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Abstract
We propose a novel blocked version of the continuous-time bouncy particle sampler of Bouchard-Côté et al. (J Am Stat Assoc
113(522):855–867, 2018) which is applicable to any differentiable probability density. This alternative implementation is
motivated by blocked Gibbs sampling for state-space models (Singh et al. in Biometrika 104(4):953–969, 2017) and leads to
significant improvement in terms of effective sample size per second, and furthermore, allows for significant parallelization of
the resulting algorithm. The new algorithms are particularly efficient for latent state inference in high-dimensional state-space
models, where blocking in both space and time is necessary to avoid degeneracy of MCMC. The efficiency of our blocked
bouncy particle sampler, in comparison with both the standard implementation of the bouncy particle sampler and the particle
Gibbs algorithm of Andrieu et al. (J R Stat Soc Ser B Stat Methodol 72(3):269–342, 2010), is illustrated numerically for both
simulated data and a challenging real-world financial dataset.

Keywords Markov chain Monte Carlo · Piecewise-deterministic Markov process · Bouncy particle sampler · Particle Gibbs ·
State-space model

1 Introduction

1.1 Background

Markovian state-space models are a class of probabilistic
graphicalmodels applied in biology, signal processing, target
tracking, finance andmore, see Cappé et al. (2006) for a tech-
nical overview. In our setup, a latent process (xn, n ≥ 1) on
R
d evolves according to a state transition density p(xn |xn−1),

with p(·) denoting a generic density. The dimension of the
latent process is its spatial dimension, although often no
physically relevant interpretation might be available. We
indirectly observe the latent process through a noisy set
of observations (yn, N ≥ n ≥ 1) defined on R

m , where
the realizations depend only on the current value of the
latent state, yn|xn ∼ p(yn|xn). For convenience, we intro-
duce the sequence notation i : j = (i, i + 1, . . . , j) when
j > i . Unless otherwise mentioned, the sequence is y1:N
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fixed throughout. Given the observation sequence, we define
smoothing as the off-line estimation of the conditional joint
probability density p(xl:m |y1:N ), with 1 ≤ l ≤ m ≤ N . We
will be interested in the casewhere the target is the full condi-
tional p(x1:N |y1:N ). Smoothing is generally a hard problem
due to the high dimensionality of the state space and spa-
tiotemporal interdependence of the latent states; below we
will give a brief historical overview, and subsequently detail
our contributions.

Sequential Monte Carlo methods form the backbone of
most smoothing algorithms. A popular early example is
the sequential importance resampling smoother of Kita-
gawa (1996), which utilizes the entire trajectories and final
particle weights of a particle filter to generate smoothed esti-
mates. This method suffers from severe particle degeneracy
as the resampling step non-strictly decreases the available
paths used to estimate the joint posterior. A solution was
the algorithm of Godsill et al. (2004), which introduces a
sequence of backward passes incorporating the state tran-
sition. This algorithm has linear computation cost in time,
particles and number of samples. Similar algorithms like
the general two-filter smoother of Briers et al. (2010) have
equivalent computational costs. In Finke and Singh (2017),
an approximate localization scheme is proposed for the
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forward–backward algorithm, including theoretical results
that guarantees bounds on the asymptotic variance and bias
under models that are sufficiently local. In the landmark
paper of Andrieu et al. (2010), the authors introduced particle
Markov Chain Monte Carlo, which combines particle fil-
ters in conjunction with eitherMetropolis–Hastings or Gibbs
algorithms. The latter algorithm, denoted particleGibbs, gen-
erates a single trajectory chosen according to the final particle
weights from a particle filter run conditionally on a fixed tra-
jectory. Particle Gibbs is stable if the number of particles
grow at least linearly with the time series length; further
theoretical analysis of ergodicity and asymptotic variance
is provided in Andrieu et al. (2018) and Chopin and Singh
(2015). More recently, couplings of conditional particle fil-
ters have been introduced in Jacob et al. (2020) and Lee et al.
(2020), and provide unbiased estimators with asymptotically
exact confidence intervals.

Unfortunately, the performance of particle Gibbs depends
entirely on the efficiency of the conditional particle filter
which like the particle filter can suffer from weight degen-
eracy. If the spatial dimension is large, the curse of dimen-
sionality described in Bengtsson et al. (2008) implies that
infeasibly many particles are required to effectively approxi-
mate the posterior; localization of proposals by exploiting
spatial conditional independence was subsequently intro-
duced in Rebeschini et al. (2015) but this method is not
generically applicable. As an alternative, the space–time par-
ticle filter (Beskos et al. 2017) is applicable if the likelihood
can be written in a product form of terms that depend on an
increasing number of latent dimensions. In the data assim-
ilation field, a very popular method for high-dimensional
filtering is the use of the ensemble Kalman filter algorithm,
but the theoretical understanding of this algorithm is still
quite limited, see however Del Moral and Tugaut (2018) and
de Wiljes et al. (2018) for recent work in this regard. Over-
all, there is no generically applicable, asymptotically exact
approach that makes the particle filter viable in high dimen-
sional time-series models.

In comparison with filtering which is known to be uni-
formly stable in time under reasonable assumptions, see
Van Leeuwen et al. (2019), the difficulty of smoothing
increases as the length of the time series increases. In such
scenarios, Whiteley (2010), in the Royal Statistical Society’s
discussion of Andrieu et al. (2010), proposed to incorporate
a backward pass similar to the algorithm of Godsill et al.
(2004) to avoid particle paucity in the early trajectories; for
low spatial dimensions, the resulting algorithm was shown
in Lee et al. (2020) to be computationally efficient and sta-
ble as the time horizon grows. A conceptually similarmethod
that updates the fixed reference trajectory has been developed
in Lindsten et al. (2014). As an alternative to manipulation
of particle lineages, applying the particle Gibbs algorithm
inside a generic Gibbs sampler over temporal blocks is pro-

posed in Singh et al. (2017), where the authors furthermore
show a stable mixing rate as the length of the time series
increases. Singh et al. (2017) also shows that the sharing of
states via overlapping blocks increases the mixing rate as the
overlap increase.While the issue of long time series has been
addressed successfully by the algorithms detailed above, the
curse of spatial dimensionality indicates that particle Gibbs
and more sophisticated extensions are currently unworkable
in practical smoothing applications featuring high spatial
dimensions.

1.2 Contributions

As a solution to the issues in high dimension, we propose
a novel blocked sampling scheme based on irreversible,
continuous-time piecewise deterministic Markov processes.
Methods based on this class of stochastic process were origi-
nally introduced as event-chainMonte Carlo in the statistical
physics literature by Bernard et al. (2009), and subsequently
further developed in the computational statistics literature
recently; see, for example, Bouchard-Côté et al. (2018),
Bierkens et al. (2019), Wu and Robert (2020) and Power
and Goldman (2019). In practice, the algorithms iterate per-
sistent dynamics of the state variable with jumps to its
direction at random event times. They also only depend on
evaluations of the gradient of the log-posterior. Local ver-
sions of these samplers, see Bouchard-Côté et al. (2018) and
Bierkens et al. (2020), can exploit any additive structure of
the log-posterior density to more efficiently update trajecto-
ries, however as discussed above, long range dependencies
of states indicate that sharing of information is desirable to
achieve efficient mixing. To allow for sharing of informa-
tion, we introduce a blocked version of the bouncy particle
sampler of Bouchard-Côté et al. (2018) that utilizes arbitrar-
ily designed overlapping blocks. (Our resulting algorithm is
different from the approach presented in Zhao andBouchard-
Côté (2019)where theBPS is run on conditional distributions
in a Metropolis-within-Gibbs-type fashion.) The blocking
scheme is implementablewithout any additional assumptions
on the target distribution and is therefore useful for generic
target densities, particularly in cases where the associated
factor graph is highly dense.

As our second contribution, we introduce an alternative
implementation of the blocked sampler that leverages par-
titions to simultaneously update entire sets of blocks. The
number of competing exponential clocks in the resulting
sampler is independent of dimension and thus feature O(1)
clocks for any target, and allows, for the first time for a
piecewise-deterministic Monte Carlo algorithm, to carry out
parallel updates at event times. Our numerical examples
indicate that the blocked samplers can achieve noteworthy
improvements compared to the bouncy particle sampler, both
in terms of mixing time and effective sample size per unit of
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time, even without the use of parallelization. In addition, the
blocked sampler provides efficient sampling of state space
models when particle Gibbs methods, which are widely con-
sidered state of the art for state space models, fail due to high
spatial dimensions.

2 Setup

2.1 Notation

In what follows, subscript on a variable x will denote tem-
poral indices, while superscript indicates spatial. By x ∼
N (0, 1), we mean that x is distributed as a standard normal
variable, whereas we by N (x; 0, 1) mean the evaluation at
x of the standard normal density; this notation is extended
to other densities. We use the standard sequence notation
i : j = (i, i +1, . . . , j −1, j) and [n] = (1, 2, . . . , n−1, n).
A generic Poisson process is denoted by � and the associ-
ated, possibly inhomogeneous, rate function is the function
t �→ λ(t). Let Mm,n be the space ofm×n real-valued matri-
ces, with m referring to row and n to columns, respectively.
We denote by � the Hadamard product operator. The stan-
dard Frobenius norm of a matrix X ∈ Mm,n is denoted

‖X‖F = √
tr(XT X) =

√∑
i
∑

j x
2
i, j , and the Frobenius

inner product with another matrix Y ∈ Mm,n is subsequently
〈X ,Y 〉F = tr(XT Y ) =∑i

∑
j xi, j yi, j .

2.2 State spacemodels

The class of state-space models we consider have differen-
tiable transition and observation densities

p(x1) = exp
{

− f1(x1)
}
, f1 ∈ C1(Rd → R),

p(xn |xn−1) = exp
{

− f (xn−1, xn)
}
, f ∈ C1(Rd × R

d → R),

p(yn |xn) = exp
{

− g(xn, yn)
}
, g ∈ C1(Rd × R

m → R).

It is thus natural to work in log-space for the remainder
of the paper, and we note in this regard that all probability
density functions are assumed to be normalized. The expo-
nential notation is therefore merely a notational convenience
to avoid repeated mentions of log-densities. We also only
require access to derivatives of f and g which may have
more convenient expressions than the full probability dis-
tribution. The negative log of the joint state density of the
entire latent state x ∈ Md,N is denoted the potential energy
U : Md,N → R and is given as

U (x1:N ) ≡ − logπ(x1:N | y1:N ) = f1(x1) + g(x1, y1)

+
N∑

n=2

f (xn−1, xn) + g(xn, yn).

To ease notation we have dropped the explicit dependence
on y1:N when writing the log conditional joint state density
from now on. We will often need to refer to the derivative
∂U/∂x , which we denote as the matrix map ∇U : Md,N →
Md,N where the entry in the k’th rowand n’th column is given
by the partial derivative∇U (x)k,n = ∂U (x)/∂xkn .Again, we
remind the reader that subscript on a variable x will denote
temporal indices, while superscript indicates spatial.

2.3 Blocking strategies

Recall that [n] = (1, 2, . . . , n−1, n). A blocking strategy B
is a cover of the index of set of the latent states I = [d]×[N ]
and solely consists of rectangular subsets. A generic block
B is always of the form i : j × l:m with i < j, l < m,
with the coordinates referring to spatial and temporal dimen-
sions, respectively. The size of a block is the ordered pair
(|i : j |, |l:m|). Blocks are allowed to overlap; we denote by
the interior of a block the indices that it does not share with
any other block. The neighborhood set of a block is

N (B) = {B ′ ∈ B | B ∩ B ′ �= ∅},

and always includes the block itself. A blocking strategy is
temporal if each block in a strategy is of the form 1:d ×
l:m, these are the most natural strategy types to consider
for state-space models and will be the general focus in the
rest of the paper, but the methods presented below work for
arbitrary strategies. To improve mixing of blocked samplers
in general, it is often necessary to design a blocking strategy
such that within-block correlation between variables is large
while the correlation with out-of-block variables is small;
see, for example, Liu et al. (1994) or Turek et al. (2017). For
state-space models, this naturally implies blocking across
time, and in Fig. 1 a temporal strategy with overlap ξ and
interior δ is illustrated. We can in this case divide the blocks
into even (Bk of Fig. 1 with even index k) and odd subsets
such that each subset consists of non-overlapping blocks, see
again Fig. 1. As analyzed in Singh et al. (2017) for blocked
Gibbs samplers, temporal overlap leads to improved sharing
of information across time and subsequent improvedmixing.
If the spatial dimension is very high, it can be necessary to
block in the spatial domain aswell; blocking strategies should
in this case aim to exploit any spatial decorrelation if possible.

A few more remarks on notation: the restriction of x ∈
Md,N to a block B = i : j × l:m is the submatrix xB ∈
M|i : j |,|l:m| corresponding to deleting all but the rows i : j and
columns l:m of x . Similarly, the block restriction of ∇U
is the map ∇BU : Md,N → M|i : j |,|l:m|; the entries of the
submatrix ∇BU (x) are in correspondence with ∇U (x) via
∇BU (x)a,b = ∇U (x)i+a−1,l+b−1. We extend this notation
to also include the state and the velocity, with the submatrix
under consideration being indicated by a subscript B.
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Bk

Bk+1

Bk+2

Bk-1

Even Blocks

Odd Blocks
time

Fig. 1 A temporal blocking strategy with overlap ξ and interior δ between blocks highlighted. The strategy will be efficient if the overlap ξ is large
enough to incorporate relevant information from neighbors

3 Blocked bouncy particle sampler

In this section, we derive conditions under which the bouncy
particle sampler of Peters et al. (2012) and Bouchard-Côté
et al. (2018) can be run in blocked fashion; the resulting
algorithm therefore applies to any target distribution π . If we
assume that B consists of a single block of size 1:d × 1:N ,
the description below reduces to the standard bouncy particle
sampler, and it is therefore redundant to describe both.

The class of piecewise-deterministic Markov process we
consider is a coupling of the solution x(t) of the ordinary
differential equation dx(t)/dt = v(t), and a Markov jump
process v(t)where both transition operator Q(v, dv) and rate
process λ(t) depends on x(t) as well; v(t) will henceforth
be denoted the velocity. The joint process (x(t), v(t)) takes
values in Md,N ×Md,N . Given an initialization (x(0), v(0)),
the state flows as (x(t), v(t)) = (x(0)+ t · v(0), v(0)), until
an event τ is generated by an inhomogeneousPoisson process
with rate λ(t). At this point the velocity changes to v(τ) ∼
Q(v(0), dv), and the process reinitializes at (x(τ ), v(τ )). To
use such a process for Markov chain Monte Carlo, the jump
rate λ(t) and transition kernel Q of v(t) are chosen such
that the marginal stationary distribution of (x(t))t∈[0,∞) is
the target distribution of interest. Exactly as in Metropolis–
Hastings algorithms, we always want to move into regions
of higher probability but desire to change direction, by a new
choice of velocity vector, as we enter regions of declining
probability. This in turn implies that the rate is determined by
the directional derivative of the energy U in the direction of
v, while the transition kernel Q is a deterministic involution
or random velocity change, for general details; see Vanetti
et al. (2017).

Blocking of this process corresponds to a localization of
the rate function and transition kernel such that each block is
equipped with its own random clock and corresponding local
velocity updating mechanism. Subsequently, only velocities
within a single block are changed at an event, while pre-
serving the overall invariant distribution. In comparison with
discrete time blocking that updates the variables one block at
a time while keeping every other variable else fixed, in con-
tinuous time the block direction is changed while keeping
every other direction fixed. For dimensions that are in multi-

ple blocks, the additional clocks implies an excess amount of
events compared to the base case of no overlap; theφ variable
introduced below adjusts for this discrepancy by speeding
up the velocity of the shared dimensions. Intuitively, as a
dimension shared by k blocks will have events k times as
often, it should move at k times the speed to compensate.
This also aligns exactly with discrete-time blocked sampling,
where dimensions shared between blocks are updated twice
as often.

We now present the blocked bouncy particle sampler in
detail. We assume that the velocity is distributed such that
each vkn ∼ N (0, 1) in stationarity, and the stationary joint
distribution of all velocities has density pv(v). For a blocking
strategy B, we introduce the auxiliary variable φ ∈ Md,N

with entries

φk
n = #{B ∈ B | (k, n) ∈ B},

φk
n counts the number of blocks that include the k’th spa-

tial dimension and n’th temporal dimension. Given φ, the
resulting block-augmented flow of the ordinary differential
equation driving x(t) is t �→ x + t · (φ�v); as mentioned,
individual dimensions of x are sped up in proportion to how
many blocks includes them. With x �→ {x}+ ≡ max{0, x},
the rate function for the Poisson process �B associated with
block B is

λB(x, v) = {〈∇BU (x), vB〉F }+ ;

the associated superposition of all blocks is the Poisson pro-
cess �B = ∪B∈B�B . Events generated by �B are denoted
τb with b referring to a bounce. Note that the inner prod-
uct corresponds to the directional derivative ∂U (x + t ·
v)/∂t restricted to B. For the transition kernel, we define
reflectBx (v) as the (deterministic) reflection of the velocity
vB in the hyperplane tangent to the block gradient at x :

vB ← vB − 2
〈∇BU (x), vB〉F

‖∇BU (x)‖2F
∇BU (x),

while the remaining components of v are unchanged by
reflectBx (v). (Note only the velocities that correspond to
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the block B are updated.) Variable v will also be updated
by full velocity resampling via an independent homogeneous
Poisson process with rate γ to alleviate issues with reducibil-
ity, see Bouchard-Côté et al. (2018, Section 2.2), and these
event times are denoted τr with r referring to refreshment.
Without writing the refreshment operator, the infinitesimal
generator of (x(t), v(t))t∈[0,∞) is

LbBPS f (x, v) = 〈∇x f (x, v), φ�v〉F +
∑

B∈B
λB(x, v)

[
f (x, reflectBx (v)) − f (x, v)

]
, (1)

the sum of the block-augmented linear flow φ�v driving x(t)
and the sum of Markov jump processes updating the block-
restricted velocities vB .

Proposition 1 Consider a blocking strategy B and a target
density π(x) ∝ exp{−U (x)}. With the generator defined in
Eq. (1), the blocked bouncy particle sampler has invariant
distribution π ⊗ pv .

Proof See Sect. A.1. ��
The most closely corresponding method to the blocked

bouncy particle sampler is the factor algorithm presented in
Bouchard-Côté et al. (2018, Section 3.1). If the target distri-
bution factorizes over a finite set of individual factors F such
that

U (x) =
∑

f ∈F
U f (x f ),

where x f corresponds to the restriction of the components
in the factor, the local bouncy particle sampler of Bouchard-
Côté et al. (2018) can be applied. Note that the derivation
of the local bouncy particle sampler in Bouchard-Côté et al.
(2018) is only considered under the above sum structure for
the log densityU (x) andwhere each block is the complete set
of variables x f for a factor. This contrasts with the blocked
sampler, where blocks are allowed to share variables arbi-
trarily and without the need for the energy to satisfy a sum
structure. The blocked sampler algorithm in practice func-
tions as a hybrid between the Zig-Zag sampler of Bierkens
et al. (2019) and the bouncy particle sampler: it incorpo-
rates the reflection operatorwhenperforming bounces,which
allows for updating the velocity vector for multiple dimen-
sions at event times, but combines a more local rate structure
akin to that of the Zig-Zag sampler. In particular, if |B| = 1
for all B ∈ B and φk

n = 1 for all k, n ∈ [d] × [N ], the
algorithm reduces to a process very close to the Zig-Zag
sampler, with the velocity vector components “flipping” at
their individual reflection event times (but an invariant nor-
mal distribution for the velocities compared to the binary

uniform distribution of the standard Zig-Zag sampler.) In this
sense, the Zig-Zag sampler is naturally blocked, but does not
allow for sharing of information across dimensions. In Algo-
rithm 1, the blocked bouncy particle sampler is presented in
an implementable form.

3.1 Simulation

Due to the simplicity of the flow the computational challenge
of the algorithm is to generate correctly distributed event
times via Poisson thinning. The thinning procedures of Lewis
and Shedler (1979) for simulating inhomogeneous Poisson
processes is a two-step procedure that corresponds to find-
ing a bounding process where direct simulation is available,
and subsequently using rejection sampling to keep correctly
distributed event times.

To employ thinning, local upper bounds t �→ λ̄B(t) for
each block needs to be estimated. For some fixed lookahead
time θ > 0 and current position (x, v), local bounds satisfy

λB(t) ≤ λ̄B(t) ≤ max
s∈[0,θ)

{〈∇BU (x + s(φ�v)), vB〉F }+ ,

∀t ∈ [0, θ) (2)

and after θ time has passed, the bounds are recomputed at the
new location (x + θ(φ�v), v), if no reflection or refreshment
has occurred in the interrim. The right-hand side is the worst-
case bound and in all of our numerical examples we use
this bound. In some particular cases, universal global bounds
can be derived, but generally these bounds will have to be
estimated by evaluating the rate function at some future time
point. If the blocks are individually log-concave densities,
evaluating the rate at the lookahead time, λB(θ), gives a valid
bound until an event occurs, or alternatively, one can apply
the convex optimization procedure described in Bouchard-
Côté et al. (2018, Section 2.3.1). If blocks are overlapping,
the local bounds of blocks in the neighborhood N (B) become
invalid after a reflection and require updating. The generic
process is given in Algorithm 2. Given the global bounding
function

λ̄B(t) =
∑

B∈B
λ̄B(t) (3)

an event time τ is simulated from �λ̄B
, a block B is

selected with probability proportional to its relative rate
λ̄B(τ )/λ̄B(τ ), andfinally a reflection is carried outwith prob-
ability corresponding to the true rate function relative to the
local bound λB(τ )/λ̄B(τ ). Given the local rate functions,
the dominant cost is the unsorted proportional sampling of
a block, which is done in O(|B|). We propose to choose θ

such that the expected number of events generated by the
bounding process on the interval [0, θ ] is equal to 1, as we
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can always decrease the computational cost of calculating
bounds by changing θ to another value that brings the expec-
tation closer to 1. In our numerical examples, we have tuned
θ to approximately satisfy this requirement.

Algorithm 1: Blocked Bouncy Particle Sampler

Data: Initialize (x0, v0) arbitrarily, set instantaneous runtime
time t = 0, index j = 0, total execution time T > 0,
lookahead time θ > 0 and valid bound time  = θ .

// Variable t denotes instantaneous
runtime, θ is lookahead time for
computing Poisson rate bounds and  > t
are integer multiples of θ.

1 (λ̄B)B∈B ← LocalBounds(x0, v0, θ, B) // Calculate
initial bounds

2 while t ≤ T do
3 j ← j + 1
4 τb ∼ Exp(

∑
B λ̄B) // Reflection/Bounce time

5 τr ∼ Exp(γ ) // Refreshment time

6 τ j ← min{τr , τb}
7 if τ j + t >  then

// Runtime+event time exceeds valid
time for bound, reinitalize at 

8 x j ← x j−1 + ( − t) · φ�v j−1

9 v j ← v j−1

10 (λ̄B)B∈B ← LocalBounds(x j , v j , θ, B)

11 t ←  // Update runtime
12  ←  + θ // New valid bound time

13 else
14 t ← t + τ j // Update runtime

15 x j ← x j−1 + τ j · φ�v j−1

16 if τ j < τr then
// Select block for reflection

17 Draw B ∈ B with P(B = Bi ) = λ̄Bi (τ
j )/λ̄B(τ j )

18 u ∼ U[0, 1]
19 if u < λB(x j , v j−1)/λ̄B(τ j ) then
20 v

j
B ← reflectBx v

j−1
B

// Update bounds for blocks
affected by reflection

21 (λ̄B′ )B′∈N (B) ←
LocalBounds(x j , v j , − t, N (B))

22 else
23 v j ← v j−1

24 else
// Refresh all velocities

25 v j ∼ N (0, I(d×T )×(d×T ))

26 (λ̄B)B∈B ← LocalBounds(x j , v j , θ, B)

27 return (x j , v j , τ j )

4 Parallel velocity updates via partitioned
blocking strategies

As mentioned in the introduction, Singh et al. (2017) shows
that the even–odd blocking strategywith overlaps is known to

Algorithm 2: LocalBounds(x, v, θ, B)

Data: (x, v), θ > 0 and set of blocks B.
1 for B ∈ B do
2 Find function t �→ λ̄B(t) that on [0, θ) satisfies
3 λ̄B(t) ≤ maxs∈[0,θ) λB(x + s(φ�v), vB).

4 return (λ̄B)B∈B

improve mixing, and furthermore allows for parallelization
of updates in the case of Kalman smoothers or particle filter-
based smoothing algorithms. Conversely, the current crop of
piecewise-deterministic Markov process-based samplers are
all purely sequential, in the sense that at each event time
only the velocity of a single factor or dimension is updated,
and these samplers therefore fail to exploit any conditional
independence structure available. We will in this section
provide an alternative implementation (see Algorithm 3) of
the blocked bouncy particle sampler that mimics the even–
odd strategy of discrete-time blocked samplers, extends to
the fully spatially blocked setting, and allows for parallel
implementation of updates at event times. To utilize this
method, we need a partition of the blocking strategy into
sub-blocking strategies such that no two blocks in any sub-
blocking strategy share any variables. To this end, we capture
the no-overlap condition precisely in the following assump-
tion:

Assumption 1 Consider a blocking strategy B. We will
assume given a partition ∪K

k=1Bk = B of the blocking strat-
egy that satisfies, for each sub-blocking strategy Bk, k =
1, 2, . . . K and for all blocks B, B ′ ∈ Bk such that B �= B ′,
that

B ∩ B ′ = ∅.

This assumption also applies to fully spatiotemporal
blocking schemes and not just temporal strategies. We will
for illustrative purposes only describe in detail the simplest
even–odd scheme of temporal blocking, which corresponds
to K = 2 sub-blocking strategies such that no blocks that are
temporally adjacent are in the same sub-blocking strategy.
As shown in Fig. 1, each block is assigned a unique inte-
ger number k. We then partition the strategy into two sets
of blocks based on whether k is an even or odd integer, and
denote the sub-blocking strategies {Bodd, Beven}. In Fig. 1,
we illustrate such a strategy,where the top rowshows the even
blocks, and the lower row the odd blocks.Note that individual
even blocks have no state variables in common (similarly for
individual odd blocks). Furthermore, for a Markovian state-
space model, each block is chosen to be a consecutive time
sequence of states.
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Algorithm 3: Even–odd implementation of blocked
Bouncy Particle Sampler

Data: Initialize (x0, v0) arbitrarily, set instantaneous runtime
t = 0, index j = 0, total execution time T > 0, lookahead
time θ > 0 and bound time  = θ .

1 (λ̄B)B∈B ← LocalBounds(x0, v0, θ, B)// Calculate
initial bounds

2 while t ≤ T do
3 j ← j + 1
4 τb ∼ Exp(

∑
i∈{even,odd} �̄i ) // Reflection/bounce

time
5 τr ∼ Exp(γ ) // Refreshment time

6 τ j ← min{τr , τb}
7 if τ j + t >  then

// Runtime+event time exceeds valid
time for bound, reinitalize at 

8 x j ← x j−1 + ( − t) · φ�v j−1

9 v j ← v j−1

10 (λ̄B)B∈B ← LocalBounds(x j , v j , θ, B)

11 t ←  // Update runtime
12  ←  + θ // New valid bound time

13 else
14 t ← t + τ j // Update runtime

15 x j ← x j−1 + τ j · φ�v j−1

16 if τ j < τr then
// Select blocking strategy subset

17 Draw κ ∈ {even, odd} with P(κ = i) ∝ �̄i

18 for B ∈ Bκ do
19 u ∼ U[0, 1]
20 if u < λB(x j , v j−1)/�̄κ then
21 v

j
B ← reflectBx v

j−1
B

22 for B ∈ {Bmax{ j−1,1}, Bj , Bmin{ j+1,|B|}} do
23 λ̄B ← LocalBounds(x j , v j , − t, B)

24 else
25 v

j
B ← v

j−1
B

26 else
// Refresh all velocities

27 v j ∼ N (0, I(d×T )×(d×T ))

28 (λ̄Bi )i∈B ← LocalBounds(x j , v j , − t, B)

For such a sub-blocking strategy, we then find the maxi-
mum rate among all blocks inside a sub-blocking strategy

�̂odd(x, v) = max
B∈Bodd

λB(x, v),

�̂even(x, v) = max
B∈Beven

λB(x, v) (4)

and denote their associated Poisson processes �B
odd and

�B
even. By construction, we will have two exponential clocks,

one for the set of blocks Bodd and one for Beven. To detail
what happens at an event time, consider an event generated
by the superposition of �B

odd and �B
even and say �B

odd gener-
ated the event. Then for each block B ∈ Bodd, the following

kernel QB
x (v, dv) is used to update the velocity of that block

QB
x (v, dv) = δreflectBx (v)

(dv)
λB(x, v)

�̂odd(x, v)

+δv(dv)

(
1 − λB(x, v)

�̂odd(x, v)

)
.

This simultaneous velocity update of all the blocks in the
particular set of blocks is permissible since the blocks of each
set have no states in common, i.e., do not overlap. In Algo-
rithm 3, we provide pseudocode for a fully implementable
version of the blocked bouncy particle sampler under an
even–odd partition of the blocking strategy.

Wewill show invariance for the particular case considered
above; the result holds in general for any partition satisfying
Assumption 1.

Proposition 2 Let {Bodd, Beven} be a temporal strategy for
π and B satisfying Assumption 1. Then the Markov process
with associated generator

LeoBPS f (x, v) = 〈∇x f (x, v), φ�v〉F
+

∑

κ∈{odd,even}
�̂κ (x, v)

⎡

⎣
∑

B∈Bκ

∫ [
f (x, v′) − f (x, v)

]
QB

x (v, dv′)

⎤

⎦

has invariant distribution π ⊗ pv , where �̂κ(x, v) is defined
in Eq. (4).

Proof See Sect. A.2. ��
In contrast to the basic blocked BPS, the generator of

Proposition 2 has a single overall event time generated from
sum of odd and even strategies, but multiple overlapping
event times for the blocks contained in the sub-blocking
strategy that generated the event. The even–odd algorithm
therefore corresponds to an implementation that “lines up”
the event times in such a way that is beneficial for a parallel
implementation.Relative to the blocked bouncy particle sam-
pler, the even–odd implementation iterates over every block
in the sub-blocking strategy that generated the event, updat-
ing velocities of the blocks with probability proportional to
the ratio of the block’s rate λB evaluated at the current state
(x, v) to the rate of the sub-blocking strategy given by the
max-bound. It therefore becomes possible to parallelize the
updating step, for examplewithmultiple processors allocated
to each sub-blocking strategy, say one processor per block
of the sub-blocking strategy. In contrast to the generator in
Proposition 1, the event rate of the sampler in Proposition 2
is now themaximum over the rates in a sub-blocking strategy
which should grow slower than the sum rate in Proposition 1
as the global dimension (d) and thus number of blocks grow.
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If the spatial dimension is significant, it will be necessary
to also carry out spatial blocking. Under a full spatiotemporal
strategy, the above implementation naturally extends to a four
clock system, consisting of alternating even–odd temporal
strategies over each ‘row’ of spatial blocks, such that that
no blocks from the same sub-strategy overlap; this in turn
guarantees that Assumption 1 is satisfied.

In practice, �̂κ is not available, as we can not evaluate the
gradient in continuous time. Similarly to Algorithm 1, we
employ a lookahead time θ and a trivial global bound for the
Poisson rates that is valid for the interval (t, t + θ ] where as
before t is the instantaneous runtime. For any fixed θ > 0,
assuming (x(t), v(t)) = (x, v), let the globally valid bound
�̄κ , with κ ∈ {odd, even}, be given as

�̄κ ≡ max
B∈Bκ

sup
s∈[0,θ]

λB (x + s · (φ�v), v) .

As in Algorithm 1, we use this rate to define a bounding
Poisson processes and apply thinning to find the appropriate
events, see Line 4 in the algorithm. In practical implementa-
tions of piecewise-deterministic algorithms, tighter bounds
for the event times are in general necessary to avoid waste-
ful computation from false events. Our max-type bound is
tighter than the sum-type bound, and we can therefore have a
larger lookahead time θ . (Again, θ should be chosen such that
the expected number of events generated by the bound in an
interval of size θ is 1.) With the max-type bound, the even–
odd implementation will have larger event times compared
to the blocked BPS.

The growth of the rate of themax-type bound, as a function
of the number of blocks, is studied in the following result. In
particular, under plausible assumptions on the tail-decay of
the target distribution we can bound the expected rate.

Lemma 1 Assume that for all B ∈ B

P(λB(x, v) > s) ≤ 2e−2αs

for some α > 0. Then both the odd and even sub-blocking
strategies, indicated by subscript κ , satisfies

Eπ�̂κ(x, v) ≤ 2e

α
log |Bκ |

Proof See Sect. A.3. ��
In the Gaussian case, the rate function is a mixture of a

point-mass at zero and a density proportional to the modi-
fied Bessel function of the second kind with order depending
on the dimension, and this function is known to have sub-
exponential decay for any d, see for example Yang and Chu
(2017). We note that the key point of Lemma 1 is to ver-
ify that utilizing the maximum over blocks does not lead to
pathological behavior.

To elaborate on the computational costs of the samplers,
we compare the cost to run the samplers for one second. The
exponential event times of Poisson processes indicates we
can expect O(log |Bκ |) events per time unit (Line 3.4) via
�̂κ , each costing O(|Bκ |) evaluations of blocks (Line 3.18)
per kernel QB

x . Thus the total cost of the even–odd sam-
pler per second is O(|Bκ | log |Bκ |). In comparison, the
local bouncy particle sampler has a rate function defined
as �F = ∑

F∈F λF (x, v) = ∑
F∈F max{0, 〈∇UF (x), v〉},

with F is the set of factors of U , ∇UF (x) is the gradient of
the factor UF (x). In this case, the event rate growth is of the
order O(|F |) by the inequality

Eπ�F (x, v) = Eπ

∑

F∈F
λF (x, v) ≥ |F |min

F∈F
EπλF (x, v),

combined with O(1) costs per event time, for a total cost
of O(|F |) per sampler second. However, we note again that
each of the O(|Bκ |) evaluations of the blocks can be carried
out fully in parallel as no velocities are shared across ringing
blocks. Furthermore, in the continuous-time Markov Chain
Monte Carlo literature, the metric of effective sampler size
per unit of trajectory length has been considered, and it is
at this stage not known theoretically how the blocked BPS
and the local BPS differ under this alternative measure of
efficiency.

5 Numerical experiments

We will in the following two sections provide two numeri-
cal experiments comparing the blocked BPS, the local BPS,
and particle Gibbs. As we are primarily interested in latent
state estimation, we have not considered parameter infer-
ence in the examples below. A natural approach here would
be to run a Metropolis-within-Gibbs sampler that proposes
an update to the parameter vector after, for example, run-
ning the continuous-time sampler for a second. The proposal
of the parameter vector could be done in discrete time, or
alternatively using the BPS for parameter vector. This latter
strategy was proposed for continuous-timeMarkov chains in
Zhao and Bouchard-Côté (2019). Alternatively, the param-
eters could be inferred jointly in continuous-time together
with the latent states; the parameter vector could be included
in the blocking strategy, in particular if the parameter vector
is also dynamic across time.

5.1 Linear Gaussian toymodel

We consider an autoregressive model of order 1 given by

xn = Axn−1 + ηn, ηn ∼ N (0, Id)

yn = xn + εn, εn ∼ N (0, Id)
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with A an autoregressivematrixwith entries Ai j = kern(i, j)

/
(
ψ +∑d

l=1 kern(i, l)
)

with kern(i, j) = exp
{
− 1

2σ 2

|i − j |2} and ψ > 0 a constant, and finally, x0 ∼ N (0, Id).
First, we want to compare the empirical mixing speed of the
blocked and factor bouncy particle samplers. We consider a
simulated model of d = 3 and N = 1000, σ 2 = 5, and
ψ = 0.1. We initialize each sampler at the zero vector, run
until T = 1000, and thin at every 0.1 sampler second. In
Table 1, we provide detailed specifications of the setups for
the various algorithms and results from a representative run
of the algorithms.

In Fig. 2a, we plot the log of the mean square error as a
function of time for increasing block overlap; empirically the
blocked sampler with block width 20 and overlap 10 reaches
stationarity around three times faster than the factor version.
In Fig. 2b, we compare the mean squared jumping distance
of the first spatial dimension after discarding the first 25% of
samples. For the overlapping sections, the exploration is, due
to the shared overlap and φ, happening at twice the speed,
and, accordingly, four times the mean-square jumping dis-
tance compared to the factor algorithm. In terms of effective
sample size per second, the blocked and even–odd samplers
are about 30–40% and 100% more efficient, respectively,
than the factor sampler, without using any parallel imple-
mentation. It is observed in general for any choice of d and
T that the benefits of speeding up the dimensions compensate
for the increased computational cost due to the overlaps. We
also note that for models like this where the spatial dimen-
sion is low, there is not a strong argument to use PDMP-based
methods as particle Gibbs with a basic particle filter will be
more than adequate.

Second, we consider the case where d = 200 and
T = 100 to illustrate the benefits of spatial blocking in
high-dimensional scenarios. In this case we also include
a spatiotemporal blocking strategy, and the details of the
example and a representative simulation are provided in
Table 2. The model and example parameters are otherwise
as described above.

The spatiotemporally blocked sampler significantly out-
performs the other implementations, with effective sample
size per second typically 2–4 times larger, evidenced over
multiple runs with random trajectories generated under the
model. The even–odd temporal implementation blocked
strategy is often still efficient even when the number of
dimensions per block is up to 400, but the relative ESS/s
is on aggregate lower than the spatiotemporally blocked ver-
sion. Furthermore, this discrepancy will only increase under
models with even higher spatial dimension. As before, no
concurrent implementation was used, indicating that addi-
tional improvements in performance are possible for the
partitioned blocking schemes when parallelized over mul-
tiple processors.

5.2 Heavy-tailed stochastic volatility with leverage
effects

Wewill in this section consider an example based a stochastic
volatility model of the Dow Jones Industrial Average (DJIA)
equity index to explore the efficiency of the even–odd imple-
mentation of the BPS in comparison with two benchmark
implementations of particle Gibbs when the spatial dimen-
sion is moderate and the length of the time-series is long.
Stochastic volatility models are widely used in finance and
econometrics. They model the volatility of financial assets
as a dynamic latent process to capture the time-varying
and persistent nature of changes in asset returns. We will
analyze a general model proposed by Ishihara and Omori
(2012) that incorporates heavy-tailed observations and lever-
age effects, see Cont (2001) for empirical discussion of these
effects. To test the blocked algorithms on a reasonably chal-
lenging dataset, we attempt to estimate the latent volatility
of the 29 continuously available constituents of the DJIA
between April 1, 2017, and April 6, 2020, for a total of
29 × 757 = 21,953 latent states. This period is charac-
terized both by relatively low volatility and historical high
levels uncertainty due to the COVID-19 pandemic, seeWHO
(2020) for example.

Let xn ∈ R
d be an unobserved vector of volatilities, and

yn ∈ R
d be observed asset log returns. The dynamics over a

fixed time horizon n = 1, 2, . . . , N are

xn+1 = Axn + ηn

yn = γ
− 1

2
n �nεn, �n = diag

(
exp
{ xn
2

})

with A = diag(α1, α2, . . . , αd), where αi ∈ [0, 1),∀i ∈
{1, 2, . . . , d}. The noise is jointly modelled as

(
ηn
εn

)
∼ N (0, �̂), with �̂ =

(
�η �ρ

�ρ �ε

)

and �̂ a 2d × 2d matrix. The off-diagonal block matrices
introduce leverage effects in the model if they are negative
definite. Finally, for some ν ∈ N, γn ∼ �(ν

2 , ν
2 ) is amemory-

less stochastic process independent of (ηn, εn). The resulting
observation noise is multivariate t-distributed with ν degrees
of freedom, details are in Ishihara and Omori (2012). For the
initialization, we assume that x1 ∼ N (0, (Id − AA)−1�η).
Define yγ

n = √
γn yn as the observations whenever γn is

known; it follows that yγ
n = �nεn and inference can be car-

ried out with this observation sequence instead. Conditional
on γ1:N and using basic properties of multivariate Gaussians,
the transition distributions can be written as
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Table 1 Specification of
implementations and results for
the autoregressive Gaussian
model with T = 1000 and
d = 3

Algorithm Local BPS Blocked BPS Even–odd

Dimensions per factor/block 60 60 60

Number of factors/blocks 50 101 101

Number of sub-blocking strategies – – 2

Temporal width 20 20 20

Spatial width 3 3 3

Temporal overlap – 10 10

Spatial overlap – 0 0

Relative performance 0.48 0.67 1.00

Performance is measured in terms of ESS/s relative to the even–odd bBPS

(a) (b)

Fig. 2 aMean square error estimate per unit of CPU time of the autore-
gressive Gaussian model as the overlap varies. b Mean square jump
distance for the standard bouncy particle sampler and blocked counter-
part with overlaps 9 and 10, showcasing the impactφ has on exploration.

In particular, the dips for the overlap 9 case corresponds to the variables
that are part of a single block only, and subsequently are not sped up.
We show a subset of 200 time points to enhance detail

Table 2 Specification of
implementations and results for
the autoregressive Gaussian
model with T = 100 and
d = 200

Algorithm Local BPS Blocked BPS Even–odd Spatiotemporal

Dimensions per factor/block 400 400 400 54

Number of factors/blocks 50 99 99 957

Number of sub-blocking strategies – – 2 4

Temporal width 2 2 2 9

Spatial width 200 200 200 6

Temporal overlap – 1 1 3

Spatial overlap – 0 0 2

Relative performance 0.36 0.34 0.56 1.00

Performance is measured relative to ESS/s for the spatiotemporal bBPS
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Fig. 3 Estimated latent volatility (the posterior mean after discarding the first 250 samples) via the blocked bouncy particle sampler for the 29
continuously available constituents of the Dow Jones Industrial Average 30 index between April 1, 2017, and April 6, 2020,

p(xn|xn−1, y
γ
n−1) = N (Axn−1 + �ρ�−1

ε �−1
n−1y

γ
n−1, �η

−�ρ�−1
ε �ρ)

p(yγ
n |xn) = N (0,�n�ε�n),

implying that the distribution has a more complicated depen-
dence structure, as the past observation feeds into the next
realized state. Furthermore, the state transition is nonlinear
in the previous state variable due to the leverage effect.

For the blocking strategy, use a spatiotemporal strategy
with blocks 9 timepoints wide, 7 spatial dimensions high,
and each block has temporal overlap 4 and spatial overlap
3, giving a total of 151 × 6 = 906 blocks. Due to the better
performance of partitioned blocked bouncy particle sampler
in the previous example, we only compare this method with
blocked particle Gibbs, see Singh et al. (2017), and the par-
ticle Gibbs with ancestor sampling algorithm of Lindsten
et al. (2014), both using a bootstrap particle filter as pro-
posal mechanism. For the blocked particle Gibbs sampler,
we let the blocks be 25 observations wide and have overlap
5. For a fair comparison, we set the number of particles to
500 which leads to an average time per sample quite close
to that of the spatiotemporal blocked bouncy particle sam-
pler for both samplers. We generated 2000 samples via each
algorithm, and initialized each at the d × N zero vector, and
for the velocity we used the d × N vector of ones. Typically,
estimation of latent states will be carried out inside a Gibbs
sampling algorithm that also estimates parameters, indicat-
ing that prior knowledge of the states are retained, whereas
this example tests the significantly more difficult case of no
prior information on the latent states.

In Fig. 4a, we illustrate the posterior energy. The blocked
particle Gibbs sampler moves in a wide band of posterior
energy, but never reaches levels of higher posterior prob-
ability. This is in contrast to the results reported in Singh
et al. (2017) where the dimension of the hidden state is
much lower and thus the state transition density has better
forgetting properties than our higher-dimensional example.

Even if this issue could be remedied, see Bunch et al. (2015),
implementing particle Gibbs with both temporal and spatial
blocking appears non-trivial in contrast to the ease of which
it can be achieved with the BPS. The ancestor sampling-
based particle Gibbs sampler similarly does not generate
proposals that have high posterior probability. Conversely,
the bBPS reaches stationarity in less than 100 samples, and
subsequently mixes across the posterior: the auto-correlation
function, plotted in Fig. 4b, reaches zero around a lag of 20
samples, indicating adequate mixing for a posterior of this
dimension. In Fig. 5, we plot the correlation matrix of the
assets, and also the estimated latent volatility via the posterior
mean. It is quite clear that the volatilities show weaker cor-
relation across the assets, but appear to preserve some of the
structure of seen in the correlation matrix of the log returns.
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(a) (b)

Fig. 4 a Traceplot of the log-posterior of the stochastic volatility model for all three samplers. b Autocorrelation of the energy for the blocked
bouncy particle sampler after discarding the first 250 samples as burn-in

Fig. 5 Left: estimated correlation matrix from the log-returns over the entire period. Right: estimated correlation matrix of the latent volatilities
from the posterior mean estimate from the even–odd bBPS

A Proofs

A.1 Proof of Proposition 1

Proof Denoting the domain of LbBPS by D(LbBPS), invari-
ance follows if ∀ f ∈ D ⊂ D(LbBPS), with D a core for
(LbBPS, D(LbBPS)), that

∫
LbBPS f (x, v)π(dx)p(dv) = 0,

see Ethier and Kurtz (2009, Chapter 9). Identification of the
core for the generators associated with piecewise determin-
isticMarkov processes is quite technical, we refer to Durmus
et al. (2018, Section 7) and Holderrieth (2019, Section 5) for
details. We from now on assume for the test function that
f ∈ C1,0

0 ((Rd × R
N ) × (Rd × R

N ) → R), for the density
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that U (x) ∈ C1(Rd × R
N → R). The proof in essence fol-

lows that of Proposition 1 in Bouchard-Côté et al. (2018).
For the first part of the generator associated with the linear
flow, consider first the integral with respect to π(x). We have

∫
〈∇x f (x, v), φ�v〉Fπ(dx)

= 1

Z

∫
〈∇x f (x, v), φ�v〉Fe−U (x)dx,

where Z is the normalizing constant Z = ∫ e−U (x). Applying
integration-by-parts we immediately get

1

Z

∫
〈∇x f (x, v), φ�v〉Fe−U (x)dx

= 1

Z

∫
f (x, v)〈∇U (x), φ�v〉Fe−U (x)dx

=
∫

f (x, v)〈∇U (x), φ�v〉Fπ(dx)

by integrability of the functions in the domain of LbBPS. For
the second part, note that

∑

B∈B
λB(x, reflectBx (v)) − λB(x, v)

=
∑

B∈B

{− 〈∇BU (x), vB〉F
}+ − {〈∇BU (x), vB〉F

}+

=
∑

B∈B
−〈∇BU (x), vB〉F

= −〈∇U (x), φ�v〉F .

where the last line follows by the definition of φ. Consider
then the integral of the jump dynamics generator

∫ ∫ ∑

B∈B
λB(x, v)

[
f (x, reflectBx (v)) − f (x, v)

]

π(dx)p(dv).

Using that (reflectBx )−1 = reflectBx by involution and
thenorm-preservingproperty of the restricted reflectionoper-
ator we get

∫
λB(x, v) f (x, reflectBx (v))π(dx)p(dv)

=
∫

λB(x, reflectBx (v)) f (x, v)π(dx)p(dv),

so we have from using the identity above that

∫ ∫ ∑

B∈B
λB(x, v)

[
f (x, reflectBx (v)) − f (x, v)

]

π(dx)p(dv)

=
∫ ∫ ∑

B∈B

[
λB(x, reflectBx (v) − λB(x, v)

]
f (x, v)

π(dx)p(dv)

= −
∫ ∫

〈∇U (x), φ�v〉F f (x, v)π(dx)p(dv),

which implies the result. ��

A.2 Proof of Proposition 2

Proof We will show that the eoBPS is a special case of the
blocked bouncy particle sampler, we again subdue depen-
dence on refreshments. Writing out the integral with respect
to QB

x , we have

LeoBPS f (x, v) = 〈∇x f (x, v), φ�v〉F
+

∑

κ∈{odd,even}
�̂κ (x, v)

⎡

⎣
∑

B∈Bκ

[
λB(x, v)

�̂κ (x, v)
f (x, reflectBx (v))

+
(
1 − λB(x, v)

�̂κ (x, v)

)
f (x, v) − f (x, v)

]]

= 〈∇x f (x, v), φ�v〉

+
∑

κ∈{odd,even}
�̂κ (x, v)

⎡

⎣
∑

B∈Bκ

[
λB(x, v)

�̂κ (x, v)
f (x, reflectBx (v))

− λB(x, v)

�̂κ (x, v)
f (x, v)

]]
= 〈∇x f (x, v), φ�v〉

+
∑

κ∈{odd,even}
⎡

⎣
∑

B∈Bκ

[
λB(x, v) f (x, reflectBx (v)) − λB(x, v) f (x, v)

]
⎤

⎦

= 〈∇x f (x, v), φ�v〉
+
∑

B∈B
λB(x, v)

[
f (x, reflectBx (v)) − f (x, v)

]

= LbBPS f (x, v),

which by Proposition 1 gives the result. ��

A.3 Proof of Lemma 1

Proof We will just consider the odd strategy in the proof,
everything translates seamlessly. By Hölders inequality, we
have for any p ∈ N

Eπ⊗pv (�̂odd) = Eπ⊗pv ( max
B∈Bodd

λB)

≤
(

Eπ⊗pv max
B∈Bodd

|λB |p
) 1

p
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≤
⎛

⎝Eπ⊗pv

∑

B∈Bodd

|λB |p
⎞

⎠

1
p

≤ |Bodd|
1
p max
B∈Bodd

(
Eπ⊗pv |λB |p) 1p .

For any B ∈ Bodd, by adapting the proof of Lemma 1.10
in Rigollet and Hütter (2015), we have by the sure positivity
of the rate function that

Eπ⊗pv |λB |p =
∫

[0,∞)

P(λB ≥ t1/p)dt

≤ 2
∫

[0,∞)

e−2αt1/pdt

= 2p

(2α)p

∫

[0,∞)

e−uu p−1du

= 1

α p
p!,

such that in particular

Eπ⊗pv �̂odd ≤ |Bodd|
1
p
2p

α
. (5)

Optimizing over p leads to p∗ = log |Bodd|, which together
with the bound gives

Eπ⊗pv �̂odd ≤ |Bodd|
1

log |Bodd | 2 log |Bodd|
α

≤ 2e

α
log |Bodd|,

implying the result. ��

B Parameters of the stochastic volatility
model

B.1 Choice of parameters

The daily asset prices (pn)n=1,2,...,N is collected from eSig-
nal Data Access and transformed to log returns via the
relation yn = log pn/pn−1. As our paper is centered on latent
state estimation, we have foregone a full Bayesian parame-
ter estimation. Instead, for all unobserved quantities we have
used the parameters proposed by Ishihara and Omori (2012)
Section3, these are basedonprevious empirical studies by the
authors and quite closely correspond to what is inferred dur-
ing their parameter estimation procedure on S&P 500 data.
In particular, we set the persistence parameter to α = 0.99
and use ν = 15 degrees of freedom for the multivariate t-
distribution.

For the unobserved volatility covariance matrix �η, the
cross-asset correlation is set at 0.7, and the same standard
deviation is assumed for each asset, 0.2. For the leverage

matrix, the intra-asset parameter is set at �ρ,i i = −0.4 and
cross-asset leverage �ρ,i j = −0.3.

We estimate the return covariancematrix�ε directly from
the observed log returns over the entire period. The values we
arrive at from this procedure is again close to what is empir-
ically observed, indicating it is a reasonable parameter value
to use for a latent states estimate. If we were to run a spatially
blocked scheme, we could for example apply a hierarchical
clustering algorithm like the algorithm of Ward (1963) to
learn the relationship between the assets, and then rearrange
the order of the assets to match the order of the clustering
procedure. As discussed this should have a beneficial effect
on mixing, as the blocks become more localized.
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