TCA cycle

in the chassis background increased fumarate, succinate and malate

titre—2.3, 3.7 and 4.4-fold—in comparison with the respective

disruption of the TCA cycle in a wild-type background. The chassis-

strain design, presented here, demonstrates that genome-scale meta-

bolic models can identify non-intuitive metabolic routes for building

pre-optimized chassis and subsequent improvement in product flux.

Our results set a stage for further exploration of modelling capabili-

ties through model designs accounting for regulatory networks and

other cellular processes (S�anchez et al, 2017; Lloyd et al, 2018).

Engineered microbial cells require evolutionary adaptation to the

implemented network changes. While adaptive evolution can be

used to improve phenotype stability, robustness and fitness for

biotechnological applications (Fong & Palsson, 2004; Strucko et al,

2018; Yu et al, 2018), it can also lead to loss of production due to

natural selection for better fitness. Modelling strategies based on

growth-product coupling can mitigate this risk as demonstrated in

our work. Indeed, adaptive laboratory evolution of chassis-derived

producing strains not only alleviated auxotrophy and improved

growth fitness, but also led to a 1.4-fold increase in succinate and

fumarate production. In the opposite direction, malate production

decreased after evolution.

Multi-omics strain characterization uncovered a synergetic effect

of Gly1p, Agx1p and Mdh3p changed abundances as a possible route

for the circumvention of the growth-coupling of malate production.

The model simulations used for the design of the chassis-derived

malate-producing strain did not detect flux for malate-to-

oxaloacetate conversion by the peroxisomal malate dehydrogenase

(Mdh3p). Yet, this reaction is present in the model and in vivo

accounts for a fraction of the total cellular malate dehydrogenase

activity (Steffan & McAlister-Henn, 1992). We investigated what

limits, in silico, the malate-to-oxaloacetate flux in the peroxisome

and identified that both yeast models—iMM904 and consensus yeast

7.11—lack the peroxisomal glycerol-3-phosphate dehydrogenase

(encoded by GDP1) reaction, required to balance NADH/NAD+ in

peroxisomes (Al-Saryi et al, 2017). Since the NADH imbalance

restricts malate dehydrogenase activity in the peroxisome, MDH3

was not detected in model simulations as a target deletion solution

for improved malate production. Based on these findings, peroxiso-

mal metabolism was updated in the yeast metabolic model—
iMM904—to include glycerol-3-phosphate dehydrogenase reaction

(Materials and Methods). With this update, flux balance analysis of

the Producer_Mz strain genotype (Δser3,33Δzwf1Δmae1Δmdh1,2)

predicted flux through the reactions encoded by MDH3 and GDP1

and no malate secretion, as expected. Malate secretion phenotype

was predicted when all three malate dehydrogenase isoenzymes

(Mdh1,2,3) were deleted.

Fumarate titre was 1.9-fold higher in Producer_F (Chassis back-

ground, Δser3,33 Δfum1) than in Producer_Fz (Chassis_z back-

ground, Δser3,33 Δzwf1 Δfum1), conversely to model predictions.

Moreover, after evolution Producer_Fz lost fumarate production.

Engineering the glutamate node, indicated by the multi-omics analy-

sis of the evolved strains, allowed us to improve production and

evolutionary stability of the fumarate producer strain. The devia-

tions from the model predictions in both the fumarate and malate

cases identify redox metabolism as one of the limitations that will

need to be addressed for improving model-guided strain design.

Whole genome sequencing of the evolved producer strains

deleted in ZWF1 revealed mutations in proteins linked to glucose

repression of metabolic genes (TUP1, CTI6 and GCN5) (Papamichos-

Chronakis et al, 2002) (Fig 4E). In accord, the differentially

expressed genes in the evolved strains are enriched (8 out of 13) for

transcription factor binding sites (TFBs) interacting with at least one

of these three proteins (Fig EV5). This provides a mechanistic expla-

nation for the increased flux through otherwise glucose-repressed

reactions (e.g. glyoxylate shunt) in the evolved strains.

Our results show that integration of model-based strain design,

adaptive laboratory evolution and multi-omics data can improve

metabolic models even in well-studied organisms such as S. cere-

visiae. While our study involved native metabolic products and rela-

tively simple genetic designs, it provides a proof-of-concept for

moving away from the one product–focussed strain design and

warrants further studies with more complex metabolic engineering

designs. In conclusion, the presented model-guided workflow, inte-

grated with adaptive laboratory evolution and multi-omic characteri-

zation, holds potential for accelerated strain development, especially

through automated engineering platforms such as bio-foundries.
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Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source Identifier or catalog number

Saccharomyces cerevisiae strains

CEN.PK119 (MATa/MATalfa URA3/ura3-52 MAL2-8c/MAL2-8c SUC2/SUC2) Entian and Kötter (2007) N/A

CEN.PK113-7D (MATa URA3 MAL2-8c SUC2) Entian and Kötter (2007) N/A

Engineered strains This study Appendix Table S7

Recombinant DNA

pUG6 EUROSCARF P30114

pUG74 EUROSCARF P30670

pUG75 EUROSCARF P30671

pYPK0 Pereira et al (2016a) N/A

Oligonucleotides

PCR primers This study Appendix Table S8

Chemicals, Enzymes and other reagents

Defined minimal medium (MD) Verduyn et al (1992) N/A

Difco™ Yeast Nitrogen base without amino acids BD™ 291940 Cat # 11753573

Ribitol Alfa Aeaar Cat # A17894

RNAeasy kit Qiagen Cat # 74104

Turbo DNAse ThermoFisher Cat # AM2238

NEBNext® Ultra™ II Directional RNA Library Preparation Kit New England Biolabs (NEB) Cat # E7760S

NEBNext Poly(A) mRNA Magnetic Isolation Module New England Biolabs (NEB) Cat # E7490L

RapiGest SF Surfactants Waters Cat # 186001861

Benzonase Merck Cat # 101654

TMT10plex™ Isobaric Label Reagent ThermoFisher Cat # 90110

NEBNext DNA Ultra2 Library Preparation Kit New England Biolabs (NEB) Cat # E7103

Software

CPLEX ILOG Optimizer IBM v12.5.0, v12.8.0

OptFlux workbench http://www.optflux.org/
Rocha et al (2010)

v3.2.8, v3.4.0

MEW – Metabolic Engineering Workbench https://github.com/MEWorkbench v1.1.0

JECoLi – Java Evolutionary Computational Library https://github.com/ V1.1.0

R A Language for Data Analysis and Graphics https://www.r-project.org v3.6.1, v3.6.3

Python www.python.org v3.6.9

GCMS solution software Shimadzu Corp. N/A

IsobarQuant Franken et al (2015) N/A

Mascot www.matrixscience.com v2.2.07

Cell Growth Quantifier software https://aquila-biolabs.de/ Aquila Biolabs N/A

Other

Illumina NextSeq 500 Illumina N/A

Shimadzu TQ8040 GC Shimadzu Corp. N/A

GeneVac EZ-2 plus evaporating system SP Scientific N/A

Qubit Thermo Fisher Scientific N/A

Liquid handling robot Beckman i7 N/A

Cell disruptor, Sonifier Branson N/A

Illumina MiSeq System Illumina N/A
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Reagents and Tools table (continued)

Reagent/Resource Reference or source Identifier or catalog number

Agilent 1200 Infinity high-performance liquid chromatography Agilent N/A

Automated liquid handling system Hamilton Robotics N/A

2100 BioAnalyzer Agilent Technologies N/A

Precellys Lysing Kit Bertin-instruments Cat # KT0361-1-004.2

OASIS® HLB µElution Plate Waters Cat # 186001828BA

ACQUITY UPLC/UHPLC System Waters N/A

Refractive Index (RI-2414) detector Waters N/A

ACQUITY UPLC PDA Detector Waters N/A

Rezex ROA-Organic Acid H+ (8%) column Phenomenex N/A

Aminex HPX-87H Bio-Rad N/A

ZB-50 capillary column Phenomenex Cat # 7HG-G004-11

DASGIP® Parallel Bioreactor System for Microbial Applications Eppendorf N/A

Ultrospec® 2100 UV-Vis spectrophometer Biochrom, Harvard Bioscience N/A

Cell Growth Quantifier (CGQ) https://aquila-biolabs.de/ Aquila Biolabs N/A

MSM 400 micromanipulator Singer Instruments N/A

Methods and Protocols

Metabolic models
The genome-scale metabolic model of yeast, iMM904, was used for

the generation of results in the optimization and chassis analysis

stages (Mo et al, 2009). The yeast models iND750 and Yeast 6

(Duarte et al, 2004; Heavner et al, 2013) were used for validation

and fitness analysis. The iMM904 yeast model was modified in the

following manner, to accommodate: (i) the addition of two mito-

chondrial 2-oxoglutarate transporters and a NAD-dependent cytoso-

lic acetaldehyde dehydrogenase and (ii) the reversibility of three

mitochondrial transporters (R_ASPt2m, R_OAAt2m and R_MALtm)

were changed to prevent their activity in the direction from the mito-

chondria to the cytosol and the stoichiometry of the sirohydrochlorin

dehydrogenase was corrected (Pereira et al, 2016b). The model was

also modified to include a pyrophosphate transporter in the peroxi-

some, which was found to be essential to allow the activity of the

glyoxylate cycle. After these modifications, the iMM904 model

consists of 1,417 reactions, 1,064 internal metabolites and 904 genes.

Modifications were also performed in the Yeast 6 model (Pereira

et al, 2016a), including the update of several reactions according to

the recent consensus model (Yeast 7.11) (Appendix Table S1).

Selection of gene-deletion candidates for experimental verification
In the optimization stage, the improved model described above was

used to filter the candidates for gene deletion using the following

rules. First, essential or nearly essential reactions, determined as

reactions that when excluded render biomass growth below 1% of

the wild-type, were disregarded as potential targets. Next, all non-

gene associated metabolic reactions, that either occur sponta-

neously, or due to lack of annotation, or do not possess any gene

association, were also removed. Reactions that were unable to carry

flux, for the tested environmental conditions, such as drains and

transport reactions were also excluded. Finally, coupled reactions,

co-sets or equivalent reactions, were grouped and only one of them

was considered (Feist et al, 2010). After these strategies were

employed, a total of 197 reactions were considered as possible dele-

tion targets for the optimization stage.

Nutrient uptake/secretion constraints
The case study was prepared to simulate fully aerobic growth using

glucose as the sole carbon source. The glucose uptake flux was

limited to a maximum of 1.15 mmol/gDW/h, and the oxygen uptake

flux was unrestricted.

Flux phenotype prediction
Phenotypic behaviour can be predicted using a number of

constraint-based approaches over the information kept in metabolic

models. In this work, several phenotype prediction methods were

employed. Parsimonious enzyme usage Flux Balance Analysis

(pFBA) (Lewis et al, 2010) was implemented as described in

Carreira et al (2014) and used to evaluate all the candidate solutions

during the optimization stage. Next, in the robustness analysis

stage, Minimization of Metabolic Activity (MOMA) (Segr�e et al,

2002), a linear variant of MOMA (lMOMA) (Lewis et al, 2012), was

employed to evaluate the fitness of the solutions under alternative

phenotype prediction methods. Finally, Flux Variability Analysis

(FVA) (Zomorrodi et al, 2012) was used to check whether a given

flux can vary in optimal FBA solutions, by setting a constraint that

requires the biomass flux to be equal to its optimal value, and assess

the robustness of a flux distribution regarding its production capa-

bility of the target compounds.

Simulations of the contribution of a gene knockout to the
production of the target compounds
All simulations presented in Appendix Fig S1 and Appendix Tables S2–
S4 were performed in Optflux v3.2.8 using the modified version of the

iMM904 model and the pFBA simulation method and CPLEX ILOG

solver, with a glucose uptake rate of 1.15 mmol/gDW/h. And the

simulations presented in Appendix Table S5 were performed in Opt-

flux v3.2.8 using LMOMA simulation method and CPLEX ILOG solver,

with a glucose uptake rate of 1.15 mmol/gDW/h.
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Platform strain design framework I: Optimization stage
The first step in the developed yeast chassis-strain design platform

is the optimization stage. In this step, the gene deletion solutions for

the improved production of each target compound are identified.

For each of the target product (malic, succinic and fumaric acid), 10

optimization runs were executed. A metaheuristic approach based

on the OptGene method was applied (Patil et al, 2005; Rocha et al,

2008). The employed heuristic is based on the Strength Pareto

Evolutionary Algorithm 2 (SPEA2) (Zitzler et al, 2001; Rocha et al,

2010), readily available in the OptFlux workbench (Rocha et al,

2010). Being a multi-objective approach, the SPEA2 algorithm was

configured to search for strain designs maximizing two conflicting

objectives: (i) maximization of biomass and (ii) maximization of the

target product. The optimization algorithm includes a solution

archive manager that was configured to keep the 100 best solutions

achieved during its execution. After 10 optimization runs for each

target product, all the solutions were merged into a single solution

set, discarding possible repetitions. The algorithm was allowed to

generate solutions of variable sizes up to 20 deletions and, in each

optimization run, a total of 100,000 function evaluations were

allowed. A simplification process was applied where the deletions

not directly contributing towards any of the objective functions were

also ignored. Subsequently, the reaction-based solutions were

converted to their gene-based equivalents, considering the GPR

information available in the model. Finally, for each target product,

every solution was evaluated against a set of metrics intended to

support the chassis analysis stage, including:

• pFBA predicted growth and substrate uptake;
• FVA predicted range of variability of the target compound produc-

tion;
• Biomass-Product Coupled Yield (BPCY) (Patil et al, 2005);
• Carbon Yield (CYIELD) (Equation 1), the yield of target production

to substrate consumption, normalized by the carbon content of

the respective compounds:

CYIELDðVÞ¼ vproduct�Cproduct

vsubstrate�Csubstrate
, (1)

where Cproduct and Csubstrate correspond to the carbon content of a

molecule of the product and substrate compounds, respectively;

• Cost of implementing a solution (COST), corresponding to the

number of genes that compose a solution, a simplified metric to

evaluate the time and financial cost of a wet laboratory implemen-

tation of such solution (assuming that a higher number of

combined knockouts is increasingly expensive to implement and

more likely to become experimentally unfeasible).

At the end of this stage, the results compiled for each of the

target products were analysed together to find common chassis. All

the optimizations were executed in a cluster environment composed

of Intel Xeon processors with 2GB or RAM, each taking approxi-

mately 1 h to complete.

Platform strain design framework II: chassis analysis
Solutions obtained in the optimization stage are clustered to support

the chassis analysis. The framework resorts to the heatmap.2 func-

tion from the gplots R package, which uses a hierarchical clustering

procedure and produces an intuitive heat map. The distance matrix

was calculated using the Euclidean distance metric, and cluster

agglomeration was conducted via complete linkage. The procedure

generates a heat map and dendrograms for both the rows (genes)

and columns (target products), which are reordered by their mean

distance values. Afterwards, a global score for each gene (gscore)

(Equation 2) across all the target products was computed using the

following scoring function:

gscoreðgÞ¼ ∑t∈T f reqðgtÞ
� �

� ∑t∈Txg,t, wherexg,t ¼
1, if f reqðgtÞ>0

1, if f reqðgtÞ¼ 0

� �� �
(2)

where g is a gene, T = {FA, SA, MA} is the set of target products,

freq(gt) is the frequency of gene g in the target t solution set, and

xg,t is a binary variable for gene g in target t that takes the value 1

if freq(gt) is positive, or 0 otherwise. This equation translates into

the sum of the frequencies for a gene across all the targets, being

multiplied by the number of targets for which its frequency is dif-

ferent than zero, increasing the score of genes that occur for multi-

ple targets.

In the third step, the genes were sorted according to their scores

and the top-scoring genes were selected for chassis generation. For

the design of yeast chassis for dicarboxylic acid production, the top

30% were used, computing all the possible combinations of those

gene deletions up to size 5 generating multiple candidate chassis.

Also, using the previously calculated results, all the solutions were

organized in groups, where the criterion for each group is having a

common chassis among them. In this stage, only solutions with at

least 95% of the maximum identified carborn yield (CYIELD) for

their respective target product were considered. Finally, a chassis

score (cscore) (Equation 3) is also computed:

cscoreðcÞ¼∑t∈T

max CYIELDS St,cð Þ½ �
min COSTS St,cð Þ½ � , (3)

where c is the chassis, CYIELDS and COSTS are functions that

return, respectively, a vector of CYIELD and COST values for a set

of solutions, and St,c is the set of solutions for target product t

containing chassis c. This scoring function promotes chassis that

are valid for multiple target products and balances the score by

diving the maximum CYIELD scoring solution by the minimum

COST scoring solution in each set St,c. This score is only used to

sort the chassis for analysis purposes, it is not used to exclude any

chassis or solution. The final result is a list of chassis and respec-

tive solutions for each of the target products, sorted by their cscore.

Yeast strain construction and maintenance
The S. cerevisiae strains used in this study, listed Appendix Table S7,

have a CEN.PK genetic background (Entian & Kötter, 2007). Parental

strain, CEN.PK119 (URA3/ura3-52), was derived from crossing

strains CEN.PK113-5D and CEN.PK113-1A by zygote isolation using

a SINGER micromanipulator. Deletion cassettes were obtained by

the short flanking homology method (Wach et al, 1994) using pUG6

(G€uldener et al, 1996), pUG74 or pUG75 as template (Hegemann &

Heick, 2011) and with the primers listed in Appendix Table S8.

Yeast strains were transformed as described (Schiestl & Gietz, 1989).

Transformants were selected on solid YPD medium (1% yeast
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extract, 2% peptone, 2% glucose, 1.5% agar; Formedium) supple-

mented with 200 mg/l G418 (Formedium), 100 mg/l nourseothricin

(clonNat, Werner BioAgents) or 300 mg/l hygromycin B (Forme-

dium). Single mutants were constructed by transforming the corre-

sponding deletion cassette in the diploid strain CEN.PK119 (URA3/

ura3-52). After tetrad analysis segregants of both mating types for

URA3 and ura3-52 were isolated. Gene deletions of transformants

and after tetrad analysis of haploid segregants were confirmed by

diagnostic PCR using the primers listed in Table S8. Yeast strains

with multiple deletions were generated by crossing, starting with

the single deletion strains. The mating types of the strains

constructed in this study were determined by PCR using whole

yeast cells (Huxley et al, 1990). Plasmid containing Δgdh1::

GDH2_URA3MX4 cassette was assembled using TheYeastPath-

wayKit method (Pereira et al, 2016b). The strains were grown to

stationary phase at 30°C and 180 rpm agitation in shake flask

cultures on YPD medium (10 g/l of yeast extract, 20 g/l of peptone

and 20 g/l of glucose). Stock cultures were prepared by adding glyc-

erol to the culture broth (final concentration 30% v/v) and stored in

sterile vials at −80°C. For YPD plates, 20 g/l of agar was included in

the medium formulation. Pre-cultures were inoculated from a single

colony of plated frozen stocks.

Media and yeast cultivation
Yeast cells were grown in defined minimal medium (Verduyn et al,

1992) (MD) with 20 g/l of glucose (MD20), as carbon source, pH 5

on an orbital shaker set to 180 rpm at 30°C, unless indicated other-

wise. Glycine auxotrophic strains were grown in the same medium

supplemented with 500 mg/l of glycine, added by sterile filtration.

Pre-cultures were prepared by cultivating a single colony from a

selective YPD plate of each yeast strain in YPD medium until mid-

exponential phase (~16 h). Pre-cultured cells were centrifuged,

washed two times with distilled water, resuspended in MD and used

for inoculation in MD with initial OD600 of 0.1. These cultivations

were performed in triplicates. Growth and multi-omics strain char-

acterization were performed in MD20 with the procedure described

above, whereas adaptive laboratory evolution was performed in MD

media with high glucose concentration (100 g/l – MD100) in 50-ml

shake flasks with 13 ml of MD100 medium at 30°C and constant

agitation of 180 rpm.

Adaptive laboratory evolution
Chassis_z and chassis-derived producing strains (Producer_F,

Producer_Fz, Producer_Sz, Producer_Mz and Producer_FzG) were

used in the adaptive laboratory evolution experiments. Adaptive

laboratory evolution was performed by serial transfers of yeast

cultures into fresh MD100 medium. Three independent parallel

evolution cultures of each selected design were performed in shake

flasks. Each independent culture was inoculated at an initial OD of

0.15 in fresh medium along the evolution experiment. Adaptive

laboratory evolution experiment was conducted for 100 days, corre-

sponding to an average of 24 serial passages. The first four consecu-

tive passages were performed in medium supplemented with

glycine, which was abruptly removed after the fourth passage.

Thereafter, ALE was completed in MD100 without any amino acid

supplementation. Culture stocks were frozen and stored at regular

intervals throughout the process. The final evolved populations

were plated in MD20+agar (Appendix Fig S2). Three isolated

colonies of each independent parallel population were picked for

further physiological characterization, regarding their specific

growth rate and production profile. All isolated clones from one of

the parallel evolutions of Producer_F and Producer_Mz had high

growth rates and lower lag-phases (Appendix Fig S3), comparable

to wild-type strain. However, these isolates were no longer able to

produce the respective target compound. The loss of production and

improved fitness were not further investigated, neither the genotype

of the isolates confirmed to rule out possible contaminations. The

graphical pipeline of directed evolution followed by screening and

the selection of the best growth-coupled producers employed in this

study are depicted in Fig 2 and Appendix Figs S2 and S3.

Controlled batch reactor cultivation
Batch fermentations were performed in YNB minimal medium

containing 6.7 g/l of yeast nitrogen base without amino acids

(Difco), supplemented with 50 g/l of glucose. Cells were pre-grown

at 30°C and 180 rpm until mid-exponential phase was reached, in

250-ml shake flasks containing 50 ml of the same medium, and

directly used for inoculation. Each fermenter was inoculated at an

initial OD600 of 0.1. The batch fermentations were performed in a

DASGIP® Parallel Bioreactor System for Microbial Applications

(Eppendorf) with 4 simultaneous culture vessels of 2 l with a work-

ing volume of 1 l. The temperature was maintained at 30°C, airflow
rate was controlled at 1 VVM and constant pH of 5.5 was main-

tained by the automatic addition of 2 M NaOH. To ensure aeration,

the dissolved oxygen was also monitored and kept above 30% of

saturation by feedback control of the stirring speed from 400 rpm

up to 800 rpm. The concentration of O2 and CO2, in the exhaust gas,

was monitored by Bluesens off-gas analyzers. The batch cultures

were sampled in regular intervals both in glucose and ethanol

growth phases. Bioreactor cultivations were performed at least in

duplicate.

Biomass determination
Biomass concentration was monitored by measuring both dry cell

weight (DCW) and optical density (OD600) of the cultures. DCW was

determined by filtering 5 ml of the fermentation broth and washed

with 15 ml of distilled water, through a 0.22 μm pore filter from

Millipore. Filters were pre-dried in a microwave oven at 150 W for

10 min, and the initial weight was measured using an analytical

balance. After filtration, they were dried again in a microwave oven

in the same conditions and stored in a desiccator before measuring

the final weight. Optical density (OD) of the culture was estimated

using a Ultrospec® 2100 UV-Vis spectrophometer (Biochrom,

Harvard Bioscience, Inc., USA) at a wavelength of 600 nm. In Fig 4,

cell growth was followed using real-time measurements, the Cell

Growth Quantifier (CGQ, Aquila Biolabs). The ODequivalent values

were measured periodically during cultivation without perturbing

cell culture.

Sampling and quantification of fermentation products
(shake flasks)
Samples were taken at precise times. After centrifugation (4,000 g,

10 min), supernatants were filtered using 0.2 μm PVDF—Poly

(vinylidene fluoride)—syringe filter (Phenomenex, USA) and stored

at −20°C until high-performance liquid chromatography (HPLC) and

gas chromatography–mass spectrometry (GC-MS) analysis was
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performed. Organic acids, including succinic acid, malic acid,

fumaric acid, pyruvic acid and lactic acid were determined by GC-

MS. Ribitol (Adonitol) (Alfa Aesar, UK) was added as an internal

standard to the samples which were subsequently evaporated using

a GeneVac EZ-2 plus evaporating system (SP Scientific). The dried

extracts were derivatized with 50 ml of 20 mg/ml methoxyamine

hydrochloride (Alfa Aesar, UK) solution in pyridine (Alfa Aesar,

UK) for 90 min at 40°C, followed by reaction with 100 ml N-methyl-

N-(trimethylsilyl)trifluoroacetamide (Alfa Aesar, UK) for approxi-

mately 12h at room temperature. Metabolites were measured using

a Shimadzu TQ8040 GC-(triple quadrupole) MS system (Shimadzu

Corp.). The gas chromatograph was equipped with a 30 m ×
0.25 mm × 0.25 μm ZB-50 capillary column (7HG-G004-11, Phenom-

enex, USA). One microlitre of sample was injected in split mode at

250°C using helium as a carrier gas with a flow rate of 1 ml/min.

GC oven temperature was held at 100°C for 4 min followed by an

increase to 320°C with a rate of 10°C/min, and a final constant

temperature period at 320°C for 11 min. The interface and the ion

source were held at 280 and 230°C, respectively. The detector was

operated both in scanning mode recording in the range of 50–
600 m/z, as well as in Multiple Reaction Monitoring (MRM) mode

for the specified metabolites. For peak annotation, the GCMS solu-

tion software (Shimadzu Corp.) was utilized. The metabolite identi-

fication was based on an in-house database with analytical

standards utilized to define the retention time, the mass spectrum

and the quantifying ion fragment for each specified metabolite.

Metabolite quantification was performed by integrating the area

under the curve (AUC) of the quantifying ion fragment of each

metabolite (Supplementary Table 9) divided by the AUC of ribitol’s

quantifying ion (m/z 319). For quantitative determination of succi-

nate, malate and fumarate calibration curves were performed using

known concentrations of target compounds.

Quantitative determination of extracellular compounds was also

performed by ACQUITY UPLC/UHPLC System equipped with a

Refractive Index (RI-2414) detector (Waters) and a ACQUITY UPLC

PDA Detector. Glucose, succinic acid and ethanol were detected

using RI detector, while acetate and fumaric acid were determined

at 210 and 260 nm, respectively. The samples were analysed using

a Rezex ROA-Organic Acid H+ (8%) column (Phenomenex, Aschaf-

fenburg, Germany, kept at 65°C), where a solution of 0.5 mM of

H2SO4 was used as the mobile phase with a flow rate of 0.5 ml/min.

Calibration curves were performed with known concentrations of

each metabolite, and target compounds were quantified by compar-

ing the metabolite peak area in the sample with the peak area

obtained in the sample.

Quantification of fermentation products (bioreactors)
Samples for quantification of extracellular metabolites were

obtained by rapidly taking 2 ml of broth, followed by immediate

removal of the cells by filtration through PVDF syringe filters with a

pore size of 0.22 μm (Millipore, USA). When OD600 > 1, the culture

broth was first centrifuged (3,600 g, 8 min) and the supernatant

was similarly filtered before being stored in HPLC vials at −20°C for

further analysis. Subsequently, samples were analysed by HPLC

(Jasco, Japan) model LC-NetII/ADC equipped with UV-2075 Plus

and RI-2031 Plus detector. An Aminex HPX-87H column (Bio-Rad,

kept at 65°C) was used and a solution of 0.01 M of H2SO4, with a

flow rate of 0.5 ml/min, was used as the mobile phase. Quantitative

analysis of desired compounds was performed by comparison with

a mixture of standards with known concentrations of each metabo-

lite. Calibration curves were prepared using the peak areas of the RI

detector for glucose, glycerol, acetate, ethanol and succinate, and of

the UV absorbance for malate and fumarate.

Genome sequencing and analysis of evolved and parental strains
Genomic DNA of population (at 5th passage) of Producer_Fz and

isolated clones of evolved chassis-derived producing strains was

extracted from cultures grown in YPD. At late-exponential stage,

cells were pelleted and resuspended in 2 ml of TE buffer (0.1 M Tris

and 0.1 M EDTA) supplemented with 1.5 U of Lyticase and incu-

bated for 30 min at 37°C. Next, DNA was extracted and purified

following the phenol-chloroform extraction protocol (Hoffman,

1997). DNA concentrations and quality were determined using

Qubit (Thermo Fisher Scientific, USA). Equal amounts of DNA from

all samples were used for library preparation, using the NEBNext

DNA Ultra2 Library Preparation Kit (New England Biolabs). Library

preparation was performed on an automated liquid handling system

(Hamilton Robotics), and the quality of the library was tested on a

2100 BioAnalyzer (Agilent Technologies). Paired-end Illumina short

read sequencing was performed of the whole genome DNA samples.

The quality of the obtained reads was controlled using FastQC v.

0.10.1 (Andrews, 2010). Adapter removal, trimming of low-quality

ends (both 30 and 50, quality cut-off 30) and short read filtering

(minimum read length 31) were performed using cutadapt v.1.10

(Martin, 2011). The trimmed reads were aligned to Saccharomyces

cerevisiae CEN.PK 113-7D genome assembly (Salazar et al, 2017)

with the Burrows–Wheeler Aligner v.0.7.12 bwa-mem (Li & Durbin,

2009; preprint: Li, 2013) using default parameters. The alignments

were processed (read groups added, sorted, reordered and indexed)

and duplicate reads were marked using Picard Tools v.1.129 (http://

broadinstitute.github.io/picard/). Single nucleotide variant (SNV)

and insertion-deletion (indel) variant calling were performed with

GATK4 v.4.1.0.0 (McKenna et al, 2010) Haplotypecaller in GVCF

mode followed by joint genotyping using GenotypeGVCF (McKenna

et al, 2010) using the S. cerevisiae CEN.PK113-7D genome assembly

(Salazar et al, 2017) as the reference and default parameters. The

called variants were filtered according to the GATK4 recommenda-

tions with the following thresholds for SNVs: QD < 2, FS > 60.0,

MQ < 50.0, MQRankSum < −12.5, ReadPosRankSum < −8.0, GQ

< 30 and DP < 5, and the following thresholds for indels: QD < 2,

FS > 200, MQ < 50.0, ReadPosRankSum < −20.0, GQ < 30 and

DP < 5, and the following thresholds for indels: QD < 2, FS > 200,

MQ < 50.0, ReadPosRankSum < −20.0, GQ < 30 and DP < 5.

Finally, the de novo variants were identified as the variants occurring

only in independent evolved isolates and not in the non-evolved

reference engineered strain. Variants were identified both in CDS

locus as well as 500 bp upstream and downstream of gene. Struc-

tural variants (SVs) were called using Delly v.0.7.7 (Rausch et al,

2012). Called SVs were filtered against the non-evolved reference

strain (Producer_Fz). The outputs were processed using BCFtools

v.1.9 (Li, 2011) and svprops.

Multi-omics sample preparation
Wild-type, evolved and parental chassis-derived producing strains

were grown in MD20 (with parental strains supplemented with

500 mg/l of glycine). Samples were collected at mid-exponential
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growth phase for transcriptomics, proteomics and extracellular

metabolomics. For total RNA, 10 ml of culture broth was collected

in a 50-ml Falcon® tube filled with ice and immediately centrifuged

at 19,341 g for 2 min at 0°C. At the same time, for total protein,

10 ml of fermentation broth was transferred into ice-cold 15 ml

Falcon® and immediately centrifuged at 10,000 g for 2 min at 0°C.
After centrifugation, supernatant was discarded and cell pellet was

washed once with ice-cold PBS buffer. After centrifugation, both cell

pellets were snap-frozen in liquid nitrogen and kept at −80°C until

extraction. For extracellular metabolomics, 5 ml of supernatant was

collected and kept at −80°C until analysis. Sample preparation and

quantification were performed by GS-MS as described.

RNA-seq sample preparation and differential gene
expression analysis
Total RNA was isolated with RNAeasy kit (Qiagen) following manu-

facturer recommendations. To remove DNA contamination, after

extraction samples were digested with Turbo DNAse (Thermo

Fisher) followed by RNA clean-up (RNAeasy kit, Qiagen). RNA

library was prepared using the NEBNext® Ultra™ II Directional RNA

Library Preparation Kit for Illumina: polyA transcripts capture.

Barcoded stranded mRNA-seq libraries were prepared from ~200 ng

total RNA samples using the NEBNext Poly(A) mRNA Magnetic

Isolation Module and NEBNext Ultra II Directional RNA Library Prep

Kit for Illumina (New England Biolabs (NEB), Ipswich, MA, USA)

implemented on the liquid handling robot Beckman i7. Obtained

libraries that passed the QC step were pooled in equimolar amounts;

2 pM solution of this pool was loaded on the Illumina sequencer

NextSeq 500 and sequenced uni-directionally, generating

~500 million reads, each 85 bases long. Quality of the RNA-seq

reads was assessed and summarized with Fastqc v.0.11.5 (Andrews,

2010). Next, cutadapt v.2.3 (Martin, 2011) was used for adapter

trimming, to remove the standard lllumina TrueSeq Index adapters

sequences. Quality read filtering and trimming was performed with

FaQCs (Lo & Chain, 2014) v.2.08, with the following parameters:

-q 20 -min_L 30 -n 3. Trimmed reads were then aligned to the refer-

ence genome of S. cerevisiae CEN.PK113-7D (EnsemblFungi:

GCA_000269885) using STAR (Dobin et al, 2013) v.2.5.2a. On aver-

age, 95% of reads uniquely mapped to an annotated feature in the

reference. Uniquely mapped reads were then used to generate the

gene count tables with HTSeq (Anders et al, 2015) v.0.9.1. A total of

5430 genes with > 10 mapped reads were identified in Producer_F

and Producer_Sz, while 5,433 were identified in Producer_Mz. Dif-

ferential gene expression analysis, including multiple testing correc-

tion and independent filtering, was performed with Bioconductor

package: DESeq2 (Love et al, 2014) v.1.12.0. False discovery rate

(FDR) was calculated with fdrtool (Strimmer, 2008) v.1.2.15 using

the raw P-values returned by DESeq2. Genes with a FDR < 0.1 were

considered as significantly differentially expressed. Unless specified,

all packages were used with default parameters. Biostatistical analy-

sis was conducted with R v.3.6.1 (R Development Core Team).

Protein sample preparation, sequencing and analysis
Frozen cell pellets were lysed using 0.1% RapiGest in 100 mM

ammonium bicarbonate. Three cycles of sonication (1 cycle: 15 s

sonication, 15 s on ice) (Cell disruptor, Sonifier, Branson) were

applied to the lysate, followed by 15 min bead beating using

Precellys Lysing Kit (KT0361-1-004.2). Cell lysate was transferred

into a new tube after centrifugation (5 min, 5,000 g) and incubated

at 80°C for 15 min. Benzonase (25 U, Merck) was added to the

lysate and incubated for 30 min at 37°C. Cysteines were reduced

using 10 mM of dithiothreitol (56°C, 30 min). The sample was

cooled to 24°C and alkylated with 10 mM of iodacetamide (room

temperature, in the dark, 30 min). Proteins were precipitated with

TCA, and pellet was washed by acetone and dried. The proteins

were digested in 50 mM HEPES (pH 8.5) using LysC (Wako) with

an enzyme to protein ration 1:50 at 37°C for 4 h, followed by trypsin

(Promega) with an enzyme to protein ratio 1:50 at 37°C overnight.

TMT10plex™ Isobaric Label Reagent (Thermo Fisher) was added to

the samples according the manufacturer’s instructions. Labelled

peptides were cleaned up using OASIS® HLB µElution
Plate (Waters). Offline high pH reverse phase fractionation was

performed using an Agilent 1200 Infinity high-performance liquid

chromatography (HPLC) system, equipped with a Gemini C18

column (3 μm, 110 �A, 100 × 1.0 mm, Phenomenex) (Reichel et al,

2016). The solvent system consisted of 20 mM ammonium formate

(pH 10.0) as mobile phase (A) and 100% acetonitrile as mobile

phase (B). After fragmentation peptides were separated using the

UltiMate 3000 RSLC nano LC system (Dionex) fitted with a trapping

cartridge (µ-Precolumn C18 PepMap 100, 5 µm, 300 µm i.d. ×
5 mm, 100 �A) and an analytical column (nanoEase™ M/Z HSS T3

column 75 µm × 250 mm C18, 1.8 µm, 100 �A, Waters). The outlet

of the analytical column was coupled directly to a QExactive plus

(Thermo) using the proxeon nanoflow source in positive ion mode.

The peptides were introduced into the mass spectrometer (QExactive

plus, Thermo Fisher) via a Pico-Tip Emitter 360 µm OD × 20 µm ID;

10 µm tip (New Objective) and a spray voltage of 2.3 kV was

applied. The capillary temperature was set at 320°C. Full scan MS

spectra with mass range 375–1,200 m/z were acquired in profile

mode in the FT with resolution of 70,000. The peptide match algo-

rithm was set to “preferred” and charge exclusion “unassigned”,

and charge states 1 and 5–8 were excluded. Isolation window was

set to 1.0 and 100 m/z set as the fixed first mass. MS/MS data were

acquired in profile mode (Strucko et al, 2018).

Acquired data were processed using IsobarQuant (Franken et al,

2015) and Mascot (v2.2.07). Searched against Uniprot S. cerevisiae

CEN.PK113-7D proteome database. The following modifications

were included into the search parameters: Carbamidomethyl (C)

and TMT10 (K) (fixed modification), Acetyl (N-term), Oxidation

(M) and TMT10 (N-term) (variable modifications). For the full scan

(MS1), a mass error tolerance of 10 ppm and for MS/MS (MS2)

spectra of 0.02 Da was set. Further parameters were set: Trypsin as

protease with an allowance of maximum two missed cleavages: a

minimum peptide length of seven amino acids; at least two unique

peptides were required for a protein identification. The false discov-

ery rate on peptide and protein level was set to 0.01.

Raw data of IsobarQuant were loaded into R. Only proteins that

were quantified with two unique peptides were used for downstream

analysis. The output data from IsobarQuant were cleaned for poten-

tial batch effects with limma (Ritchie et al, 2015) and subsequently

normalized with vsn (variance stabilization) (Huber et al, 2002).

Missing values were imputed with the impute function (method =
“knn”) from the MSNBase package (Gatto & Lilley, 2012). Under

these conditions, a total of 3305 proteins were quantified and used to

calculate differential protein abundances between tested strains. Dif-

ferential abundance was performed with limma (Ritchie et al, 2015).
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Proteins were classified as “hits” with a false discovery rate (fdr)

<= 5% and a fold change of at least 200% and as “candidates” with

fdr <= 20% and a fold change of at least 100%. The mass spectrom-

etry proteomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE (Perez-Riverol et al, 2019) partner reposi-

tory with the dataset identifier PXD020611.

Integration of transcriptomics, proteomics and extracellular
metabolomics data into flux balance analysis
Transcriptomics, proteomics and extracellular metabolomic data

were integrated into flux balance analysis using MARGE function

from reframed python package (https://doi.org/10.5281/zenodo.

3478380). Flux balance analysis simulations of phenotype predic-

tions were performed following MARGE standard parameter

settings. The iMM904 yeast model initially used was transformed to

include gene-protein-reaction (GPR) associations (Machado et al,

2016). Differences in extracellular metabolites abundances, gene

expression levels and protein abundances of metabolic genes were

calculated between the following: (i) parental chassis-derived

producers and wild-type strains; and (ii) evolved and parental

chassis-derived producing strains. Fold changes of differentially (q-

value < 0.1) expressed metabolic genes, protein abundances and

extracellular metabolite abundances between two conditions were

used in the simulation tool. Relative growth rate differences

between strains and wild-type (Fig 1D) were used to fit “growth_

frac” parameter (growth_frac of wild-type = 1). Flux balance analy-

sis was simulated using the differentially phenotypic changes

imposed as lower/upper bounds in the flux of the respective reac-

tion. The IBM ILOG CPLEX Optimizer (version 12.8.0) was used for

solving the MILP problems. All simulations were conducted with

Python 3.6.9.

Updates to the yeast model for enabling flux through
peroxisomal Mdh3p
The modified genome-scale metabolic model of yeast, iMM904, was

further updated to include the missing glycerol-3-phosphate dehy-

drogenase reaction in the peroxisome identified in this study (Al-

Saryi et al, 2017). The peroxisomal glycerol-3-phosphate dehydroge-

nase NAD-dependent reaction (R_G3PD1irp) was added to the

model (associated to YDL022W gene). The model was also modified

to include two new transport reactions cytosol-to-peroxisome of

glycerol-3-phosphate (R_GLYC3Ptx) and peroxisome-to-cytosol of

dihydroxyacetone phosphate (R_DHAPtx). After these modifi-

cations, the updated iMM904 model consists of 1,420 reactions,

1,066 internal metabolites and 904 genes.

Data availability

The data sets and computer code produced in this study are avail-

able in the following databases:

• Modelling computer scripts and updated models: https://github.

com/silicolife/yeastchassis/ (updated models under “data/models”

folder).
• Genome sequencing data: ENA database with the identifier

PRJEB41109 (https://www.ebi.ac.uk/ena/browser/view/PRJEB41

109).

• RNA-Seq data: ArrayExpress database at EMBL-EBI under acces-

sion number E-MTAB-9499 (https://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-9499/).
• Mass spectrometry proteomics data: ProteomeXchange Consortium

under accession number PXD020611 (via PRIDE (Perez-Riverol

et al, 2019) partner repository). (https://www.ebi.ac.uk/pride/arc

hive/projects/PXD020611).
• Extracellular metabolomics data: MetaboLights database at EMBL-

EBI under the identifier MTBLS2007. (https://www.ebi.ac.uk/me

tabolights/MTBLS2007).

Expanded View for this article is available online.
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