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The recently proposed phase-matching quantum key distribution offers means to overcome the linear
key rate–transmittance bound. Since the key information is encoded onto the phases of coherent states, the
misalignment between the two remote reference frames would yield errors and significantly degrade the
key generation rate from the ideal case. In this work, we propose a reference-frame-independent design
of phase-matching quantum key distribution by introducing a high-dimensional key encoding space. With
encoded phases spanning the unit circle, the error statistics at arbitrary fixed-phase-reference difference
can be recovered and treated separately, from which the misalignment angle can be identified. By naturally
extending the binary encoding symmetry and complementarity to high dimensions, we present a security
proof of this high-dimensional phase-matching quantum key distribution and demonstrate with simulation
that a 17-dimensional protocol is completely immune to any degree of fixed misalignment and robust
to slow phase fluctuations. We expect the high-dimensional protocol to be a practical reference-frame-
independent design for general phase-encoding schemes where high-dimensional encoding is relatively
easy to implement.
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I. INTRODUCTION

Quantum key distribution (QKD) resorts to quantum
systems to distribute private and random keys between two
distant parties. Moreover, the privacy does not rely on any
computational assumption as in the classical key distribu-
tions, nor the randomness derived from any pseudo random
number generations. In fact, the perfect privacy and ran-
domness are intrinsic in quantum systems, as the security
of QKD can be proved by reducing it to the distillation of
entangled quantum states [1–3].

The traditional QKD protocols are essentially point to
point, where one party transmits quantum states according
to the classical keys and the other party receives and mea-
sures the quantum states to distinguish the corresponding
classical keys [4,5]. Under this formalism, a linear bound
can be placed on the relation between channel transmit-
tance and key generation rate [6,7]. This is reasonable,
since only when the encoded states are transmitted through
the channel can they be detected and used to generate raw
keys. In 2012, the measurement-device-independent quan-
tum key distribution (MDI QKD) was presented [8], orig-
inally intended to remove all of the detection loopholes.

*xma@tsinghua.edu.cn

Yet moreover, MDI QKD employs a setup that differs from
the traditional point-to-point scheme, in the sense that an
untrusted third party is in between the two communicat-
ing parties. Through the claimed Bell-state measurements
of the third party, the communicating parties can entangle
their qubits through entanglement distillation.

The original MDI QKD, although having an untrusted
relay in between, still cannot break the linear key
rate–transmittance bound. This is essentially because MDI
QKD encodes entanglements in the degree of freedom
of photons, for instance, polarization. In this way, two
photons need to be detected for one successful detection,
which yields one bit raw key. Since the third party who
makes detection is in the middle of the two communi-
cating parties, the detection rate of each photon is the
square root of the total channel transmittance, and hence
the total detection rate, which requires two photons, still
scales linearly with the channel transmittance.

The breakthrough was made in the recent work of twin-
field quantum key distribution (TF QKD) [9], which opens
the possibility of phase-encoding MDI QKD protocols. In
this MDI scheme with single-photon interference [10], a
successful detection requires in total one photon from the
two sides, saving the detection compared to the original
MDI QKD schemes. As a result, TF QKD improves the
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key rate–transmittance bound from linear to square root.
Afterwards, variants of TF QKD and their rigorous secu-
rity proofs have been presented [11–13]. Among these
works, a scheme named phase-matching quantum key dis-
tribution (PM QKD) [11] encodes the key bits in the phase
of coherent states and removes the need of basis switch-
ing, which has been demonstrated in a 502-km fiber-based
experiment [14].

Despite their ability to enhance the key-rate perfor-
mance in theory, these phase-encoding MDI QKD proto-
cols are more challenging when it comes to the experi-
mental implementation, due to the optical-mode quadra-
ture reference mismatch between the two parties from the
laser sources and optical channels. The reference mis-
match is in fact a problem for general QKD systems, as in
the polarization-based BB84 protocol mismatch between
polarization axes gives a maximally tolerable misalign-
ment error rate of 11% [2]. In Ref. [15], the feasibility of
PM QKD under 13% misalignment error rate was demon-
strated, yet with severely discounted achievable secure
key rate. In practice, phase-locking techniques can be
employed to fix the phase reference [16], but the experi-
mental challenges and the cost are considerable. The diffi-
culty of phase locking is also reflected in the recent exper-
imental demonstrations, which are either simple demon-
stration with local settings [17,18] or highly demanding
experiments with advanced technologies such as lasers
with narrow linewidth of 1 Hz and active phase feed-
back controls [19], ultrastable cavity and time-frequency
transfer locking [20], and laser-injection techniques [14].
We refer to Ref. [21] for a detailed review on differ-
ent variants of PM QKD and TF QKD protocols and the
advances on the experimental techniques. Phase postcom-
pensation is another feasible approach [11,15,22], where
extra phase randomization is introduced and the exper-
imental data with aligned phase slices are postselected
afterwards. If the phase mismatch is relatively fixed, the
data with aligned phase slices will be suitable for key gen-
eration. This approach is again experimentally complicated
and requires a great amount of data for phase estimations.

We thus call for the reference-frame-independent design
[23,24] of PM QKD to cope with fixed or slowly fluc-
tuating phase misalignment, completely controlled by the
adversary in the worst case, without overcomplicating the
experimental setups.

If we look at the essence of the phase postcompensa-
tion, the discrete randomization in fact expands the key
space from two dimensions to high dimension. After the
detection stage, the key space is reduced back to two-
dimensional through postselection of matching phases.
The variation in the key-space dimension complicates
the protocol. Naturally, we can remove the postselection
stage by implementing high-dimensional key space from
the beginning. The potential of high-dimensional proto-
cols against channel errors is already demonstrated for

prepare-and-measure protocols, where, in contrast with the
conventional two-dimensional BB84 protocol, which tol-
erates an error rate of 11%, the four-dimensional BB84
protocol can tolerate up to 35.6% [25], and the 16-
dimensional BB84 protocol can tolerate 45.4% [25]. These
results shine light on introducing high-dimensional PM
QKD to combat errors introduced by misalignment.

In this work, we introduce the d-dimensional PM QKD
protocol, which encodes key information onto d uniformly
separated phase slices and matches phases via interference
detection at an untrusted measurement site. By extending
the encoding symmetry approach [15] to high dimensions,
we present a security analysis of the high-dimensional
PM QKD and demonstrate that it achieves reference-frame
independence: it is completely immune to any degree
of fixed-phase misalignment and robust to small phase
fluctuation, where these disturbances are assumed to be
controlled by the adversary. As the high-dimensional PM
QKD employs the same setup as the two-dimensional PM
QKD whilst removing the necessity of phase postcompen-
sation, it is in fact a pragmatic approach to mitigate the
effect of reference mismatch.

The rest of the paper is arranged as follows. In Sec. II,
we present the high-dimensional PM QKD protocol and
discuss its relations with the conventional two-dimensional
PM QKD. In Sec. III, we outline the security proof of
high-dimensional PM QKD. The proof is generalized from
two-dimensional encoding symmetry [11,15] and phase-
error correction [1–3], and we justify the elements that can-
not be generalized to high dimensions trivially. Finally, in
Sec. IV, we present the simulation performance of the 17-
dimensional PM QKD and demonstrate its advantage over
the two-dimensional PM QKD against both fixed-phase
misalignment and small phase fluctuation. We justify the
rationales behind this advancement.

II. HIGH-DIMENSIONAL PM QKD PROTOCOLS

We introduce the high-dimensional PM QKD protocol
as the following, with Fig. 1 as a schematic diagram:

High-dimensional PM QKD protocol

1. Encoding: Alice randomly generates a key “dit”
κa from {0, 1, . . . , d − 1} and prepares the coherent state
|√μ/2 ei(2π/d)κa〉A. Similarly, Bob randomly picks κb and
prepares |√μ/2 ei(2π/d)κb〉B.

2. Measurement: Alice and Bob send the two optical
modes AB to an untrusted party, Eve, who is supposed
to perform interference measurement and announce the
detection results: no click, double click, L click, or R click.

3. Sifting: After many rounds of quantum communica-
tions, Alice and Bob keep only the rounds with L or R click.
They end up with two correlated d-dimensional strings.
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FIG. 1. Schematic diagram of the PM QKD protocol with d-
dimensional encoding [11]. Alice prepares the coherent state
|√μ/2 ei(2π/d)κa〉A, where κa ∈ {0, 1, . . . , d − 1}. Similarly Bob
prepares |√μ/2 ei(2π/d)κb〉B. They send the two coherent states to
interfere at an untrusted measurement site. Ideally, if the phase
difference 2π/d|κa − κb| = 0, the detector gives a single L click.
If 2π/d|κa − κb| = π , the detector gives a single R click.

4. Parameter estimation: From the raw data they
retained, Alice and Bob estimate the security parameters
and derive the secure key rate.

5. Key generation: Based on the parameter estima-
tion results, Alice and Bob reconcile their raw strings by
consuming certain secure keys. They then perform pri-
vacy amplification to extract the secure final keys from the
reconciled keys.

This family of protocols is a direct generalization of the
two-dimensional PM QKD [11,15] to d dimension. The
intuition of security is similar as the binary case: when
Alice and Bob each send coherent states |αeiθa〉 and |αeiθb〉
to the interferometer, the device is highly likely to pro-
duce a single L click only when |θa − θb| ≈ 0, and a single
R click only when |θa − θb| ≈ π . Hence, if they group
the rounds with single L clicks and R clicks, respectively,
they would obtain a pair of correlated phase strings. They
can then distill secure keys, respectively, from the L-click
group and the R-click group, and the total secure key
length is the sum of that from the two groups [26,27].
We note that similar protocols with discrete phase ran-
domization are discussed in Refs. [28] and [29]. However,
these protocols adopt binary encoding essentially; the dis-
crete phase randomization is used for a tight parameter
estimation. In contrast, the proposed high-dimensional PM
QKD in this work utilizes the discrete random phases for a
high-dimensional encoding.

III. SECURITY OF HIGH-DIMENSIONAL PM
QKD WITH ENCODING SYMMETRY

In this section, we sketch the security analysis of high-
dimensional PM QKD protocols. A complete rigorous
security proof is placed in the Appendices. Generally, the
proof extends the binary symmetric encoding approach
in Ref. [15] to higher dimensions, which is discussed in
Sec. III A, and concludes privacy through the phase-error-
correction approach in Ref. [3] in Sec. III B. In order to

generalize the known results in two dimensions, we resort
to the structure of finite field GF(d) (see Appendix A 1),
which only exists when d = pr for some prime number
p and integer r. Hence, we confine the analysis to prime
power dimensions. Due to a small caveat to be mentioned
in Sec. V, unless noticed (e.g., Sec. III B), we confine d
to prime numbers. We give the asymptotic key-rate for-
mula for d-dimensional PM QKD with experimentally
accessible parameters in Sec. III C.

A. High-dimensional symmetric encoding protocol

We first consider the symmetric encoding property of
the d-dimensional PM QKD as shown in Fig. 2 [15]. In a
d-dimensional symmetric encoding QKD, Alice and Bob
start with a bipartite state ρAB. They independently gen-
erate a random key “dit” κa and κb from {0, 1, . . . , d − 1}
and apply U(κa(b)) := Uκa(b) to their subsystem A and B,
respectively, where Ud = I . Notice that in PM QKD, the
encoding operator U is the rotation operator

U = ei(2π/d)a†a, (1)

that rotates a coherent state by an angle of 2π/d. The
modulated state ρ ′

AB(κa, κb) can be written as

ρ ′
AB(κa, κb) = [UA(κa)⊗ UB(κb)]ρAB[UA(κa)⊗ UB(κb)]†,

(2)

which is then sent to the third party Eve who is supposed
to make a joint measurement to determine (κa − κb) mod d
and announce the result. Based on the announcements from
Eve, Alice and Bob can modify their key dits to generate a
pair of correlated key strings, with information reconcilia-
tion and privacy amplification to generate the final secure
key.

A pure state |ψ〉AB on AB is called an l-symmetric
state, for l in {0, 1, . . . , d − 1}, if it is the lth eigenstate of
UA ⊗ UB:

(UA ⊗ UB) |ψ〉AB = γ l
d |ψ〉AB , (3)

where γd = ei2π/d. For a mixture of l-symmetric states,
ρAB = ∑

j pj |ψ(j )
l 〉 〈ψ(j )

l |, we have

ρ ′
AB(κa, κb) = [IA ⊗ UB(κb − κa)]ρAB, (4)

where the subtraction is under modulus d. Hence, the
encoded mixture l-symmetric states are indistinguishable
as long as the two key dits κa and κb differ by the same
number. As a result, the raw key dit κa is “hidden” in the
encoded state ρ ′

AB(κa, κb) as long as the preshared state ρAB
is a mixture of pure parity states.

To give a more rigorous argument, we resort to
the entanglement-based symmetric encoding protocol, as
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FIG. 2. Schematic diagram of the d-dimensional symmetric
encoding QKD, where κa, κb take values in {0, 1, . . . , d − 1}.
Alice and Bob share the bipartite state ρAB and each applies a uni-
tary operation U(κ) := Uκ according to their key values κa and
κb. The untrusted party Eve is supposed to announce the key dif-
ference (κa − κb) mod d. The setup extends the binary symmetric
encoding protocol in Ref. [15].

shown in Fig. 3 below. In the entanglement-based protocol,
Alice and Bob each hold an ancillary system A′ and B′ in
the state |+〉d = ∑d−1

j =0 |j 〉. This serves as the control dit of
the encoding operator U, i.e., we transfer the classical ran-
dom encoding to a quantum control operation. Its equiv-
alence with the prepare-and-measure symmetric encod-
ing protocol follows if we move the final measurement
prior to the control operation. For the entanglement-based

FIG. 3. Schematic diagram of the entanglement-based d-
dimensional PM QKD, where ρAB is a bipartite state on two
optical modes, and the encoding operation U rotates the coher-
ent state by 2π/d. The optical mode is phase rotated by 2πk/d
if the kth control dit is triggered. The encoded state ρ0 is sent to
the untrusted Eve for measurement, who is supposed to announce
the key difference (κa − κb) mod d, where κa and κb refer to the
control dits triggered in A′B′. Alice and Bob distill secure keys
from the qudit systems A′ and B′. The setup extends the binary
entanglement-based symmetric encoding protocol in Ref. [15].

protocol, when the input state ρAB is an l-symmetric state,
the following is shown in Appendix C:

Observation 1: In the entanglement-based symmetric
encoding protocol, if the input state ρAB is an l-symmetric
state, then the X -basis measurement result on A′ can be
determined by the X -basis measurement result on B′, as
they sum to l under modulus d addition. In other words,
Alice and Bob have no phase error between A′ and B′.

Note that the X -basis complementary to the computa-
tional basis in a d-dimensional Hilbert space is defined as

|l̃〉 := 1√
d

d−1∑

j =0

γ
−lj
d |j 〉 , (5)

where γd = exp(2π i/d). Hence, it remains only to show
that in high dimensions zero phase-error rate leads to
perfect privacy.

B. Phase error and privacy in prime power dimensions

Phase error implies information leakage in two dimen-
sions [1–3]. In the security proof of two-dimensional QKD
based on complementarity [3], the two-body entanglement
distillation is first squashed into an equivalent single-body
coherence distillation protocol given efficient bit-error cor-
rection [30]. As long as the squashed state is close to the
two-dimensional X -basis eigenstate, they can share ran-
dom and private keys after Z-basis measurements. This
essentially connects privacy with phase error, i.e., the
error in estimating the X measurement results. Due to the
anticommutability of the two-dimensional X and Z observ-
ables, the final Z measurement anticommutes with the
phase-error correction, and we can move the Z-basis mea-
surement forward and reduce the phase-error correction to
random hashing.

It is not obvious to generalize the two-dimensional
complementarity argument to high dimensions. Efforts
have been made in proving the security of prime-power-
dimensional BB84 protocols [25,31], which implicitly
connect privacy with phase error in prime power dimen-
sions. Yet none of these early works have given an explicit
distillable key-rate formula. In Appendix B, we give a sim-
ple justification of prime-power-dimensional phase-error
correction based on the complementarity approach with
parity-check operations {Pl(v)}d−1

l=0 ,

Pl(v) =
∑

z·v=l

|z〉 〈z| . (6)

We thus yield a similar secure key-rate formula as two
dimensions:

r = log2 d − H(	Eph)− H(	Ebit), (7)
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where H is the log2-based Shannon-entropy function. 	Eph

and 	Ebit are the phase and bit-error vector. They are defined
as the length-d error rate vectors of different shifts. To
be specific, under an asymptotic setup, suppose Alice
and Bob measure their N pairs of qudit systems in X
basis and obtain two length-N d-dimensional strings a and
b, the phase-error rate vector is defined as 	Ephase := 	wt
(a − b)/N , where the subtraction is of modulus d, and the
weight function is defined as

	wt(s) =

⎡

⎢
⎣

No. of 0 in s
No. of 1 in s

· · ·
No. of d-1 in s

⎤

⎥
⎦ . (8)

The bit-error rate vector 	Ebit can be defined similarly.
Note that a similar formula was derived in Ref. [32] from
information theoretic approaches.

We thus arrive at the following relation between phase
error and privacy in prime power dimensions:

Observation 2: In prime power dimensions, if Alice can
determine Bob’s X -basis measurement results, i.e., there
is no phase error, the protocol generates secure keys in Z
basis.

This, combined with Observation 1, proves the security
of d-dimensional PM QKD.

C. Parameter estimation with decoy states

In practice, the key-rate formula, Eq. (7), cannot be used
directly as the phase-error vector 	Eph based on the hypo-
thetical qudit systems is not experimentally accessible. We
can however estimate it based on the realistic optical mode
systems. To be more specific, Alice and Bob can run dis-
crete phase randomization where they independently add
one of D random phases φa and φb to their coherent states.
This essentially transforms their states into mixtures of
pseudo-Fock states (see Appendices C 2 and C 3), which
are symmetric states that yield no phase error as previously
argued. With light intensity μ, denote the fraction of detec-
tion caused by the l-photon state as qμl , which gives the
length-d vector 	qμ with qμl at its lth entry. We conclude that
the phase-error vector 	Eph is exactly the detection ratio of
each joint Fock state 	qμ. We thus have the experimentally
accessible key-rate formula:

r = d
D

Qμ{γ [log2 d − H(	Eμbit)] − H(	qμ)}, (9)

where the parameter γ < 1 marks the information rec-
onciliation efficiency. The bit-error vector 	Eμbit can be
retrieved directly from random sampling. To access the
detection fraction vector 	qμ of each symmetric state, we

apply the decoy method [33,34] by varying the light inten-
sity μ. This leads to the following high-dimensional PM
QKD protocol with decoy states for parameter estimation:

High-dimensional PM QKD protocol with parameter
estimation

1. Encoding: Alice randomly generates a key “dit”
κa from {0, 1, . . . , d − 1} and a random intensity μa as
in the decoy method. She prepares the coherent state
|√μa/2 ei(2π/d)κa〉A. Similarly, Bob randomly picks κb and
μb, and prepares |√μb/2 ei(2π/d)κb〉B.

2. Discrete phase randomization: Alice and Bob inde-
pendently phase randomize their coherent states for a
large enough phase slice number D. That is, they ran-
domly pick φa and φb from {j (2π/D)}D−1

j =0 and pre-
pare |√μa/2 ei(φa+(2π/d)κa)〉A and |√μb/2 ei(φb+(2π/d)κb)〉B,
respectively.

3. Measurement: Alice and Bob send the two optical
modes AB to an untrusted party, Eve, who is supposed
to perform interference measurement and announce the
detection results: no click, double click, L click, or R click.

4. Sifting: After many rounds of quantum communi-
cations, Alice and Bob keep only the rounds with L or R
click. They announce the random intensities and phases
μa, φa and μb, φb publicly. They keep only the rounds
with μa = μb. For each intensity group, they postselect the
rounds where |φa − φb| ∈ {k(2π/d)}d−1

k=0. They end up with
two correlated d-dimensional strings.

5. Parameter estimation: From the raw data they
retained, Alice and Bob retrieve the gain Qμ and the bit-
error rate vector 	Eμbit. They estimate the phase-error rate
vector 	qμ based on Eqs. (10) and (11).

6. Key generation: Based on the parameter estima-
tion results, Alice and Bob reconcile their raw strings by
consuming certain secure keys. They then perform pri-
vacy amplification to extract the secure final keys from the
reconciled keys.

Notice that after Eve’s announcement of detection results,
they announce the random phases and postselect the phase-
matched rounds where |φa − φb| ∈ {k(2π/d)}d−1

k=0. Since
Eve announces only the detection results without access
to the random phases, the overall phase-error rate does not
depend on the later phase announcement, and so does the
privacy [11,22,35].

To estimate ql, denote the yield of l-photon states as Yl,
the overall gain Qμ can thus be expressed as

Qμ =
∞∑

l=0

Pμ(l)Yl, (10)

where Pμ(l) denotes the source statistics of l-photon states.
We can thus apply decoy methods by varying intensity μ
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to estimate the yield of each joint Fock state [33,34], and
the fraction of detection is given by

qμl = Pμ(l)
Yl

Qμ

. (11)

Although it requires infinite decoy levels to estimate each
ql exactly, since the optimal coherent light intensity is far
below 1, three or more-photon components are negligible
in the source, and hence in the detected signals. Therefore,
three decoy levels are enough to estimate the phase-error
vector 	qμ (see also the finite-size analysis in Ref. [15])
and the detection fraction 	qμ is to be estimated with decoy
states based on Eqs. (10) and (11).

As the pseudo-Fock states given in Eq. (C16) vary with
the change in light intensity μ, Eve may have chances to
distinguish between signal and decoy states, thus cracking
the decoy method [36]. Therefore, we want the generated
pseudo-Fock states to be close to the real Fock states,
i.e., we want the discrete randomization close to contin-
uous. As shown in Appendix C 3, D ≥ 10 is required for
a negligible effect of discrete randomization. When d = 2,
this essentially introduces a significant sifting factor 2/D.
For high-dimensional PM QKD that d ≥ 10, however, we
can simply let D = d and the postselection can be omitted
since φa and φb are themselves code phases. This mani-
fests the simplicity in implementing high-dimensional PM
QKD.

IV. REFERENCE-FRAME INDEPENDENCE
UNDER REALISTIC FIBER SETUPS

We demonstrate, with simulation, that without phase
postcompensation, the high-dimensional PM QKD suffi-
ciently achieves reference-frame independence [23]. We
mainly consider two practical scenarios: fixed-phase mis-
alignment and small phase fluctuation. The fixed-phase
misalignment corresponds to the intrinsic reference sys-
tem mismatch and the phase fluctuation is a random phase
drift added by the fiber that is independent of the encod-
ing, both assumed to be controlled by the adversary. By
virtue of the encoding symmetry, the phase-error rate is
decoupled with channel noise [15], that is, the bit-error pat-
terns. Hence, phase misalignment affects only the bit-error
rate, whilst the phase-error rate depends merely on light
intensity. We show that fixed-phase misalignment does
not increase the bit-error rate of the high-dimensional PM
QKD (Sec. IV A). Although phase fluctuation does add to
its bit-error rate, the decrease in key rate is smaller than
that of two-dimensional PM QKD due to the concavity of
Shannon-entropy function (Sec. IV B).

To justify our arguments, we simulate the asymptotic
performance of 17-dimensional PM QKD against two-
dimensional without phase postcompensation. The simu-
lation model is similar to that illustrated in Appendix B

TABLE I. Summary of parameters used in the simulation.

Parameters Values

Fiber attenuation α 0.2 dB/km
Dark count rate pd 1 × 10−8

Error correction efficiency γ 0.95
Detector efficiency ηd 20%
No. of phase slices D 16

of Ref. [11], with parameters given in Table I. A detailed
description is placed in Appendix D. The key rate formula
generally follows Eq. (9).

A. Immunity to fixed-phase misalignment

We demonstrate that the high-dimensional PM QKD
achieves almost completely immunity to fixed-phase mis-
alignment, in clear contrast with the two-dimensional PM
QKD, which is sensitive to phase-reference mismatch. In
the two-dimensional PM QKD, the worst case scenario
is that Alice and Bob hold phase references that differ
by δ = π/2. The protocol would not correlate Alice and
Bob’s keys. Suppose Alice sends phase A0, it can be seen
that no matter Bob sends B0 or B1, the interference result
would highly likely be double clicks, and any single click
does not provide too much information that helps Alice
to distinguish Bob’s key bit. However, in a d-dimensional
PM QKD, suppose the phase references are differed by δ +
2kπ/d with δ ∈ [0, 2kπ/d) and k being integer. Note the
2kπ/d term results only in a deterministic shift between
key phases, and therefore can be tackled by classical post-
processing. Hence, the effective misalignment only ranges
in [0, 2kπ/d), which gets smaller as d increases, as shown
in Fig. 4 below. What is more, for the 17-dimensional PM
QKD, we plot in Fig. 5 the key rate at 100 km against mis-
alignment ranging from 0 to 2π/17. It can be seen that
the lowest key rate is reached when the misalignment is
π/34, which is one fourth between two key phases. This is

(a) (b)

FIG. 4. Encoding circles of low- and high-dimensional PM
QKD against worst-case misalignment. In the low-dimensional
case, both encoding phases are far away from the deviated
phase locations, thus giving much uncertainty. Yet in the high-
dimensional case, the deviated phases are closer to key phases,
enabling the error correction to coordinate the phase shift.
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FIG. 5. Key rate of the 17-dimensional PM QKD at 100 km
against fixed misalignment. The π/17 misalignment correlates
the opposite key phases by R clicks, and hence giving almost no
effect on the key rate. The worst-case misalignment is reached at
π/34, whose relative effect is negligible.

reasonable since when the misalignment is half between
two key phases at π/17, the A0 phase would be deter-
minedly matched to B8 as they differ by π , causing R click.
Hence, π/34 is the worst-case misalignment right between
the two deterministic misalignment 0 and π/17. It can be
seen from Fig. 5 that the effect of the fixed misalignment
to the key rate of the 17-dimensional PM QKD is of 0.1%
scale, and hence negligible in practice.

To justify the above argument, we simulate the asymp-
totic performance of the two-dimensional PM QKD
against the 17-dimensional PM QKD under various

FIG. 6. Rate-distance performance of two- and 17-
dimensional PM QKD against various fixed-phase misalignment,
in comparison with the repeaterless bound [6,7]. The key-rate
performance of the 17-PM under the worst-case π/34 misalign-
ment is similar to that of the 2-PM with no misalignment. The
key rate of 2-PM decreases gradually and cannot generate keys
at the worst-case π/2 misalignment.

fixed misalignment compared with the linear repeaterless
bound [6,7]. As shown in Fig. 6 below, without phase
postcompensation, the key rate of two-dimensional PM
QKD decreases continuously as the fixed misalignment
increases. When the misalignment reaches π/4, the key
rate of binary PM QKD generally discounts by a factor
of 10, and when it further increases to π/3, the two-
dimensional PM QKD cannot break the linear bound any-
more. In clear contrast, the 17-dimensional PM QKD is
almost completely immune to any phase misalignment. As
can be seen in the figure, the 17-dimensional PM QKD
performs almost identically under π/34 misalignment (the
worst case) and no misalignment. Its key rate is simi-
lar to that of the perfectly aligned two-dimensional PM
QKD, despite a slight decrease in the maximal reach-
able distance. On the other hand, the two-dimensional
PM QKD clearly cannot generate any keys under π/2
misalignment. This demonstrates the superiority of high-
dimensional PM QKD in terms of immunity to fixed
misalignment.

B. Robustness to small phase fluctuation

When phase fluctuation is applied, the original code
phases can no longer be recovered exactly since the fluc-
tuation is random within a range of angles. In reality the
phase fluctuation may come from the sources and the fiber,
whilst the latter is length dependent. To illustrate our ideas,
we adopt a simplified model that during each round a
random noisy phase (independent of encoding) uniformly
distributed in [−φlim,φlim] is added to the encoded coher-
ent state, for Alice and Bob, respectively. We focus on the
term log2(d)− H(	Ebit), which denotes the mutual infor-
mation between Alice and Bob, and the term H( 	qμ), which
denotes the cost due to phase-error rate, i.e., the leak of raw
key information. Fixing the communication distance at 300
km, we compare in Fig. 7(a) the change in mutual infor-
mation log2(d)− H(	Ebit) and privacy leakage H( 	qμ) for
two- and 17-dimensional PM QKD against the phase fluc-
tuation range φlim. The light intensity μ is fixed at 0.2 and
0.03, respectively, for the two- and 17-dimensional, which
is around the optimal value under no fluctuation shown
in Fig. 7(c). It can be seen that the privacy leakage term
H( 	qμ) remains unchanged for both the two-dimensional
and 17-dimensional regardless of the fluctuation range.
This demonstrates the property of the encoding symme-
try analysis (Sec. A) that it decouples channel disturbance
from privacy leakage [15], and hence the fluctuation from
the channel does not affect privacy.

Notice that the two-dimensional has greater privacy
leakage than the 17-dimensional. This is reasonable since
in the two-dimensional key space the adversary is essen-
tially guessing between two symbols, which is signif-
icantly easier than the 17-dimensional case where she
guesses between 17 symbols. In contrast, the mutual
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(a) (b)

(c) (d)

FIG. 7. High-dimensional PM QKD under phase fluctuation. (a) Mutual information and privacy leakage against phase fluctuation
range φlim for 2- and 17-PM, light intensity 0.2 and 0.03, respectively, communication distance 300 km. The fluctuation does not
affect the privacy as a result of encoding symmetry. The mutual information of the 2-PM decreases faster than that of the 17-PM. (b)
Mutual information and privacy leakage against light intensity μ for 2- and 17-PM, fluctuation range π/3, communication distance
300 km. The light intensity does not affect the mutual information. (c) Optimal light intensity μ against phase fluctuation range φlim
for 2- and 17-PM, communication distance 300 km. The 2-PM light intensity decreases rapidly as the fluctuation increases in order to
compensate its faster drop in mutual information. (d) Simulated key-rate performance: 17-PM under both π/6 fixed misalignment and
π/3 range fluctuation (red line), 2-PM under the same scenario (blue dotted line), 2-PM under fluctuation only, no fixed misalignment
(gray dotted line). The 17-PM is superior than the 2-PM under small phase fluctuation.

information term log2(d)− H(	Ebit) drops for both cases,
as the fluctuation clearly results in higher bit error. We
see that the mutual information of the two-dimensional
is higher than that of the 17-dimensional, which implies
that the two-dimensional has fewer bit errors. This can be
understood as the single-photon interference detector out-
puts binary results (left or right click), and thus it is ideal
for binary key space and yields very low bit-error rate
for the two-dimensional protocol when no fluctuation is
applied (the mutual information is close to 1 bit as shown
in the figure). It however does not provide full information
for the 17-dimensional protocol unless the input coherent
states are in the same or opposite phases. It thus generates

lower mutual information for the 17-dimensional than the
two-dimensional, although their overall key rates are sim-
ilar since the 17-dimensional has lower privacy leakage.
Moreover, the mutual information of the two-dimensional
PM QKD decreases more rapidly than that of the 17-
dimensional. This is reasonable since the bit-error rate of
the two-dimensional is very low under no fluctuation. Yet
when fluctuation adds to its bit-error rate, the change rate in
the term H(	Ebit) is significantly higher since the derivative
of the Shannon-entropy function H(p) is infinity when p
tends to 0. Hence, we see in Fig. 7(a) that the mutual infor-
mation of two-dimensional PM QKD drops more rapidly
than that of the 17-dimensional.
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In order to cope with the drop in mutual information,
the privacy leakage term has to be lowered, which can
be achieved through suppressing the intensity μ of the
source. Figure 7(b) illustrates the effects of light inten-
sity μ on the mutual information and privacy leakage. The
channel distance is fixed at 300 km, and a phase fluctua-
tion of range φlim = π/3 is applied. As expected from the
encoding symmetry analysis, the mutual information term
generally does not relate with the light intensity. As the
light intensity drops, the single-photon fraction from the
light source increases, and so does the single-photon frac-
tion in the detection. This further lowers the uncertainty in
the detection fraction of each photon number state 	qμ, i.e.,
it lowers the privacy leakage H( 	qμ), as shown in Fig. 7(b).
In order to compensate the faster drop in mutual infor-
mation of two-dimensional PM QKD, its source intensity
has to decrease further than that of the 17-dimensional, as
shown in Fig. 7(c).

The drop in the intensities results in a further drop in
the overall gain Qμ ≈ ημ. Hence, as shown in Fig. 7(d),
under a small phase fluctuation of range φlim = π/3, the
17-dimensional PM QKD yields higher secure key rates
than the two-dimensional. Moreover, when fixed misalign-
ment is introduced, the key rate of two-dimensional PM
QKD decreases further, whilst that of the 17-dimensional
remains. We thus conclude that the high-dimensional PM
QKD is more robust to small phase fluctuation than the
two-dimensional PM QKD.

V. CONCLUDING REMARKS

We generalize the two-dimensional PM QKD to any
prime dimensions and analyze their asymptotic perfor-
mance. Under a reasonable fiber-optic simulation setup,
we demonstrate that when the protocol dimension is
high enough, the key-rate performance is almost com-
pletely immune to fixed-phase-reference mismatch and
robust to small phase fluctuation, i.e., it is reference-frame-
independent. In general, our work points out the feasibility
of increasing protocol dimension in order to combat mis-
alignment. Our security argument provides the theoretical
cornerstone for the analysis of high-dimensional QKD pro-
tocols. As possible extensions of this work, we discuss the
following two remarks.

Although in the general security proof we cover all
the systems of prime power dimensions, we analyze only
prime-dimensional PM QKD. This is due to the incompat-
ibility of the rotating encoding and the additive group of
prime power finite fields. For instance, the encoding oper-
ations of a four-dimensional PM QKD form the order-4
cyclic group {I , U, U2, U3} ≡ Z4, where U is the π/2-
rotation operator. In contrast, the additive group of GF(4)
is the Klein-4 group {a, b|a2 = b2 = 1}. This incompatibil-
ity invalidates Observation 1 for prime power dimensions.
One possible solution is to alter the encoding operations.

For instance for four dimensions, the encoding operations
can be changed to {I , U, V, UV}, where U is the π -rotation
operator, and V satisfies

V |x + ip〉 = |p + ix〉 . (12)

Clearly, this encoding operation set is also valid. Since
U2 = V2 = I , the encoding operation group is isomorphic
to the Klein-4 group, and hence compatible with the addi-
tion in GF(4). In fact, it can be verified that Observation 1
holds under this encoding set. However, the caveat is that
the operation V, which essentially changes the two quadra-
tures, is not unitary, and hence arguably not physical. We
thus do not include the ambiguous prime power case in our
security proof.

The phase-encoding protocols such as PM QKD bear
similarity as the discrete modulated MDI continuous-
variable QKD (DM MDI CV QKD): replacing the interfer-
ence detector by the CV-Bell-like detector [37], we obtain
the DM MDI CV QKD introduced in Ref. [38]. Since in
the MDI setup, the detector does not affect the security, we
can apply the security analysis in this work directly to DM
MDI CV QKD. This opens up the prospective to prove
CV-QKD security using DV methods, which is recently
discussed in Ref. [39].
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APPENDIX A: DEFINITIONS AND
MATHEMATICAL BACKGROUNDS

This section provides the essential mathematical tools,
conventions, and specific techniques employed in the secu-
rity proof of high-dimensional QKD.

1. Finite fields

The finite field, or Galois field, is the algebraic structure
that lies in the discrete-value information processing. In a
general d-dimensional information-processing task, the set
{0, 1, . . . , d − 1} are the symbols. In order to construct an
algebra on this set, we need to define properly addition ⊕
and multiplication � operations such that they follow the
usual associative, commutative and distributive laws and
each has identity and inverse. In other words, we need to
make the symbol set a finite field, denoted by GF(d), by
defining the addition and multiplication operations.
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For prime dimension p , the set {0, 1, . . . , p − 1} can be
made a finite field trivially equipped with the usual modu-
lus p addition and multiplication. This is the finite field Zp ,
and it can be seen that every GF(p) is isomorphic to Zp .

Next, consider the prime power dimension d = pr. We
define the canonical addition on the set {0, 1, . . . , d − 1}
such that

a =
r−1∑

m=0

ampm b =
r−1∑

m=0

bmpm,

a ⊕ b =
r−1∑

m=0

(am ⊕p bm)pm,

(A1)

where ⊕p is the p-modulus addition and am, bm are the
p-ary decompositions of a and b. This is a valid field addi-
tion for GF(pr). In fact, the field multiplication can also
be constructed for GF(pr), and it can be shown that the set
{0, 1, . . . , d − 1} can be made a field if and only if d = pr,
i.e., only prime power degree finite fields exist [40].

The convenience of adopting the canonical addition
defined above is its compatibility with exponential oper-
ations. We encounter frequently the complex exponential
γ a

p , where γp is the complex number such that γ p
p = 1

and a ∈ GF(d). The value of γ a
p is a complex number

calculated as if a were the usual integer. Note that the
exponential multiplication rule follows:

γ a
p γ

b
p = γ a+b

p = γ a⊕b
p , (A2)

where + is the integer addition and ⊕ is the canonical field
addition. It can also be seen that the canonical field addi-
tion is also compatible with conjugation and distributive
law in the way that

(γ a
p )

∗ = γ (−a)
p = γ (�a)

p ,

γ a�c
p γ b�c

p = γ a�c+b�c
p = γ a�c⊕b�c

p = γ (a⊕b)�c
p .

(A3)

Since we are always working with the complex expo-
nential γ a

p in the security proof next section, we use +
in replace of ⊕ as they are equivalent. The field multi-
plication is not compatible with complex exponential in
the sense that (γ a

p )
b �= γ a�b

p (except for Zp ). However, in
the following discussions, we do not need operations like
(γ a

p )
b, and hence we still replace a � b as ab.

2. The Heisenberg-Weyl group: high-dimensional
Pauli operators

We introduce the Heisenberg-Weyl group as a gener-
alization of the two-dimensional Pauli group [41]. For a

prime-power-dimensional space, i.e., d = pr, with compu-
tational basis {|l〉}d−1

l=0 , we define

Z =
d−1∑

l=0

γ l
p |l〉 〈l| ,

X =
d−1∑

l=0

|l + 1〉 〈l| , with respect to GF(d).

(A4)

A natural mutually unbiased basis (MUB) of Z basis is
given by the eigenbasis of X ,

|l̃〉 := 1√
d

d−1∑

j =0

γ−lj
p |j 〉 ,

|j 〉 = 1√
d

d−1∑

j =0

γ lj
p |l̃〉 .

(A5)

Note that X |l̃〉 = γ l
p |l̃〉. This is the basis complementary to

the computational basis.
The Heisenberg-Weyl operator W(u, v) is defined to be

W(u, v) =
d−1∑

l=0

|l + u〉 γ lv
p 〈l| , (A6)

with u, v = 0, 1, . . . , d − 1. It is easy to verify that

W(u, 0)W(0, v) = γ−uv
p W(0, v)W(u, 0). (A7)

In prime dimension this reduces to the usual identity:

X uZv = γ−uv
p ZvX u. (A8)

From the Heisenberg-Weyl operators, we can generate the
Bell basis in prime power dimensions. Define |�0,0〉 =
|�+〉 = (1/

√
d)

∑d−1
j =0 |jj 〉. Write �0,0 in X basis,

|�0,0〉 = 1√
d

d−1∑

j =0

|jj 〉 ,

= 1√
d

d−1∑

k,l=0

d−1∑

j =0

γ j (k+l)
p |k̃l̃〉 ,

= 1√
d

d−1∑

k=0

|k̃, −̃k〉 . (A9)

The generalized qudit Bell states [42] are

|�u,v〉 := [I ⊗ W(u, v)] |�+〉 ,

= 1√
d

d−1∑

l=0

γ lv
p |l〉A ⊗ |l + u〉B . (A10)
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Denote �u,v := |�u,v〉 〈�u,v|. The qudit Bell states
{�u,v}d−1

u,v=0 form an orthonormal basis,

〈�u,v|�u′,v′ 〉 = 1
d

d−1∑

m,l=0

γ−lv
p γ mv′

p 〈l, l + u| |m, m + u′〉 ,

= 1
d

d−1∑

l=0

γ−l(v−v′)
p δud ,0,

= δud ,0δvd ,0, (A11)

where ud := u′ − u, vd := v′ − v.

3. Parity check in GF(d)

We discuss the parity-check operations for qudits since
it plays a central role in the security proof. A length-N
GF(d) string x is an ordered N tuple:

x = [x0, x1, . . . , xN−1], (A12)

where each element belongs to GF(d). For two length-N
GF(d) strings x and y, define the dot product as

x · y =
N−1∑

k=0

xkyk, (A13)

where the additions and multiplications are defined on
GF(d).

We focus on nonzero parity check as zero parity check
would give a zero result for sure. For a fixed nonzero y, the
dot product x · y gives d different results uniformly, i.e.,
there are dN−1 string x giving the same x · y. We call this
dot product the parity check of x, and it can be seen that
one parity-check equation divides the overall string space
into d cosets, each represented by the dot product result,
which is a member of GF(d).

According to linear algebra, in order to completely
determine an unknown length-N GF(d) string x, it takes
N linearly independent parity-check equations. This idea
can be extended to quantum systems. Define the Z-parity
measurement channel as the Kraus representation:

MZ(v){ρ} =
d−1∑

l=0

Pl(v)ρPl(v)†, (A14)

where v is a length-N GF(d) string and ρ is any density
operator on H⊗N

d . The Kraus operator Pl(v) is given as the
projector onto the space of parity-check result z · v = l:

Pl(v) =
∑

z·v=l

|z〉 〈z| . (A15)

Similarly, we can define the X -parity measurement
MX (v) with respect to the X basis. The output of the

parity measurement is a mixture of d parity states, i.e.,

MZ(v){ρ} =
d−1∑

l=0

Pl(v)ρPl(v)†,

=
d−1∑

l=0

∑

z,z′·v=l

|z〉 〈z| ρ |z′〉 〈z′| ,

=
d−1∑

l=0

plρl, (A16)

where

pl =
∑

z·v=l

〈z| ρ |z〉 ,

ρl =
∑

z,z′·v=l

〈z| ρ |z′〉
pl

|z〉 〈z′| , having parity l.
(A17)

It can be seen that it takes N linearly independent Z/X -
parity measurements to determine the Z/X measurement
results of an unknown state in H⊗N

d .

APPENDIX B: SECURITY PROOF OF
HIGH-DIMENSIONAL QKD

In this section, we provide the rigorous security analysis
of high-dimensional QKD. Our proof follows the outline of
Koashi’s complementarity approach [3], and extends it by
generalizing the phase-error correction procedure to high
dimensions.

1. The squashing protocol

The core of Koashi’s qubit-based security proof is to
reduce the two-body private and random key distribution
to a single-body private and random number generation,
i.e., to reduce entanglement distillation to coherence distil-
lation [30]. The security of the actual protocol can thus be
proved if the single body squashing protocol is secure.

Consider the entanglement-based actual protocol below.
Note that its equivalence to the prepare-and-measure pro-
tocol follows from the usual Shor-Preskill arguments [2].
Also note that this protocol is of prime power dimension
d = pr rather than qubit based (we use “digits” in replace
of “bits”).

Actual protocol

1. State distribution: Alice and Bob share a bipar-
tite state ρAB in the space (HA ⊗ HB)

⊗N after N runs of
quantum communications.

2. Measurement: Alice and Bob measure their sys-
tems H⊗N

A and H⊗N
B , respectively. They obtain two N -digit

unreconciled key strings.
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3. Error correction: They reconcile the key strings
through an encrypted classical channel consuming lec dig-
its of secret key. They agree on an N -digit raw key string
κrec except for a small failure probability εcor.

4. Privacy amplification: Alice randomly chooses
(N − m) N -digit strings {Vk}k=1,...,N−m, which are linearly
independent, and announces them to Bob. The final key
length is (N − m), where the kth key digit is κrec × Vk,
where the dot product is to be understood with addition and
multiplication in the finite field GF(d). Denote the final key
as κfin.

After the protocol, the overall state shared by Alice and
Bob and Eve is

ρfin
ABKE =

∑

κA,κB,κfin

PrA,B,K(κA, κB, κfin) |κA〉A 〈κA| ⊗ |κB〉B

× 〈κB| ⊗ |κfin〉K 〈κfin| ⊗ ρE(κA, κB, κfin), (B1)

where K is the key generation system (it is taken as Alice’s
system A usually), and PrA,B,K(κA, κB, κrec) is the probabil-
ity of Alice and Bob holding an (N − m)-digit string κA
and κB, respectively, after the protocol whilst the correct
reconciled key string being κrec. On the other hand, the
ideal state is

ρ ideal
ABKE = (dN−m)−1

∑

κ

|κ〉A 〈κ| ⊗ |κ〉B 〈κ|

⊗ |κ〉K 〈κ| ⊗ ρE , (B2)

where Alice and Bob share the correct reconciled key
string, which is completely random and decoupled from
Eve’s system.

In this way, a QKD protocol is defined to be ε secure,
if the final distilled state ρfin

ABKE is close to the ideal state
ρ ideal

ABKE for a properly chosen ρE

min
ρE

1
2
||ρfin

ABKE − ρ ideal
ABKE||1 ≤ ε, (B3)

where ||A||1 ≡ Tr{
√

A†A} is the trace norm.
In the error-correction step of the actual protocol, we

claim that Alice and Bob can correct their strings to κrec
except for a small failure probability εcor. This means the
protocol is εcor correct since

PrA,B,K(κA or κB �= κrec) ≤ εcor. (B4)

This property simply states Alice and Bob would very
likely be sharing the same correct key strings. Hence intu-
itively, we can think Alice and Bob and the reconciled key
generation system K as a single party, i.e., we squash them
into one system.

More precisely, if Alice and Bob can apply a squashing
operation � on (HA ⊗ HB)

⊗N to convert it to a key space

K⊗N and an ancillary space HR, and the key measurement
statistics on K⊗N is the same as κrec in the actual protocol,
we arrive at the following squashing protocol:

Squashing protocol

1. State distribution: Alice and Bob share a bipar-
tite state ρAB in the space (HA ⊗ HB)

⊗N after N runs of
quantum communications.

2. Squashing: They apply � on ρAB and convert it to a
key space K⊗N and an ancillary space HR, i.e., �(ρAB) ∈
K⊗N ⊗ HR.

3. Measurement: They measure HR by MR to obtain
result γ . They then measure K⊗N to obtain κrec, with the
same measurement statistics as that in the actual protocol.

4. Privacy amplification: They randomly choose (N −
m) N -digit strings {Vk}k=1,...,N−m, which are linearly inde-
pendent. The final key length is (N − m), where the kth
key digit is κrec × Vk. Denote the final key as κfin.

Since the key space K⊗N measurement statistics is the
same as that of the actual protocol, the final state after the
squashing protocol is therefore

ρfin
KE =

∑

κfin

PrK(κfin) |κfin〉K 〈κfin| ⊗ ρE(κfin), (B5)

where the probability distribution PrK(κfin) is the marginal
distribution of PrA,B,K(κA, κB, κfin) in the actual final state,
Eq. (B1), whilst the ideal squashed state is

ρ ideal
KE = (dN−m)−1

∑

κ

|κ〉K 〈κ| ⊗ ρE . (B6)

Likewise, the squashing protocol is termed εsec secret if the
squashed state ρKE is close to ideality, i.e.,

min
ρE

1
2
||ρfin

KE − ρ ideal
KE ||1 ≤ εsec. (B7)

In Ref. [3], it is proved that as long as the squashing pro-
tocol is εsec secret with an εcor correct error correction,
the actual protocol is (εsec + εcor) secure. Notice that in
Ref. [3] the quantum system is of dimension 2, but it can
be trivially generalized to arbitrary dimension.

2. The phase-error-correction protocol

It now remains to show that the single-body squash-
ing protocol is secure. We do this by invoking phase-error
correction, which bears intuitions from the uncertainty
principle of two complementary operators: if the X -basis
measurement of K⊗N is completely certain, the Z-basis
measurement of it, which is by convention the key gen-
eration measurement, is completely random.

To be more specific, suppose Z-basis measurement on
K⊗N is used for key generation in the squashing protocol.
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If, before the key generation measurement on K⊗N , Alice
and Bob are able to determine the X -basis measurement
result of K⊗N to be x∗ except for a small failure probability
ε′

T, we would have

〈x̃∗| ρK |x̃∗〉 = F(ρK , |x̃∗〉 〈x̃∗|) ≥ 1 − ε′
T, (B8)

i.e., the state on K⊗N is close to the X eigenstate |x̃∗〉 in
terms of fidelity F . Following Ref. [43], it can be shown
that there exists σE on Eve’s system such that

F(ρKE , |x̃∗〉 〈x̃∗| ⊗ σE) ≥ 1 − ε′
T. (B9)

Hence, the overall state before the key generation measure-
ment is approximately a separate state if we can assure
that the state on K⊗N is close to a X eigenstate, i.e.,
we can determine its X -basis measurement result. Note
that the state |x̃∗〉 〈x̃∗| ⊗ σE yields ρ ideal

KE after Z-basis mea-
surements and privacy amplification, and fidelity never
decreases after quantum operations. Hence, the squashing
protocol is secure (and so is the actual protocol) as long as
we can determine the X -basis measurement result of the
key generation system K⊗N .

In order to gain information of the X -basis measure-
ment result of K⊗N , we make use of the ancillary system
HR left after the squashing operation �. We measure HR
by MR and obtain a result γ , which provides information
of the X -basis measurement result of K⊗N . To be more
specific, given each measurement result γ on HR, sup-
pose the candidates of K⊗N X -basis measurement result
are summarized in the set Tγ . Suppose the cardinality of
the candidate sets, except for a small probability εT, can be
bounded by

|Tγ | ≤ dNs. (B10)

In this case, suppose we make m = N (s + ζ ) ran-
dom X -parity checks, i.e., phase-error correction (see
Appendix A 3), we can derive the X -basis measurement
result of K⊗N with an exponentially small failure prob-
ability ε′

T ≡ εT + d−Nζ [44]. Hence, we claim the
√
ε′

T
secret of the following single-body phase-error-correction
protocol:

Phase-error-correction protocol

1. State distribution: Alice and Bob share a bipar-
tite state ρAB in the space (HA ⊗ HB)

⊗N after N runs of
quantum communications.

2. Squashing: They apply � on ρAB and convert it to a
key space K⊗N and an ancillary space HR, i.e., �(ρAB) ∈
K⊗N ⊗ HR. The Z-basis measurement statistics on K⊗N is
the same as κrec in the actual protocol.

3. Ancillary measurement: They measure HR by MR
to obtain result γ . The candidate sets cardinality |Tγ | ≤
dNs except for a small probability εT.

4. Phase-error correction: For m = N (s + ζ ), they
randomly choose m N -digit strings {Wj }j =1,...,m and per-
form X -parity measurements {MX (Wj )} on K⊗N to deter-
mine its X -basis measurement result.

5. Key generation: They choose an arbitrary linearly
independent set {Vk}k=1,...,N−m satisfying Vk × Wj = 0 for
any (j , k). They perform Z-parity check measurements
{MZ(Vk)} to obtain the (N − m)-digit final key κfin.

It remains only to show the equivalence of the phase-error-
correction protocol and the squashing protocol. Observe
that this can be done if we can, just like that in
Ref. [3], swap the key generation step with the phase-
error-correction step and omit the latter as well. However,
this is the point where the two-dimensional proof can-
not be extended trivially to higher dimensions. In the
two-dimensional proof, X and Z operators are also observ-
ables, and thus the parity-check measurements have decent
observable forms. In this case, the commuting argument is
guaranteed by the commutation of X -parity-check observ-
ables and Z-parity-check observables. However, in high
dimensions, the parity-check measurements with multiple
outcomes cannot be easily expressed as Pauli operators,
so here we describe the parity-check measurements with
measurement (Kraus) operators. In the section below, we
show that this commuting argument is still valid: as long
as Wj is orthogonal with Vk, the statistics of the Z-parity
measurement {MZ(Vk)} would not change even if we per-
form in prior an X -parity measurement {MX (Wj )} (B13).
In this way, we manage to show the security of the actual
protocol.

Theorem 1: If the actual protocol can be converted into
a squashing protocol with squashing operation � and
ancillary measurement MR such that the following are
true.

1. The Z-basis measurement statistics on K⊗N is the
same as κrec in the actual protocol.

2. Given each measurement outcome γ on HR, the size
of X -basis measurement outcome on K⊗N is bounded by
|Tγ | ≤ dNs, except for a small probability εT.

Then the squashing protocol is
√
ε′

T secret, and the actual
protocol is (

√
ε′

T + εcor) secure, where ε′
T = εT + d−Nζ

and m = N (s + ζ ).

It is useful to derive the key-rate formula based on phase
error of high-dimensional QKD. Our goal is to determine
the X -basis measurement outcome X ∗ on K⊗N , and we
infer X ∗ based on the ancillary measurement result γ .
Based on each γ , suppose we make an estimation of X ∗
as Xγ . Denote the phase-error number vector of a given
γ as 	Nph := 	wt(Xγ − X ∗), where the subtraction is defined
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for GF(d) strings, and the vector weight function for GF(d)
is defined as

	wt(a) =

⎡

⎢
⎣

No. of 0 in a
No. of 1 in a

· · ·
No. of d-1 in a

⎤

⎥
⎦ . (B11)

Hence, the phase-error number vector 	Nph counts the num-
bers of different types of phase error of our estimation Xγ .
Denote the average phase-error number vector for all γ as
	Nph, and the phase-error rate vector as 	Eph := 	Nph/N , i.e.,
it counts the phase-error rate of different types of phase
error. Based on Shannon’s typical sequences arguments,
taking the reconciliation cost as lec bits, the key generation
length of a d-dimensional QKD is

R = N − m − lec/ log2 d (dits),

≤ N [1 − Hd(	Eph)] − lec/ log2 d (dits),

= N [log2 d − H2(	Eph)] − lec (bits), (B12)

where H2 and Hd are the log2- and logd-based Shannon-
entropy functions, respectively.

3. The commuting argument in high dimension

Denote N as the number of digits of the raw key, i.e.,
the rounds of quantum communication. d is the dimension
of the primitive Hilbert space Hd, i.e., we are operat-
ing on qudits. We confine d to be a prime power, i.e.,
d = pr, where p is a prime number, so that we can define
the finite field GF(d). Denote γp as the complex number
satisfying γ p

p = 1. In the arguments below, the addition,
multiplication, and dot product are to be understood within
GF(d).

Given two N -digit GF(d) strings a and b such that a ·
b = 0, we would like to show that

Ma
Z ◦ Mb

X = Ma
Z in terms of measurement statistics.

(B13)

If a = 0, the argument follows trivially as the measure-
ment result is always zero. For nonzero a and an arbitrary
state ρ, the probability that it falls into the lth eigenspace
of MZ(a) is

∑

z·a=l

〈z| ρ |z〉 . (B14)

On the other hand, the state after MX (b) is

d−1∑

j =0

∑

xj,xj′ ·b=j

|x̃j〉 〈x̃j| ρ |x̃j′ 〉 〈x̃j′ | . (B15)

The probability that its MZ(a) result falls into the lth
eigenspace is thus

∑

z·a=l

〈z|
⎛

⎝
d−1∑

j =0

∑

xj,xj′ ·b=j

|x̃j〉 〈x̃j| ρ |x̃j′ 〉 〈x̃j′ |
⎞

⎠ |z〉 . (B16)

Our task is to show that Eq. (B14) = Eq. (B16).
We first examine three lemmas. In the argument below,

we ignore the scaling constants to simplify the notations.

Lemma 1:

∑

z

γ z·x
p =

{
1 x = 0
0 x �= 0

, (B17)

where z traverses all GF(d) strings with some fixed length.

Lemma 2: If x is 0 at one of the nonzero positions of a,
then for any GF(d) member l,

∑

z·a=l

γ z·x
p =

{
1 x = 0
0 x �= 0

. (B18)

Proof: Since x is 0 at one of the nonzero positions of a,
that digit is essentially redundant in the summation. Denote
the (N − 1)-digit substring of z with that digit removed as
z′. Since z traverses all N -digit strings that satisfy z · a =
l, z′ actually takes values of all (N − 1)-digit strings. To
see this, observe that for any (N − 1)-digit string z′, there
is one and only one N -digit string z that satisfies z · a = l
corresponds to it. This is guaranteed as we are working
with a field structure. Hence, we transform the summation
to the case of Lemma 1. �

Lemma 3:

∑

z·a=l

γ z·x
p =

{
γ

x0l
p x = x0a, x0 = 0, 1, . . . , d − 1

0 otherwise
.

(B19)

Proof: Assume a is nonzero at digit n. As we are
working with a field structure, there always exists x0 ∈
{0, 1, . . . , d − 1} such that xn = x0an. We make the follow-
ing decomposition:

∑

z·a=l

γ z·x
p =

∑

z·a=l

γ x0(z·a)
p γ z·(x−x0a)

p = γ x0l
p

∑

z·a=l

γ z·(x−x0a)
p .

(B20)

Note that (x − x0a) is guaranteed to be zero at digit n,
where a is nonzero. We can then apply Lemma 2 to arrive
at the desired result.
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We are ready to prove the main claim that Eq. (B14) =
Eq. (B16):

∑

z·a=l

〈z|
⎛

⎝
d−1∑

j =0

∑

xj,xj′ ·b=j

|x̃j〉 〈x̃j| ρ |x̃j′ 〉 〈x̃j′ |
⎞

⎠ |z〉 ,

=
∑

z·a=l

d−1∑

j =0

∑

xj,xj′ ·b=j

〈x̃j| ρ |x̃j′ 〉 γ
−z·xj+z·xj′
p ,

=
∑

z·a=l

d−1∑

j =0

∑

xj,xj′ ·b=j

∑

k,k′
〈k| ρ |k′〉 γ−z·xj+z·xj′−xj′ ·k′+xj·k

p ,

=
∑

k,k′

d−1∑

j =0

∑

xj,xj′ ·b=j

〈k| ρ |k′〉 γ−xj′ ·k′+xj·k
p

∑

z·a=l

γ
z·(xj′−xj)
p ,

=
∑

k,k′

d−1∑

j =0

d−1∑

x0=0

∑

xj,xj′ ·b=j ,
xj′−xj=x0a

〈k| ρ |k′〉 γ x0l
p γ

xj·(k−k′)
p γ−x0k′·a

p ,

=
∑

k,k′

d−1∑

x0=0

∑

xj

〈k| ρ |k′〉 γ x0(l−k′·a)
p γ

xj·(k−k′)
p ,

=
∑

k′·a=l

〈k| ρ |k′〉 δk=k′ ,

=
∑

k·a=l

〈k| ρ |k〉 , (B21)

which is exactly the Ma
Z statistics without Mb

X in
Eq. (B14). Lemmas 1 and 3 are applied in the sixth and
fourth equalities. Notice that in the summation we require
xj, xj′ · b = j for any GF(d) member j , which is equivalent
to (xj′ − xj) · b = 0. Hence, xj′ − xj = x0a is within the
summation range since we picked a · b = 0. Therefore, the
swapping argument that performing X -parity checks and
then Z hashed key generation is equivalent to the latter on
its own can be extended to higher-dimensional cases. �

APPENDIX C: SYMMETRY-BASED SECURITY
ANALYSIS OF HIGH-DIMENSIONAL PM QKD

1. Symmetric encoding protocols

Based on the security proof of high-dimensional QKD
developed above and the symmetric encoding security
analysis of PM QKD [15], we provide the security analy-
sis of d-dimensional PM QKD where d is a prime number.
We introduce the entanglement-based symmetric encoding
QKD protocol, as shown in Fig. 8 below. Alice and Bob
share the state ρAB on system A and B, and each holds an
ancillary d-dimensional qudit system A′ and B′ initially on
the state |+〉d := 1/

√
d

∑d−1
j =0 |j 〉.

FIG. 8. Schematic diagram of the entanglement-based d-
dimensional PM QKD, where ρAB is a bipartite state on two
optical modes, and the encoding operation U rotates the coher-
ent state by 2π/d. The optical mode is phase rotated by 2πk/d if
the kth control dit is triggered. Same as Fig. 3 in the main text.

Alice and Bob send the shared state ρAB through a
controlled encoding operation, where

CA′A(U) =
d−1∑

j =0

|j 〉A′ 〈j | ⊗ Uj
A, (C1)

and similarly for CB′B(U). The unitary encoding operation
is d-rotation symmetric, i.e., Ud = I . They then send the
systems A and B further to Eve for detection. At the end of
the quantum communications, they share N pairs of qudit
systems for key generation.

Following the security proof of high-dimensional QKD
given above, taking A′ as the key generation system and
B′ as the ancillary system, we need to determine the X -
measurement results of A′ with the knowledge of that of B′.
This can be done as long as the originally separate |+〉A′
and |+〉B′ are now entangled after the symmetric encod-
ing operations. In other words, we need the shared state
ρAB to give the same encoded state after different encoding
operations, i.e., ρAB being the eigenstate of UA ⊗ UB.

Since we have (U ⊗ U)d = I , the eigenvalues of (U ⊗
U) are {γ j

d := exp[i(2π/d)l]}d−1
l=0 . The eigenspace of γ l

d is
denoted by H(l). Denote a generic state |ψ〉 ∈ H(l) as |ψl〉,
hence

(U ⊗ U) |ψl〉 = γ l
d |ψl〉 . (C2)

High-dimensional symmetric encoding protocol

1. State preparation: Alice and Bob share a state ρAB
at the beginning of each run. They initialize their qudits A′
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and B′ in |+〉d. They apply the control gate CA′A(U) and
CB′B(U), respectively.

2. Measurement: Alice and Bob send σAB to an
untrusted party, Eve, who is supposed to perform joint
measurement and announce the detection results.

3. Sifting: Given a specific announcement of Eve,
Alice and Bob keep or discard the qudits of systems A′
and B′. Alice and Bob perform the above steps for many
rounds and end up with a joint 2N -qudit state ρA′B′ ∈
(H′

A ⊗ H′
B)

⊗N .
4. Key generation: Alice and Bob perform local Z

measurements on ρA′B′ to obtain two correlated raw key
strings κA and κB. They reconcile the key string to κrec by
an encrypted classical channel, consuming lec-bit keys.

We first consider the case when an l-symmetric state |ψl〉AB
is the input state of the entanglement-based protocol. The
initial state is

|++〉A′,B′ |ψl〉A,B = 1
d

d−1∑

j ,k=0

|jk〉A′,B′ |ψl〉A,B ,

= 1√
d

d−1∑

u=0

|�u,0〉A′,B′ |ψl〉A,B . (C3)

After the encoding unitary operation, CA′A(U) and
CB′B(U), the state becomes

|�〉A′,B′,A,B = 1√
d

d−1∑

u=0

|�u,l〉A′,B′ |ψu
l 〉A,B , (C4)

where |ψu
l 〉 := (I ⊗ Uu) |ψl〉. To derive Eq. (C4), we apply

the following property:

[CA′A(U)⊗ CB′B(U)] |�u,v〉A′,B′ |ψl〉A,B

= |�u,v+l〉A′,B′ |ψu
l 〉A,B . (C5)

In this case, the space of A1, B1 is spanned by {�u,l}d−1
u=0.

Note that

Tr
[
�u,l |j̃ , k̃〉A1,B1 〈j̃ , k̃|

]
= 1

d
δj ,l−k, (C6)

which is irrelevant of u. Therefore, if Alice and Bob
perform X measurement on A′ obtaining result la, the
X -measurement result lb is directly related as la = l −
lb mod d. This implies that the protocol is completely
secure as long as Alice and Bob share l-symmetric states
for a fixed l. Hence, we arrive at the security of the
prime-dimensional symmetric encoding QKD for symmet-
ric states.

Theorem 2: In the prime-dimensional symmetric encod-
ing protocol, the X-measurement result on A′ can be deter-
mined exactly with the X-measurement result on B′ if Alice

and Bob share a mixture of l-symmetric states, for fixed l, at
the beginning of each run. Hence, in that case, the protocol
is completely secure.

However, in the general setup, the shared state ρAB
is usually not a mixture of pure symmetric states, but a
mixture of different symmetric states, that is,

ρAB =
d−1∑

l=0

∑

j

p (j )l |ψ(j )
l 〉 〈ψ(j )

l | , (C7)

where |ψ(j )
l 〉 are the l-symmetric states and

∑d−1
l=0

∑
j

p (j )l = 1. This mixture source is equivalent to Alice and
Bob preparing l-symmetric states for probability of

∑
j p (j )l

for each run. However, the parity information, i.e., which
symmetric state is sent each round, is not known to Alice
and Bob (and known by Eve in the worst-case scenario).
Hence, they cannot deal with each symmetric state sep-
arately, and thus there is no longer perfect privacy. We
define the phase-error rate vector as

	Eph =
[

N0

N
,

N1

N
, . . . ,

Nd−1

N

]

, (C8)

where Nl is the number of detections caused by l-
symmetric states. According to the key-rate formula of
high-dimensional QKD, the asymptotic key rate of the
d-dimensional symmetric encoding protocol is

r = log2 d − H2(	Ebit)− H2(	Eph) bits. (C9)

2. High-dimensional PM QKD with continuous
randomization

The high-dimensional entanglement-based PM QKD
given below falls into the category of symmetric encoding
protocol discussed above, and hence its key rate is given
by Eq. (C9). The encoding operation U is given by

U = ei(2π/d)a†a, (C10)

where a is the annihilation operator. It is clear that U is d-
rotation symmetric, i.e., Ud = I . It can be seen that, when
applied on the Fock state |n〉, this operation adds an addi-
tional phase e(2π i/d)n. Hence, we intend to generate mixture
of Fock states as input through continuous randomization.

High-dimensional entanglement-based PM QKD
with continuous randomization

1. State preparation: Alice and Bob prepare the coher-
ent state |√μ/2 eiφa〉A ⊗ |√μ/2 eiφb〉B on two optical
modes A and B, where φa and φb are selected randomly
from [0, 2π), and μ taken from multiple values as in
decoy methods. They initialize their qudits A′ and B′
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in |+〉d := 1/
√

d
∑d−1

j =0 |j 〉. They apply the control gate
CA′A(U) and CB′B(U), respectively, where U rotates a
coherent state by 2π/d.

2. Measurement: Alice and Bob send the two optical
modes AB to an untrusted party, Eve, who is supposed
to perform joint measurement and announce the detection
results: no click, double click, L click, or R click.

3. Sifting: After many rounds of quantum communica-
tions, Alice and Bob keep only the rounds with L or R click.
They announce the random phases φa and φb publicly
and keep only the rounds where |φa − φb| ∈ {k(2π/d)}d−1

k=0.
They end up with a joint 2N -qudit state ρA′B′ ∈ (H′

A ⊗
H′

B)
⊗N .

4. Parameter estimation: Alice and Bob estimate the
phase-error vector 	Eph with decoy states.

5. Key generation: Alice and Bob perform local Z
measurements on ρA′B′ to obtain two correlated raw key
strings κA and κB. They reconcile the key string to
κrec by an encrypted classical channel, consuming lec-bit
keys. They perform privacy amplification according to the
phase-error vector to generate the final keys.

For states with φa − φb = δ, the continuous randomization
in fact generates the input state:

1
2π

∫ 2π

0
dφ |

√
μ/2 eiφ〉A 〈

√
μ/2 eiφ|

⊗ |
√
μ/2 ei(φ+δ)〉B 〈

√
μ/2 ei(φ+δ)|

=
∞∑

k=0

Pμ(k) |k̄δ〉AB 〈k̄δ| , (C11)

where Pμ(k) = e−μ(μk/k!) is the Poisson distribution. The
k-photon state |k̄δ〉AB is

|k̄δ〉AB = (a†+eiδb†)k√
2kk!

|00〉AB , (C12)

which is a k-symmetric state. We can thus define the phase-
error rate vector with entries:

	Eph(k) =
∞∑

n=0

qnd+k, k ∈ {0, . . . , d − 1}, (C13)

where qk is the fraction of detection events caused by
|k̄δ〉AB.

Since Fock states are invariant with intensity μ, their
yields do not vary with μ, and we can apply the decoy
methods given the overall gain Qμ [33,45]:

Qμ =
∞∑

k=0

Pμ(k)Yk, (C14)

and the fraction of detection is given by

qμk = Pμ(k)
Yk

Qμ

. (C15)

3. High-dimensional PM QKD with discrete
randomization

It is a common practice to approximate the ideal con-
tinuous randomization with discrete randomization [11,33,
36]. In the state preparation stage of the d-dimensional
entanglement-based PM QKD, instead of continuously
randomizing the phase of the coherent states, Alice and
Bob apply a D-slice discrete phase randomization for a
large D, and postselect phase-matched rounds similarly.

For the rounds where Alice and Bob share a phase-
reference difference of δ, they generate the input state as
a mixture of “pseudo”-Fock states:

1
D

D−1∑

j =0

|
√
μ/2 ei(2π j /D)〉A 〈

√
μ/2 ei(2π j /D)|

⊗ |
√
μ/2 ei(2π j /D+δ)〉B 〈

√
μ/2 ei(2π j /D+δ)| ,

=
∞∑

k=0

PμD(k) |λ̄δk〉AB 〈λ̄δk| (C16)

where

|λ̄δk〉 = e−μ/2
√

Pμ(k)

∞∑

n=0

(
√
μ)nD+k

√
(nD + k)!

|nD + k
δ〉 ,

PμD(k) =
∞∑

n=0

μnd+ke−μ

(nd + k)!
,

(C17)

with k-photon state |k̄δ〉 defined in Eq. (C12).
The k-pseudo Fock state |λ̄δk〉 is also a k-symmetric state

of U ⊗ U, so the security analysis still applies. It is how-
ever less favored than Fock states since for moderate D it
varies with intensity μ, thus enabling Eve to discriminate
signal states with decoy states, cracking the decoy method
[33]. We therefore require D to be large so that the yield of
|λ̄δk〉 approximates the yield of |k̄δ〉, which is invariant with
intensity. Denote the yield and the detection fraction of the
nonideal kth symmetric state as Yλk and qλk . In Ref. [15], a
bound between the deviation of Yλ1 and qλ1 from Y1 and q1
is given, and can be straightforwardly extended to general
k-photon states:

|Yk − Yμλk
| ≤

√
μDk!

(D + k)!
,

|qμk − qμλk
| ≤ μD/2+ke−μ

Qμ

√
(D + k)!/k!

.

(C18)
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TABLE II. Estimation inaccuracy of single-photon fraction
with discrete randomization at η = 10−6.

D = 8 D = 10 D = 12 D = 14 D = 16

�q1/q1 0.17 1.6 × 10−3 1.3 × 10−5 8.7 × 10−8 5.3 × 10−10

A straightforward calculation reveals that Eq. (C18) gives
a tighter bound for multiphoton fractions than single-
photon fraction. Hence it is sufficient to check the accuracy
of single-photon fraction estimation. Denote the transmit-
tance from Alice or Bob to Eve as η. In the first-order limit
where the gain Qμ ≈ ημ and yield Yl ≈ lη, Table II below
illustrates the estimation inaccuracy of single-photon com-
ponents in terms of |qμ1 − qμλ1

|/qμ1 at transmittance η =
10−6 for 8 to 16 phase slices. The light intensity μ is taken
as 0.1, which is a moderate value around the optimal values
given in the simulations in Sec. IV. The 10−6 transmittance
is chosen since PM QKD can reach at most around 500 km
for a −0.2 dB/km attenuating fiber and 20% detectors. The
minimum transmittance from Alice to Eve is therefore

η = 10−0.2∗250/10 × 0.2 = 2 × 10−6. (C19)

From Table II, it can be seen that more than ten-phase
randomization is sufficient for an estimation of single-
photon fraction with less than 10−3 inaccuracy. The 16-
phase randomization in the original two-dimensional PM
QKD is conservative.

The final key-rate formula can therefore be expressed as

r = d
D

Qμ[log2 d − H2(	Eμbit)− H2(	qμ)], (C20)

where all the parameters can be retrieved from experi-
ments.

APPENDIX D: SIMULATION FORMULAE OF
HIGH-DIMENSIONAL PM QKD

We present the formulae used to simulate the key-rate
performance of high-dimensional PM QKD in Figs. 6
and 7. The channel is assumed to be pure loss and symmet-
ric for Alice and Bob with transmittance η (with detector
efficiency taken into account). The single-photon detectors
have dark count rate pd. The calculations below are for sin-
gle L-click events, and can be easily altered for R-click
events.

To calculate the bit-error rate vector 	Eμbit, assume Alice
and Bob send coherent states of amplitude μ/2 with phase
difference φ + δ, where φ is the encoding difference and
δ is the reference-frame misalignment. As computed in
Ref. [11], the single-click probabilities of the L and R

detector given phase difference φ + δ are

Pφ+δ
μ (L) = 1 − (1 − pd) exp{−ημ cos2[(φ + δ)/2]}

Pφ+δ
μ (R) = 1 − (1 − pd) exp{−ημ sin2[(φ + δ)/2]}.

(D1)

Given reference misalignment δ, when Alice and Bob have
encoding difference φk = (2π/d)k, the probability of a
single L click is

Pμ(L|φk, δ) = Pφk+δ
μ (L)[1 − Pφk+δ

μ (R)]. (D2)

Since the misalignment is independent of the encoding, by
the Bayesian formula, the probability of encoding differ-
ence φk given a single L-click event with misalignment
δ is

Pμ(φk|L, δ) = Pμ(L|φk, δ)P(φk)

Qδ
μ

, (D3)

where P(φk) = 1/d for uniform encoding. The gain Qδ
μ

given misalignment δ can be calculated by

Qδ
μ =

d−1∑

k=0

Pμ(L|φk, δ)P(φk). (D4)

The kth entry of the bit-error rate vector is therefore
given by

	Eμbit(k) = Pμ(φk|L) = Eδ[Pμ(φk|L, δ)], (D5)

where the expectation is taken over the distribution of mis-
alignment δ, which is deterministic for fixed misalignment
and uniform for fluctuating misalignment. The total gain is
the expectation

Qμ = Eδ[Qδ
μ]. (D6)

To calculate the phase-error rate vector 	qμ, given encod-
ing difference φk and misalignment δ, when Alice and Bob
send the n-photon state, the probability of a single L click
is [11]

Pn(L|φk, δ) = (1 − pd){1 − η cos2[(φk + δ)/2]}n

− (1 − pd)
2(1 − η)n. (D7)

Averaging over the encoding, the yield of n-photon states
under misalignment δ is given by

Yδn =
d−1∑

k=0

Pn(L|φk, δ)P(φk). (D8)

The total yield is therefore the expectation

Yn = Eδ[Yδn]. (D9)

We can therefore calculate the detection fraction qμn of the
n-photon states by Eq. (C15) with yield Yn and gain Qμ.
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