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BACKGROUND: This study investigates whether quantitative breast density (BD) serves as an imaging biomarker for more intensive
breast cancer screening by predicting interval, and node-positive cancers.
METHODS: This case–control study of 1204 women aged 47–73 includes 599 cancer cases (302 screen-detected, 297 interval; 239
node-positive, 360 node-negative) and 605 controls. Automated BD software calculated fibroglandular volume (FGV), volumetric
breast density (VBD) and density grade (DG). A radiologist assessed BD using a visual analogue scale (VAS) from 0 to 100. Logistic
regression and area under the receiver operating characteristic curves (AUC) determined whether BD could predict mode of
detection (screen-detected or interval); node-negative cancers; node-positive cancers, and all cancers vs. controls.
RESULTS: FGV, VBD, VAS, and DG all discriminated interval cancers (all p < 0.01) from controls. Only FGV-quartile discriminated
screen-detected cancers (p < 0.01). Based on AUC, FGV discriminated all cancer types better than VBD or VAS. FGV showed a
significantly greater discrimination of interval cancers, AUC= 0.65, than of screen-detected cancers, AUC= 0.61 (p < 0.01) as did
VBD (0.63 and 0.53, respectively, p < 0.001).
CONCLUSION: FGV, VBD, VAS and DG discriminate interval cancers from controls, reflecting some masking risk. Only FGV
discriminates screen-detected cancers perhaps adding a unique component of breast cancer risk.
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BACKGROUND
The aim of stratified, or risk-based, breast cancer screening [1–5] is
to optimise the balance of benefits of early cancer detection and
mortality reduction with the harms of false-positive mammo-
grams, benign biopsies, and overdiagnosis [4]. However, risk-
based protocols may eliminate screening benefits for some
women [6, 7] and increase complexity, with questionnaires, blood
draws, and counselling, thereby potentially detracting from the
performance of an age-based screening programme. To preserve
or improve effectiveness, a stratified screening programme needs
to maintain or decrease the incidence of advanced (i.e. node-
positive) and interval cancers, those tumours most likely to be
clinically significant. Ideally, stratified protocols would personalise
mammography initiation, screening interval, and supplemental
screening with other modalities in order to decrease advanced
and interval cancers, while maintaining low rates of false positives.
This programme would ideally decrease mortality from breast
cancer in all women regardless of risk.

Breast density (BD) reflects the amount of glandular and fibrous
connective tissue compared with the amount of fatty tissue in the
breasts, as seen on a mammogram. BD has three attributes that
support use in stratification of population screening. First,
increased BD, conditional on age and body mass index (BMI), is
a strong risk factor for breast cancer [8]; second, high levels of BD
are associated with lower sensitivity of mammography due to
masking, i.e., when dense breast parenchyma obscures a cancer
and allows it to grow undetected until it is symptomatic [9, 10]
and third, lower levels of BD are associated with a longer
preclinical screen-detectable period [11]. Risk prediction algo-
rithms [12, 13] have predominantly used BD as visually assessed
by the radiologist according to the Breast Imaging Reporting and
Data System (BI-RADS) [14]. Although BI-RADS BD stratifies risk
[15], substantial inter-observer variability has generated interest in
adopting automated methods [16]. Automated quantitative BD
[17–21] would enable more consistent density assessment, and
hence, potentially risk assessment for use in breast cancer
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screening protocols. In addition, automated methods may provide
the opportunity to disentangle the most predictive components of
BD related to breast cancer risk in a way that visual assessment
cannot. For example, quantitative methods can assess whether
the absolute or relative amount of BD on mammography (or a
combination) represent the key elements that confer breast
cancer risk. These algorithms may also be able to separate the risk
of breast cancer from the risk of masking, an important distinction
when considering the utility of more frequent mammography
screening versus the addition of supplemental screening mod-
alities like MRI or ultrasound [22]. Furthermore, few studies have
investigated the ability of quantitative BD analysis to predict the
risk of interval [23] or advanced cancers [19].
To fill this gap in the literature, we compared women diagnosed

with cancer (interval, node-positive, and screen-detected) to
disease-free women with respect to BD. We measured BD using
automated BD assessments and radiologists’ quantitative visual
BD assessments to compare the predictive ability of each BD
assessment method. We hypothesised that quantitative BD can
predict interval cancers and node-positive screen-detected
cancers in order to serve as an imaging biomarker with the
potential to personalise breast cancer screening.

METHODS
Ethical approval for the establishment and use of the OPTIMAM image
database [24] was obtained from the NHS National Research Ethics Service.

Study population
In the National Health Breast Screening Programme (NHSBSP), women
aged 50–70 years are invited for screening every three years, with an age
extension being piloted in a randomised controlled trial of women 47–73
years conducted from 2009 to 2022 [25]. We specifically selected women
aged 47–73 who underwent mammographic screening between May 2011
and March 2016 at the Jarvis Breast Screening Centre (Guildford, Surrey,
UK) and otherwise met the inclusion criteria for the study. The NHSBSP in
general, and the Jarvis Breast Screening Centre specifically, started to
convert to digital mammography in 2011. We conducted a retrospective
case–control study using mammographic screening images and associated
pathological data that were collected as part of the research image
database called the OPTIMAM Image Database [24]. Because adherence in
a screening program is never exactly within the prescribed round length,
due to patient or programme factors (e.g. delayed invitations) we allowed
interval cancers to include those found between screening, regardless of
timing. This definition means interval cancers are equivalent to post-
screening symptomatic cancers in our analysis.
The images were acquired on five Hologic Selenia systems, two Hologic

Selenia Dimensions systems (Hologic Inc., Bedford, USA), one GE
Senographe Essential system (GE Healthcare Inc., Chicago, USA) and one
Sectra MDM-L30 (Phillips Healthcare, Cambridge, Massachusetts, USA). All
the digital mammograms in the study were de-identified. Both unpro-
cessed and processed images were collected, when available. To be
included in the study, women needed at least one negative digital
mammogram prior to the screening mammogram that detected their
cancer or the diagnostic mammogram that diagnosed their interval cancer.
For the screen-detected cancers, the prior mammogram was used in the
study in order to provide an assessment, whether by the radiologist or
quantitative imaging, that was ‘blind’ to the cancer. Selection of controls
for each case followed a prescribed protocol. Cancer free controls were
selected based on the same equipment and ‘date of acquisition’ as the
cases. For screen-detected cases, ‘date of acquisition’ was the date of
screening examination at which time the cancer is detected. For interval
cancers, there were no screening images for detection of cancer (by
definition), so ‘date of acquisition’ was date of prior screening images for
that individual. From the group of controls meeting these requirements for
each case (machine and ‘date of acquisition’), the closest available age was
selected. This resulted in 99.4% of cases and controls being within 4 years
of age. Because of the limited normal cases in the OPTIMAM database at
the time of case/control selection, a one-to-one match protocol was not
possible for all. In total, 542 cases had matched controls and 57 cases did
not. Thus 63 unmatched controls were included. Matching on other

characteristics (e.g. ethnicity or BMI) was not possible because such
variables were not available. All the controls were followed up and
remained cancer free for at least 3 years. Pathological data were collected
from England’s National Breast Screening System.
We required adequate statistical power for comparison of controls with

two specific subgroups of cases: interval cancers and node-positive
cancers. For both these case groups, we posited that ~20% of controls and
30% of cases would be in the highest density category. Estimating that the
total number of controls would be at least double the number of cases in
either of these subgroups, 291 cases would give 90% power and 216 cases
would give 80% power. We, therefore, aimed to have at least 216 cases in
each subgroup. Anticipating that, for some cases and controls, the
unprocessed mammograms might not be available, we obtained 599 cases
in total, comprising 302 screen-detected cancers and 297 interval cancers.
We sought to enrich the dataset for node-positive cases, so all available
node-positive cases (n= 239) were selected, and node-negative cases (n=
360) were selected randomly to complete the case set.

Breast density assessment
Automated BD software (Volpara Health Technologies Ltd: Version 1.5.1,
New Zealand) was used to calculate fibroglandular volume (FGV) in cm3,
volumetric breast density (VBD) in percent and 5th Edition Volpara Density
Grade (DG) from the unprocessed images on the exam level. Volpara is a
FDA-approved fully automated software to estimate volumetric breast
density [26], based on a detailed relative physics model whereby a region
of the breast which is entirely fatty tissue is identified and used as a
reference to then calculate the thickness of fibroglandular tissue at each
pixel of the image [27]. A model of the breast under compression and the
breast thickness (from the DICOM header) are used to convert these
fibroglandular tissue thicknesses to volumes, which are then summed
across the breast. to provide the FGV and VBD per image. For each
screening exam (i.e. a typical four-view exam comprises of the left and
right, cranio-caudal (CC) and mediolateral oblique (MLO) views), Volpara
software aggregates the image-level metrics to output study-level results
per exam. For each breast side, FGV and VBD are averaged across the two
views (i.e. CC and MLO), to provide per-breast results for the left and right
breasts separately. The study-level FGV and VBD were calculated as the
mean of the two per-breast results.
In addition, VBDmax is calculated as the denser VBD of the left or right

breasts. Volpara software uses preset cut-off points of VBDmax (to mimic
BI-RADS 5th Edition) and reports a study-level 5th Edition Volpara Density
Grade (DG), where DG a: 0 ≤ VBD < 3.5%, DG b: 3.5% ≤ VBD < 7.5%, DG c:
7.5 ≤ VBD < 15.5%, DG d: VBD ≥ 15.5%). Typically, the Volpara Density
Grades are denoted as VDG a/b/c/d. However, to avoid confusion between
acronyms that designate ‘V’ as ‘volume’ or ‘volumetric’ the acronym DG is
used throughout this paper, rather than VDG. Volpara software has been
validated [26] and used extensively [28] by other groups.
A radiologist (ESB), blinded to case–control status, was shown

the images using MedXViewer [29] and assessed BD on a visual analogue
scale (VAS) from 0 to 100 for each exam following guidance in prior
literature [28].

Statistical analysis
We took the continuous variables (FGV, VBD and VAS) and determined
categorical quartiles using thresholds determined by the distribution for all
cases and controls combined (excluding those missing raw images). DG is
a categorical variable, already divided by the Volpara software into
categories with pre-determined thresholds. We then estimated how these
four categorical measures of BD (FGV-quartile, VBD-quartile, VAS-quartile
and DG) and how three continuous BD measures (FGV, VBD and VAS)
discriminated between cases and controls. We estimated the effects of
these BD variables on risk of cancer overall and on the risk of particular
subsets of cancers (node-positive, node-negative, interval, and screen-
detected) using logistic regression, adjusting for age. For each subgroup of
cases, we used all controls as the comparator group.
In addition, we carried out receiver operating characteristic (ROC)

analysis, by estimating and comparing areas under the ROC curve (AUCs).
We used the De Long et al. [30] method to compare AUCs between BD
measures. We compared AUCs between different cases subgroups using
permutation tests [31]. Finally, we also provide a, perhaps, more clinically
relevant, measure of discrimination showing the numbers in the lowest risk
25% (1st quartile) and the highest risk 25% (4th quartile) of each ‘type’ of
cancer.
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RESULTS
Data description
Our study included 1204 subjects (599 cancers, 605 controls) in
women aged 47–73 years old. Dates of mammograms included in
this study ranged from 2010 to 2015 (Table 1). Of note, the
mammograms included our study for the screen-detected cancers
was the prior mammogram. Thus, for the women (defined by the
inclusion criteria) who underwent screening between 2011 and
2016 and had a screen-detected cancer, as mentioned in the
‘Methods’ section, the prior mammogram was therefore dated
earlier than the inclusion criteria range. For the 302 screen-
detected cancers, the time between prior screening exam and
diagnosis, as defined by first positive biopsy, was an average
1067 days (range: 454–1196). For the 297 interval cancers, the
time between screening and diagnosis was an average of 656 days
(range: 26–1991). As expected, a higher proportion of screen-
detected than interval cancers were in situ, and a higher
proportion of interval cancers were node-positive. The 599 cancers
in our study included 524 invasive and 75 cases of ductal
carcinoma in situ (DCIS)—for more detail, see Supplementary
Information, Supplementary Tables 1 and 2.

Categorical quantitative BD predicting cancer types
Unprocessed images needed for automated BD measures were
available for 429 (72%) cases and 418 (69%) controls. FGV-quartile,
VAS-quartile, and DG predicted all cancers versus controls, while
VBD-quartile did not (Table 2). The steepest risk gradient for all

cancers was associated with FGV with an odds ratio (OR) for the
highest quartile compared to the lowest of 3.7 (95% CI 2.5–5.6).
VAS-quartile was not associated with node-positive cancers. In

contrast, all categorical automated BD predicted interval cancers
and ‘node-positive or interval’ cancers (henceforth referred to as
‘combined’ cancers) with statistical significance (Table 3). FGV-
quartile, VBD-quartile, and DG statistically significantly predicted
node-positive cancers. FGV-quartile demonstrated the steepest
risk gradient for interval (OR 5.3, CI 3.1, 9.1, p < 0.01), node-positive
(OR 4.7, CI 2.5, 9.0, p < 0.01) and combined cancers (OR 4.7, CI 2.9,
7.8, p < 0.01). All automated BD measures more consistently
predicted interval compared to screen-detected cancers (Fig. 1)—
for more detail, see Supplementary Information, Supplementary
Table 3.

Continuous BD measures predicting cancer types
For continuous BD measures (FGV, VBD and VAS), the differences
in means between cases and controls were statistically significant
for all, interval, node-positive, and combined cancers (Table 4). The
difference in means for FGV between cases and controls was
statistically significant for screen-detected cancers. The difference
in means for FGV and the difference in means for VAS between
cases and controls were statistically significant for node-negative
cancers.
AUC analysis (Fig. 2) demonstrates that FGV reached the highest

discriminative ability with an AUC of 0.65 for three subsets of
cancers: interval cancers (95% CI 0.60, 0.70), node-positive cancers
(95% CI 0.59, 0.71), and combined cancers (95% CI 0.60, 0.69). FGV,
VBD and VAS were each able to discriminate all, interval, node-
positive, and combined cancers from controls, as demonstrated by

Table 1. Description of the study population and cancer cases.

Control Screen-detected Interval

# (%) # (%) # (%)

Mammograms N= 605 N= 302 N= 297

Age

47–49 37 6.1 14 4.6 22 7.4

50–54 122 20.2 63 20.9 68 22.9

55–59 126 20.8 62 20.5 62 20.9

60–64 154 25.5 79 26.2 63 21.2

65–69 138 22.8 76 25.2 64 21.5

70–73 28 4.6 8 2.6 18 6.1

Date of ‘prior’ mammogram

2010 27 4.5 12 4 17 5.7

2011 84 13.9 46 15.2 41 13.8

2012 292 48.3 204 67.5 81 27.3

2013 138 22.8 38 12.6 101 34

2014 51 8.4 2 0.7 45 15.2

2015 13 2.1 0 0 12 4

Machine

Hologic 593 98.0 296 98.0 288 97.0

GE 9 1.5 6 2.0 9 3.0

Sectra 3 0.5 0 0 0 0

Invasive/In situ

Invasive 245 81.1 279 93.9

In situ 57 18.9 18 6.1

Nodal status

Positive 116 38.4 123 41.4

Negative 186 61.6 174 58.6

Number of nodes positive

None 186 61.6 174 58.6

1, 2 or 3 101 33.4 89 30

4 or more 15 5 34 11.4

Table 2. Association of categorical measures of density with cancer
risk (all cancers).

Controls All cancers

# % # % OR 95% CI p-value

FGV (cm3)a

1st quartile 137 22.6 75 12.5 1 p < 0.01

2nd quartile 114 18.8 98 16.4 1.6 (1.1, 2.3)

3rd quartile 95 15.7 116 19.4 2.3 (1.5, 3.4)

4th quartile 72 11.9 140 23.4 3.7 (2.5, 5.6)

Missing 187 30.9 170 28.4

VBD (%)b

1st quartile 119 19.7 100 16.7 1 p= 0.12

2nd quartile 107 17.7 99 16.5 1.1 (0.7, 1.6)

3rd quartile 101 16.7 111 18.5 1.3 (0.9, 1.9)

4th quartile 91 15.0 119 19.9 1.6 (1.0, 2.3)

Missing 187 30.9 170 28.4

VAS (%)c

1st quartile 174 28.8 143 23.9 1

2nd quartile 157 26 137 22.9 1.1 (0.8, 1.5) p= 0.04

3rd quartile 132 21.8 165 27.5 1.5 (1.1, 2.1)

4th quartile 142 23.5 154 25.7 1.3 (0.9, 1.8)

DG

1 27 4.5 14 2.3 1 p= 0.04

2 206 34.0 193 32.2 1.7 (0.9, 3.5)

3 135 22.3 151 25.2 2.1 (1.0, 4.2)

4 50 8.3 71 11.9 2.6 (1.3, 5.7)

Missing 187 30.9 170 28.4

Quartile cut-points.
aFGV: 11.70, 37.95, 51.30, 73.35, 306.50.
bVBD: 2.4, 4.8, 6.9, 10.9, 30.0.
cVAS: 1.9, 29.0, 47.0, 64.0, 96.1.
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AUC 95% confidence intervals not including 0.50 (Table 4). VBD
and VAS were not able to discriminate screen-detected cancers
from controls.
There were clear differences between the AUCs of the three BD

measures for all (p < 0.01), node-positive (p < 0.01) and combined
(p= 0.02) cancers, but only a moderate difference between BD
measures for interval cancers (p= 0.06).
To provide a metric that may be more clinically relevant than

AUC, we determined the numbers of each ‘type’ of cancer by risk
quartile: the lowest risk 25% (1st quartile) and the highest risk 25%
(4th quartile). Results showing the highest risk 25% (4th quartile)
for all subcategories of cancers including screen-detected, interval,
node-positive, and node-negative demonstrate that FGV captures
at least as high a percentage of these cancers as VBD and VAS
(Table 5) emulating an exemplar scenario of women who may be
candidates for additional screening if the threshold was set below
the 4th quartile. FGV categorises at least 10% more screen-
detected and node-negative cancers in the highest risk category
(4th quartile) as compared VBD and VAS.
FGV, VBD and VAS were all significantly more discriminative of

interval cancers than of screen-detected cancers (p= 0.04, p < 0.01
and p < 0.01 respectively). Only VBD was significantly more
predictive of node-positive than of node-negative cancers (p <
0.01), although all three measures had greater AUCs for node-
positive than node-negative cancers. All three automated BD
methods showed higher AUCs for (i) interval compared to screen-

detected; (ii) combined compared to node-negative; and (iii)
combined compared to screen-detected cancers. The AUC for
interval cancers was significantly greater than the AUC for screen-
detected cancers for VBD (p < 0.01) and VAS (p < 0.01), and
suggestively so for FGV (p= 0.07).

DISCUSSION
FGV significantly discriminated all, interval, screen-detected, node-
positive and node-negative cancers compared to controls. VBD,
VAS and DG discriminated interval or node-positive cancers but
did not consistently discriminate screen-detected or node-
negative cancers. The relative discriminative ability of FGV, overall
and for each/individual cancer subtypes/groups was either
equivalent to or, in most cases, greater than that of VAS or VBD,
whether using logistic regression (captured by the steepness of
the odds ratio gradient), ROC analysis (captured by AUC), or
number of cancers included in the highest risk category (4th
quartile). Of note, for VBD and VAS, interval cancer prediction was
significantly greater (by AUC) than screen-detected cancer
prediction while FGV only showed a statistical trend. This
phenomenon underscores the differential ability of FGV to
discriminate screen-detected cancers, knowing that FGV has
generally higher AUCs for virtually all comparisons (Table 4).
If quantitative breast density is to be successfully used for

stratified screening protocols to decrease interval and advanced
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Fig. 1 Visual depiction of BD quartile ability to discriminate all, screen-detected, and interval cancers. Associations between categorical
mammographic measures of breast density and breast cancer risk are described by odds ratios for all cancers, screen-detected and interval
cancers as compared to controls.
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breast cancers, prediction of both the risk of breast cancer and the
risk of masking by mammographic breast density will be
important. It stands to reason that screen-detected cancers are
less affected by masking because they were detected on
mammography and, thus, not sufficiently obscured by dense
fibroglandular tissue to preclude detection. On the other hand,
interval cancers are likely to be more affected by masking because
they were not detected by mammography. However, this
relationship between interval cancers and masking is far from
perfect because interval cancers may also be related to rapid
growth between screening examinations or to an interpretation
error. Therefore, screen-detected cancers may map more strongly
to breast cancer risk as compared to masking. Correspondingly,
interval cancers may map more strongly to masking but also
involve a component of breast cancer risk. In our study, because
VBD and VAS only discriminate interval or node-positive cancers
from controls, these algorithms may correlate more strongly with
masking. On the other hand, FGV, which additionally discriminates
screen-detected cancers from controls may have an added
correlation to breast cancer risk. Perhaps FGV maps to both
breast cancer and masking risk by measuring absolute BD volume
as compared to VBD and VAS, which measure percent BD. There is
a precedent for stronger prediction of breast cancer risk generally
from absolute rather than percentage density measures [17, 32].
Results, however, are by no means uniform [28]. There is a need
for methodological development to disentangle how absolute
versus percent fibroglandular volume map to breast cancer risk
and masking.
Our results are comparable to results of the single study that

analysed interval cancers in a screening programme with a long

screening interval (3 years) and tested several quantitative BD
techniques [19]. Wanders et al. found that absolute volume of
breast density (FGV) predicted screen-detected cancers whereas
percent density by volume (VBD) did not [19]. In this study as with
the present work, both FGV and VBD predicted interval cancers.
Unlike our study, a study by Kerlikowske and colleagues that
evaluated the ability of percent density by volume (VBD) to
predict screen-detected cancer in a population with a shorter
screening interval (1–2 years) showed predictive ability in both
screen-detected and interval cancers, with interval cancer predic-
tion being statistically significantly superior [15]. The differences in
these results may be attributable to differences in cancers
included in screen versus interval groups when the screening
interval is shorter, as is the case in the U.S., with a larger fraction of
more aggressive cancers included in the interval group. Women in
the US may more frequently be offered supplemental screening,
influencing patterns of early detection, or be different in terms of
breast cancer risk. For example, in the U.S. study, a high proportion
(just under 20%) of controls had a history of breast biopsy [15].
This phenomenon may also relate to the fact that our cases and
controls were selected to have the same age distribution, which
would remove any density differences between intervals and
cancer free controls which were due to confounding with age.
Astley et al. [28] found VAS more predictive than the automated
measures such as FGV and VBD, but these investigators evaluated
images acquired on GE equipment, whereas most images used in
our study were acquired on Hologic equipment. The differences in
the processed images between these two types of equipment
may have affected readers’ VAS estimation of BD. The literature
shows that image processing significantly affects cancer detection

Table 4. Associations of all cancers, screen-detected, interval, node-negative, node-positive and combined (node-positive or interval) cancers with
continuous breast density measures.

Mean Mean Difference CI p-value AUC 95% CIa p-valueb

Controls All cancers p < 0.01

FGV (cm3) 53.7 66.3 12.6 (8.1, 17.1) p < 0.01 0.63 (0.59, 0.67)

VBD (%) 8.2 9.2 1.0 (0.3, 1.7) p < 0.01 0.56 (0.51, 0.60)

VAS (%) 44.4 48.2 3.8 (1.3, 6.4) p < 0.01 0.55 (0.51, 0.59)

Controls Screen-detected p < 0.01

FGV (cm3) 53.7 64.4 10.8 (5.0, 16.5) p < 0.01 0.61 (0.56, 0.66)

VBD (%) 8.2 8.1 −0.1 (−0.9, 0.8) p= 0.87 0.51 (0.46, 0.56)

VAS (%) 44.4 44.1 −0.3 (−3.3, 2.7) p= 0.84 0.50 (0.46, 0.55)

Controls Interval cancers p= 0.06

FGV (cm3) 53.7 68.2 14.5 (8.9, 20.1) p < 0.01 0.65 (0.60, 0.70)

VBD (%) 8.2 10.3 2.1 (1.2, 3.0) p < 0.01 0.63 (0.58, 0.68)

VAS (%) 44.4 52.4 8.1 (5.0, 11.1) p < 0.01 0.60 (0.56, 0.65)

Controls Node-negative cancers p < 0.01

FGV (cm3) 53.7 64.1 10.4 (5.8, 15.0) p < 0.01 0.62 (0.58, 0.67)

VBD (%) 8.2 8.8 0.6 (−0.2, 1.4) p= 0.13 0.54 (0.49, 0.59)

VAS (%) 44.4 47.5 3.1 (0.2, 6.0) p= 0.04 0.54 (0.50, 0.58)

Controls Node-positive cancers p < 0.01

FGV (cm3) 53.7 71.7 18.0 (9.5, 26.4) p < 0.01 0.65 (0.59, 0.71)

VBD (%) 8.2 10.1 1.9 (0.7, 3.1) p < 0.01 0.60 (0.54, 0.66)

VAS (%) 44.4 49.3 4.9 (1.6, 8.2) p < 0.01 0.56 (0.51, 0.61)

Controls Combined p < 0.05

FGV (cm3) 53.7 69.2 15.5 (9.8, 21.2) p < 0.01 0.65 (0.60, 0.69)

VBD (%) 8.2 10.0 1.8 (0.9, 2.7) p < 0.01 0.61 (0.56, 0.66)

VAS (%) 44.4 50.5 6.2 (3.4, 9.0) p < 0.01 0.58 (0.54, 0.62)
a95% Confidence intervals that do not include 0.50 demonstrate a statistically significantly better discriminatory ability compared to chance.
bThis p-value reflects whether there is a statistically significant difference between the AUCs of the continuous quantitative BD measurements.
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[33], but more work is needed to confirm if image processing also
influences visual BD estimation. Overall, the inability to obtain
separate estimates for effects on ‘pure’ masking risk and ‘pure’
breast cancer risk may account for some of the variation in
findings between studies.
Whatever the mechanism for measuring BD, women with high

levels of BD have an increased risk of interval or node-positive
cancers, motivating the need to augment the screening regimen.

Women at high breast cancer risk but not at high masking risk,
may benefit from increased mammography screening frequency.
Women at high masking risk only or high cancer and masking risk,
may be better served by screening with modalities supplementary
to mammography, like MRI or ultrasound. In fact, there is interest
in determining and targeting these different opportunities for
improved screening outcomes (masking versus breast cancer risk)
and modelling these strategies [34]. In our study, we find that FGV
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Table 5. The numbers and percentage of each type of cancer by quantitative density risk quartile.

Density
measure

Category Controls
N (%)

Screen-detected
cancers N (%)

Interval cancers
N (%)

Node+ Cancers
(%)

Node− Cancers
(%)

FGV 1st quartile 137 (32.8) 49 (22.3) 26 (12.4) 17 (13.7) 58 (19)

2nd & 3rd
quartile

209 (50) 103 (46.8) 111 (53.1) 65 (52.4) 149 (48.9)

4th quartile 72 (17.2) 68 (30.9) 72 (34.4) 42 (33.9) 98 (32.1)

VBD 1st quartile 119 (28.5) 65 (29.5) 35 (16.7) 24 (19.4) 76 (24.9)

2nd & 3rd
quartile

208 (49.8) 108 (49.1) 102 (48.8) 56 (45.2) 154 (50.5)

4th quartile 91 (21.8) 47 (21.4) 72 (34.4) 44 (35.5) 75 (24.6)

VAS 1st quartile 174 (28.8) 90 (29.8) 53 (17.8) 55 (23) 88 (24.4)

2nd & 3rd
quartile

289 (47.8) 158 (52.3) 144 (48.5) 118 (49.4) 184 (51.1)

4th quartile 142 (23.5) 54 (17.9) 100 (33.7) 66 (27.6) 88 (24.4)

The highest risk women, 4th quartile is bolded.
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discriminates all categories of cancer more strongly than other
density measures perhaps capturing masking and risk more fully
than VBD, VAS and DG, which only discriminate interval and node-
positive cancers from controls.
The strengths of our study include our assessment of the

discriminative ability of several measures of BD and risk of breast
cancer. We also provide an important analysis of volumetric BD
related to interval cancer risk [15, 19, 35, 36] and the first related to
node-positive cancers. Our cases and controls were selected to
have as similar an age distribution as possible, which would
remove any density differences between intervals and cancer free
controls which were due to confounding by age. However,
because density as a risk factor is conditional on age (hence our
design and analysis) comparing risks for two women of different
ages based on density is not possible based on our work. To fully
utilise the risk dimension of density in a screening program,
further investigation will be required. For example, a large series of
unselected mammograms could be used to construct age-specific
reference ranges for density, which would then be a foundation to
further refine screening practice.
We did not collect detailed information in relation to a number of

covariates (demographic, hormonal, reproductive, lifestyle and
family history). We also did not have BMI, which is known to
improve discriminatory capacity of quantitative BD measurements
[37]. As expected, the time between the analysed mammograms
(the most recent normal) for the screen-detected cases was longer
than the time between the analysed mammogram and the interval
cancers; an unavoidable difference based on the realities of a
population-based breast cancer screening programme. This differ-
ence raises the question whether adjustment for this difference; i.e.
adjustment beyond age may be necessary. We have carried out
several major re-analyses incorporating adjustment for time since
prior mammogram for those in whom individual matching was
possible, revealing no substantive changes to our results or
conclusions. Finally, some cases and controls did not have
unprocessed images, and thus the quantitative BD measures were
not calculated in these patients. However, our a priori power
calculation anticipated these missing images, which therefore
should not have influenced our results or conclusions.
We find that FGV has the potential to predict the important

components of risk that may provide the foundation for stratified
screening: risk of cancer, risk of aggressive cancer, and risk of
masking effects. While any quantitative BD measure will
undoubtedly be one variable among many predictive variables
that will contribute to decisions about breast cancer screening, we
believe that our analysis adds to the literature that will inform a
more comprehensive model to be tested in the future. Our
findings suggest that FGV may be a comparatively better imaging
biomarker suited to provide guidance for more intensive stratified
screening for mammography, such as a shortened screening
interval. VBD, VAS and DG, by predominantly predicting interval
cancers and node-positive cancers may selectively correlate with
masking risk and be more suited to directing women to
supplemental screening modalities other than mammography.

DATA AVAILABILITY
Mammographic screening images and associated pathological data that were
collected as part of the research image database called the OPTIMAM Mammography
Image Database cited in the text of the manuscript methods section. The OPTIMAM
Mammography Image Database, funded by Cancer Research UK, used in the current
study are available and can be found here https://medphys.royalsurrey.nhs.uk/
omidb/.
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