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Abstract

The advent of large-scale datasets has offered unprecedented amounts of information
for building statistically powerful machines, but, at the same time, also introduced a
remarkable computational challenge: how can we efficiently process massive data? This
thesis presents a suite of data reduction methods that make learning algorithms scale on
large datasets, via extracting a succinct model-specific representation that summarizes the
full data collection—a coreset. Our frameworks support by design datasets of arbitrary
dimensionality, and can be used for general purpose Bayesian inference under real-world
constraints, including privacy preservation and robustness to outliers, encompassing
diverse uncertainty-aware data analysis tasks, such as density estimation, classification
and regression.

We motivate the necessity for novel data reduction techniques in the first place by
developing a reidentification attack on coarsened representations of private behavioural
data. Analysing longitudinal records of human mobility, we detect privacy-revealing
structural patterns, that remain preserved in reduced graph representations of individuals’
information with manageable size. These unique patterns enable mounting linkage
attacks via structural similarity computations on longitudinal mobility traces, revealing
an overlooked, yet existing, privacy threat.

We then propose a scalable variational inference scheme for approximating posteriors
on large datasets via learnable weighted pseudodata, termed pseudocoresets. We show
that the use of pseudodata enables overcoming the constraints on minimum summary
size for given approximation quality, that are imposed on all existing Bayesian coreset
constructions due to data dimensionality. Moreover, it allows us to develop a scheme for
pseudocoresets-based summarization that satisfies the standard framework of differential
privacy by construction; in this way, we can release reduced size privacy-preserving
representations for sensitive datasets that are amenable to arbitrary post-processing.

Subsequently, we consider summarizations for large-scale Bayesian inference in
scenarios when observed datapoints depart from the statistical assumptions of our model.
Using robust divergences, we develop a method for constructing coresets resilient to
model misspecification. Crucially, this method is able to automatically discard outliers
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from the generated data summaries. Thus we deliver robustified scalable representations
for inference, that are suitable for applications involving contaminated and unreliable
data sources.

We demonstrate the performance of proposed summarization techniques on multiple
parametric statistical models, and diverse simulated and real-world datasets, from
music genre features to hospital readmission records, considering a wide range of data
dimensionalities.
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Chapter 1

Introduction

Machine learning pervades most modeling and decision-making tools of modern society:
scientists rely on the wealth of stored medical records to decipher the underlying causes
of diseases, web-scale recommender systems learn from users’ experience to suggest music,
movies, and products tailored to our habits, and driving-intelligence systems are capable
to navigate self-driving cars in complex, never-seen-before environments.

From the statistical point of view, Bayesian modeling offers a powerful unifying
framework where experts and practitioners alike can leverage domain-specific knowledge,
learn from new observations, share statistical strength across components of hierarchical
models, and take advantage of predictions which can account for model uncertainty.
Having access to larger datasets is invaluable for statistical models, as it allows more
insights into the process that gives rise to the data.

At the same time, handling massive-scale datasets in machine learning instigates a
number of computational, societal, and statistical reliability challenges. First, beyond
basic statistical settings, performing inference—i.e. computing expectations of interest
under posterior distributions updated in the light of new observations—does not scale
to large datasets; hence, learning in most interesting models requires additional effort
from the data analyst to explore the statistical-computational trade-off of the problem,
and turn to a suitable approximate inference method instead. Apart from addressing
scalability, modern approximate inference methods should be also able to offer guarantees
of convergence to the exact posterior distribution given sufficient computational resources,
admit efficient quality measuring, and work seamlessly in high dimensions, where many
of modern large-scale data live (e.g. genes, or social networks).

Secondly, a large fraction of modern massive-scale machine learning applications
involves observations stemming from privacy-sensitive data domains, for example health
records or behavioural studies. The sensitive information content of such sources makes
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crucial for data contributors that inference methods satisfy formal guarantees of statistical
privacy. To this end, the gold standard is relying on the established framework of
differential privacy: the existing toolset of privatising mechanisms and tight privacy loss
estimation techniques, reinforced by the massive population sizes of modern datasets,
allow statistically protecting individual information, yet extracting accurate insights
about the population under study.

Thirdly, real-world big data are often highly heterogeneous, contain outliers and noise,
or might be subject to data poisoning. The afore-mentioned phenomena are typically
expressed as patterns which cannot be fully captured within the parametric assumptions
of the statistical model. As a result, standard Bayesian inference techniques, which do not
take extra care to downweight the contributions of outlying datapoints, lack robustness
and, attempting to describe the full set of observations, might eventually yield unreliable
posteriors.

How should we develop methods for large-scale data analysis that sufficiently address
the problem of scalability, while formally preserving privacy and enhancing inferential
results with robustness against mismatching observations? When faced with a dataset too
large to be processed all at once, an obvious approach is to retain only a representative
part of it. In this thesis, we build on the data summarization idea, which is validated by a
critical insight in our massive-scale learning setup: when fitting a parametric probabilistic
model on a large dataset, much of the data is redundant. Therefore, compressing the
dataset under the strategic criterion of maximally reducing redundancy with respect to a
given statistical model, opens an avenue for scalable data analysis without substantially
sacrificing the accuracy of methods. The data summarization method of choice in this
work is constructing coresets: small, weighted collections of points in the data space that
can succintly and parsimoniously represent the complete dataset in a problem-dependent
way.

Data Summarization and Differential Privacy. The aim of summarization is
ostensibly in accord with the requirements of privacy, making it a good candidate to build
privacy-preserving methods: informally, in both cases the target is to ensure encoding the
prevailing patterns of the dataset, without revealing information about any individual
datapoint in particular. However, an intricacy lies in that releasing part of the data,
though perfectly acceptable for the purposes of coresets, directly breaches privacy, as it
obviously exposes the full private information of the summarizing datapoints. Private
coresets construction forms a challenging problem of releasing data in the non-interactive,
or offline setting—namely in scenarios where a data owner aims to publicly release
randomised privacy-preserving reductions of their data to third-parties, without knowing
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what statistics might be computed next. Differentially private schemes for coresets
applicable in computational geometry already exist in the literature (Feldman et al., 2009;
2017). In the area of machine learning, the idea of releasing private dataset compressions
via synthetic datapoints has been pursued in kernel mean embeddings (Balog et al., 2018)
and compressive learning (Schellekens et al., 2019), with the utility of the private method
scaling adversely with data dimension. Work limited to sparse regression (Zhou et al.,
2007) has considered the high-dimensional data setting and proposed a method that
compresses data via random linear or affine transformations. Nevertheless, none of these
approaches is directly applicable to summarising for general-purpose Bayesian inference.
Data Summarization and Outliers Detection. Several approximate inference meth-
ods have proved brittle to observations that "deviate markedly from other members of
the sample" (Grubbs, 1969). Outliers are a common complication emerging in real-world
problems, attributed to limited precision, noise, uncertainty and adversarial behaviour
often arising over data collection procedures. Since the pioneering work of Tukey (1960)
and de Finetti (1961), discerning outliers has concerned the research community for over
60 years, shaping the area of robust statistics (Huber and Ronchetti, 2009). To this end,
non-parametric distance-based techniques are a predominant approach that decouples
outliers’ detection from statistical assumptions regarding the data generating distribution,
hence this paradigm has found broad applicability in machine learning and data mining.
On the other hand, scaling distance computation to massive datasets is particularly
resource intensive, while, further to computational intractability, distance-based analysis
in high dimensions faces complications due to the curse of dimensionality (Donoho,
2000; Vershynin, 2018; Wainwright, 2019). Summarization has been leveraged for the
purposes of outlier detection in non-probabilistic clustering in prior work by Lucic et al.
(2016a). In the case of Bayesian learning, addressing inference on contaminated data via
summarization critically relies on using as criterion of the coreset quality a robustified
posterior, that is by definition insensitive to small deviations in the data space. Then
the intuition used is that adding an outlier on a summary comprised of a majority of
inliers will have an insignificant impact on the quality of the robust posterior defined on
the summary points; hence, greedy incremental schemes of summarization can handily
reject outlying observations while efficiently compressing the dataset.

1.1 Thesis statement and main contributions

The focus of this thesis is the development of scalable tools for data analysis on privacy-
sensitive and vulnerable to contamination big data. We claim the following statement:
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Automated methods for general-purpose probabilistic inference are typically compu-
tationally prohibitive in settings involving massive-scale and high-dimensional data. In
contrast, designing principled dataset summarization algorithms enables scaling up learn-
ing methods in this data realm, achieving realiable inference results, and addressing
concerns of privacy and robustness. Notably, the latter can be achieved without having a
substantial bearing on the automation and complexity of the summarization methods.

Relying on coreset-based dataset summarizations as our fundamental framework
for scalability, we adopt a two-pronged approach to tackle each of the aforementioned
challenges, and design efficient algorithms that outperform state-of-the-art solutions for
the posed problems.

In particular, the goals of this dissertation are to:

1. Identify threats in commonly adopted practices for releasing privacy-sensitive
datasets via anonymized coarsened representations of the data.

2. Propose novel principled methods that can directly address real-word considerations
of privacy and robustness when performing inference via summarization, without
increasing the corresponding computational and memory footprint compared to
the existing state-of-the-art methods.

The central contributions of the thesis are the following:

• We analyse the anonymity of individual data in a large-scale behavioural study,
and develop a reidentification attack that exploits structural patterns’ similarity to
link users’ records in the absence of identifiers in their state space.

• We introduce a novel variational formulation for Bayesian coresets construction
that utilises approximations within a family of efficient variational distributions
with learnable weights and locations of pseudodata as variational parameters.
Leveraging the use of learnable pseudodata, we show that our variational formulation
enables substantially more rapid improvement in summarization quality for high-
dimensional data in the small coresets’ regime, compared to existing coreset schemes
that are constrained to use points from the original dataset. We provide an efficient
black-box batch optimization scheme that can attain a good approximate posterior
within the above mentioned variational family, and use standard randomization
tools to yield differentially private versions of this variational posterior for privacy-
preserving data analysis.
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• We review Bayesian coresets’ behaviour in corrupted datasets and show deficiencies
of standard constructions when dealing with outliers and poisoning. Using tools from
robust divergences, we propose approximate inference within a robustified family
of sparse variational approximations for reliable summarization in the presence
of data contamination. We develop a black-box incremental optimization scheme
for constructing an approximation within this variational family, and evaluate its
applicability in scenarios of summarization both over datapoints and over data
minibatches.

A recurring theme in our approach is to exploit inherent data redundancy, in order
to simultaneously achieve efficient data analysis and satisfy the objectives of privacy and
robustness. Importantly, the computation of redundancy is adapted to the statistical
model used to describe the data via the likelihood function, offering increased efficiency
for the purposes of learning—as our methods, guided by the data likelihood function,
manage to preserve reliable approximate sufficient statistics of the full data collection,
despite retaining only a tiny fraction of it. Directly randomizing the sufficient statistics
computation via a differentially private mechanism addresses formally the protection
of privacy, and allows us to avoid adding more noise than necessary, as we only have
to hide the part of individual datapoints’ information which is passed to the sufficient
statistics instead of their full information. On the robustness front, our framework
identifies datapoints that deviate from our statistical assumptions and downweights their
contribution over inference on the dataset, distilling them in this way from the extracted
summary. Overall, our methods indicate that privacy and robustness on both counts
are in accordance to the fundamental problem that data summarization aims to resolve:
encapsulating aggregate information for a statistical model of interest, while limiting the
impact of each individual datapoint’s particulars.

1.2 Organization of the dissertation

The remainder of the dissertation is organized as follows.
Chapter 2 introduces relevant background and concepts used throughout the thesis.
Chapter 3 sheds light into the anonymity properties of a large-scale longitudinal

mobility dataset, revealing a realistic privacy threat that survives in a release of sensitive
structured data, despite anonymizing and coarsening individual behavioural records.

Chapter 4 presents a general-purpose variational inference algorithm that allows
scaling up Bayesian inference in big and high-dimensional datasets via a coreset repre-
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sentation that relies on learnable synthetic datapoints (PSVI). Additionally, it develops
a differentially private construction for this coreset (DP-PSVI).

Chapter 5 proposes a sparse variational approximation for robust generalized Bayesian
posteriors using β-divergence, that can yield reliable summarizations for large-scale
datasets in the presence of extensive contamination (β-Cores).

Finally, Chapter 6 concludes the thesis by summarizing our results and discussing
future research directions.

This thesis covers material from the following publications:

D. Manousakas, C. Mascolo, A. R. Beresford, D. Chan and N. Sharma (2018).
“Quantifying privacy loss of human mobility graph topology”. Proceedings on
Privacy Enhancing Technologies 2018.3, pp. 5–21 (Chapter 3)

D. Manousakas, Z. Xu, C. Mascolo and T. Campbell (2020). “Bayesian Pseu-
docoresets”. Advances in Neural Information Processing Systems (Chapter 4)

D. Manousakas and C. Mascolo (2021). “β-Cores: Robust Large-Scale
Bayesian Data Summarization in the Presence of Outliers”. Proceedings
of the 14th ACM International Conference on Web Search and Data Min-
ing (Chapter 5)

In addition, the following paper was written during my PhD but is not discussed in
this thesis:

S. Bhattacharya, D. Manousakas, A. G. C. Ramos, S. I. Venieris, N. D.
Lane and C. Mascolo (2020). “Countering Acoustic Adversarial Attacks in
Microphone-equipped Smart Home Devices”. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies 4.2, pp. 1–24



Chapter 2

Background Material

This chapter aims to set the context for the remainder of this thesis. Various concepts
pertaining to this thesis, including Bayesian inference, exponential family distributions
and differential privacy, are briefly introduced in the following.

2.1 Comparing probability distributions
Throughout the thesis we focus primarily on probability spaces equipped with measures
that are absolutely continuous w.r.t. some base measure, corresponding to the Lebesgue
and counting measure respectively when considering continuous and discrete mappings
from the sample space. This allows us to simplify notation and adapt the definitions
presented in this section to normalised probability densities.

A critical component in constructing and evaluating inference algorithms is using a
divergence measure, that captures informatively how similar two probability distributions
are. Statistical divergences are relaxations of distance functions, that (i) are always
non-negative, and (ii) equal zero iff their arguments are identical—albeit they do not
necessarily satisfy symmetry in their arguments, or the triangle inequality, hence not
having to be a metric by virtue of definition.

The most commonly used divergence measure in approximate inference—which will
directly serve to define the objective quantifying the inferential quality of our sparse
approximations in Chapters 4 and 5—is the Kullback-Leibler (KL) divergence, also named
relative entropy (Kullback and Leibler, 1951; Kullback, 1959). For a continuous random
variable θ and probability density functions π1 and π2, the KL divergence is defined as

DKL (π1||π2) :=
∫
π1(θ) log π1(θ)

π2(θ)
dθ. (2.1)
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Divergence ϕ(ξ)
Kullback-Leibler ξ log ξ
β-divergence 1

β(β+1)ξ
β+1 − 1

β
ξ + 1

β+1 , β > 0

Table 2.1: Convex functions used for reductions of relative entropy and density power to
Bregman divergences on the domain of probability density functions.

In particular, for two d-dimensional Gaussian distributions N1(µ1,Σ1) and N2(µ2,Σ2),
the KL divergence is computable in closed form as follows

DKL (π1||π2) = 1
2

[
log |Σ2|
|Σ1|
− d+ tr(Σ−1

2 Σ1) + (µ2 − µ1)T Σ−1
2 (µ2 − µ1)

]
. (2.2)

In data setups that are likely to be contaminated by outliers, we get substantial
inferential performance improvements when enhancing our algorithms with statistical ro-
bustness. Relying on the KL divergence cannot sufficiently address this concern, as this
divergence attaches great importance to correctly capturing the tail behaviour of the
observations. A robustified divergence, termed β-divergence or density power divergence,
was instead proposed in (Basu et al., 1998; Eguchi and Kano, 2001), that is able to
downweight outlying datapoints. Considering again the densities π1, π2, the β-divergence
is defined as

Dβ (π1||π2) := 1
β(β + 1)

∫ (
π1(θ)1+β − (β + 1)π1(θ)π2(θ)β + βπ2(θ)1+β

)
dθ, (2.3)

for β ∈ R \ {−1, 0}.

One can easily show that the β-divergence converges to the KL divergence when
β → 0. Both divergences are asymmetric and do not satisfy the triangle inequality.
Moreover, both divergences are instances of the family of Bregman divergences (Banerjee
et al., 2005; Cichocki and Amari, 2010; Amari, 2016), i.e. a class of dissimilarity
measures that can be expressed as dϕ(p, q) = ϕ(p)−ϕ(q)−⟨∇ϕ(q), p− q⟩ using a strictly
convex, differentiable function ϕ : K → R, for all p, q in a convex set K ⊆ Rd. In
the case of two probability density functions π1, π2 the Bregman divergence admits
the form Dϕ(π1, π2) =

∫
[ϕ(π1(θ))− ϕ(π2(θ))− ϕ′(π2(θ))(π1(θ)− π2(θ))] dθ. The convex

functions defining the corresponding divergences are presented in Table 2.1.
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2.2 Exponential families
The exponential family (Wainwright and Jordan, 2008) is a broad class of probability
distributions, sharing a set of important properties that facilitate tractable inference.
Exponential family members include numerous well-known distributions, such as the
Poisson distribution, the Gamma distribution, and the Gaussian or normal distribution.

Definition 1 (Exponential family). A collection of densities π, with respect to a base
measure ν indexed by a vector of parameters θ, is an exponential family of densities if it
can be written as

πθ(x) = h(x) exp (⟨θ, t(x)⟩ − Z(θ)) . (2.4)

We call t(x) : X → Rd the sufficient statistics of the data, h(x) the base density and

Z(θ) := log
∫
e⟨θ,t(x)⟩h(x)ν(dx) (2.5)

the log-partition function.

The parameter space of interest, referred to as the natural parameter space, is the
space Ω ⊆ Rd that contains all θ such that Z(θ) is finite. We say that a family is regular
if Ω is open.

An important property of exponential family densities is that the derivatives of the
log-partition function Z are related to the moments of the sufficient statistics as follows.

Proposition 2 (Derivatives of the log-partition function via expected statistics). For a
regular exponential family of densities in the form of Eq. (2.4), the log-partition function
has derivatives of all orders on its domain Ω, while for the first two derivatives hold the
following

∇Z(θ) = Eθ[t(x)] (2.6)

and

∇2Z(θ) = Covθ[t(x)] := Eθ[t(x)t(x)T ]− Eθ[t(x)]Eθ[t(x)]T . (2.7)

Proposition 2 allows efficient approximations for the gradient and Hessian of Z using
empirical estimates of the first two moments of the sufficient statistic; we take advantage
of this property in the variational inference schemes to be introduced in Chapters 4
and 5.
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2.3 Probabilistic learning at a glance

Bayesian probabilistic modeling provides a principled framework for learning from
observed data, incorporating expert knowledge, handling model uncertainty and drawing
coherent inferences in a unified way, following the languange of probability theory.

In (parametric) Bayesian learning settings we are generally given a set of observations
x = {x1, ..., xN} ⊆ X , and aim to find a vector of random variables θ parameterising an
assumed probabilistic model that is likely to explain them. In the Bayesian paradigm, we
first assume a prior distribution over the parameters π0(θ), that encodes our beliefs about
the uncertainty in θ before observing any data. Once the data are taken into account, our
beliefs shoud be updated accordingly, in order to better describe the observed distribution.
For this purpose a likelihood function π(x|θ) needs to be defined; the likelihood quantifies
the probability of the observations under the assumed statistical model for parameters
set to θ. Combining the above distributions we are ready to formulate Bayes’ theorem,
the fundamental rule which gives the posterior beliefs for our parameters updated in
light of the observed data

π(θ|x) = π(x|θ)π0(θ)
π(x) . (2.8)

Henceforth any quantity of interest g(·) involving the assumed probabilistic model is
calculated using expectations under the posterior—which is considered to be the complete
information about θ given the data x—as follows

Eθ∼π(θ|x) [g(θ)] :=
∫
g(θ)π(θ|x)dθ. (2.9)

Computing Eq. (2.9) is known as doing inference on our statistical model.
A key challenge in computing the posterior according to Eq. (2.8) is evaluating

the normalizer, called marginal likelihood (or model evidence), which in a continuous
parametric space takes the form

π(x) =
∫
π(x|θ)π0(θ)dθ. (2.10)

Marginalising, i.e. computing the integral of Eq. (2.10), can be done using analytical tools
for a number of simple Bayesian models—some of which will be discussed in the remainder,
including Gaussian mean inference, Bayesian and neural linear regression—where the
likelihood is conjugate to the prior. However, for the vast majority of interesting statistical
models marginalization cannot be done in closed form and should be approximated instead.
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Aiming to address such cases, approximate Bayesian inference has emerged as an active
research area for many decades. In the remainder of the section we present an overview of
existing approaches addressing approximate inference that are relevant to our algorithms.
For a more detailed exposure, including methods beyond the scope of this thesis (e.g.
expectation propagation), cf. (Bishop, 2006; Murphy, 2012; Angelino et al., 2016).

2.3.1 Laplace’s method

Point estimates of θ, obtained for example via maximum a posteriori or maximum
likelihood estimation, are cheap to compute, as they correspond to solutions of optimization
problems involving only the unnormalised RHS of Eq. (2.8)—on the other hand, they
cannot capture the uncertainty of our posterior beliefs. Laplace’s method (MacKay,
2003) is an approximate inference scheme that makes a first step towards uncertainty
awareness, offering a non-degenerate, yet inexpensive to compute, approximate posterior
for θ.

Let us write the posterior of Eq. (2.8) in the following equivalent form

π(θ|x) = 1
Z
e−E(θ), (2.11)

where E(θ) := − log π(θ, x) is called the energy function, and Z is the unknown normal-
ization constant. Taking the Taylor series expansion of θ (up to order 2) around the mode
θ̂ := arg min

θ
E(θ), we obtain the approximation π̂(θ, x) := e−E(θ̂) exp

(
(θ − θ̂)T Λ(θ − θ̂)

)
where Λ := −∇2E(θ)

∣∣∣∣
θ=θ̂

. Hence we have

π(θ|X) ≈ 1
Z
π̂(θ, x) ∝ N (θ̂,Λ−1), (2.12)

i.e. the posterior can be approximated by a (unimodal) Gaussian, where the mean
corresponds to the minimum of the energy function and the covariance is the negative
Hessian of the energy function evaluated on the mean. Clearly, using standard numerical
optimization routines, e.g. quasi-Newton methods, we can achieve fast convergence to θ̂.

Laplace approximations will be used as coarse posterior approximations over our
coreset summary constructions.



12 Background Material

2.3.2 Sampling methods

In the absence of analytical formulae, integrals in the form of Eq. (2.9) can be approxi-
mated via empirical averaging, using samples from the target posterior distribution

∫
g(θ)π(θ|x)dθ ≈ 1

S

S∑
s=1

g(θs), (θs)S
s=1

i.i.d.∼ π(θ|x). (2.13)

Markov Chain Monte Carlo (MCMC), the workhorse of approximate Bayesian inference,
is a framework of established tools that pursue the above idea efficiently (Geyer, 1992;
Gilks, 2005; Robert and Casella, 2005).

MCMC offers approximations to expectations w.r.t. intractable probability distri-
butions via simulating an ergodic random walk in the state space of the model, which
admits the true posterior as its stationary distribution. As implied by the strong law
of large numbers, the MC estimate—formed using (effectively independent) samples
from the stationary distribution—converges to the true expectation almost surely as
s → ∞; this property makes MCMC methods theoretically appealing, as it endows
the estimators with strong asymptotic exactness guarantees. Moreover, if g is a real
function, using the central limit theorem, it can be shown that the standard error of
a MC estimator scales asymptotically as O( 1√

S
), independently of the dimension of θ.

Differing in the way that the Monte Carlo chain is constructed, as well as the offered
level of automation, several methods of MCMC inference have emerged, including the
Metropolis-Hastings (Andrieu et al., 2003), the Hamiltonian Monte Carlo (Neal, 2011),
and the No-U-Turn-Sampler (NUTS) (Hoffman and Gelman, 2014). NUTS will be used
as a reference method to evaluate summarization performance in part of our experiments
over Chapters 4 and 5.

The computation of bounds on the number of MCMC iterations required until we
obtain a satisfactory posterior approximation can hardly be automated, as they are highly
problem-specific, and in practice heuristics are used to decide when sampling should
stop. Typically each sample requires at least one evaluation of a function proportional
to π, scaling at cost Θ(N) which becomes a burden in big data applications—on this
account, methods operating on data subsets have been proposed, including (Welling and
Teh, 2011; Bardenet et al., 2014; Korattikara et al., 2014). Despite these shortcomings,
in settings where data are high-dimensional, and likelihood surface lacks structure that
could be exploited over inference, MCMC remains the gold standard for practitioners.
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2.3.3 Variational inference

Variational inference (VI) (Jordan et al., 1999; Blei et al., 2017) takes a fundamentally
different approach to addressing approximate inference. The problem formulation under-
pinning all VI methods is to find a member q∗ within a family of tractable probability
densities Q that most closely matches our true posterior π (typically in the KL-sense)

q∗(θ;x) := arg min
q∈Q

DKL (q(θ)||π(θ|x)) . (2.14)

In this way, Bayesian posterior inference gets reduced into an optimization problem; hence,
techniques allowing scaling up optimization (e.g. random subsampling) can in principle
be applied in VI methods, enabling scalable inference of approximate posteriors (Hoffman
et al., 2013).

We note in passing that, in classical Variational Bayes schemes, expanding the KL
divergence according to Eq. (2.1) makes the log-evidence appear in the objective

DKL (q(θ)||π(θ|x)) = Eθ∼q [log q(θ)]− Eθ∼q [log π(x, θ)] + log π(x). (2.15)

Since this term is not a function of q, it can be subtracted and the problem is reformulated
as minimizing the remaining two terms, the negation of which is known as the evidence
lower bound (ELBO)

q∗(θ;x) := arg min
q∈Q

(−ELBO(q, x)) , ELBO(q, x) := Eq [log π(x, θ)]− Eq [log q(θ)] .

(2.16)

Via Jensen’s inequality, the ELBO can be shown to be a lower bound of the marginal
log-likelihood of x as expectation w.r.t. q. As opposed to MCMC methods, theoretical
guarantees for inferential results of the solution to Eq. (2.14) can only be obtained for a
few simple statistical models for the following main reasons: optimization methods in
typically non-convex landscapes can often converge to bad local optima; also, depending
on the statistical divergence and variational family used, VI might return miscalibrated
posterior variance estimates (Bishop, 2006, Chapter 10).

The simplest family Q that can be used for VI is the mean-field variational family
which relies on the simplifying assumption of independence among the coordinates of θ,
i.e. q(θ) := ΠD

d=1qd(θd). Our VI schemes in Chapters 4 and 5 propose approximations
within the exponential family instead, which generally allow less restricted posteriors.
Additionally, they can circumvent the use of ELBO, and instead be directly applied on
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the original KL minimizing variational formulation of Eq. (2.14), since MC estimates of
the gradient of the intractable log-evidence term can be extracted as per Proposition 2.

2.3.4 Bayesian coresets

Owing to their requirement for multiple evaluations of the data (log-)likelihood—a
computation scaling at Θ(N)—MCMC and VI methods quickly become prohibitively
expensive in the large-data regime. Various stochastic schemes have been proposed to
circumvent this computation, evaluating the likelihood on random data minibatches:
despite achieving computational savings and often being straightforward to implement,
such schemes rarely offer guarantees on posterior approximation quality, and lack a
rigorous principle over the minibatch selection step, hence retaining part of the redundancy
of the full data collection in the extracted samples.

Bayesian coresets (Huggins et al., 2016; Campbell and Broderick, 2018; Campbell and
Beronov, 2019; Campbell and Broderick, 2019; Zhang et al., 2021a) make the assumption
that the full dataset has some degree of inherent redundancy, and put forth the idea of
scaling up inference via the application of a preprocessing step where part of the data gets
retained under the criterion of likelihood approximation. In the spirit of the first coresets
proposed in the field of computational geometry (Feldman and Langberg, 2011), initial
construction schemes for coreset-based inference (Huggins et al., 2016; Lucic et al., 2017)
utilize importance sampling according to the datapoints’ sensitivity, i.e. a non-negative
quantity measuring the redundancy of each of the datapoints w.r.t. the statistical model
of interest. Although providing theoretical guarantees for the approximation quality
achieved by the coreset, importance sampling based constructions have typically two
shortcomings: (i) they rely on efficiently computable upper bounds of the sensitivity, and
(ii) they do not have a sense of a residual posterior error, hence are limited by common
MC rates in approximating the full data likelihood, offering error ϵ = O( 1√

M
) for coreset

size M .
Reformulating coreset construction as sparse function approximation in a Hilbert

space (Hilbert coresets), Campbell and Broderick (2018, 2019) introduced alternative
optimization formulations for the problem. They showed that using inner-product
inducing norms can lead to faster incremental construction schemes that, critically, can
guide next datapoint selection by the direction of greatest impovement. Moreover, they
made use of a coarse posterior approximation and random projections to efficiently
compute Hilbert norms that capture the divergence between the coreset and the true
posterior, and proposed faster sparse constructions under polytope and hypersphere
constraints.
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In more recent work, Campbell and Beronov (2019) casted Bayesian coresets to a
problem of sparse variational inference within an exponential family, named Riemannian
coresets. Riemannian coresets removed the requirement for fixing a coarse posterior that
appears when computing the norm in practical Hilbert coreset constructions, achieving
full automation and improvement of approximation quality (measured through the KL
divergence) over a larger range of summary sizes.

2.4 Robust inference

In this section, adopting an optimization perspective of Bayesian inference, we present
robustness limitations of the standard Bayesian posterior on big data, and outline existing
generalizations of the posterior that aim to robustify inference w.r.t. mismatches between
observed data and modelling assumptions. Setting these robustified posteriors as the
target of our coreset approximations, in Chapter 5 we will successfully address scenarios
of large-scale inference under model misspecification.

2.4.1 Standard Bayesian inference and lack of robustness in
the large-data regime

In the context of Bayesian inference, we are interested in updating our beliefs about
a vector of random variables θ ∈ Θ, initially expressed through a prior distribution
π0(θ), after observing a set of datapoints x := (xn)N

n=1 ∈ XN . Here we equivalently
rewrite Eq. (2.8) as

π(θ|x) = 1
Z ′
π(x|θ)π0(θ), (2.17)

where Z ′ is a normalization constant corresponding to the (typically intractable) marginal
likelihood term π(x). When the datapoints x are conditionally independent given θ, the
likelihood function gets factorized as π(x|θ) = ΠN

n=1π(xn|θ). An equivalent formulation
of the Bayesian posterior as a solution to a convex optimization problem over the
density space was introduced by Williams (1980) and Zellner (1988), and used in various
subsequent works including (Zhu et al., 2014; Dai et al., 2016; Futami et al., 2018).
Concretely, Eq. (2.17) can be recovered by solving the problem

arg min
q(θ)∈P

(
DKL (q(θ)||π0(θ))−

N∑
n=1

[∫
q(θ) log π(xn|θ)dθ

])
, (2.18)
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where P is the valid density space, while the Bayesian posterior can be expressed as

π(θ|x) = 1
Z ′

exp (−dKL (π̂(x)||π(x|θ)))π0(θ). (2.19)

In the last expression, π̂(x) := 1
N

∑N
n=1 δ(x − xn) is the empirical distribution of the

observed datapoints and δ is the Dirac delta function. The exponent dKL (π̂(x)||π(x|θ)) :=
−∑N

n=1 log π(xn|θ) corresponds (up to a constant) to the cross-entropy, which is equal
to the empirical average of negative log-likelihoods of the datapoints, and quantifies the
expected loss incurred by our estimates for the model parameters θ over the available
observations, under the Kullback-Leibler divergence.

When N is large, the Bayesian posterior is strongly affected by perturbations in
the observed data space. To develop an intuition on this, assuming that the true and
observed data distributions admit densities πθ and πobs respectively, we can rewrite an
approximation of Eq. (2.19) via the KL divergence as in (Miller and Dunson, 2019)

π(θ|x) ∝ exp
(

N∑
n=1

log π(xn|θ)
)
π0(θ) .= exp

(
N
∫
πobs log πθ

)
π0(θ)

:= exp (−NDKL (πobs||πθ))π0(θ), (2.20)

where .= denotes agreement to first order in exponent.1 Hence, due to the large N in the
exponent, small changes in πobs will have a large impact on the posterior.

2.4.2 Robustified generalized Bayesian posteriors

Robust inference methods aim to adapt Eqs. (2.17) to (2.19) to formulations that can
address the case of observations departing from model assumptions, as often happening in
practice, e.g. due to misspecified shapes of data distributions and number of components,
or due to the presence of outliers. In such formulations (Eguchi and Kano, 2001; Fujisawa
and Eguchi, 2008; Dawid et al., 2016; Jewson et al., 2018), Bayesian updates rely on
utilising robust divergences instead of the KL divergence, to express the losses over the
observed data.

From the definition of KL divergence Eq. (2.1), we can equivalently rewrite Eq. (2.18)
as

arg min
q(θ)∈P

(
DKL (q(θ)||π0(θ)) +NEq(θ) [DKL (π̂(x)||π(x|θ))]

)
, (2.21)

1i.e. an
.= bn iff (1/n) log(an/bn)→ 0
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namely inference corresponds to maximizing the expected likelihood of the observations,
under a regularizer that aims to keep the posterior q close to the prior π0. As mentioned
in Section 2.1, a popular choice for enhancing inferential robustness is to replace the KL
divergence—computed via the expected likelihood arising in the second term of Eq. (2.21)—
with the β-divergence (Futami et al., 2018; Knoblauch et al., 2018). This yields the
following posterior for θ (Ghosh and Basu, 2016; Knoblauch et al., 2018)

πβ(θ|x) ∝ exp
(
−dβ (π̂(x)||π(x|θ))

)
π0(θ), (2.22)

where

dβ (π̂(x)||π(x|θ)) :=
N∑

n=1

(
−β + 1

β
π(xn|θ)β +

∫
X
π(χ|θ)1+βdχ

)
︸ ︷︷ ︸

:=fn(θ)

, (2.23)

with β > 0. In the remainder of the thesis we refer to quantities defined in Eqs. (2.22)
and (2.23) as the β-posterior and β-likelihood respectively. Noticeably, the individual
terms fn(θ) of the β-likelihood allow attributing different strength of influence to each of
the datapoints, depending on their accordance with the model assumptions. As densities
get raised to a suitable power β, outlying observations are exponentially downweighted.
When β → 0, the Bayes’ posterior of Eqs. (2.17) and (2.19) is recovered, and all datapoints
are treated equally.

In the presentation above we focused on modeling observations (xn)N
n=1 (unsupervised

learning). In the case of supervised learning on data pairs (xn, yn)N
n=1 ∈ (X × Y)N , the

respective expression for individual terms of the β-likelihood2 is (Basu et al., 1998)

fn(θ) := −β + 1
β

π(yn|xn, θ)β +
∫
Y
π(ψ|xn, θ)1+βdψ. (2.24)

Illustrations In the remainder of this section we illustrate the effects of adapting
the used statistical divergence when doing inference on a dataset that contains outliers.
In a similar vein to (Jewson et al., 2018), we juxtapose the inference results of classical
and robust posterior on simple statistical models aiming to fit a Gaussian probability
distribution of unknown mean and variance N (µ, σ) to one-dimensional observations.

Fig. 2.1a demonstrates the influence of individual observations with varying magni-
tude on the inferred posterior. The influence is measured using the Fisher–Rao metric
introduced in (Kurtek and Bharath, 2015). For this experiment, 10K observations were

2In this context for simplicity we use notation fn(·) to denote f(yn|xn, ·).
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(a) (b)

Figure 2.1: Effects of altering the statistical divergence when conducting inference on
datasets containing outliers. (a) Influence of individual datapoints under the Kullback-
Leibler and the β-divergence: the concavity of influence under the β-divergence illustrates
the robustness of the inferred posterior to outliers. (b) Posterior estimates of Gaussian
density on observations containing a small fraction for outliers under classical and
robustified inference.

sampled from a Student t(3) distribution, while observations with negative coordinates
were omitted from the presented plot due to symmetry. We can notice that the KL
divergence allows unbounded influence, indicating the brittleness of inference on the tails
of the observed distribution. In contrast, moving away from the mean, individual data-
points’ influence under the β-divergences is initially characterised by a regime of increase
until reaching a maximum (which depends on the selected robustness hyperparameter),
succeeded by attenuation down to zero at the tails of the data distribution. At the same
time, this experiment makes clear that for decision problems critically relying on the tail
information of the observations, KL might be the divergence of choice, as the density
power divergence would downweight the importance of datapoints lying far from the
mean.

Fig. 2.1b shows the posterior density estimation for classical and robustified Bayesian
inference on 1K datapoints sampled from a contaminated distribution 0.99×N (0, 1) +
0.01×N (5, 25). The posterior under the KL divergence tries to explain the long tails
of the observations—which are the effects of the contaminating component—eventually
overestimating the variance of the data distribution. On the other hand, using the density
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power divergence with β = 0.5 over inference allows us to declare the long tails as outliers,
and provides more accurate modeling of the inliers’ component.

2.5 Representing data
Extracting a relevant feature representation is an important step in the context of
statistical pattern recognition. For this purpose a feature map

ϕ : X → H, (2.25)

is sought which transforms the datapoints from the original data space {xn}N
n=1, xn ∈ X ,

into feature representations in a Hilbert space {ϕ(xn)}N
n=1, ϕ(xn) ∈ H. Then the patterns

of interest can be revealed via applications of inner products in the Hilbert space
⟨A, ϕ(x)⟩H. There is an extensive literature on constructing data representations; for the
purposes of this thesis, in the remainder of the section we focus on two of them: kernel
methods and random projections.

2.5.1 Kernels
The main tool in kernel methods (Schölkopf et al., 2002) is the kernel function defined
below.

Definition 3 (Kernel function). A symmetric function k : X × X → R is a positive
semidefinite kernel function, or kernel, if for all N > 1, x1, . . . , xN ∈ R, and c1, . . . , cN ∈ R

N∑
i,j=1

cicjk(xi, xj) ≥ 0. (2.26)

Every kernel is associated with a feature map ϕ as follows.

Definition 4 (Kernel representation). A function k : X × X → R is a kernel iff there
exists a Hilbert space H and a feature map ϕ : X → H such that for all x, x′ ∈ X

k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H. (2.27)

Feature map ϕ endows each datapoint x ∈ X with a kernel representation ϕ(x).

A kernel representation might be lacking an explicit closed form, but can always be
accessed via the inner product of Eq. (2.27), which is the central object of interest in
learning with kernels.
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Examples of widely-used kernel functions include:

• The (inhomogeneous) polynomial kernel k(x, x′) = (⟨x, x′⟩+ c)d, where c ≥ 0, d ∈ N.

• The Gaussian kernel k(x, x′) = exp(−γ||x− x′||22).

• Radial Basis Function (RBF) kernels k(x, x′) = f(d(x, x′)), where d is a metric on
X and f is a function on R+.

Kernel methods induce non-parametric representations on the data, i.e. when given
a set with N datapoints of dimension d, kernels effectively map each datapoint to an
N -dimensional representation.

2.5.2 Finite-dimensional random projections
Kernel methods appeal to large-scale learning due to their non-parametric nature:
their representation power scales with the number of datapoints, hence they can learn
complex, highly non-linear structure from the data; however, their time and memory
cost scales adversely with the dataset size. Random features (Rahimi and Recht, 2008)
remedy poor complexity scaling issues via utilising parametric finite-dimensional data
representations. We motivate this concept via an application arising in Hilbert coreset
constructions (Campbell and Broderick, 2019).

Denote by fn(θ) := ∑N
n=1 log π(xn|θ) the log-likelihood function of a dataset x :=

(xn)N
n=1, and by f(θ, w) := ∑N

n=1 wn log π(xn|θ) the corresponding log-likelihood of a
Hilbert coreset (wn, xn)N

n=1 constructed on the data, where (wn)N
n=1 is a vector of sparse,

non-negative weights—using the simplified notation f(θ) for the full data log-likelihood.
The quality of posterior approximation that this coreset offers can be quantified using
an L2 norm on the log-likelihoods under a weighting distribution π̂ that has the same
support with the true posterior π

||f(θ, w)− f(θ)||π̂,2 := Eπ̂

[
(f(θ)− f(θ, w))2

]
, (2.28)

and induced inner product

⟨fn(θ), fm(θ)⟩π̂,2 := Eπ̂ [fn(θ), fm(θ)] . (2.29)

The weighting distribution π̂ can be selected from a set of cheap posterior approximations,
for example using Laplace’s method, or running a few rounds of an MCMC algorithm. In
the general case, the norm of Eq. (2.29) is not available in closed form, hence a random
projection can be used instead to approximate it according to the following steps:
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1. Sample J values for θ from the weighting distribution (θ̂j)J
j=1

i.i.d.∼ π̂.

2. For n = 1 . . . N compute a J-dimensional projection f̂n(θ) :=
√

1
J

[fn(θ̂1) . . . fn(θ̂J)].

In this way we get an unbiased finite-dimensional estimator of the inner products

⟨fn(θ), fm(θ)⟩π̂,2 ≈ f̂n(θ)T f̂m(θ). (2.30)

2.6 Differential privacy
Differential privacy (DP) (Dwork et al., 2006c; Dwork and Roth, 2014) is a formal
framework quantifying the privacy threat that exists in observing the output of a data
analysis task carried out on a sensitive database, due to changing an individual entry
of its input. The central model of DP considers a setting where the database is held
by a trusted curator; and an untrusted analyst sends statistical queries to the curator
and receives public responses via randomized algorithms, or mechanisms: DP enforces
a stability property on the output distribution of these mechanisms that limits the
disclosure of information about any individual record within the database, offering strong
indistinguishability guarantees regardless of the side information that the analyst might
possess (even when the analyst knows all other records of the database).

DP definition requires a notion of neighboring databases. To define distance between
two databases x, x′ ∈ X of size N we use the Hamming distance

DH(x, x′) := #{n = 1, . . . , N : xn ̸= x′n}. (2.31)

We call the databases adjacent, denoted x ≈ x′, iff DH(x, x′) = 1.

Definition 5 (Differential Privacy). Fix ε ≥, δ ≥ 0. A mechanism M : X → Y is
(ε, δ)-differentially private if for all adjacent datasets x ≈ x′ and each event A ⊆ Y,
P[M(x) ∈ A] ≤ eεP[M(x′) ∈ A] + δ.

Definition 5 with δ = 0, known as pure DP, requires that if we perturb a database by
a single datapoint, the output of the algorithm should not differ much, with the privacy
risk being controlled by the parameter ε. A weaker definition of DP allows that the
guarantee of Definition 5 gets broken with probability δ > 0. This corresponds to the
notion of (ε, δ)-approximate differential privacy. The latter generally allows more tools
for tighter privacy analysis over repeated access to the data, and will be the definition
applied on our privacy-preserving summarization scheme in Chapter 4. In practice,
ε ≤ 0.1 and δ ≈ 1/Nω(1) are typically considered good values for the privacy parameters.
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The most common mechanisms that enable releasing numerical queries f under DP
rely on randomization via injecting additive noise. The amount of noise is calibrated to
the global sensitivity of the query, which is defined as

∆p(f) := max
x≈x′
||f(x)− f(x′)||p. (2.32)

To achieve (ε, δ)-DP one can use the Gaussian Mechanism, which returns

f(x) + Z, Z ∼ N (0, σ2I), where σ ≥

√
2 log(1.25/δ) ∆2(f)

ε
. (2.33)

DP is equipped with a suite of properties that facilitate reasoning about privacy
guarantees over complicated analysis tasks on a sensitive data collection in a modular
fashion. In the remainder we review a fraction of them which are frequently encountered
in machine learning settings.

A useful fact about DP algorithms is that a data analyst cannot weaken their privacy
guarantees by doing any computation on their output that does not depend on the private
input itself.

Proposition 6 (Robustness to Post-Processing (Dwork and Roth, 2014)). LetM : X → Y
be (ε, δ)-DP and ψ : Y → Y ′ be any function. Then ψ ◦M : X → Y ′ is (ε, δ)-DP.

Moreover, running a mechanism on a random subset of the datapoints implies stronger
privacy compared to running the mechanism on the full database.

Proposition 7 (Privacy Amplfication via Random Sampling (Kasiviswanathan et al.,
2011; Beimel et al., 2013)). Let M : X → Y be (ε, δ)-DP with ε ≤ 1 and υ : X → X , a
random sampler returning a random ratio q of the datapoints. Then M◦ υ : X → Y is
(O(qε), qδ)-DP.

DP composition theorems accumulate the total privacy cost over the application of
a sequence of mechanisms. The moments accountant is a recently proposed technique,
that allows computing tight bounds for ε and δ, offering the following guarantees:

Proposition 8 (Moments Accountant (Abadi et al., 2016)). Given 0 < ε < 1 and
0 < δ < 1, to ensure (ε, T δ′+ δ)-DP over the composition of T mechanismsM1, . . . ,MT ,
it suffices that each Mi is (ε′, δ′)-DP, where ε′ = ε

2
√

2T log(2/δ)
and δ′ = δ

T
.

The above tools are required for carrying out the privacy analysis of the subsampled
Gaussian mechanism (Abadi et al., 2016), which will be used for privatising the variational
inference scheme introduced in Chapter 4.



Chapter 3

Quantifying Privacy Loss of Human
Mobility Graph Topology

In this chapter, we present a case study on population scale empirical data, which demon-
strates that releases of deidentified and reduced representations of structured individual
records might still breach the privacy of information-contributing participants. This
analysis motivates the necessity of developing new formal privacy-preserving frameworks
for scalable learning via data summarization, which is further studied in Chapter 4.

Human mobility is often represented as a mobility network, or graph, with nodes
representing places of significance which an individual visits, such as their home, work,
places of social amenity, etc., and edge weights corresponding to probability estimates of
movements between these places. Previous research has shown that individuals can be
identified by a small number of geolocated nodes in their mobility network, rendering
mobility trace anonymization a hard task. In this chapter we build on prior work, and
demonstrate that, even when all location and timestamp information is removed from
nodes, the graph topology of an individual mobility network itself is often uniquely
identifying. Further, we observe that a mobility network is often unique, even when
only a small number of the most popular nodes and edges are considered. We evaluate
our approach using a large dataset of cell-tower location traces from 1, 500 smartphone
handsets with a mean duration of 430 days. We process the data to derive the top−N
places visited by the device in the trace, and find that 93% of traces have a unique
top−10 mobility network, and all traces are unique when considering top−15 mobility
networks. Since mobility patterns, and therefore mobility networks for an individual, vary
over time, we use graph kernel distance functions, to determine whether two mobility
networks, taken at different points in time, represent the same individual. We then show



24 Quantifying Privacy Loss of Human Mobility Graph Topology

that our distance metrics, while imperfect predictors, perform significantly better than a
random strategy, and therefore our approach represents a significant loss in privacy.

3.1 Motivation & contributions

Our mobile devices collect a significant amount of data about us and location data of
individuals are particularly privacy sensitive. Furthermore, previous work has shown that
removing direct identifiers from mobility traces does not provide anonymity: users can
easily be reidentified by a small number of unique locations that they visit frequently (Zang
and Bolot, 2011; de Montjoye et al., 2013).

Consequently, some approaches have been proposed that protect location privacy by
replacing location coordinates with encrypted identifiers, using different encryption keys
for each location trace in the population. This preprocessing results in locations that are
strictly user-specific and cannot be cross-referenced between users. Examples include
the dataset released for the research track of the Nokia Mobile Data Challenge,1 where
visited places were represented by random integers (Laurila et al., 2012); and identifiable
location information collected by the Device Analyzer dataset,2 including WiFi access
point MAC addresses and cell tower identifiers, are mapped to a set of pseudonyms
defined separately for each handset (Wagner et al., 2014). Moreover, temporal resolution
may also be deliberately decreased to improve anonymization (Gruteser and Grunwald,
2003), since previous work has demonstrated that sparsity in the temporal evolution of
mobility can cause privacy breaches (de Montjoye et al., 2013).

In this chapter, we examine the degree to which reduced representations of mobility
traces, without either semantically-meaningful location labels, or fine-grained temporal
information, are identifying. To do so, we represent location data for an individual as
a mobility network, where nodes correspond to abstract locations and edges to their
connectivity, i.e. the respective transitions made by an individual between locations. We
then examine to what extent these graphs reflect user-specific behavioural attributes that
could act as a fingerprint, perhaps allowing the reidentification of the individual they
represent. In particular, we show how graph kernel distance functions (Vishwanathan
et al., 2010) can be used to assist reidentification of anonymous mobility networks. This
opens up new opportunities for both attack and defense. For example, patterns found
in mobility networks could be used to support automated user verification, where the
mobility network effectively acts as a behavioural signature of the legitimate user of the

1http://www.idiap.ch/project/mdc
2https://deviceanalyzer.cl.cam.ac.uk

http://www.idiap.ch/project/mdc
https://deviceanalyzer.cl.cam.ac.uk
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device. However, the technique could also be used to link together different user profiles
which represent the same individual.

Our approach differs from previous studies in location data deanonymization (De
Mulder et al., 2008; Golle and Partridge, 2009; Gambs et al., 2014; Naini et al., 2016), in
that we aim to quantify the breach risk in preprocessed location data that do not disclose
explicit geographic information, and where instead locations are replaced with a set of
user-specific pseudonyms. Moreover, we also do not assume specific timing information
for the visits to abstract locations, merely ordering and coarse duration of stays.

We evaluate the power of our approach over a large dataset of traces from 1, 500
smartphones, where cell tower identifiers (cids) are used for localization. Our results show
that the examined data reductions contain structural information which may uniquely
identify users. This fact then supports the development of techniques to efficiently
reidentify individual mobility profiles. Conversely, our analysis may also support the
development of techniques to indistinguishably cluster users into larger groups with similar
mobility; such an approach may then be able to offer better anonymity guarantees.

A summary of the contributions of this chapter is as follows:

• We show that network representations of individual longitudinal mobility display
distinct topology, even for a small number of nodes corresponding to the most
frequently visited locations.

• We evaluate the sizes of identifiability sets formed in a large population of mobile
users for increasing network size. Our empirical results demonstrate that all
networks become quickly uniquely identifiable in state spaces with less than 20
locations.

• We propose kernel-based distance metrics to quantify mobility network similarity
in the absence of semantically meaningful spatial labels or fine-grained temporal
information.

• Based on these distance metrics, we devise a probabilistic retrieval mechanism to
reidentify pseudonymized mobility traces.

• We evaluate our methods over a large dataset of smartphone mobility traces. We
consider an attack scenario where an adversary has access to historical mobility
networks of the population she tries to deanonymize. We show that, by informing
her retrieval mechanism with structural similarity information computed via a deep
shortest-path graph kernel, the adversary can achieve a median deanonymization
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probability 3.52 times higher than a randomised mechanism using no structural
information contained in the mobility networks.

3.2 Related work

3.2.1 Mobility deanonymization
Protecting the anonymity of personal mobility is notoriously difficult due to sparsity (Ag-
garwal and Yu, 2008), and hence mobility data are often vulnerable to deanonymization
attacks (Narayanan and Shmatikov, 2008). Numerous studies into location privacy
have shown that, even when an individual’s data are anonymized, they continue to
possess unique patterns that can be exploited by a malicious adversary with access to
auxiliary information. Zang and Bolot (2011) analysed nationwide call-data records
(CDRs) and showed that releasing the N most frequently visited places—so called top−N
data—correlated with publicly released side information, resulted in privacy risks, even
for small values of Ns. This finding underlines the need for reductions in spatial or
temporal data fidelity before publication. Further, de Montjoye et al. (2013) quantified
the unicity of human mobility on a mobile phone dataset of approximately 1.5M users
with intrinsic temporal resolution of one hour and a 15-month measurement period. They
found that four random spatio-temporal points suffice to uniquely identify 95% of the
traces. They also observed that the uniqueness of traces decreases as a power law of
spatio-temporal granularity, stressing the hardness of achieving privacy via obfuscation
of time and space information.

Several inference attacks on longitudinal mobility are based on probabilistic models
trained on individual traces, and rely on the regularity of human mobility. De Mulder
et al. (2008) developed a reidentification technique by building a Markov model for each
individual in the training set, and then using this to reidentify individuals in the test set
by likelihood maximisation. Similarly, Gambs et al. (2014) used Markov chains to model
mobility traces in support of reidentification.

Naini et al. (2016) explored the privacy impact of releasing statistics of individuals’
mobility traces in the form of histograms, instead of their actual location information.
They demonstrated that even this statistical information suffices to successfully recover
the identity of individuals in datasets of few hundred people, via matching labeled and
unlabeled histograms of a population. Other researchers have investigated the privacy
threats stemming from information sharing on location-based social networks, including
the impact of location semantics on the difficulty of reidentification (Rossi et al., 2015)
and location inference (Ağır et al., 2016).
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All the above-mentioned previous work assumes that locations are expressed using a
universal set of symbols or global identifiers, either corresponding to (potentially obfus-
cated) geographic coordinates, or pseudonymous stay points. Hence, cross-referencing
between individuals in the population is possible. This is inapplicable when location in-
formation is anonymized separately for each individual. Lin et al. (2015) presented a user
verification method in this setting. It is based on statistical profiles of individual indoor
and outdoor mobility, including cell tower ID and WiFi access point information. In
contrast, here we employ network representations based solely on cell tower ID sequences
without explicit time information.

Often, studies in human mobility aim to model properties of a population, thus location
data are published as aggregate statistics computed over the locations of individuals.
This has traditionally been considered a secure way to obfuscate the sensitive information
contained in individual location data, especially when released aggregates conform to
k−anonymity principles (Sweeney, 2002). However, recent results have questioned this
assumption. Xu et al. (2017) recovered movement trajectories of individuals with accuracy
levels of between 73% and 91% from aggregate location information computed from
cellular location information involving 100, 000 users. Similarly, Pyrgelis et al. (2017)
performed a set of inference attacks on aggregate location time-series data and detected
serious privacy loss, even when individual data are perturbed by differentially private
mechanisms before aggregation.

3.2.2 Anonymity of graph data

Most of the aforementioned data can be represented as microdata with rows of fixed
dimensionality in a table. Microdata can thus be embedded into a vector space. In
other applications, datapoints are relational and can be naturally represented as graphs.
Measuring the similarity of such data is significantly more challenging, since there is no
definitive method. Deanonymization attacks on graphs have mostly been studied in the
context of social networks and aimed to either align nodes between an auxiliary and an
unknown targeted graph (Narayanan and Shmatikov, 2009; Sharad and Danezis, 2014),
or quantify the leakage of private information of a graph node via its neighbors (Zheleva
and Getoor, 2009).

In the problem studied here, each individual’s information is an entire graph, rather
than a node in a graph or a node attribute, and thus deanonymization is reduced to a
graph set matching or classification problem. To the best of our knowledge, this is the
first attempt to deanonymize an individual’s structured data by applying graph similarity
metrics. Since we are looking at relational data, not microdata, standard theoretical
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results on microdata anonymization, such as differential privacy (Dwork et al., 2006c),
are not directly applicable. However, metrics related to structural similiarity, including
k−anonymity, can be seamlessly generalized in this framework.

3.2.3 Approximate graph matching

The problem of matching graphs (or networks) according to their structural similarity
has emerged in research under disparate contexts and treatments. To clearly position
our formulation in the related literature, we first draw a distinction between two primary
instantiations of the problem: (i) Graph matching (or graph alignment) is the problem
of finding a bijection of node sets across graphs, that typically correspond to distorted
versions of the same underlying graph. (ii) Graph set matching (or graph comparison)
is the problem of uncovering members corresponding to the same entity across two
graph datasets that are assumed to form two distorted subsets of the same population of
underlying graphs. The data linkability question considered in the context of our work is
an instance of the latter problem.

Exact graph matching is equivalent to the problem of graph isomorphism, which
admits no known polynomial algorithm (although is broadly conjectured not to belong
to the family of NP-Hard problems (Schöning, 1988)). Approximate network alignment
admits different solutions, depending on the given information about the graph (e.g.
whether the graph nodes are labeled, or whether alignment for a subset of nodes is
known). Kazemi et al. (2015) proposed a percolation-based algorithm that, leveraging
a partially correct seed of node matches, can rapidly expand it to larger matching
sets. Pedarsani et al. (2013) used a seedless Bayesian approach assuming a distortion
model which describes how observations were obtained from the original graph. Via
introducing additional heuristic functions on the results of alignment, graph alignment
methods can produce distances applicable to graph comparison—for instance, Mishinev
(2020) proposed a normalized edge overlap metric that allowed transforming the previous
two methods into a network distance function.

Graph set matching can be approached via computations of a domain specific sim-
ilarity metric applicable on graphs, that attributes large values to similarly looking
graphs and small values to graphs that look dissimilar. For the purposes of super-
vised learning or data linkage, this metric can be relaxed to not strictly satisfy the
mathematical definition of a distance metric, e.g. not obey the triangle inequality, as
long as it reasonably captures a quantification of structural similarity. In a recent
work, Chowdhury and Mémoli (2019) expanded the machinery of optimal transport to
the problem of graph set matching: endowing graphs with probability measures, allowed
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them to define a pseudometric on the space of directed, weighted networks using an
efficiently computable approximation of the optimal transportation function between
graphs. Alternative long-standing approaches to graph comparison are based on network
motifs and frequent subgraph mining methods (Milo et al., 2002; Yan and Han, 2002),
which unfortunately have worst-case complexity scaling exponentially with graph size.
Graph kernels (Vishwanathan et al., 2010), which will be the toolbox used in our graph
comparison problem, achieve an efficient compromise, as they are restricted to measure
similarity using graph substructures which are computable in polynomial time. Especially
in the bioinformatics literature, graphlets (Pržulj, 2007; Shervashidze et al., 2009), i.e.
small connected non-isomorphic graphs, are commonly selected as the substructures
of choice, as they enable reasonable representation of the local structure in unlabeled
networks. As graphlet kernels do not support labeled nodes and scale polynomially with
the degree of the nodes, in Section 3.5 we focus our experimentation on kernels capturing
shortest-path and subgraph isomorphism information.

3.3 Proposed methodology
In this section, we first adapt the privacy framework of k−anonymity to the case of graph
data (Section 3.3.1). Next we introduce our methodology: We assume that all mobility
data are initially represented as a sequence of pseudonymous locations. We also assume
that the pseudonymisation process is distinct per user, and therefore locations cannot be
compared between individuals. In other words, it is not possible to determine whether
pseudonymous location lu for user u is the same as (or different from) location lv for user
v. We convert a location sequence for each user into a mobility network (Section 3.3.2).
We then extract feature representations of these networks and embed them into a vector
space. Finally, in the vector space, we can define pairwise distances between the network
embeddings (Section 3.3.3) and use them in a deanonymization scenario (Section 3.3.4).

Our methodology is, in principle, applicable to many other categories of recurrent
behavioural trajectories that can be abstracted as graphs, such web browsing sessions (Yen
et al., 2012; Olejnik et al., 2014) or smartphone application usage sequences (Welke et al.,
2016).

3.3.1 k−anonymity on graphs

Anonymity among networks refers to topological (or structural) equivalence. In our
analysis we adopt the privacy framework of k−anonymity (Sweeney, 2002), which we
summarize as follows:
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Definition 9 (k−anonymity). A microdata release of statistics, containing separate
entries for a number of individuals in the population, satisfies the k−anonymity property,
iff the information for each individual contained in the release is indistinguishable from
at least k − 1 other individuals whose information also appears in the release.

Therefore we interpret k−anonymity in this chapter to mean that the mobility network
of an individual in a population should be identical to the mobility network of at least
k − 1 other individuals. Recent work casts doubt on the protection guarantees offered
by k−anonymity in location privacy (Shokri et al., 2010), motivating the definition of
l−diversity (Machanavajjhala et al., 2007) and t−closeness (Li et al., 2007). Although
k−anonymity may be insufficient to ensure privacy in the presence of adversarial knowl-
edge, k−anonymity is a good metric to use to measure the uniqueness of an individual
in the data. Moreover, this framework is straightforwardly generalizable to the case of
graph data.

Structural equivalence in the space of graphs corresponds to isomorphism and, based
on this, we can define k−anonymity on unweighted graphs as follows:

Definition 10 (Graph Isomorphism). Two graphs G = (V,E) and G′ = (V ′, E ′) are
isomorphic (or belong to the same isomorphism class) if there exists a bijective mapping
g : V → V ′ such that (vi, vj) ∈ E iff (g(vi), g(vj)) ∈ E ′.

Definition 11 (Graph k−anonymity). Graph k−anonymity is the minimum cardi-
nality of isomorphism classes within a population of graphs.

After clustering our population of graphs into isomorphism classes, we can also define
the identifiability set and anonymity size (Pfitzmann and Hansen, 2010) as follows:

Definition 12 (Identifiability Set). Identifiability set is the percentage of the popula-
tion which is uniquely identified given their top−N network.

Definition 13 (Anonymity Size). The anonymity size of a network within a population
is the cardinality of the isomorphism class to which the network belongs.

3.3.2 Mobility information networks
To study the topological patterns of mobility, we represent user movements by a mobility
network. A preliminary step is to check whether a first-order network is a reasonable
representation of movement data, or whether a higher-order network is required.

First-order network representations of mobility traces are built on the assumption of
a first-order temporal correlation among their states. In the case of mobility data, this
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means that the transition by an individual to the next location in the mobility network
can be accurately modelled by considering only their current location. For example, the
probability that an individual visits the shops or work next depends only on where they
are located now, and a more detailed past history of places recently visited does not offer
significant improvements to the model. The alternative is that a sequence of the states is
better modelled by higher-order Markov chains, namely that transitions depend on the
current state and one or more previously visited states. For example, the probability
that an individual visits the shops or work next depends not only on where they are
now, but where they were earlier in the day or week. If higher-order Markov chains are
required, we should assume a larger state-space and use these states as the nodes of our
individual mobility networks. Recently proposed methods on optimal order selection of
sequential data (Xu et al., 2016; Scholtes, 2017) can be directly applied at this step.

Let us assume a mobility dataset from a population of users u ∈ U . We introduce
two network representations of user’s mobility.

Definition 14 (State Connectivity Network). A state connectivity network for
u is an unweighted directed graph Cu = (V u, Eu). Nodes vi ∈ V u correspond to states
visited by the user throughout the observation period. An edge eij =

(
vu

i , v
u
j

)
∈ Eu

represents the information that u had at least one recorded transition from vu
i to vu

j .

Definition 15 (Mobility Network). A mobility network for u is a weighted and
directed graph Gu = (V u, Eu,W u) ∈ G, with the same topology as the state connectivity
network and additionally an edge weight function W u : Eu → R+. The weight function
assigns a frequency wu

ij to each edge eu
ij, which corresponds to the number of transitions

from vu
i to vu

j recorded throughout the observation period.

To facilitate comparisons of frequencies across networks of different sizes in our
experiments, we normalize edge weights on each mobility network to sum to 1.

In first-order networks, nodes correspond to distinct places that the user visits. Given
a high-frequency, timestamped sequence of location events for a user, distinct places can
be extracted as small geographic regions where a user stays longer than a defined time
interval, using existing clustering algorithms (Kang et al., 2005). Nodes in the mobility
network have no geographic or timing information associated with them. Nodes may
have attributes attached to them reflecting additional side information. For example,
in this study we consider whether attaching the frequency of visits a user makes to a
specific node aids an attacker attempting to deanonymize the user.
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In some of our experiments, we prune the mobility networks of users by reducing the
size of the mobility network to the N most frequent places and rearranging the edges in
the network accordingly. We refer to these networks as top−N mobility networks.

3.3.3 Graph similarity metrics

It is not practical to apply a graph isomorphism test to two mobility networks to determine
if they represent the same underlying user, because a user’s mobility network is likely
to vary over time. Therefore we need distance functions that can measure the degree
of similarity between two graphs. Distance functions decompose the graph into feature
vectors (smaller substructures and pattern counts), or histograms of graph statistics, and
express similarity as the distance between those feature representations. In the following,
we introduce the notion of graph kernels and describe the graph similarity metrics used
later in our experiments.

We wish to compute the similarity between two graphs G,G′ ∈ G. To this end,
according to the definitions of Section 2.5.1, we will use graph kernel functions K(G,G′) :
G × G → R+ (Vishwanathan et al., 2010), and their corresponding feature maps ϕ(G).

In order to ensure the result from the kernel lies in the interval [−1, 1], we apply
cosine normalization as follows:

K(G,G′) =
〈

ϕ(G)
||ϕ(G)|| ,

ϕ(G′)
||ϕ(G′)||

〉
. (3.1)

One interpretation of this function is as the cosine similarity of the graphs in the feature
space defined by the map of the kernel.

In our experiments we apply a number of kernel functions on our mobility datasets
and assess their suitability for deanonymization applications on mobility networks. We
note in advance that, as the degree distribution and all substructure counts of a graph
remain unchanged under structure-preserving bijection of the vertex set, all examined
graph kernels are invariant under isomorphism. We briefly introduce these kernels in the
remainder of the section.

3.3.3.1 Kernels on degree distribution

The degree distribution of nodes in the graph can be used to quantify the similarity
between two graphs. For example, we can use a histogram of weighted or unweighted
node degree as a feature vector. We can then compute the pairwise distance of two
graphs by taking either the inner product of the feature vectors, or passing them through
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a Gaussian Radial Basis Function kernel:

K(G,G′) = exp
(
−||ϕ(G)− ϕ(G′)||2

2σ2

)
. (3.2)

Here, the hyperparameters of the kernel are the variance σ (in case RBF is used), and
the number of bins in the histogram.

3.3.3.2 Kernels on graph atomic substructures

Kernels can use counts on substructures, such as subtree patterns, shortest paths,
walks, or limited-size subgraphs. This family of kernels are called R−convolution graph
kernels (Haussler, 1999). In this way, graphs are represented as vectors with elements
corresponding to the frequency of each such substructure over the graph. Hence, if
s1, s2, ... ∈ S are the substructures of interest and # (si ∈ G) the counts of si in graph
G, we get as feature map vectors

ϕ(G) = [# (s1 ∈ G) ,# (s2 ∈ G) , . . . ]T (3.3)

with dimension |S| and kernel

K(G,G′) =
∑
s∈S

# (s ∈ G) # (s ∈ G′) . (3.4)

In the following, we briefly present some kernels in this category and explain how
they are adapted in our experiments.

Shortest-Path Kernel
The Shortest-Path (SP) graph kernel (Borgwardt and Kriegel, 2005) expresses the

similarity between two graphs by counting the co-occurring shortest paths in the graphs.
It can be written in the form of Eq. (3.3), where each element si ∈ S is a triplet(
ai

start, a
i
end, n

)
, where n is the length of the path and ai

start, a
i
end the attributes of the

starting and ending nodes. The shortest path set is computable in polynomial time
using, for example, the Floyd-Warshall algorithm, with complexity O(|V |4), where |V | is
number of nodes in the network.

Weisfeiler-Lehman Subtree Kernel
Shervashidze et al. (2011) proposed an efficient method to construct a graph kernel

utilizing the Weisfeiler-Lehman (WL) test of isomorphism (Weisfeiler and Lehman, 1968).
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Figure 3.1: Computation of the Weisfeiler-Lehman subtree kernel of height h = 1 for two
attributed graphs.

The idea of the WL kernel is to measure co-occurrences of subtree patterns across node
attributed graphs.

Computation progresses over iterations as follows:

1. each node attribute is augmented with a multiset of attributes from adjacent nodes;

2. each node attribute is then compressed into a single attribute label for the next
iteration; and

3. the above steps are repeated until a specified threshold h is reached.

An example is shown in Fig. 3.1.
If G and G′ are the two graphs, the WL subtree kernel is defined as follows:

Kh
W L(G,G′) =

〈
ϕh(G), ϕh(G′)

〉
, (3.5)

where ϕh(G) and ϕh(G′) are the vectors of labels extracted after running h steps of the
computation (Fig. 3.1h). They consist of h blocks, where the i-th component of the j-th
block corresponds to the frequency of label i at the j-th iteration of the computation.
The computational complexity of the kernel scales linearly with the number of edges |E|
and the length h of the WL graph sequence.

Deep Graph Kernels
Deep graph kernels (DK s) are a unified framework that takes into account similarity

relations at the level of atomic substructures in the kernel computation (Yanardag
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and Vishwanathan, 2015). Hence, these kernels can quantify similar substructure co-
occurrence, offering more robust feature representations. DKs are based on computing
the following inner product:

K(G,G′) = ϕ (G)T Mϕ (G′) , (3.6)

where ϕ is the feature mapping of a classical R-convolution graph kernel.
In the above, M : |V|×|V| is a positive semidefinitive matrix encoding the relationships

between the atomic substructures and V is the vocabulary of the observed substructures
in the dataset. Here, M can be defined using the edit distance of the substructures, i.e.
the number of elementary operations to transform one substructure to another; or M can
be learnt from the data, applying relevant neural language modeling methods (Mikolov
et al., 2013).

3.3.4 Deanonymization of user mobility networks and privacy
leakage evaluation

3.3.4.1 Hypothesis

The basic premise of our deanonymization approach can be postulated as follows:
The mobility of a person across different time periods is stochastic, but largely

recurrent and stationary, and its expression at the level of the individual mobility network
is discriminative enough to reduce a person’s privacy within a population.

For example, the daily commute to work corresponds to a relatively stable sequence
of cell towers. This can be expressed in the mobility network of the user as a persistent
subgraph, and forms a characteristic behavioural pattern that can be exploited for
deanonymization of mobility traces. Empirical evidence for our hypothesis is shown
in Fig. 3.2. For ease of presentation, in the figure, nodes between the disparate observation
periods of the users can be cross-referenced. We assume that cross-referencing is not
possible in our attack scenario, as locations are independently pseudonymized.

3.3.4.2 Threat model

We assume that an adversary has access to a set of mobility networks G ∈ Gtraining with
disclosed identities (or labels) lG ∈ L and a set of mobility networks G′ ∈ Gtest with
undisclosed identities lG′ ∈ L.

Generally we can think of lG′ ∈ J ⊃ L and assign some fixed probability mass to the
labels lG′ ∈ J \L. However, here we make the closed world assumption that the training
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(a) user 1: 1st half of the observation period (b) user 1: 2nd half of the observation period

(c) user 2: 1st half of the observation period (d) user 2: 2nd half of the observation period

Figure 3.2: Top−20 networks for two random users from the Device Analyzer dataset.
Depicted edges correspond to the highest 10th percentile of frequent transitions in the
respective observation window. The networks show a high degree of similarity between
the mobility profiles of the same user over the two observation periods. Moreover, the
presence of single directed edges in the profile of user 2 forms a discriminative pattern
that allows us to distinguish user 2 from user 1.

and test networks come from the same population. We make this assumption for two
reasons: first, it is a common assumption in works on deanonymization and, second, we
cannot directly update our beliefs on lG′ ∈ J \ L by observing samples from L.

We define a normalised similarity metric among the networks K : Gtraining×Gtest → R+.
We hypothesize that a training and test mobility network belonging to the same person
have common or similar connectivity patterns, thus a high degree of similarity.

The intention of an adversary is to deanonymize a given test network G′ ∈ Gtest, by
appropriately defining a vector of probabilities over the possible identities in L.

An uninformed adversary has no information about the networks of the population
and, in the absence of any other side knowledge, the prior belief of the adversary about
the identity of G′ is a uniform distribution over all possible identities:

P (lG′ = lGi
) := 1/|L|, for every Gi ∈ Gtraining. (3.7)
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An informed adversary has access to the population of training networks and can
compute the pairwise similarities of G′ with each Gi ∈ Gtraining using a kernel function K.
Hence the adversary can update her belief for the possible identities in L according to
the values of K. Therefore, when the adversary attempts to deanonymize identities in
the data, she assigns probabilities that follow a non-decreasing function of the computed
pairwise similarity of each label. Denoting this function by f , we can write the updated
adversarial probability estimate for each identity as follows:

PK (lG′ = lGi
|Gtraining) := f (K(Gi, G

′))∑
j∈L

f (K(Gj, G
′))
, for every Gi ∈ Gtraining. (3.8)

3.3.4.3 Privacy loss

In the case of the uninformed adversary, the true label for any user is expected to have
rank |L|/2. Under this policy, the amount of privacy for each user is proportional to the
size of the population.

In the case of the informed adversary, knowledge of Gtraining and the use of K will
induce some non-negative privacy loss which will result in the expected rank of user to
be smaller than |L|/2. The privacy loss (PL) can be quantified as follows:

PL (G′;Gtraining, K) :=
PK

(
lG′ = lG′

true
|Gtraining

)
P
(
lG′ = lG′

true

) − 1 (3.9)

A privacy loss equal to zero reflects no information gain compared to an uninformed
adversary with no access to graphs with disclosed identities.

Let us assume that the users of our population generate distinct mobility networks.
As will be supported with empirical evidence in the next section, this is often the case
in real-world cid datasets of few thousand users even for small network sizes (e.g. for
top−20 networks in our dataset). Under the above premise, the maximal privacy loss
occurs when the presented test network is an identical copy of a training network of the
same user which exists in the data of the adversary, i.e. G′ ∈ Gtraining. This corresponds
to a user deterministically repeating her mobility patterns over the observation period
recorded in the test network. In such a scenario, we could think that isomorphism
tests are the most natural way to compute similarity; however, isomorphism tests will
be useless in real-world scenarios, since, on top of their high computational cost, the
stochastic nature and noise inherent in the mobility networks of a user would make them
non-isomorphic. Maximal privacy loss reflects the discriminative ability of the kernel
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and cannot be exceeded in real-world datasets, where the test networks are expected to
be noisy copies of the training networks existing in our system. The step of comparing
with the set of training networks adds computational complexity of O(|Gtraining|) to the
similarity metric cost.

Moreover, our framework can naturally facilitate incorporating new data to our beliefs
when multiple examples per individual exist in the training dataset. For example, when
multiple instances of mobility networks per user are available, we can use k−nearest
neighbors techniques in the comparison of distances with the test graph.

3.4 Data for analysis

In this section we present an exploratory analysis of the dataset used in our experiments,
highlighting statistical properties of the data and empirical results regarding the structural
anonymity of the generated state connectivity networks.

3.4.1 Data description

We evaluate our methodology on the Device Analyzer dataset (Wagner et al., 2014).
Device Analyzer contains records of smartphone usage collected from over 30, 000 study
participants around the globe. Collected data include information about system status
and parameters, running background processes, cellular and wireless connectivity. For
privacy purposes, released cid information is given a unique pseudonym separately for
each user, and contains no geographic, or semantic, information concerning the location
of users. Thus we cannot determine geographic proximity between the nodes, and the
location data of two users cannot be directly aligned.

For our experiments, we analysed cid information collected from 1, 500 handsets with
the largest number of recorded location datapoints in the dataset. Fig. 3.3a shows the
observation period for these handsets; note that the mean is greater than one year but
there is lot of variance across the population. We selected these 1, 500 handsets in order
to examine the reidentifiability of devices with rich longitudinal mobility profiles. This
allowed us to study the various attributes of individual mobility affecting privacy in detail.
As mentioned in the previous section, the cost of computing the adversarial posterior
probability for the deanonymization of a given unlabeled network scales linearly with the
population size.
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(a) (b)

(c) (d)

Figure 3.3: Empirical statistical findings of the Device Analyzer dataset. (a) Distribution
of the observation period duration. (b) Normalized histogram and empirical probability
density estimate of network size for the full mobility networks over the population.
(c) Complementary cumulative distribution function (CCDF) for the node degree in
the mobility network of a typical user from the population, displayed on log-log scale.
(d) Normalized histogram and probabilty density of average edge weight over the networks.

3.4.2 Mobility networks construction

We began by selecting the optimal order of the network representations derived from the
mobility trajectories of the 1, 500 handsets selected from the Device Analyzer dataset.
We first parsed the cid sequences from the mobility trajectories into mobility networks.
In order to remove cids associated with movement, we only defined nodes for cids which
were visited by the handset for at least 15 minutes. Movements from one cid to another
were then recorded as edges in the mobility network.
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Figure 3.4: Optimal order for increasing number of locations.

As outlined in Section 3.3.1, we analysed the pathways of the Device Analyzer dataset
during the entire observation period, applying the model selection method of Scholtes
(2017).3 This method tests graphical models of varying orders and selects the optimal
order by balancing the model complexity and the explanatory power of observations.

We tested higher-order models up to order three. In the case of top−20 mobility
networks, we found routine patterns in the mobility trajectories were best explained with
models of order two for more than 20% of the users. However, when considering top−100,
top−200, top−500 and full mobility networks, we found that the optimal model for our
dataset has order one for more than 99% of the users; see Fig. 3.4. In other words, when
considering mobility trajectories which visit less frequent locations in the graph, the
overall increase in likelihood of the data for higher-order models cannot compensate for
the complexity penalty induced by the larger state space. Hence, while there might still
be regions in the graph which are best represented by a higher-order model, the optimal
order describing the entire graph is one. Therefore we use a model of order one in the
rest of this chapter.

3.4.3 Data properties and statistics

In Table 3.1 we provide a statistical summary of the original and the pruned versions of
the mobility networks. We observe that allowing more locations in the network implies

3https://github.com/IngoScholtes/pathpy

https://github.com/IngoScholtes/pathpy
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Networks # of
networks

Num. of
nodes, avg.

Edges,
avg.

Density,
avg.

Avg.
clust. coef.

Diameter,
avg.

Avg.
short. path

Recurrence
rate (%)

top−50 locations 1, 500 49.9± 1.3 236.6± 78.1 0.19± 0.06 0.70± 0.07 3.42± 0.86 1.93± 0.20 84.7± 5.6
top−100 locations 1, 500 98.3± 7.9 387.1± 144.7 0.08± 0.03 0.60± 0.10 4.67± 1.48 2.33± 0.40 78.3± 7.8
top−200 locations 1, 500 179.2± 37.8 548.2± 246.1 0.04± 0.02 0.47± 0.12 7.52± 4.21 3.07± 1.18 73.0± 9.9

full 1, 500 334.6± 235.8 741.6± 527.3 0.02± 0.02 0.33± 0.09 15.98± 10.18 4.84± 2.93 68.8± 12.3

Table 3.1: Summary statistics of mobility networks in the Device Analyzer dataset.

an increase in the variance of their statistics, and leads to smaller density, larger diameter
and larger average shortest-path values.

A recurrent edge traversal in a mobility network occurs when a previously traversed
edge is traversed for a second or subsequent time. We then define recurrence rate as
the percentage of edge traversals which are recurrent. We find that mobility networks
display a high recurrence rate, varying from 68.8% on average for full networks to 84.7%
for the top−50 networks, indicating that the mobility of the users is mostly comprised of
repetitive transitions between a small set of nodes in a mobility network.

Fig. 3.3b displays the normalized histogram and probability density estimate of
network size for full mobility networks. We observe that sizes of few hundred nodes are
most likely in our dataset, however mobility networks of more than 1, 000 nodes also
exist. Reducing the variance in network size will be proved helpful in cross-network
similarity metrics, hence we also consider truncated versions of the networks.

As shown in Fig. 3.3c, the parsed mobility network of a typical user is characterized
by a heavy-tailed degree distribution. We observe that a small number of locations have
high degree and correspond to dominant states for a person’s mobility routine, while a
large number of locations are only visited a few times throughout the entire observation
period and have a small degree.

Fig. 3.3d shows the estimated probability distribution of average edge weight. This
peaks in the range from two to four, indicating that many transitions captured in the full
mobility network are rarely repeated. However, most of the total weight of the network
is attributed to the tail of this distribution, which corresponds to the edges that the user
frequently repeats.

3.4.4 Anonymity clusters on top−N networks

We examine to what extent the heterogeneity of users’ mobility behaviour can be expressed
in the topology of the state connectivity networks. For this purpose, we generate the
isomorphism classes of the top−N networks of our dataset for increasing network size
N . We then compute the graph k−anonymity of the population and the corresponding
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N 4 5 6 7 8 9
# undirected 11 34 156 1,044 12,346 274,668

N 4 5 6 7
# directed 2,128 9,608 1,540,944 882,033,440

Table 3.2: Sequences of non-isomorphic graphs for undirected and directed graphs of
increasing size.

identifiability set. This analysis demonstrates empirically the privacy implications of
releasing anonymized users pathway information at increasing levels of granularity.

Before presenting our findings on the Device Analyzer dataset, we will perform a
theoretical upper bound analysis on the identifiability of a population, by finding the
maximum number of people that can be distinguished by networks of size N . This
corresponds to the number of non-isomorphic graphs with N nodes.

Currently the most efficient way of enumerating non-isomorphic graphs is by using the
algorithm of McKay and Piperno (2014), implemented in the package nauty.4 Table 3.2
presents the enumeration for undirected and directed non-isomorphic graphs of increasing
size. We observe that there exist 12, 346 undirected graphs with 8 nodes and 9, 608
directed graphs with 5 nodes. In other words, finding the top−8 places for each person is
the smallest number which could produce unique graphs for each person in our sample of
1, 500 individuals; this reduces to 5 when directionality is taken into account. Moreover,
we find that top−12 undirected and top−8 directed networks are sufficient to enable each
human on the planet to be represented by a different graph, assuming world population
of 7.6B.

Next we present the results of our analysis on the Device Analyzer data. As observed
in Fig. 3.5, sparsity arises in a mobility network even for very small N . In particular,
in the space of undirected top−4 location networks, there is already a cluster with
only 3 members, while for all N > 4 there always exist isolated isomorphic clusters.
k−anonymity decreases to 1 even for N = 3 when considering directionality. Moreover,
the identifiability set dramatically increases with the size of network: approximately
60% of the users are uniquely identifiable from their top−10 location network. This
percentage increases to 93% in directed networks. For the entire population of the 1, 500
users, we find that 15 and 19 locations suffice to form uniquely identifiable directed and
undirected networks respectively.

The difference between our empirical findings and our theoretical analysis suggests
that large parts of the top−N networks are common to many people. This can be

4http://pallini.di.uniroma1.it/

http://pallini.di.uniroma1.it/
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(a) Undirected top−N networks. (b) Directed top−N networks.

Figure 3.5: Identifiability set and k−anonymity for undirected and directed top−N
mobility networks for increasing number of nodes. Displayed is also the theoretical upper
bound of identifiability for networks with N nodes.

(a) Median anonymity size. (b) Cumulative distribution of the anonymity
size.

Figure 3.6: Anonymity size statistics over the population of top−N mobility networks
for increasing network size.

attributed to patterns that are widely shared (e.g. the trip from work to home, and from
home to work).

Fig. 3.6 shows some additional statistics of the anonymous isomorphic clusters formed
for varying network sizes. Median anonymity becomes one for network sizes of five and
eight in directed and undirected networks respectively; see Fig. 3.6a. In Fig. 3.6b we
observe that the population arranges into clusters with small anonymity even for very
small network sizes: around 5% of the users have at most 10-anonymity when considering
only five locations in their network, while this percentage increases to 80% and 100% for
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networks with 10 and 15 locations. This result confirms that anonymity is even harder
when the directionality of edges is provided, since the space of directed networks is much
larger than the space of the undirected networks with the same number of nodes.

The above empirical results indicate that the diversity of individuals’ mobility is
reflected in the network representations we use, thus we can meaningfully proceed to
discriminative tasks on the population of mobility networks.

3.5 Evaluation of privacy loss in longitudinal mobil-
ity traces

In this section we empirically quantify the privacy leakage implied by the information
of longitudinal mobility networks for the population of users in the Device Analyzer
dataset. For this purpose we undertake experiments in graph set matching using different
kernel functions, and assume an adversary has access to a variety of mobility network
information.

3.5.1 Experimental setup

For our experiments we split the cid sequences of each user into two sets: the training
sequences where users’ identities are disclosed to the adversary, and the test sequences
where user identities are undisclosed to the adversary, and are used to quantify the
success of the adversarial attack. Therefore each user has two mobility networks: one
derived from the training sequences, and one derived from the test sequences. The
objective of the adversary is to successfully match every test mobility network with the
training mobility network representing the same underlying user. To do so, the adversary
computes the pairwise distances between training mobility networks and test mobility
networks. We partitioned cid sequences of each user by time, placing all cids before
the partition point in the training set, and all subsequent cids into the test set. We
choose the partition point separately for each user as a random number from the uniform
distribution with range 0.3 to 0.7.

3.5.2 Mobility networks & kernels

We computed the pairwise distances between training and test mobility networks using
kernels from the categories described in Section 3.3. Node attributes are supported in
the computation of Weisfeiler-Lehman and Shortest-Path kernel. Thus, in this part of
the study, we augmented the individual mobility networks with categorical features,
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to add some information about the different roles of nodes in users’ mobility routine.
Such attributes are computed independently for each user on the basis of the topological
information of each network. After experimenting with several schemes, we obtained the
best performance on the kernels when dividing locations into three categories with respect
to the frequency in which each node is visited by the user. Concretely, we computed the
distribution of users’ visits to locations and added the following values to the nodes:

ac=3 (vu
i ) :=


3, if vu

i ∈ top−20% locations of u
2, if vu

i /∈ top−20% locations of u and vu
i ∈ top−80% locations

1, otherwise.

This scheme allowed a coarse, yet informative, characterisation of locations in users’
networks, which was robust to the variance in the frequency of visits between the two
observation periods. In addition, we removed 40% of edges with the smallest edge weights
and retained only the largest connected component for each user.

Due to its linear complexity, the computation of the Weisfeiler-Lehman kernel could
scale over entire mobility networks. However, we had to reduce the network size in order
to apply the Shortest-Path kernel. This was done using top−N networks for varying size
N .

3.5.3 Evaluation
We evaluated graph kernels functions from the following categories:

• DSPN : Deep Shortest-Path kernel on top−N network

• DWLN : Deep Weisfeiler-Lehman kernel on top−N network

• DD: Degree Distribution kernel through Gaussian RBF

• WD: Weighted Degree distribution through Gaussian RBF

The Cumulative Density Functions (CDFs) of the true label rank for the best performing
kernel of each category are presented in Fig. 3.7.

If mobility networks are unique, an ideal retrieval mechanism would correspond to a
curve that reaches 1 at rank one, indicating a system able to correctly deanonymize all
traces by matching the closest training graph. This would be the case when users’ training
and test networks are identical, thus the knowledge of the latter implies maximum privacy
loss.
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Figure 3.7: CDF of true rank over the population according to different kernels.

Our baseline, random, is a strategy which reflects the policy of an adversary with
zero knowledge about the mobility networks of the users, who simply returns uniformly
random orderings of the labels. The CDF of true labels’ rank for random lies on the
diagonal line. We observe that atomic substructure based kernels significantly outperform
the random baseline performance by defining a meaningful similarity ranking across the
mobility networks.

The best overall performance is achieved by the DSP kernel on graphs pruned to
200 nodes. In particular, this kernel places the true identity among the closest 10
networks for 10% of the individuals, and among the closest 200 networks for 80% of
the population. The Shortest-Path kernel has an intuitive interpretation in the case of
mobility networks, since its atomic substructures take into account the hop distances
among the locations in a user’s mobility network and the popularity categories of the
departing and arrival locations. The deep variant can also account for variation at the
level of such substructures, which are more realistic when considering the stochasticity
in the mobility patterns inherent to our dataset.

The best performance of the Weisfeiler-Lehman kernel is achieved by its deep variant
for h = 2 iterations of the WL test for a mobility network pruned to 200 nodes. This
phenomenon is explainable via the statistical properties of the mobility networks. As



3.5 Evaluation of privacy loss in longitudinal mobility traces 47

we saw in Section 3.4.3, the networks display power law degree distribution and small
diameters. Taking into account the steps of the WL test, it is clear that these topological
properties will lead the node relabeling scheme to cover the entire network after a very
small number of iterations. Thus local structural patterns will be described by few
features produced in the first iterations of the test. Furthermore, the feature space of the
kernel increases very quickly as a function of h, which leads to sparsity and low levels of
similarity over the population of networks.

Histograms of length 103 were also computed for the unweighted and weighted degree
distributions and passed through a Gaussian RBF kernel. We can see that the unweighted
degree distribution DD gives almost a random ranking, as this kernel produces a very
high-dimensional mapping, which is heavily dependent on the network size. When
including the normalized edge weights, the WD kernel only barely outperforms a random
ranking. Repetitions on pruned versions, which partly mitigate dimensionality effects,
did not significantly improve the performance and are not presented for brevity.

Based on the insights obtained from our experiment, we can make the following
observations with respect to attributes of individual mobility and their impact on the
identifiability of networks:

• Transition pruning: Including very rare transitions in longitudinal mobility does
not add discriminative information. We consistently obtained better results when
truncating the long tail of edge weight distribution, which led us to analyze versions
of the networks where 40% of the weakest edges were removed.

• Frequency information of locations: The frequency of visits to nodes in the
mobility network allows better ranking by kernels which support node attributes,
e.g. the Weisfeiler-Lehman and the Shortest-Path kernel. This information should
follow a coarse scheme, in order to compensate for the temporal variation of location
popularity in mobility networks.

• Directionality of transitions: Directionality generally enhances the identifiabil-
ity of networks and guides the similarity computation when using Shortest-Path
kernels.

3.5.4 Quantification of privay loss
The Deep Shortest-Path kernel on top−200 networks offers the best ranking of identities
for the test networks. As observed in Fig. 3.8, the mean of the true rank has been
shifted from 750 to 140 for our population. In addition, the variance is much smaller:
approximately 218, instead of 423 for the random ordering.
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Figure 3.8: Boxplot of rank for the true
labels of the population according to
a Deep Shortest-Path kernel and to a
random ordering.

Figure 3.9: Privacy loss over the test
data of our population for an adversary
adopting the informed policy of (3.10).
Median privacy loss is 2.52.

The obtained ordering implies a significant decrease in user privacy, since the ranking
can be leveraged by an adversary to determine the most likely matches between a training
mobility network and a test mobility network. The adversary can estimate the true
identity of a given test network G′, as suggested in Section 3.3.4.2, applying some simple
probabilistic policy that uses pairwise similarity information. For example, let us examine
the privacy loss implied by the update rule in (3.8) for function f :

f (KDSP(Gi, G
′)) := 1

rank (KDSP (Gi, G′))
. (3.10)

This means that the adversary updates her probability estimate for the identity
corresponding to a test network, by assigning to each possible identity a probability that
is inversely proportional to the rank of the similarity between the test network and the
training network corresponding to the identity.

From equation (3.9), we can compute the induced privacy loss for each test network,
and the statistics of privacy loss over the networks of the Device Analyzer population.
Fig. 3.9 demonstrates considerable privacy loss with a median of 2.52. This means that
the informed adversary can achieve a median deanonymization probability 3.52 times
higher than an uninformed adversary. Moreover, the positive mean of privacy loss (≈ 27)
means that the probabilities of the true identities of the test networks have, on average,
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much higher values in the adversarial estimate compared to the uninformed random
strategy. Hence, revealing the kernel values makes an adversarial attack easier.

3.5.5 Defense mechanisms

The demonstrated privacy leakage motivates the quest for defense mechanisms against
this category of attacks. There are a variety of techniques which we could apply in
order to reduce the recurring patterns of an individual’s mobility network over time and
decrease the diversity of mobility networks across a population, therefore enhancing the
privacy inherent in these graphs. Examples include noise injection on network structure
via several strategies: randomization of node attributes, perturbations of network edges,
or node removal. It is currently unclear how effective such techniques will be, and what
trade-off can be achieved between utility in mobility networks and the privacy guarantees
offered to individuals whose data the graphs represent. Moreover, it seems appropriate to
devise kernel-agnostic techniques, suitable for generic defense mechanisms. For example,
it is of interest to assess the resistance of our best similarity metric to noise, as the main
purpose of deep graph kernels is to be robust to small dissimilarities at the substructure
level.

We think this study is important for one further reason: kernel-based methods allow
us to apply a rich toolbox of learning algorithms without accessing the original datapoints,
or their feature vectors, but instead by querying their kernel matrix. Thus studying the
anonymity associated with kernels is valuable for ensuring that such learning systems do
not leak the privacy of the original data.

3.6 Summary & discussion
In this chapter we have shown that the mobility networks of individuals exhibit significant
diversity, and the topology of the mobility network itself, without explicit privacy-revealing
labels, may be unique and therefore uniquely identifying.

An individual’s mobility network is dynamic over time. Therefore, an adversary
with access to mobility data of a person from one time period cannot simply test for
graph isomorphism to retrieve the same user from a dataset recorded at a different
point in time. Hence we proposed graph kernel methods to detect structural similarities
between two mobility networks, and thus provide the adversary with information on
the likelihood that two mobility networks represent the same individual. While graph
kernel methods are imperfect predictors, they perform significantly better than a random
strategy and therefore our approach induces significant privacy loss. Our approach does
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not make use of geographic information or fine-grained temporal information. Therefore,
our method is immune to commonly adopted privacy intending practices of geographic
information masking or removal, and temporal cloaking, and thus it may lead to new
mobility deanonymization attacks.

Moreover, we find that reducing the number of edges (transitions between locations)
in a mobility network does not necessarily make the network more privacy-preserving,
while user anonymity is violated even when reducing the number of nodes (locations).
Conversely, releasing the frequency of node visits and the direction of transitions in
a mobility network does aid the identifiablility of a mobility network for adversaries
applying graph kernel similarity metrics on identified historical data. We provide empirical
evidence that neighborhood relations in the high-dimensional spaces generated by the
tested deep graph kernels remain meaningful for our dataset of networks (Beyer et al.,
1999). Further work is needed to shed more light on the geometry of those spaces in
order to derive the optimal substructures and dimensionality required to support best
graph set matching. More work is also required to understand the sensitivity of our
approach to the time period over which mobility networks are constructed. There is also
an opportunity to explore better ways of exploiting pairwise distance information.

Beyond emphasizing the vulnerability of popular anonymization techniques based on
user-specific location pseudonymization, our work provides insights into network features
that can facilitate the identifiability of location traces. Our framework also opens the
door to new anonymization techniques that can apply structural similarity methods
to individual traces in order to cluster people with similar mobility behaviour. This
approach may then support statistically faithful population mobility studies on mobility
networks securing k−anonymity guarantees for participants.

Apart from graph kernel similarity metrics, tools for network deanonymization can
also be sought in the direction of graph mining: applying heavy subgraph mining
techniques (Bogdanov et al., 2011), or searching for persistent cascades (Morse et al.,
2016). Frequent substructure pattern mining (e.g. gSpan, Yan and Han (2002)) and
discriminative frequent subgraph mining (e.g. CORK, Thoma et al. (2010)) techniques
can also be considered.

Our methodology is, in principle, applicable to all types of data where individuals
transition amongst a set of discrete states. Therefore, the performance of such retrieval
strategies can also be evaluated on different categories of datasets, such as web browsing
histories, or smartphone application usage sequences.

A drawback of our current approach is that it cannot be directly used to mimic
individual or group mobility by synthesizing traces. Fitting a generative model on
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mobility traces and then defining a kernel on this model (Song et al., 2011) may provide
better anonymity, and therefore privacy, and it would also support the generation of
artificial traces which mimic the mobility of users.





Chapter 4

Bayesian Pseudocoresets

In Chapter 2, we exposed the prohibitive computational limitations of Bayesian inference
in the regime of modern large-scale data, and discussed coreset-based summarization
as a viable solution for scalable approximate inference under statistical guarantees.
In Chapter 3, we considered a case study on a massive high-dimensional dataset capturing
longitudinal mobility information of a population, and quantified the privacy loss incurred
via coarse representations of the datapoints that can be used for fast data analysis.
Motivated by the quest for scalable learning methods on sensitive data, in this chapter
we propose pseudocoreset variational inference, a general-purpose approximate inference
method designed to enable scalable inference on high-dimensional datasets, under the
guarantees of approximate differential privacy.

We begin by investigating the shortcomings of existing Bayesian coreset constructions
in the increasingly common setting of sensitive, high-dimensional data. In particular,
we prove that there are situations in which the Kullback-Leibler divergence between
the optimal coreset and the true posterior grows with data dimension; and as coresets
include a subset of the original data, they cannot be constructed in a manner that pre-
serves individual privacy. We address both of these issues with a single unified solution,
Bayesian pseudocoresets—a small weighted collection of synthetic “pseudodata”—along
with a variational optimization method to select both pseudodata and weights. The use
of pseudodata (as opposed to the original datapoints) enables both the summarization
of high-dimensional data and the differentially private summarization of sensitive data.
Real and synthetic experiments on high-dimensional data demonstrate that Bayesian
pseudocoresets achieve significant improvements in posterior approximation error reduc-
tion compared to traditional coresets, and that pseudocoresets provide privacy without a
significant loss in approximation quality.
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4.1 Related work & contributions

Large-scale data—which has become the norm in many scientific and commercial ap-
plications of statistical machine learning—creates an inherently difficult setting for the
modern data analyst. Exploring such data is difficult because it cannot all be obtained
and directly visualized at once; one is typically limited to accessing potentially nonrepre-
sentative random subsets of data. Exploring models is similarly hard, as training even a
single model can be a computationally expensive, slow, and unreliable process. And as
many sources of large-scale data contain sensitive information about individuals (e.g.,
electronic health records and social network data), these challenges are coupled with
growing privacy concerns that preclude direct access to individual datapoints completely.

Large-scale data does offer one reprieve to the analyst: it often exhibits a significant
degree of redundancy. Most datapoints are not unique or particularly informative for
modeling and exploration. Based on this notion, data summarization methods have
been developed that provide the practitioner with a compressed—but still statistically
representative—version of the large dataset for analysis. Summarizations have been
developed for a variety of purposes, e.g., reducing the cost of computing with kernel
matrices via Nyström-type approximations (Drineas and Mahoney, 2005; Musco and
Musco, 2017; Agrawal et al., 2019) or sparse pseudo-input parameterizations for Gaussian
processes (Williams and Seeger, 2001; Csató and Opper, 2002; Snelson and Ghahramani,
2005; Titsias, 2009), Bayesian inference (Huggins et al., 2016; Huggins et al., 2017; Camp-
bell and Broderick, 2018; 2019), maximum likelihood parameter estimation (DuMouchel
et al., 1999; Madigan et al., 2002), linear regression (Zhou et al., 2007; Guhaniyogi and
Dunson, 2015), geometric shape approximation (Agarwal et al., 2005), clustering (Feld-
man et al., 2011; Bachem et al., 2015; Braverman et al., 2016; Lucic et al., 2016b), and
dimensionality reduction (Feldman et al., 2016).

A common form of summarization is that of a sparse, weighted subset of the original
dataset—a coreset (Agarwal et al., 2005). Coresets have two distinct advantages over
other possible summarization modalities: they are easily interpreted, and can often be
used as the input to standard data analysis algorithms without modification. But as
the dimensionality of a dataset grows, its constituent datapoints tend to become more
“unique” and cannot represent one another well. Indeed, in the context of Bayesian
inference we show that the optimal coreset posterior approximation to the true posterior
has KL divergence that scales with the dimension of the data in a simple problem setting
(Proposition 16). Furthermore, directly releasing a subset of the original data precludes
any possibility of individual privacy under the current standard of differential privacy
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(Dwork et al., 2006c; Dwork and Roth, 2014). Past work addresses this issue in the
context of clustering and computational geometry (Feldman et al., 2009; 2017)—with
the remarkable property that the privatized coreset may be queried ad infinitum without
loss of privacy—but no such method exists for Bayesian posterior inference.

In this chapter, we develop a novel technique for data summarization in the context
of Bayesian inference, under the constraints that the method is scalable and easy to
use, creates an intuitive summarization, applies to high-dimensional data, and enables
privacy control. Inspired by past work (Madigan et al., 2002; Snelson and Ghahramani,
2005; Zhou et al., 2007; Titsias, 2009), instead of using constituent datapoints, we
use synthetic pseudodata to summarize the large dataset, resulting in a pseudocoreset.
We show that in the high-dimensional problem setting of Proposition 16, the optimal
pseudocoreset with just one pseudodata point recovers the exact posterior, a significant
improvement upon the optimal standard coreset of any size. As in past work on Bayesian
coresets (Campbell and Beronov, 2019), we formulate pseudocoreset construction as
variational inference, and provide a stochastic optimization method (Section 4.3). As a
consequence of the use of pseudodata—as well as privacy-preserving stochastic gradient
descent mechanisms (Abadi et al., 2016; Jälkö et al., 2017; Park et al., 2020)—we show
that our method can easily be modified to output a privatized pseudocoreset. The chapter
concludes with experimental results demonstrating the performance of pseudocoresets on
real and synthetic data (Section 4.4).

4.2 Existing Bayesian coresets

Our goal is to approximate expectations under a density π(θ), θ ∈ Θ expressed as the
product of N potentials (f(xn, θ))N

n=1 and a base density π0(θ):

π(θ) := 1
Z

exp
(

N∑
n=1

f(xn, θ)
)
π0(θ). (4.1)

In the setting of Bayesian inference with conditionally independent data, the potentials
are data log-likelihoods, i.e. f(xn, θ) := log π(xn|θ), π0 is the prior density, π is the
posterior, and Z is the marginal likelihood of the data. Rather than working directly
with π(θ) for posterior inference—which requires a Θ(N) computation per evaluation—a
Bayesian coreset approximation of the form

πw(θ) := 1
Z(w) exp

(
N∑

n=1
wnf(xn, θ)

)
π0(θ) (4.2)
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for w ∈ RN , w ≥ 0 may be used in most popular posterior inference schemes (Neal, 2011;
Ranganath et al., 2014; Kucukelbir et al., 2017). If the number of nonzero entries ∥w∥0

of w is small, this results in a significant reduction in computational burden. Recent
work has formulated the problem of constructing a Bayesian coreset of size M ∈ N as
sparse variational inference (Campbell and Beronov, 2019),

w⋆ = arg min
w∈RN

DKL (πw||π) s.t. w ≥ 0, ∥w∥0 ≤M, (4.3)

and showed that the objective can be minimized using stochastic estimates of∇wDKL (πw||π)
based on samples from the coreset posterior πw.

4.2.1 High-dimensional data

Coresets, as formulated in Eq. (4.3), are limited to using the original datapoints themselves
to summarize the whole dataset. Proposition 16 shows that this is problematic when
summarizing high-dimensional data; in the common setting of posterior inference for a
Gaussian mean, the KL divergence DKL (πw⋆||π) of the optimal coreset of any size scales
with the dimension of the data. The proof may be found in Appendix A.1.

Proposition 16. Suppose we use (Xn)N
n=1

i.i.d.∼ N (0, I) in Rd to perform posterior infer-
ence in a Bayesian model with prior µ ∼ N (0, I) and likelihood (Xn)N

n=1
i.i.d.∼ N (µ, I).

Then ∀M < d and δ ∈ [0, 1], with probability at least 1− δ the optimal size-M coreset w⋆

satisfies

DKL (πw⋆||π) ≥ 1
2
N −M
1 +N

F−1
d−M

δ(N
M

)−1
 , (4.4)

where Fk is the CDF of a χ2 random variable with k degrees of freedom.

The bound in Proposition 16 depends on d through the χ2 distribution inverse CDF.
Although difficult to see directly, the bound is reasonably large for typical values of
N,M, d, δ, and increasing linearly in d; Fig. 4.1b visualizes the value of the lower bound
as a function of dimension d for various coreset sizes M . Note that the above bound
requires the data to be high-dimensional such that d > M ; if d ≤M the proof technique
used in Appendix A.1 results in a vacuous DKL (πw⋆ ||π) = 0 lower bound.
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(a) (b)

Figure 4.1: Gaussian mean inference under pseudocoreset (PSVI) against standard coreset
(SparseVI) summarization for N = 1, 000 datapoints. (a) Progression of PSVI vs. Spar-
seVI construction for coreset sizes M = 0, 1, 5, 12, 30, 100, in 500 dimensions (displayed
are datapoint projections on 2 random dimensions). PSVI and SparseVI coreset predic-
tive 3σ ellipses are displayed in red and blue respectively, while the true posterior 3σ
ellipse is shown in black. PSVI has the ability to immediately move pseudopoints towards
the true posterior mean, while SparseVI has to add a larger number of existing points
in order to obtain a good posterior approximation. See Fig. 4.2b for the quantitative KL
comparison. (b) Optimal coreset KL divergence lower bound from Proposition 16 as a
function of dimension with δ = 0.5, and coreset size M evenly spaced from 0 to 100 in
increments of 5.

4.3 Bayesian pseudocoresets

Proposition 16 shows that there is room for improvement in coreset construction in the
high-dimensional data regime. Indeed, consider again the same problem setting; the
coreset posterior distribution is a Gaussian with mean µw and covariance Σw,

Σw =
(

1 +
N∑

n=1
wn

)−1

I µw = Σw

N∑
n=1

wnXn. (4.5)

Examining Eq. (4.5), we can replicate any coreset posterior exactly by using a single
synthetic pseudodata point U =

(∑N
n=1 wn

)−1∑N
n=1 wnXn with weight ∑N

n=1 wn. In
particular, the true posterior is equivalent to the posterior conditioned on the single
pseudodata point U = 1

N

∑N
n=1 Xn with weight N (with corresponding KL divergence

equal to 0), indicating the absence of a lower bound for the KL divergence of the
optimal coreset defined on pseudodata in the setting of Proposition 16 regardless of data
dimensionality.
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Corollary 17. Suppose the same setting with Proposition 16. The optimal size-M pseu-
docoreset (u⋆, w⋆) defined on pseudodata u1, . . . , uM ∈ Rd achieves DKL (πu⋆,w⋆||π) = 0,
for any size M ≥ 1 and any data dimension d.

This is not surprising; the mean of the data is precisely a sufficient statistic for the
data in this simple setting. However, it does illustrate that carefully-chosen pseudodata
may be able to represent the overall dataset—as “approximate sufficient statistics”—far
better than any reasonably small collection of the original data. This intuition has
been used before, e.g., for scalable Gaussian process inference (Snelson and Ghahramani,
2005; Titsias, 2009), privacy-preserving compression in linear regression (Zhou et al.,
2007), herding (Welling, 2009; Chen et al., 2010; Huszár and Duvenaud, 2012), and deep
generative models (Tomczak and Welling, 2018).

In this section, we extend the realm of applicability of pseudopoint compression
methods to the general class of Bayesian posterior inference problems with condition-
ally independent data, resulting in Bayesian pseudocoresets. Building on recent work
(Campbell and Beronov, 2019), we formulate pseudocoreset construction as a variational
inference problem where both the weights and pseudopoint locations are parameters of
the variational posterior approximation, and develop a stochastic algorithm to solve the
optimization.

4.3.1 Pseudocoreset variational inference

A Bayesian pseudocoreset takes the form

πu,w(θ) = 1
Z(u,w) exp

(
M∑

m=1
wmf(um, θ)

)
π0(θ), (4.6)

where u := (um)M
m=1 are M pseudodata points um ∈ Rd, (wm)M

m=1 are nonnegative weights,
f : Rd ×Θ→ R is a potential function parametrized by a pseudodata point, and Z(u,w)
is the corresponding normalization constant rendering πu,w a probability density. In the
setting of Bayesian posterior inference, um will take the same form as the data, while the
potentials are the log-likelihood functions, i.e. f(um, θ) = log π(um|θ). We construct a
coreset by minimizing the KL divergence over both the pseudodata locations and weights,

u⋆, w⋆ = arg min
u∈Rd×M ,w∈RM

+

DKL (πu,w||π) . (4.7)

As opposed to previous Bayesian coreset construction optimization problems (Campbell
and Broderick, 2018; Campbell and Beronov, 2019; Campbell and Broderick, 2019), we
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do not need an explicit sparsity constraint; the coreset size is limited to M directly
through the selection of the number of pseudodata and weights.

Denote the vectors of original data potentials f(θ) ∈ RN and synthetic pseudodata
potentials f̃(θ) ∈ RM as f(θ) := [f1(θ) . . . fN(θ)]T and f̃(θ) := [f(u1, θ) . . . f(uM , θ)]T

respectively, where we suppress the (θ) for brevity where clear from context. Denote
Eu,w and Covu,w to be the expectation and covariance operator for the pseudocoreset
posterior πu,w. Then we may write the KL divergence in Eq. (4.7) as

DKL (πu,w||π) =Eu,w[log πu,w(θ)]− Eu,w[log π(θ)]
= logZ(1)− logZ(u,w)− 1TEu,w[f ] + wTEu,w[f̃ ], (4.8)

where 1 ∈ RN is the vector of all 1 entries, and w ∈ RM is the vector of pseudocoreset
weights.

As we will employ gradient descent steps as part of our algorithm to minimize the
variational objective over the parameters u,w, we need to evaluate the derivative of
the KL divergence Eq. (4.8). Despite the presence of the intractable normalization
constants and expectations, we show in Appendix A.2 that gradients can be expressed
using moments of the pseudodata and original data potential vectors. In particular, the
gradients of the KL divergence with respect to the weights w and to a single pseudodata
location um are

∇wDKL = −Covu,w

[
f̃ , fT 1− f̃Tw

]
, ∇umDKL = −wm Covu,w

[
h(um), fT 1− f̃Tw

]
,

(4.9)

where h(·, θ) := ∇uf(·, θ), and the θ argument is again suppressed for brevity.

4.3.2 Stochastic optimization

The gradients in Eq. (4.9) involve expectations of (gradient) log-likelihoods from the
model. Although there are a few particular Bayesian models where these can be evaluated
in closed-form (e.g. the synthetic experiment in Section 4.4.1; see also Appendix A.3.1),
this is not usually the case. In order to make the proposed pseudocoreset method
broadly applicable, in this section we develop a black-box stochastic optimization scheme
(Algorithm 1) for Eq. (4.7).
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Algorithm 1 Pseudocoreset Variational Inference
1: procedure PSVI(f(·, ·), π0, x,M,B, S, T, (γt)∞t=1)

▷ Initialize the pseudocoreset using a uniformly chosen subset of the full dataset
2: N ← # datapoints in x, B ∼ UnifSubset ([N ],M) , B := {b1, . . . , bM}
3: um ← xbm , wm ← N/M, m = 1, . . . ,M
4: for t = 1, . . . , T do

▷ Take S samples from current pseudocoreset posterior
5: (θ)S

s=1
i.i.d.∼ πu,w where πu,w(θ) ∝ exp

(∑M
m=1 wmf(um, θ)

)
π0(θ)

6: B ∼ UnifSubset ([N ], B) ▷ Obtain a minibatch of B points from the full data
7: for s = 1, . . . , S do ▷ Compute (gradient) log-likelihood discretizations
8: gs ←

(
f(xb, θs)− 1/S

∑S
s′=1 f(xb, θs′)

)
b∈B
∈ RB

9: g̃s ←
(
f(um, θs)− 1/S

∑S
s′=1 f(um, θs′)

)M

m=1
∈ RM

10: for m = 1, . . . ,M do
11: h̃m,s ← ∇uf(um, θs)− 1/S

∑S
s′=1∇uf(um, θs′) ∈ Rd

12: ∇̂w ← −1/S
∑S

s=1 g̃s

(
N/BgT

s 1− g̃T
s w
)
▷ Compute Monte-Carlo gradients for w

13: for m = 1, . . . ,M do and (um)M
m=1

14: ∇̂um ← −wm
1/S
∑S

s=1 h̃m,s

(
N/BgT

s 1− g̃T
s w
)

15: w ← max(w − γt∇̂w, 0) ▷ Take stochastic gradient step in w
16: for m = 1, . . . ,M do and (um)M

m=1
17: um ← um − γt∇̂um

18: return w, (um)M
m=1

To initialize the pseudocoreset, we subsample M datapoints from the large dataset
and reweight them to match the overall weight of the full dataset,

um ← xbm , wm ← N/M, m = 1, . . . ,M (4.10)
B ∼ UnifSubset ([N ],M) , B := {b1, . . . , bM} . (4.11)

After initializing the pseudodata locations and weights, we simultaneously optimize
Eq. (4.7) over both. Each optimization iteration t ∈ {1, . . . , T} consists of a stochastic
gradient descent step with a learning rate γt ∝ t−1,

wm ← max
(
0, wm − γt(∇̂w)m

)
, um ← um − γt∇̂um , 1 ≤ m ≤M. (4.12)

The stochastic gradient estimates ∇̂w ∈ RM and ∇̂um ∈ Rd are based on S ∈ N samples
θs

i.i.d.∼ πu,w from the coreset approximation and a minibatch of B ∈ N datapoints from
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the full dataset,

∇̂w := − 1
S

S∑
s=1

g̃s

(
N

B
gT

s 1− g̃T
s w
)
, (4.13)

∇̂um
:= −wm

1
S

S∑
s=1

h̃m,s

(
N

B
gT

s 1− g̃T
s w
)
, (4.14)

where

h̃m,s := ∇uf(um, θs)−
1
S

S∑
s′=1
∇uf(um, θs′), gs :=

(
f(θs)−

1
S

S∑
s′=1

f(θs′)
)∣∣∣∣∣
B

,

g̃s := f̃(θs)−
1
S

S∑
s′=1

f̃(θs′), B ∼ UnifSubset ([N ], B) ,
(4.15)

and (·)|B denotes restriction of a vector to only those indices in B ⊂ [N ]. Crucially, note
that this computation does not scale with N , but rather with the number of coreset
points M , the sample and minibatch sizes S and B, and the dimension d. Obtaining
θs

i.i.d.∼ πu,w efficiently via Markov chain Monte Carlo sampling algorithms (Hoffman and
Gelman, 2014; Jacob et al., 2020) is (roughly) O(M) per sample, because the coreset is
always of size M ; and we need not compute the entire vector gs ∈ RN per sample s, but
rather only those B ≪ N indices in the minibatch B, resulting in a cost of O(B). Aside
from that, all computations involving g̃s ∈ RM and h̃m,s ∈ Rd are at most O(Md). Each
of these computations is repeated S times over the coreset posterior samples.

4.3.3 Differentially private scheme
Beyond better summarizations of high-dimensional data, pseudocoresets enable the
generation of a data summarization that ensures the statistical privacy of individual
datapoints under the model of (approximate) differential privacy. In this setting, a
trusted curator holds an aggregate dataset of N datapoints, x ∈ XN , X ⊆ Rd, and builds
and releases a pseudocoreset (u,w), u ∈ XM , w ∈ RM

+ via a randomized mechanism
satisfying Definition 18 (Dwork et al., 2006a; b).

Definition 18 ((ε, δ)-Differentially Private Coreset). Fix ε ≥ 0, δ ∈ [0, 1]. A pseu-
docoreset construction algorithm M : XN → RM

+ × XM is (ε, δ)-differentially pri-
vate if for every pair of adjacent datasets x ≈ x′ and all events A ⊆ RM

+ × XM ,
P[M(x) ∈ A] ≤ eεP[M(x′) ∈ A] + δ.

As in Section 2.6, we consider two datasets x, x′ as adjacent (denoted x ≈ x′) if their
Hamming distance equals 1, i.e. x′ can be obtained from x by adding or removing an
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element. ε controls the effect that removal or addition of an element can have on the
output distribution of M, while δ captures the failure probability, and is preferably
o(1/N).

In this section, we develop a differentially private version of pseudocoreset construction.
Beyond modifying our initialization scheme, private pseudocoreset construction comes as
natural extension of Algorithm 1 via replacing gradient computation involving points of
the true dataset with its differentially private counterpart.

4.3.3.1 Pseudodata points initialization

In the standard (nonprivate) pseudocoreset construction (Algorithm 1), pseudopoints are
initialized from the dataset itself, incurring a privacy penalty. In differentially private
pseudocoreset construction, we simply initialize pseudopoints by generating synthetic
data from the statistical model at no privacy cost.

4.3.3.2 Optimization

Examining lines 4–19 of Algorithm 1, the only steps that involve handling the original
data occur at lines 8, 12, and 14, when we use the minibatch subsample to compute
log-likelihoods and gradients. Due to the post-processing property of differential pri-
vacy (Dwork and Roth, 2014), all of the other computations in Algorithm 1 (e.g. sampling
from the pseudocoreset posterior, computing pseudopoint log-likelihoods, etc.) incur no
privacy cost. Therefore, we need only to control the influence of private data entering
the gradient computation through the vector of (gT

s 1)S
s=1 terms.

To accomplish this we do repeated applications of the subsampled Gaussian mechanism,
since this also allows us to use a moments accountant technique to keep tight estimates
of privacy parameters (Abadi et al., 2016; Wang et al., 2019). As in the nonprivate
scheme, in each optimization step we uniformly subsample a minibatch B = {x1, . . . , xB}
of private datapoints. We then replace the gT

s 1 term in lines 12 and 14 with a randomized
privatization:

replace (gT
s 1)S

s=1 with Z +
B∑

i=1

Gi

max
(
1, ||Gi||2

C

) , Z ∼ N (0, σ2C2I), (4.16)

where Gi :=
(
f(xi, θs)− 1

S

∑S
s′=1 f(xi, θs′)

)S

s=1
∈ RS ∀xi ∈ B, and C, σ > 0 are param-

eters controlling the amount of privacy. This modification to Algorithm 1 has been
shown in past work to obtain the privacy guarantee provided in Corollary 19; crucially,
the privacy cost of our construction is independent of the pseudocoreset size. It also
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does not introduce any significant amount of additional computation. No sensitivity
computation for privatisation noise calibration is required, as boundedness is enforced via
clipping in Eq. (4.16). Finally, a manageable number of privacy specific hyperparameters
is introduced: the clipping bound C and noise level σ.

Corollary 19 (Abadi et al. (2016)). There exist constants c1, c2 such that Algorithm 1
modified per Eq. (4.16) is (ε, δ)-differentially private for any ε < c1q

2T , δ > 0, and
σ ≥ c2q

√
T log(1/δ) /ε, where q := B

N
is the fraction of data in a minibatch and T is the

number of optimization steps.

4.4 Experimental results
In this section, we evaluate the posterior approximation quality achieved by pseudo-
coreset VI (PSVI) compared against uniform random subsampling (Uniform), Hilbert
coresets (GIGA, Campbell and Broderick (2018)) and SparseVI greedy coreset con-
struction (Campbell and Beronov, 2019). For black-box constructions of SparseVI and
PSVI we used S = 100 Monte Carlo samples per gradient estimation. For GIGA we
used a 100-dimensional random projection from a Gaussian approximate posterior π̂ with
two choices for mean and covariance: one set to the exact posterior (Optimal), which
is not tractable to obtain in practice and forms an optimistic estimate of achievable
approximation quality; and one with mean and covariance set to a random point on the
interpolant between the prior and the exact posterior point estimates, and subsequently
corrupted with 75% additive relative noise (Realistic). Notably, Hilbert coresets and
SparseVI develop incremental schemes for construction, while PSVI relies on batch
optimization with random initialization (Algorithm 1), and does not use any information
from pseudocoresets of smaller size. An incremental scheme for SparseVI is included
in Appendix A.3.

4.4.1 Gaussian mean inference
We first evaluate the performance of PSVI on a synthetic dataset of N = 103 datapoints,
where we aim to infer the posterior mean θ ∼ N (µ0,Σ0) of a d-dimensional Gaussian
conditioned on Gaussian observations (Xn)N

n=1
i.i.d.∼ N (θ,Σ). In this example, the exact

pseudocoreset posterior for any set of weights (wm)M
m=1 and pseudopoint locations (um)M

m=1

is available in closed-form:

Σu,w = (Σ−1
0 +

M∑
m=1

wmΣ−1)−1 µu,w = Σu,w(Σ−1
0 µ0 + Σ−1

M∑
m=1

wmum). (4.17)
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(a) Gaussian mean infer-
ence, d = 200

(b) Gaussian mean infer-
ence, d = 500

(c) Bayesian linear regres-
sion, d = 100

Figure 4.2: Comparison of (pseudo)coreset approximate posterior quality for experiments
on synthetic datasets over 10 trials. Solid lines display the median KL divergence, with
shaded areas showing 25th and 75th percentiles of KL divergence. In Fig. 4.2c, KL
divergence is normalized by the prior.

Using the exact posterior, we derive the exact moments used in the gradient formulae
from Eq. (4.9) in closed form (see Appendix A.3.1),

Covu,w[fn, fm] = vT
n Ψvm + 1/2 tr ΨT Ψ, Covu,w[f̃n, fm] = ṽT

n Ψvm + 1/2 tr ΨT Ψ,
Covu,w[h(ui), fn] = Q−T Ψvn, Covu,w[h(ui), f̃n] = Q−T Ψṽn,

(4.18)

where Q is the lower triangular matrix of the Cholesky decomposition of Σ (i.e. Σ = QQT ),
Ψ := Q−1Σu,wQ

−T , vn := Q−1(xn − µu,w), and ṽm := Q−1(um − µu,w). We vary the
pseudocoreset size from M = 1 to 200, and set the total number of iterations to
T = 500. We use learning rates γt(M) = α(M)t−1, where α(M) = 1 for SparseVI and
α(M) = max(1.1 − 0.005M, 0.2) for PSVI. As verified in Figs. 4.2a and 4.2b, Hilbert
coresets provide poor quality summarizations in the high-dimensional regime, even for
large coreset sizes. Despite showing faster decrease of approximation error for a larger
range of coreset sizes, SparseVI is also fundamentally limited by the use of the original
datapoints, per Proposition 16. Furthermore, we observe that the quality of all previous
coreset methods when d = 500 is significantly lower compared to d = 200. On the other
hand, the KL divergence for PSVI decreases significantly more quickly, giving a near
perfect approximation for the true posterior with a single pseudodata point regardless
of data dimension. As shown earlier in Fig. 4.1a, PSVI has the capacity to move the
pseudodata points in order to capture the true posterior very efficiently.
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4.4.2 Bayesian linear regression

In the second experiment, we use a set of N = 2, 000 101-dimensional datapoints
(xn, yn)N

n=1 generated as follows: (xn)N
n=1

i.i.d.∼ N (0, I), (yn)N
n=1 ∼ [1, xn]T θ+ϵn, (ϵn)N

n=1
i.i.d.∼

N (0, σ2), and aim to infer θ ∈ R101. We assume a prior θ ∼ N (µ0, σ
2
0I), where µ0, σ

2
0

are the dataset empirical mean and second moment, and set the noise parameter σ to
the variance of (yn)N

n=1. We apply stochastic optimization for PSVI construction (also
see Appendix A.3.2.1). We use learning rates γt = t−1 for SparseVI, and γt = 0.1t−1 for
PSVI, B = 200, T = 1000, while selection step for SparseVI is carried out over the full
dataset. Fig. 4.2c shows that Hilbert coresets cannot improve posterior approximation in
this setting with 100 random projections (see Appendix A.3.2.2), while PSVI achieves
the fastest decay rate over sizes 100 ≤M < 250, surpassing SparseVI.

4.4.3 Bayesian logistic regression

Finally, we compare (pseudo)coreset construction methods on Bayesian logistic regression
applied to 3 large (8.4–100K datapoints, 50–237 dimensions) datasets. For brevity,
equations and gradients for the logistic regression model, additional experiments on
3 smaller-scale datasets, full dataset descriptions, hyperparameter selection, time perfor-
mance evaluation and results on an incremental scheme for pseudocoreset construction
are deferred to Appendix A.3.3. For PSVI and SparseVI we use minibatch size B = 200,
number of gradient updates T = 500, and learning rate schedules γt = αt−1. For Trans-
actions, ChemReact100 and Music, α is respectively set to 0.1, 0.1, 1 for SparseVI,
and 1, 10, 10 for PSVI. In the selection step of SparseVI we use a uniform subsample of
1, 000 datapoints. For the differentially private pseudocoreset constructions (DP-PSVI),
we use a subsampling ratio q = 2 × 10−3. At each iteration we adapt the clipping
norm value C to the median norm of (f(um, θs)− 1

S

∑S
s′=1 f(um, θs′))S

s=1 computed over
pseudodata point values um, and use noise level σ = 5. Our hyperparameters choice
implies privacy parameters ε = 0.2 and δ = 1/N for each of the datasets. We initialise
each pseudocoreset of size M via sampling (xm)M

m=1
i.i.d.∼ N (0, I), and sampling θ, (ym)M

m=1

from the statistical model.
Results presented in Fig. 4.3 demonstrate that PSVI achieves consistently the smallest

posterior approximation error in the small coreset size regime, offering improvement
compared to SparseVI and being competitive with GIGA (Optimal), without the
requirement for specifying a weighting function. In Fig. 4.3a, for M ≥ d GIGA (Op-
timal) follows a much steeper decrease in KL divergence, reflecting the dependence
of its approximation quality on dataset dimension per Proposition 16. In contrast,
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(a) Transactions (d = 50) (b) ChemReact100 (d = 100) (c) Music (d = 237)

Figure 4.3: Comparison of (pseudo)coreset approximate posterior quality vs coreset size
for logistic regression over 10 trials on 3 large-scale datasets. Presented differentially
private pseudocoresets correspond to (0.2, 1/N)-DP. Reverse KL divergence is displayed
normalized by the prior.

(a) Transactions (b) ChemReact100 (c) Music

Figure 4.4: Approximate posterior quality over decreasing differential privacy guarantees
for private pseudocoresets of varying size (DP-PSVI) plotted against private variational
inference (DP-VI, Jälkö et al. (2017)). δ is always kept fixed at 1/N . Markers on the
right end of each plot display the errorbar of approximation achieved by the corresponding
nonprivate posteriors. Results are displayed over 5 trials for each construction.

PSVI typically reaches its minimum at M < d. The difference in approximation quality
becomes clearer in higher dimensions (e.g. Music, where d = 237). Perhaps surprisingly,
the private pseudocoreset construction has only marginally worse approximation quality
compared to nonprivate PSVI and generally achieves better peformance in comparison
to the other state-of-the-art nonprivate coreset constructions.

In Fig. 4.4 we present the achieved posterior approximation quality via DP-PSVI,
against a competitive state-of-the-art method for general-purpose private inference (DP-
VI, Jälkö et al., 2017). The plots display the behaviour of methods over a wide range
of ε values, achieved using varying levels of privatization noise, and δ always set to
1/N . For logistic regression, DP-VI infers an approximate posterior from the family
of Gaussians with diagonal covariance via ADVI (Kucukelbir et al., 2017), followed by
an additional Laplace approximation. Note that by design, DP-VI is constrained by
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the usual Gaussian variational approximation, while DP-PSVI is more flexible and
can approach the true posterior as M increases—this effect is reflected in nonprivate
posteriors as well as data dimensionality grows (see for example Fig. 4.4c). Indeed, we
verify that in the high-privacy regime DP-PSVI for sufficient pseudocoreset size (which is
typically small for tested real-world datasets) offers posterior approximation with better
KL divergence compared to DP-VI. Our findings indicate that private PSVI offers
efficient releases of big data via informative pseudopoints, which enable arbitrary post
processing (e.g. running any nonprivate black-box algorithm for Bayesian inference),
under strong privacy guarantees and without reducing the quality of inference.

4.5 Summary & discussion

In this chapter, we introduced a new variational formulation for Bayesian coreset con-
struction, which yields efficient summarizations for big and high-dimensional datasets via
simultaneously learning pseudodata points’ locations and weights. We proved limitations
of existing variational formulations for coresets and demonstrated that they can be
resolved with our new methodology. We proposed an efficient construction scheme via
black-box stochastic optimization and showed how it can be adapted for differentially
private Bayesian summarization. Finally, we demonstrated the applicability of our
methodology on synthetic and real-world datasets, and practical statistical models.

Pseudocoreset variational inference is a general-purpose Bayesian inference algorithm,
hence shares implications mostly encountered in approximate inference methods. For
example, replacing the full dataset with a pseudocoreset has the potential to cause
inferential errors; these can be partially tempered by using a pseudocoreset of larger size.
Note also that the optimization algorithm in this work aims to reduce KL divergence:
however the proposed variational objective might be misleading in many applications
and lead to incorrect conclusions in certain statistical models (e.g. point estimates and
uncertainties might be far off despite KL being almost zero (Huggins et al., 2020)).
Moreover, Bayesian inference in general is prone to model misspecification. Therefore,
a pseudocoreset summarization based on a wrong statistical model will lead to non-
representative compression for inferential purposes. Constructing the coreset on a
statistical model suited for robust inference instead of the original one (Wang et al., 2017;
Miller and Dunson, 2019), can offer protection against modeling mismatches, and will be
the subject of the following chapter. Naturally, the utility of generated dataset summary
becomes task-dependent, as it has been optimized for a specific learning objective, and
cannot be fully transferable to multiple different inference tasks on the same dataset.
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Our learnable pseudodata are also generally not as interpretable as the points of
previous coreset methods, as they are not real data. And the level of interpretability
is model specific. This creates a risk of misinterpretation of pseudocoreset points in
practice. On the other hand, our optimization framework does allow the introduction of
interpretability constraints (e.g. pseudodata sparsity) to explicitly capture interpretability
requirements.

Pseudocoreset-based summarization is susceptible to reproducing potential biases and
unfairness existing in the original dataset. Majority-group datapoints in the full dataset
which capture information relevant to the statistical task of interest are expected to
remain over-represented in the learned summary; while minority-group datapoints might
be eliminated, if their distinguishing features are not related to inference. Amending
the initialization step to contain such datapoints, or using a prior that strongly favors a
debiased version of the dataset, could both mitigate these concerns; but more study is
warranted.



Chapter 5

β-Cores: Robust Large-Scale
Bayesian Data Summarization in
the Presence of Outliers

In Chapter 4, we proposed a novel Bayesian coreset construction that addresses scalability
to dataset size and dimensionality, along with privacy preservation requirements, often
arising in large-scale inference. In this chapter, we design one more coreset construction
that aims to resolve another frequently occurring challenge in probabilistic inference over
real-world datasets, namely robustness to model misspecification.

Modern machine learning applications should be able to address the intrinsic challenges
arising over inference on massive real-world datasets, including scalability and robustness
to outliers. Despite the multiple benefits of Bayesian methods (such as uncertainty-aware
predictions, incorporation of experts knowledge, and hierarchical modeling), the quality
of classical Bayesian inference depends critically on whether observations conform with
the assumed data generating model, which is impossible to guarantee in practice. In
this chapter, we propose a variational inference method that, in a principled way, can
simultaneously scale to large datasets, and robustify the inferred posterior with respect
to the existence of outliers in the observed data. Reformulating Bayes’ theorem via
the β-divergence, we posit a robustified generalized Bayesian posterior as the target of
inference. Moreover, relying on the recent formulations of Riemannian coresets for scalable
Bayesian inference, we propose a sparse variational approximation of the robustified
posterior and an efficient stochastic black-box algorithm to construct it. Overall our
method allows releasing cleansed data summaries that can be applied broadly in scenarios
including structured and unstructured data contamination. We illustrate the applicability
of our approach in diverse simulated and real datasets, and various statistical models,
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including Gaussian mean inference, logistic and neural linear regression, demonstrating
its superiority to existing Bayesian summarization methods in the presence of outliers.

5.1 Related work & contributions

Machine learning systems perpetually collect growing datasets, such as product reviews,
posting activity on social media, users’ feedback on services, or insurance claims. The rich
information content of such datasets has opened up an exciting potential to remedy various
practical problems. Hence, recent years have witnessed a surge of interest in scaling up
inference in the large-data regime via stochastic methods, relying on random minibatch
access to the dataset (Welling and Teh, 2011; Hoffman et al., 2013; Angelino et al., 2016).
Most of related approaches have treated datapoints indiscriminantly; nevertheless, it is
well known that not all datapoints contribute equally valuable information for a given
target task (Ghorbani and Zou, 2019).

Datasets collected in modern applications contain redundant input samples that
reflect very similar statistical patterns, or multiple copies of identical observations.
Often input aggregates subpopulations emanating from different distributions (Zheng
et al., 2008; Zhuang et al., 2015). Moreover, the presence of outliers is a ubiquitous
challenge, attributed to multiple causes. In the first place, noise is inherent in most real-
world data collection procedures, creating systematic outliers: crowdsourcing is prone to
mislabeling (Frénay and Verleysen, 2013), and necessitates laborious data cleansing (Lewis
et al., 2004; Paschou et al., 2010), while measurements commonly capture sensing errors
and system failures. Secondly, outliers can be generated intentionally from information
contributing parties, who aim to compromise the functionality of the application through
data poisoning attacks (Barreno et al., 2010; Biggio et al., 2012; Li et al., 2016; Koh
and Liang, 2017; Steinhardt et al., 2017; Ghorbani and Zou, 2019), realised for example
via data generation from fake accounts. Outliers detection is challenging, particularly
in high dimensions (Lucic et al., 2016a; Diakonikolas et al., 2019; Dickens et al., 2020).
Proposed solutions often are model-specific, and include dedicated learning components
which increase the time complexity of the application, involve extensive hyperparameter
tuning, introduce data redundancies, or require model retraining (Sheng et al., 2008;
Whitehill et al., 2009; Raykar et al., 2010; Karger et al., 2011; Liu et al., 2012; Zhang
et al., 2016). On the other hand, operating on a corrupted dataset is brittle, and can
decisively degrade the predictive performance of downstream statistical tasks, deceptively
underestimate model uncertainty and lead to incorrect decisions.
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In this chapter, we design an integrated approach for inference on massive scale
observations that can jointly address scalability and data cleansing for complex Bayesian
models, via robust data summarization. Our method inherits the full set of benefits
of Bayesian inference and works for any model with tractable likelihood function. At
the same time, it maintains a high degree of automation with no need for manual data
inspection, no additional computational overhead due to robustification, and can tolerate
a non-constant number of corruptions. Moreover, our work points to a more efficient
practice in large-scale data acquisition, filtering away less valuable samples, and indicating
the regions of the data space that are most beneficial for our inference task.

Our solution can be regarded as an extension of Bayesian coreset methods that can
encompass robustified inference. Bayesian coresets (Huggins et al., 2016; Campbell
and Beronov, 2019; Campbell and Broderick, 2019) have been recently proposed as a
method that enables Bayesian learning at scale via substituting the complete dataset
over inference with an informative sparse subset thereof. Robustified Bayesian inference
methods (Berger et al., 1994) have sought solutions to mismatches between available
observations and the assumed data generating model, via proposing heavy-tailed data
likelihood functions (Huber and Ronchetti, 2009; Ríos Insúa and Ruggeri, 2012) and
localization (de Finetti, 1961; Wang and Blei, 2018), using robust statistical diver-
gences (Futami et al., 2018; Knoblauch et al., 2018; Miller and Dunson, 2019), employing
robust gradient estimates over Langevin Monte Carlo methods (Bhatia et al., 2019),
or inferring datapoints’ specific importance weights (Wang et al., 2017). Here, we cast
coreset construction in the framework of robustified inference, introducing β-Cores, a
method that learns sparse variational approximations of the full data posterior under the
β-divergence. In this way, we are able to yield summaries of large data that are distilled
from outliers, or data subpopulations departing from our statistical model assumptions.
Importantly, β-Cores can act as a preprocessing step, and the learned data summaries
can subsequently be given as input to any ordinary or robustified black-box inference
algorithm.

The remainder of the chapter is organized as follows. In Section 5.2 we introduce
our proposed method for scalable robust inference, providing an incremental black-box
construction for sparse approximations of the β-posterior. In Section 5.3 we expose
experimental results on simulated and real-world benchmark datasets: we consider
diverse statistical models and scenarios of extensive data contamination, and demonstrate
that, in contrast to existing summarization algorithms, our method is able to maintain
reliable predictive performance in the presence of structured and unstructured outliers.
Finally, in Section 5.4 we provide conclusions and discuss extensions of our method.
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5.2 Method

In this section we present β-Cores, our unified solution to the robustness and scalability
challenges of large-scale Bayesian inference. Section 5.2.1 introduces the main quantity
of interest in our inference method, and shows how it addresses the exposed issues. Sec-
tion 5.2.2 presents an iterative algorithm that allows efficient approximate computations
of our posterior.

5.2.1 Sparse β-posterior

Scaling up the computation of the robust β-posterior defined in Eq. (2.22) in the regime
of massive datasets for non-conjugate models is challenging: similarly to the standard
Bayesian posterior Eq. (2.17), applying Markov chain Monte Carlo methods to sample
from the β-posterior, implies a computational cost scaling at order Θ(N).

Bayesian coresets (Huggins et al., 2016; Campbell and Broderick, 2019) have been
recently proposed as a method to circumvent the computational cost for the purposes
of approximate inference via summarizing the original dataset (xn)N

n=1 with a small
learnable subset of weighted datapoints (xm, wm)M

m=1, where (wm)M
m=1 ∈ RM

+ , M ≪ N .
Substituting Eq. (2.23) in Eq. (2.22), allows us to explicitly introduce a weights vector
w ∈ RN

≥0 in the posterior, and rewrite the latter in the general form

πβ,w(θ|x) = 1
Z(β, w) exp

(
N∑

n=1
wnfn(θ)

)
π0(θ), (5.1)

where (fn(θ))N
n=1 correspond to the β-likelihood terms, π0 is the prior, and Z(β, w) is the

marginal likelihood (which in the general case corresponds to an intractable constant).
In the case of the β-posterior on the full dataset Eq. (2.22), we have w = 1 ∈ RN ; for
coreset posteriors this vector acts as a learnable parameter and attains a non-trivial
sparse value, with non-zero entries corresponding to the elements of the full dataset that
are selected over the summarization.

Although Bayesian coresets can dramatically reduce inference time, they inherit the
susceptibility of Bayesian posterior to model-data mismatch in the large data regime:
even though the number of points used in inference gets reduced, these points are now
weighted, hence the remark of Eq. (2.20) can carry over in coresets posterior.

The recent formulation of Riemannian coresets (Campbell and Beronov, 2019) has
framed the problem of coreset construction as variational inference in a sparse exponential
family. Our method provides a natural extension of this framework to robust divergences.
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Here we aim to approximate data posterior via a sparse β-posterior, which can be
expressed as follows

w⋆ = arg min
w∈RN

DKL (πβ,w||πβ) s.t. w ≥ 0, ||w||0 ≤M. (5.2)

In the following we denote expectations and covariances under θ ∼ πβ,w(θ|x) as Eβ,w and
Covβ,w respectively. Then the KL divergence is written as

DKL (πβ,w||πβ) := Eβ,w

[
log πβ,w

πβ

]
. (5.3)

In our formulation it is easy to observe that posteriors of Eq. (5.1) form a set of exponential
family distributions (Wainwright and Jordan, 2008), with natural parameters w ∈ RN

≥0,
sufficient statistics (fn(θ))N

n=1, and log-partition function logZ(β, w). Following Campbell
and Beronov (2019), the objective can be expanded as

DKL (πβ,w||πβ) = logZ(β)− logZ(β, w)−
N∑

n=1
Eβ,w [fn(θ)− wnfn(θ)] , (5.4)

and minimized via gradient descent on w. The gradient of the objective of Eq. (5.4) can
be derived in closed form, as

∇wDKL (πβ,w||πβ) = −Covβ,w

[
f, (1− w)Tf

]
, (5.5)

where f := [f1(θ) . . . fN(θ)]T .

5.2.2 Black-box stochastic scheme for incremental coreset con-
struction

To scale up coreset construction on massive datasets we use stochastic gradient descent on
minibatches B ∼ UnifSubset([N ], B), with B ≪ N . The covariance of Eq. (5.5) required
for exact gradient computation of the variational objective is generally not available
in analytical form. Hence, for our black-box coreset construction we approximate this
quantity via Monte Carlo estimates, using samples of the unknown parameters from the
coreset posterior iterates. These samples can be efficiently obtained with complexity
O(M) (not scaling with dataset size N) due to the sparsity of the coreset posterior over
the incremental construction procedure. The proposed black-box construction makes
no assumptions on the statistical model other than having tractable β-likelihoods. We
employ a two-step incremental scheme, with complexity of order O (M(M +B)ST ),
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Algorithm 2 Incremental construction of sparse β-posterior
1: procedure β-Cores(f, π0, x,M,B, S, T, (γt)∞t=1, β)
2: w ← 0 ∈ RM , g ← 0 ∈ RS×M , g′ ← 0 ∈ RS×B, I ← ∅
3: for m = 1, . . . ,M do

▷ Take S samples from current coreset posterior
4: (θ)S

s=1
i.i.d.∼ πβ,w ∝ exp

(
wTf

)
π0(θ)

▷ Obtain a minibatch of B datapoints from the full dataset
5: B ∼ UnifSubset ([N ], B)

▷ Compute the β-likelihood vectors over the coreset and minibatch datapoints
for each sample

6: gs ←
(
f(xm, θs, β)− 1

S

∑S
r=1 f(xm, θr, β)

)
m∈I
∈ RM

7: g′s ←
(
f(xb, θs, β)− 1

S

∑S
r=1 f(xb, θr, β)

)
b∈B
∈ RB

▷ Get empirical estimates of correlation over the coreset and minibatch
datapoints

8: Ĉorr← diag
[

1
S

∑S
s=1 gsgs

T
]− 1

2
(

1
S

∑S
s=1 gs

(
N
B

1Tg′s − wTgs

))
∈ RM

9: Ĉorr
′
← diag

[
1
S

∑S
s=1 g

′
sg
′
s
T
]− 1

2
(

1
S

∑S
s=1 g

′
s

(
N
B

1Tg′s − wTgs

))
∈ RB

▷ Add next datapoint via correlation maximization
10: n⋆ ← arg max

n∈[m]∪[B]

(∣∣∣Ĉorr
∣∣∣ · 1[n ∈ I] + Ĉorr

′
· 1[n /∈ I]

)
, I ← I ∪ {n⋆}

11: for t = 1, . . . , T do ▷ Optimize weights vector via projected gradient descent
12: (θ)S

s=1
i.i.d.∼ πβ,w(θ) ∝ exp

(
wTf

)
π0(θ)

13: B ∼ UnifSubset ([N ], B)
▷ Compute gradient terms discretizations over the coreset and minibatch

datapoints for each sample
14: for s = 1, . . . , S do
15: gs ←

(
f(xm, θs, β)− 1

S

∑S
r=1 f(xm, θr, β)

)
m∈I
∈ RM

16: g′s ←
(
f(xb, θs, β)− 1

S

∑S
r=1 f(xb, θr, β)

)
b∈B
∈ RB

▷ Compute MC gradients for variational parameters
17: ∇̂w ← − 1

S

∑S
s=1 gs

(
N
B

1Tg′s − wTgs

)
▷ Take a projected stochastic gradient step

18: w ← max(w − γt∇̂w, 0)
19: return w

where S is the number of samples from the coreset posterior, and T is the total number
of iterations over coreset points weights optimization. The full incremental construction
is outlined in Algorithm 2.

The optimization problem of Eq. (5.2) is intractable due to the cardinality constraint;
hence, our incremental scheme takes the approach of approximating the solution to the
original problem via solving a sequence of interleaved combinatorial and continuous
optimization problems as follows:



5.2 Method 75

For i ∈ {1, . . . ,M} :
Next datapoint selection (Combinatorial optimization)
m⋆ = arg min

m∈[N ]
DKL

(
πβ,w←w∪{xm}||πβ

)
(5.6)

Coreset points reweighting (Continuous optimization)
w⋆ = arg min

w∈RN
≥0

DKL (πβ,w||πβ) (5.7)

In Eq. (5.6) we have introduced the notation πβ,w←w∪{xm} to consider the coreset
expansion that assigns potentially non-zero weight to a datapoint xm.

5.2.2.1 Next datapoint selection

We first select the next datapoint to include in our coreset summary Eq. (5.6), via a
greedy selection criterion. Although maximizing the decrease in KL locally via Eq. (5.5),
seems to be the natural greedy choice here, this would incur the impractical cost of
resampling from the coreset posterior for all potential expansions of the coreset with a
new datapoint. Moreover, even if we can tolerate this cost, adding a single unweighted
datapoint is likely to induce a negligible effect on the coreset posterior, especially in
massive dataset settings. Submodularity of the objective would be a clearly attractive
property, as it could possibly point to a cheap greedy strategy with provable suboptimality
guarantees—however, our analysis in Appendix B.2 demonstrates that this property is
generally not satisfied for our problem.

Hence, considering that the weight of the active support for the updated coreset
will be optimized in the subsequent step Eq. (5.7) of the algorithm, an efficient method
for informative datapoint selection can be based on adding a datapoint that correlates
well with the direction of residual error. Thus we finally rely instead on the following
correlation maximization criterion:

xm = arg max
xn∈I∪B


∣∣∣Corrβ,w

[
fn,

N
B

1Tf − wTf
]∣∣∣ wn > 0

Corrβ,w

[
fn,

N
B

1Tf − wTf
]

wn = 0,
(5.8)

where we denoted by I the set of coreset points. Eq. (5.8) additionally allows us to expand
the information-geometric interpretation of Riemannian coresets presented in Campbell
and Beronov (2019) in our construction. This criterion is invariant to scaling each
potential fn by any positive constant, and selects the potential that has the largest
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correlation with the current residual error N
B

1Tf −wTf . The correlations for coreset and
minibatch datapoints are empirically approximated as in lines 8 and 9 of Algorithm 2
respectively.

5.2.2.2 Coreset points reweighting

After adding a new datapoint to the summary, we optimize Eq. (5.7), updating the
coreset weight vector w ∈ R≥0 via T steps of projected stochastic gradient descent, for
which we use the Monte Carlo estimate of Eq. (5.5) per line 17 of Algorithm 2.

Summarization of observations groups and batches. Apart from working at
the individual datapoints’ level, our scheme also enables summarizing batches and groups
of observations. Acquiring efficiently informative batches of datapoints can replace
random minibatch selection commonly used in stochastic optimization for large-scale
model training. This extension can also be quite useful in situations where datapoints
are partitioned in clusters, e.g. according to demographic information. For example,
when gender and age features are available in datasets capturing users’ movies habits,
collected datapoints can be binned accordingly, and our group summarization technique
will allow extracting informative combinations of demographic groups that can jointly
summarize the entire population’s information. The robustness properties of β-Cores in
such applications can aid removing group bias, and rejecting groups with large fractions
of outliers. Algorithm 2 is again directly applicable, where gs vectors are now summed
over the corresponding datapoints of each batch or group.

Choice of the robustness hyperparameter value. Selecting a proper value for
β when doing inference using power divergences can be treated as an instance of hyper-
parameter optimization. Prior knowledge on the expected subspace for the inliers of a
data analysis task at hand can be leveraged in order to specify a reasonable value for
the hyperparameter β a priori (recall from Fig. 2.1a that β controls the distance from
population’s sufficient statistic where the maximum of the concave data influence function
is located). Earlier work in robust Bayesian inference has considered automating the selec-
tion of this value in the light of observations, using cross-validation (Futami et al., 2018),
or via performing on-line gradient descent on the expected predictive loss (Knoblauch
et al., 2018). In a similar vein, for the purposes of variational inference using other
parameterised families of divergence functions, such as the α- and f -divergence, recent
approaches for adaptive learning of optimal hyperparameters have relied on controlling
the variance of Monte Carlo estimates used in variational inference (Wang et al., 2018),
and on gradient descent based meta-learning techniques (Zhang et al., 2021b).
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5.3 Experiments & applications
We examine the inferential results achieved by our method under 3 statistical models,
in scenarios capturing different types of mismatch between modeling assumptions and
reality. The data contamination models used in the following experiments are reminiscent
of Huber’s ϵ-contamination model (Huber, 1992), which postulates that observed data are
generated from a mixture of distributions of the form (1− ϵ) ·G+ ϵ ·Q, where ϵ ∈ (0, 1),
G is a distribution of inliers captured by the assumed statistical model, and Q is an
arbitrary distribution of outliers. This model has found use in several recent studies
on robust statistical estimators suitable for underlying data distributions with minimal
assumptions (Wei and Minsker, 2017; Chen et al., 2018).

β-Cores is compared against a uniform random sampling baseline, and stochastic
batch implementations of two existing Riemannian coreset methods:

(i) SparseVI (Campbell and Beronov, 2019), which builds up a coreset according to
an incremental scheme similar to ours, considering the standard likelihood function
terms evaluated on the dataset points, and

(ii) PSVI (Manousakas et al., 2020), the method introduced in Chapter 4, which
runs a batch optimization on a set of pseudopoints, and uses standard likelihood
evaluations to jointly learn the pseudopoints’ weights and locations, so that the
extracted summary resembles the statistics of the full dataset.

We default the number of iterations in the optimization loop over gradient-based
coreset constructions to T = 500, using a learning rate γt ∝ t−1 and S = 100 random
projections per gradient computation. From Section 5.3.1 to Section 5.3.4, the values
for β are selected via cross-validation on a held-out dataset. For consistency with the
compared baselines, we evaluate inference results obtained by β-Cores using the classical
Bayesian posterior from Eq. (2.17) conditioned on the corresponding robustified data
summary. Additional details on used benchmark datasets are presented in Appendix B.3.

5.3.1 Simulated Gaussian mean inference under stuctured data
contamination

In the first experiment we study how β-Cores behaves in the setting of mean inference
on synthetic d-dimensional data, sampled i.i.d. from a normal distribution with known
covariance,

θ ∼ N (µ0,Σ0) , xn
i.i.d.∼ N (θ,Σ), n = 1, . . . , N. (5.9)
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In the presented results, we use priors µ0 = 0 and Σ0 = I, dimensionality d = 20 and
dataset size N = 5, 000.

We consider the case of structured data contamination existing in the observations,
simulated as follows: Observed datapoints are typically sampled from a Gaussian N (1, I).
At a percentage F%, data collection fails; in this case, datapoints are collected from a
shifted Gaussian N (10, I). Consequently, the observed dataset forms a Gaussian mixture
with two components; however, our statistical model assumes only a single Gaussian.

All computations involved in the coreset construction and posterior evaluation in
this experiment can be performed in closed form. We apply the minibatch scheme
of Algorithm 2, sampling from the exact coreset posterior over gradient estimation. The
used (β-)likelihood equations are outlined in Appendix B.1.1. For all coreset methods,
constructions are repeated for up to M = 200 iterations, with learning rate γt = t−1.
Notice that our setting does not imply that maximum summary size contains 200
datapoints: often over the iterations an already existing summary point may be selected
again, resulting in smaller coresets. Moreover, as opposed to the Gaussian experiment
of the previous chapter, here we select a simpler hyperparameter selection scheme with
constant initial learning rate over the entire range of coreset sizes, which in our settings
allows SparseVI and β-Cores to reach their maximum posterior approximation quality
at approximately 60 coreset points, and causes a slight increase in KL beyond this size.

Fig. 5.1a presents the results obtained by the different coreset methods. We stress-test
their performance under varying amounts of data corruption (from top to bottom, 0%,
15%, and 30% of the datapoints get replaced by outliers). We can verify that β-Cores
with β = 0.01 is on par with existing Riemannian coresets in an uncontaminated dataset.
Noticeably, β-Cores remains robust to high levels of structured corruption (even
up to 30% of the dataset), giving reliable posterior estimates; KL divergence plots
in Fig. 5.1b reconfirm the superiority of inference via β-Cores. On the other hand, in
the presence of outliers, previous Riemannian coresets’ performance degrades quickly,
offering similar posterior inference quality with random sampling. The KL divergence
from the cleansed data posterior for existing summarizations and uniform sampling
increases with observations’ failure probability, as it asymptotically converges to the
Bayesian posterior computed on the corrupted dataset.

Moreover, in the case of contaminated datasets, baseline coresets are quite confident in
their wrong predictive posteriors: they keep assigning the same weight to all observations
and hence do not adjust their posterior uncertainty estimates, in spite of having to
describe contradicting data. In contrast, β-Cores discards samples from the outlying
group and can confidently explain the inliers, despite the smaller effective sample size:
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(a)

(b)

Figure 5.1: (a) Scatterplot of the observed datapoints projected on two random axes,
overlaid by the corresponding coreset points and predictive posterior 3σ ellipses for
increasing coreset size (from left to right). Exact posterior (illustrated in black) is
computed on the dataset after removing the group of outliers. From top to bottom, the
level of structured contamination increases. Classic Riemannian coresets are prone to
model misspecification, adding points from the outlying component, while β-Cores adds
points only from the uncontaminated subpopulation yielding better posterior estimation.
(b) Reverse KL divergence between coreset and true posterior (the latter computed on
clean data), averaged over 5 trials. Solid lines display the median KL divergence, with
shaded areas showing 25th and 75th percentiles of KL divergence.
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indeed, Fig. 5.1b shows that the achieved KL divergence from the exact posterior is at
same order of magnitude regardless of failure probability.

We can however notice that, for coreset sizes growing beyond 60 points—despite
remaining consistently better compared to the baselines—β-Cores starts to present
some instability over trials in contaminated dataset instances. This effect is attributed
to the small value of the β hyperparameter selected for the demonstration (so that this
value can successfully model the case of clean data). As a result, eventually some outliers
might be allowed to enter the summary for large coreset sizes. The instability can be
resolved by increasing β according to the observations’ failure probability, and will be
further discussed in Section 5.3.5.

5.3.2 Bayesian logistic regression under mislabeling and fea-
ture noise

In this section, we study the robustness achieved by β-Cores on the problem of binary
classification under unreliable measurements and labeling. We test our methods on 3
benchmark datasets with varying dimensionality (10-127 dimensions, more details on the
data are provided in Appendix B.3). We observe data pairs (xn, yn)N

n=1, where x ∈ Rd,
yn ∈ {−1, 1}, and use the Bayesian logistic regression model to describe them,

yn|xn, θ ∼ Bern
( 1

1 + e−zT
n θ

)
, zn :=

xn

1

 . (5.10)

The closed form of β-likelihood terms required in our construction is computed in Ap-
pendix B.1.2.

Data corruption is simulated by generating unstructured outliers in the input and
output space similarly to (Futami et al., 2018): For corruption rate F , we sample two
random subsets of size F · N from the training data. For the datapoints in the first
subset, we replace the value of half of the features with Gaussian noise sampled i.i.d.
from N (0, 5); for the datapoints in the other subset, we flip the binary label. Over
construction we use the Laplace approximation to efficiently draw samples from the
(non-conjugate) coreset posterior, while over evaluation coreset posterior samples are
obtained via NUTS (Hoffman and Gelman, 2014). We evaluate the accuracy over the
test set, predicting labels according to the maximum log-likelihood rule for θs sampled
from the coreset posterior distribution. The learning rate schedule was set to γt = c0t

−1,
with c0 set to 1 for SparseVI and β-Cores, and 0.1 for PSVI. The values for and
learning rates γt were chosen via cross-validation.
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Figure 5.2: Predictive accuracy vs coreset size for logistic regression experiments over
10 trials on 3 large-scale datasets. Solid lines display the median accuracy, with shaded
areas showing 25th and 75th percentiles. Dataset corruption rate F , and β value used in
β-Cores for each experiment are shown on the figures. The bottom row plots illustrate
the achieved predictive performance under no contamination.

Fig. 5.2 illustrates that β-Cores shows competitive performance with the classical
Riemannian coresets in the absence of data contamination (bottom row), while it con-
sistently achieves the best predictive accuracy in corrupted datasets (top row). On the
other hand, ordinary summarization techniques, although overall outperforming random
sampling for small coreset sizes, soon attain degraded predictive performance on poisoned
data: by construction, via increasing coreset size, Riemannian coresets are expected to
converge to the Bayesian posterior computed on the corrupted dataset. All baselines
present noticeable degradation in their predictive accuracy when corruption is introduced
(typically more than 5%), which is not the case for our method: β-Cores is designed
to support corrupted input and, for a well-tuned hyperparameter β, maintains similar
performance in the presence of outliers, while practically it can even achieve improvement
(as occurring for the WebSpam data).

5.3.3 Neural linear regression on noisy data batches

Here we use the coresets extension for batch summarization to efficiently train a neural
linear model on selected data minibatches. Neural linear models perform Bayesian
linear regression on the representation of the last layer of a deterministic neural network
feature extractor (Snoek et al., 2015; Riquelme et al., 2018; Pinsler et al., 2019). The
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Figure 5.3: Test RMSE vs coreset size for neural linear regression experiments averaged
over 30 trials. Solid lines display the median RMSE, with shaded areas showing 25th

and 75th percentiles. Dataset corruption rate F , and β value used in β-Cores for each
experiment are shown on the figures. The bottom row plots illustrate the achieved
predictive performance under no contamination.

corresponding statistical model is as follows

(yn)N
n=1 = θT z(xn) + ϵn, (ϵn)N

n=1 ∼ N (0, σ2). (5.11)

The neural network is trained to learn an adaptive basis z(·) from N datapoint pairs
(xn, yn) ∈ Rd×R, which we then use to regress (yn)N

n=1 on (z(xn))N
n=1, and yield uncertainty

aware estimates of θ. More details on the model-specific formulae entering coresets
construction are provided in Appendix B.1.3. Input and output related outliers are
simulated as in Section 5.3.2, while here, for the output related outliers, yn gets replaced
by Gaussian noise. Corruption occurs over a percentage F% of the total number of
minibatches of the dataset, while the remaining minibatches are left uncontaminated.
Each poisoned minibatch gets 70% of its points substituted by outliers.
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We evaluate β-Cores, SparseVI and random sampling on two benchmark regression
datasets (detailed in Appendix B.3). All coresets are initialized to a small batch of
datapoints sampled uniformly at random from the dataset inliers. Over incremental
construction, we interleave each minibatch selection and weights optimization step of
the coreset with a training round for the neural network, constrained on the current
coreset datapoints. Each such training round consists of 103 minibatch gradient descent
steps using the AdaGrad optimizer (Duchi et al., 2010; McMahan and Streeter, 2010;
Duchi et al., 2011). Our neural architecture is comprised of two fully connected hidden
layers, batch normalization and ReLU activation functions. The values of coreset size at
initialization, batch size added per coreset iteration, and units at each neural network
hidden layer are set respectively to 20, 10 and 30 for the Housing, and 200, 100 and
100 for the Songs dataset.

Fig. 5.3 (bottom row) shows that β-Cores are competitive with the baselines in the
absence of data corruption, achieving similar predictive performance over the entire range
of tested coreset sizes. Under data poisoning (top row), β-Cores is the only method that
offers monotonic decrease of test RMSE for increasing summary size from the beginning
of the experiment. On the other hand, baselines present unreliable predictive performance
for small coreset sizes: random sampling and SparseVI are both prone to including
corrupted data batches, whose misguiding information gets expressed on the flexible
representations learnt by the neural network, requiring a larger summary size to reach
the RMSE of β-Cores.

5.3.4 Efficient data acquisition from subpopulations for bud-
geted inference

We consider the scenario where a machine learning service provider aims to fit a bi-
nary classification model to observations coming from multiple subpopulations of data
contributors. The provider aims to maximize the predictive accuracy of the model,
while adhering to a budget on the total number of subpopulations from which data can
be accessed over inference. Budgeted inference can be motivated by several practical
considerations: First, restricting the total number of datapoints used over learning to a
smaller informative subset aids scalability—which is the primary motivation for coresets.
Moreover, taking decisions at the subpopulations’ level regarding which groups of data-
points are useful for the task, without the need to inspect datapoints individually, reduces
the privacy loss incurred over the data selection stage, and can be integrated in machine
learning pipelines that follow formal hierarchical privacy schemes (Balle et al., 2019).
Finally, subpopulations’ valuation can guide costly experimental procedures, via inducing
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Figure 5.4: Predictive accuracy against number of groups (left) and number of data-
points (right) selected for inference. Compared group selection shemes are β-Cores,
selection according to Shapley values based ranking, and random selection. The experi-
ment is repeated over 5 trials, on a contaminated dataset containing a 10% of crafted
outliers distributed non-uniformly across groups (top row), and a clean dataset (bottom
row).

knowledge regarding which group combinations are most beneficial in summarizing the
entire population of interest (Pinsler et al., 2019; Vahidian et al., 2020), and hence should
be prioritised over data collection.

In this study we use a subset of more than 60K datapoints from the HospitalRead-
missions dataset (for further details see Appendix B.3). Using combinations of age, race
and gender information of data contributors, we form a total of 165 subpopulations within
the training dataset. Data contamination is simulated identically to the experiment of
Section 5.3.2, while now we also consider the case of varying levels of contamination
across the subpopulations. In particular, we form groups of roughly equal size where
0%, 10% and 20% of the datapoints get replaced by outliers—this results in getting a
dataset with approximately 10% of its full set of datapoints corresponding to outliers.
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Figure 5.5: Attributes of selected groups after running 10 iterations of β-Cores with
β = 0.6 on the contaminated HospitalReadmissions dataset (repeated over 5 random
trials).

We evaluate the predictive accuracy achieved by doing inference on the data subset
obtained after running 10 iterations of the β-Cores extension for groups (which gives
a maximum of 10 selected groups). We compare against (i) a random sampler, and
(ii) a baseline which ranks all groups according to their Shapley value and selects the
groups with the highest ranks. Shapley value is a concept originating in cooperative
game theory (Shapley, 1953), which has recently found applications in data valuation
and outliers detection (Ghorbani and Zou, 2019). In the context of our experiment, it
quantifies what is the marginal contribution of each group to the predictive accuracy
of the model at all possible group coalitions that can be formed. As this quantity is
notoriously expensive to be computed in large datasets, we use a Monte Carlo estimator
which samples 5K possible permutations of groups, and for each permutation it computes
marginals for coalitions formed by the first 20 groups.1

As illustrated in Fig. 5.4, β-Cores with β = 0.6 offers the best solution to our
problem, and is able to reach predictive accuracy exceeding 75% by fitting a coreset on
no more than 2 groups. Fig. 5.5 displays the demographic information of selected groups.
We can notice that subpopulations of female and older patients are more informative for
the classification task, while Caucasian and African-American groups are preferred to
smaller racial minorities. Importantly, β-Cores is able to distill clean from contaminated
groups. For the used β value, we can see than over the set of trials only one group

1The latter truncation is supported by the observation that marginal contributions to the predictive
accuracy are diminishing as the dataset size increases.
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with outliers level of 10% is allowed to enter a summary, which already contains 3
uncontaminated groups.

Shapley values based ranking treats outliers better than random sampling: As outliers
are expected to have negative marginal contribution to predictive accuracy, their Shapley
rank is generally lower compared to clean data groups, hence the later are favoured.
On the other hand, Shapley computation is much slower than random sampling and
β-Cores, specific to the evaluation metric of interest, while Shapley values are not
designed to find data-efficient combinations of groups, hence this baseline can still retain
redundancy in the selected data subset.

5.3.5 Effects of varying the robustness hyperparameter

In this section we perform an empirical analysis of the effects on robustness of inference
that can be caused by varying the value of the divergence hyperparameter β ∈ (0, 1). As
observed in Fig. 5.6a, in the case of Gaussian mean inference under structured contamina-
tion, setting β to large values (β ≥ 0.3) implies more conservative summarization schemes
and more rigid coreset posteriors, that do not allow achieving optimal approximation
quality; however these scheme also enable maintaining similar performance and small vari-
ance across trials for increasing size of the contaminated component. For smaller βs, the
KL divergence between the approximate and the true posterior can reach lower minima;
nonetheless, eventually the coreset quality might present larger variance, as the sum-
marization becomes prone to adding outliers. At the remaining experiments, Figs. 5.6b
and 5.6c, where inference takes place in the presence of unstructured outliers, the effects
of varying the robustness hyperparameter are less pronounced. More noticeably, the
remark of increased variance for small β remains valid with observable effects both in
the logistic and the neural linear regression experiments.

5.4 Summary & discussion
In this chapter, we proposed a general purpose framework for yielding contamination-
robust summarizations of massive scale datasets for inference. Relying on recent advances
in Bayesian coresets and robustified approximate inference under the β-divergence, we
developed a greedy black-box construction that efficiently shrinks big data via keeping
informative datapoints, while simultaneously rejecting outliers. Finally, we presented
experiments involving various statistical models, and simulated and real-world datasets,
demonstrating that our methodology outperforms existing techniques in scenarios of
structured and unstructured data corruption.
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(a) Gaussian mean inference

(b) Logistic regression

(c) Neural linear regression

Figure 5.6: Predictive performance of β-Cores for varying values of the robustness
hyperparameter β. At each experiment, results are averaged over 5 trials. Solid lines
display the median of the predictive metric, with shaded areas showing the corresponding
25th and 75th percentiles.
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Further directions include developing more methods for adaptive tuning of the
robustness hyperparameter β, as well as applying our techniques to more complicated
statistical models, including ones with structured likelihood functions (e.g. time-series
and temporal point processes). Moreover, future experimentation may consider stronger
adversarial settings where summaries are initialized to data subsets that already contain
outliers.



Chapter 6

Conclusions

In this thesis, we have presented three original pieces of work drawing on one of the
fundamental research problems in large-scale machine learning: finding scalable dataset
reductions under constraints commonly arising in real-world data analysis applications.
Our premise has been that principled dataset summarization methods can be harsenessed
to enable efficient approximations for the purposes of large-scale data analysis without
compromising requirements of privacy and robustness. In this section, we briefly recap
our key contributions and suggest directions for future research.

6.1 Summary

6.1.1 Privacy loss of coarsened structured data

Reducing the information content and removing explicit identifiers from sensitive datasets
prior to public release offers an illusion of privacy. In Chapter 3, we examined a large
collection of longitudinal mobility traces recorded by smartphone devices. We converted
each pseudonymised user trace record to a truncated graph, which retained the transition
patterns among user’s most frequent locations, and generated such representations
over two different time windows spanning the entire period of tracking. Computing
structural similarities via graph kernels allowed us to delevop a linkage attack, that
was able to reidentify the anonymized mobility graphs at a 3.5× higher median success
rate compared to random guessing. Our finding stressed that pseudonymisation and
coarsening of data cannot protect data subjects against adversaries with access to the
infomation of (nearly uniquely) identifying substructures—hence, further elaborating on
data reduction techniques that adhere to formal privacy guarantees is required.
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6.1.2 Privacy-preserving Bayesian coresets in high dimensions

In Chapter 4, we developed a novel construction for Bayesian coresets. We extended
the existing sparse variational inference framework by introducing a richer family of
scalable posterior approximations which, instead of points of the original dataset, makes
use of learnable pseudodata that act as variational parameters optimized to summarize
the full data likelihood. Our variational approximation enabled effective summarization
that is not limited by data dimensionality, unlike previous constructions. Moreover, our
coreset construction is amenable both to an incremental, as well as a batch black-box
optimization scheme, offering computational time savings compared to state-of-the-art
sparse VI methods. Finally, the use of synthetic data, combined with the subsampled
Gaussian mechanism, allowed us to yield differentially private dataset summarization. We
demonstrated applications of inference over a diverse set of Bayesian models, including
Gaussian mean estimation, linear and logistic regression, showing the advantages in data
posterior approximation offered by our approach.

6.1.3 Robust Bayesian coresets under misspecification

In Chapter 5, we designed a Bayesian coreset construction suitable for summarizing
datasets that potentially depart from our statistical model assumptions—as often can be
the case in practice, due to observations containing outliers, and/or being subjected to
contamination. We proposed an incremental scheme that attains a sparse approximation of
a robust generalized Bayesian posterior defined via the β-divergence, while discerning and
retaining a representative small part of the data inliers instead of the full dataset. Further
to offering scalability and reducing data redundancy, our scheme provided a unified and
highly-automated solution to the important question of detecting and removing harmful
datapoints prior to inference. We evaluated our technique on clean and contaminated data
over a range of applications, including Gaussian mean inference, Bayesian linear regression,
neural linear regression, and selection of informative data subpopulations’ combinations,
demonstrating reliable posteriors and predictive performance in all examined test cases.

6.2 Future research directions
The summarization frameworks presented in this dissertation allow numerous probabilistic
models to be tractably and reliably deployed in practice. Yet they allude to a realm of
so far unexplored research questions, some of which we overiew in the remainder of this
section, thus concluding the thesis.
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6.2.1 Coresets for models with structured likelihoods

Our variational formulations for coreset construction Eqs. (4.7) and (5.2) use the as-
sumption that the data likelihood function gets factorised as a product of individual
datapoint potentials. To the best of our knowledge, the idea of constructing coresets has
not yet been used for inference in models with structured likelihood functions, including
time-series and point processes. Recent results on parameter estimation for Hawkes pro-
cesses using uniform downsampling (Li and Ke, 2019) indicate important improvements
in efficiency when learning in massive temporal event sequences via reducing data, even
without explicitly optimizing for redundancy in the extracted data subsets.

6.2.2 Implicit differential privacy amplification of data-dependent
compressions

In Chapter 4 we presented an optimization scheme that yields Bayesian coreset con-
structions under explicit differential privacy quarantees. As discussed in Section 2.6, a
known result in DP literature is that incorporating random sampling in data analysis has
implicit privacy amplification effects, i.e. that an algorithm has higher privacy guarantees
when run on a random subset of the datapoints instead of the full dataset (Li et al., 2012;
Beimel et al., 2013; Bassily et al., 2014; Abadi et al., 2016). More recently, Balle et al.
(2018) presented a unifying methodology that utilises couplings and divergences to reason
about DP amplification effects of several random sampling methods (including Poisson
subsampling and sampling with/without replacement), under different data neighbouring
relations.

Existing research makes a common assumption that simplifies privacy analysis, but
is violated in the case of coresets: the sampling distribution is data-independent. It
remains an open question whether generalizations of existing approaches can be used to
argue about implicit DP amplification when replacing a privacy-sensitive dataset with a
coreset—in primitive schemes, coreset construction simply takes the form of importance
sampling (Bachem et al., 2017). Investigating DP amplification under data-dependent
sampling is a direction with far-reaching implications, that can contribute to tighter
privacy analysis, not only in the case of coresets, but more broadly in all machine learning
applications involving importance sampling, which is already a cornerstone of many
state-of-the-art stochastic learning methods.
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6.2.3 Human-centric summaries for scalable inference
In Chapter 4 we presented a method utilising learnable batches of pseudodata to sum-
marize a much larger dataset. Naturally this coreset construction bears the potential of
reducing the interpretability of learned pseudodata, since coreset points are now not a
subset of the original dataset, but rather the result of a likelihood-specific optimization
routine. To remedy related concerns, further interpretability constraints can be explic-
itly incorporated in the optimization formulation of pseudocoreset variational inference
of Eq. (4.7).

Beyond the quest of interpretability, additional research is required in examining
other desiderata in human-centric inference. To name a few, deletion-robustness is
often sought or imposed on methods for large-scale data analysis (Mirzasoleiman et al.,
2017; Ginart et al., 2019): user’s right-to-be-forgotten is related to imposing bounds on
the effects of removing an individual datapoint from an existing dataset, and can be
approximately satisfied under differential privacy. Moreover, group fairness is one more
topic that necessitates further investigation: without special treatment, reducing datasets
will potentially transfer existing inequalities across groups in the derived summary, hence
a different construction may be sought when aiming to ameliorate unfairness in scalable
inference.

6.2.4 Compressing datasets for meta-learning
A distinguishing feature of human intelligence is the ability to adaptively learn new
tasks on the basis of prior acquired experience, rather than learning each new task from
scratch. Although Bayesian coresets have been originally proposed as an approach for
efficient model-specific inference, it seems reasonable to inquire whether sparse dataset
summaries can be also useful in meta-learning, i.e. settings where we aim to learn over
a variety of tasks using few training examples per task. Recent work has shown that
model-agnostic meta-learning (Finn et al., 2017) admits reformulations as a hierarchical
Bayesian model, and gets performance improvements via expressing uncertainty (Finn
et al., 2018; Grant et al., 2018). Apart from offering another avenue for scalability in
meta-learning, extracting versatile summaries from a universe of data domains simulates
more closely the situations that a human faces when organizing experience and knowledge
for learning in the real world; hence, designing coresets in this context could contribute
novel insights into the nature of general intelligence.



Appendix A

Supplement for Bayesian
Pseudocoresets

A.1 Proof of Proposition 16

In the setting of Proposition 16, both the exact posterior and the coreset posterior are
multivariate Gaussian distributions, denoted as N (µ1,Σ1) and N (µw,Σw) respectively.
The mean and covariance are

Σ1 = 1
1 +N

Id, µ1 = Σ1

(
N∑

n=1
Xn

)
, (A.1)

and

Σw = Id

1 +
(∑N

n=1 wn

) , µw =Σw

(
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n=1
wnXn

)
. (A.2)

Proof of Proposition 16. By Eqs. (A.1) and (A.2),
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(A.3)
Note that ∀x > 0, x− 1 ≥ log x, implying that
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Thus,
DKL (πw||π) ≥ 1

2(µ1 − µw)T Σ−1
1 (µ1 − µw). (A.4)

Suppose we pick a set I ⊆ [N ], |I| = M of active indices n where the optimal wn ≥ 0,
and enforce that all others n /∈ I satisfy wn = 0. Then denoting

Y = [Xn : n /∈ I] ∈ Rd×(N−M), X = [Xn : n ∈ I] ∈ Rd×M , (A.5)

we have that, for any w ∈ RM
+ , for those indices I,
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)
. (A.6)

Relaxing the nonnegativity constraint, replacing w/(1 + 1Tw) with a generic x ∈ RM ,
and noting that XTX is invertible almost surely when M < d, we can optimize this
expression yielding a lower bound on the optimal KL divergence using active index set I,

DKL

(
πw⋆

I
||π
)
≥

1TY T
(
I −X(XTX)−1XT

)
Y 1

2(N + 1) . (A.7)

The numerator is the squared norm of Y 1 minus its projection onto the subspace spanned
by the M columns of X. Since Y 1 ∼ N (0, (N −M)I), Y 1 ∈ Rd is an isotropic Gaussian,
then its projection into the orthogonal complement of any fixed subspace of dimension
M is also an isotropic Gaussian of dimension d −M with the same variance. Since
the columns of X are also independent and isotropic, its column subspace is uniformly
distributed. So therefore, for each possible choice of I

DKL

(
πw⋆

I
||π
)
≥ N −M

2(N + 1)ZI , ZI ∼ χ2(d−M). (A.8)

Note that the ZI will have dependence across the
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where Fk is the CDF for the χ2 distribution with k degrees of freedom. The result
follows.

A.2 Gradient derivations

Throughout, expectations and covariances over the random parameter θ with no explicit
subscripts are taken under pseudocoreset posterior πu,w. We also interchange differen-
tiation and integration without explicitly verifying that sufficient conditions to do so
hold.

A.2.1 Weights gradient

First, we compute the gradient with respect to weights vector w ∈ RM
+ , which is written

as

∇wDKL = −∇w logZ(u,w)−∇wE[f(θ)T 1] +∇wE[f̃(θ)Tw]. (A.10)

For any function a : Θ→ R, we have that

∇wE [a(θ)] =
∫
∇w
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(
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))
a(θ)π0(θ)dθ

=E
[(
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)
a(θ)

]
. (A.11)

Next, we compute the gradient of the log normalization constant via

∇w logZ(u,w) =
∫ 1
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Combining, we have

∇wE [a(θ)] =E
[(
f̃(θ)− E

[
f̃(θ)

])
a(θ)

]
. (A.13)

Subtracting 0 = E [a(θ)]E
[
f̃(θ)− E

[
f̃(θ)

]]
yields

∇wE [a(θ)] = Cov
[
f̃(θ), a(θ)

]
. (A.14)

The gradient with respect to w in Eq. (4.9) follows by substituting 1Tf(θ) and wT f̃(θ)
for a(θ) and using the product rule.
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A.2.2 Location gradients

Here we take the gradient with respect to a single pseudopoint ui ∈ Rd. First note that

∇ui
DKL = −∇ui

logZ(u,w)−∇ui
E[f(θ)T 1] +∇ui

E[f̃(θ)Tw]. (A.15)

For any function a(u, θ) : Rd×M ×Θ→ R, we have

∇ui
E [a(u, θ)] =

∫
∇ui

(
exp

(
wT f̃(θ)− logZ(u,w)

)
a(u, θ)

)
π0(θ)dθ. (A.16)

Using the product rule and recalling from the main text that h(·, θ) := ∇uf(·, θ),

∇ui
E [a(u, θ)] = E [∇ui

a(u, θ)] + E [a(u, θ) (wih(ui, θ)−∇ui
logZ(u,w))] . (A.17)

Taking the gradient of the log normalization constant using similar techniques,

∇ui
logZ(u,w) = wiE [h(ui, θ)] . (A.18)

Combining,

∇ui
E [a(u, θ)] = E [∇ui

a(u, θ)] + wiE [a(u, θ) (h(ui, θ)− E [h(ui, θ)])] . (A.19)

Subtracting 0 = E [a(u, θ)]E [(h(ui, θ)− E [h(ui, θ)])] yields

∇ui
E [a(u, θ)] = E [∇ui

a(u, θ)] + wi Cov [a(u, θ), h(ui, θ)] . (A.20)

The gradient with respect to ui in Eq. (4.9) follows by substituting f(θ)T 1 and f̃(θ)Tw

for a(u, θ).

A.3 Details on experiments

A.3.1 Gaussian mean inference

Let the coreset posterior have mean µu,w and covariance matrix Σu,w. Throughout, expec-
tations and covariances over the random parameter θ with no explicit subscripts are taken
under pseudocoreset posterior πu,w. Define Ψ := Q−1Σu,wQ

−T , vn := Q−1(xn − µu,w),
ṽn := Q−1(un − µu,w), and Q to be the lower triangular matrix of the Cholesky de-
composition of Σ, i.e. Σ := QQT . In order to compute the gradients in Eq. (4.9), we
need expressions for Cov[fn, fm], Cov[f̃n, fm], Cov[h(ui), fn], and Cov[h(ui), f̃n]. Follow-
ing Campbell and Beronov (2019), we have that

Cov[fn, fm] = vT
n Ψvm + 1

2 tr ΨT Ψ (A.21)
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Cov[f̃n, fm] = ṽT
n Ψvm + 1

2 tr ΨT Ψ. (A.22)

We now evaluate the remaining covariance Cov[h(ui), fm]; the derivation of Cov[h(ui), f̃m]
follows similarly. We begin by explicitly evaluating the log-likelihood gradient and its
expectation,

h(ui) = −Σ−1(ui − θ) (A.23)
E [h(ui)] = −Σ−1(ui − µu,w), (A.24)

We have (up to a constant) that

fn = −1
2(xn − θ)T Σ−1(xn − θ) (A.25)

E [fn] = −1
2 tr Ψ− 1

2∥vn∥2. (A.26)

Thus using the above definitions,

E [h(ui)]E [fn] = (tr Ψ + ∥vn∥2)
2 Q−T ṽi. (A.27)

Next,

E [h(ui)fn] = 1
2Σ−1E

[
(ui − θ)(xn − θ)T Σ−1(xn − θ)

]
. (A.28)

Defining z ∼ N (0,Ψ), and using the above definitions,

E [h(ui)fn] = 1
2Q
−TE

[
(ṽi − z)(vn − z)T (vn − z)

]
. (A.29)

Evaluating the expectation, noting that odd order moments of z are equal to 0,

E [h(ui)fn] = ∥vn∥2 + tr Ψ
2 Q−T ṽi +Q−T Ψvn. (A.30)

Therefore,

Cov[h(ui), fn] = Q−T Ψvn, (A.31)

and likewise,

Cov[h(ui), f̃n] = Q−T Ψṽn. (A.32)
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A.3.2 Bayesian linear regression

A.3.2.1 Model and gradients details

Here we present the terms involving pseudodata points—the corresponding expressions
for original datapoints are the same, after replacing um with xm.

For individual points, dropping normalization constants, we get log-likelihood terms
of the form

fm(θ) = − 1
2σ2

(
ym − θTum

)2
. (A.33)

Hence, we obtain for the pseudocoreset posterior

πu,w = N (µu,w,Σu,w), where (A.34)

Σu,w =
(
σ−2

0 I + σ−2
M∑

m=1
wmumu

T
m

)−1

, µu,w = Σu,w

(
σ−2

0 Iµ0 + σ−2
M∑

m=1
wmymum

)
.

(A.35)

To scale up computation on large datasets, in our experiment we made use of stochastic
gradients for black-box construction of PSVI and SparseVI. Beyond the expressions for
individual log-likelihood and (pseudo)coreset posteriors presented above, for pseudocoreset
construction we also need the expression for log-likelihood gradient with respect to the
pseudodata points, for which we can immediately see that∇umf(um, θ) = 1

σ2 (ym−θTum)θ.
Over our experiment, we optimized initial learning rates for SparseVI and PSVI via a
grid search over {0.1, 1, 10}.

A.3.2.2 Additional plots

Here we present some more plots demonstating the dependence of Hilbert coresets’
approximation quality on the dimension of random projections in the Bayesian linear
regression setting presented in Fig. 4.2c. We remind that the dimension used at this
experiment and throughout the entire experiments section was set to 100. Increasing this
number is typically expensive to obtain in practice. As demonstrated in Fig. A.1, getting
higher projection dimension enables better posterior approximation in the problem for
both GIGA (Optimal) and GIGA (Realistic). However, PSVI remains competitive
in the small coreset regime, even for Hilbert coresets with extremely large projection
dimensionality, demonstrating the information-geometric limitations that Hilbert coreset
constructions are known to face (Campbell and Beronov, 2019).
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project. dim. = 200 project. dim. = 2, 000 project. dim. = 10, 000

Figure A.1: Comparison of Hilbert coresets performance on Bayesian linear regression
experiment for increasing projection dimension (over 10 trials).

A.3.3 Bayesian logistic regression

A.3.3.1 Model

In logistic regression we have a set of datapoints (xn, yn)N
n=1 each corresponding to a

feature vector xn ∈ Rd and a label yn ∈ {−1, 1}. Datapoints are assumed to be generated
according to following statistical model

yn|xn, θ ∼ Bern
( 1

1 + e−zT
n θ

)
zn :=

xn

1

 . (A.36)

The aim of inference is to compute the posterior over the latent parameter θ =
[θ0 . . . θd]T ∈ Rd+1. Log-likelihood of each datapoint can be expressed as

fn := f(xn, yn|θ) =1[yn = −1] log
(

1− 1
1 + e−zT

n θ

)
− 1[yn = 1] log

(
1 + e−zT

n θ
)

=− log
(
1 + exp(−ynz

T
n θ)

)
.

(A.37)

Hence in pseudocoreset construction we can optimize pseudodata point locations with
respect to continuous variable xn, using the gradient

∇xnfn = e−ynzT
n θ

1 + e−ynzT
n θ
yn


θ1
...
θd

 . (A.38)

A.3.3.2 Datasets description

For logistic regression experiments, we used subsampled and full versions of datasets
presented in Table A.1: a synthetic dataset with x ∈ R2 sampled i.i.d. from a N (0, I) and
y ∈ {−1, 1} sampled from respective logistic likelihood with θ = [3, 3, 0]T (Synthetic); a



100 Supplement for Bayesian Pseudocoresets

Dataset name N D
Synthetic 500 2
Phishing 500 10
ChemReact 500 10
Transactions 100,000 50
ChemReact100 26,733 100
Music 8,419 237

Table A.1: Details for datasets used in logistic regression experiments.

phishing websites dataset reduced to D = 10 via PCA (Phishing); a chemical reactivity
dataset with real-valued features corresponding to its first 10 and 100 principal compo-
nents (ChemReact and ChemReact100 respectively); a dataset with 50 real-valued
features associated with whether each of 100K customers of a bank will make a specific
transaction (Transactions); and a dataset for music analysis, where we consider
"classical vs all" genre classification task (Music). Original versions of the four lat-
ter datasets are available online respectively at https://www.csie.ntu.edu.tw/˜cjlin/libsvm
tools/datasets/binary.html, http://komarix.org/ac/ds, https://www.kaggle.com/c/santan
der-customer-transaction-prediction/data, and https://github.com/mdeff/fma.

A.3.3.3 Small-scale experiments

In the small-scale experiment, the number of overall gradient updates was set to T = 1, 500,
while minibatch size was set to B = 400. Learning rate schedule for SparseVI and
PSVI was γt = 0.1t−1. Results presented in Fig. A.2 indicate that PSVI achieves superior
quality to SparseVI for small coreset sizes, and is competitive to GIGA (Optimal),
while the latter unrealistically uses true posterior samples to tune a weighting function
required over construction.

A.3.3.4 Reproducibility of Bayesian logistic regression experiment

In this subsection we provide additional details for reproducibility of the experimental
setup for the Bayesian Logistic Regression experiment presented in Section 4.4.

A.3.3.4.1 Posterior approximation metrics, coreset gradients and learning
rates

Posterior approximation quality was estimated via computing KL divergence between
Gaussian distributions fitted on coreset and full data posteriors via Laplace approximation.
For both SparseVI and PSVI, gradients were estimated using samples drawn from a

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://komarix.org/ac/ds/
https://www.kaggle.com/c/santander-customer-transaction-prediction/data
https://www.kaggle.com/c/santander-customer-transaction-prediction/data
https://github.com/mdeff/fma
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Synthetic Phishing ChemReact

Figure A.2: Comparison of (pseudo)coreset approximate posterior quality vs coreset size
for logistic regression over 10 trials.

Laplace approximation fitted on current coreset weights and points. To optimize initial
learning rates for SparseVI and PSVI, we did a grid search over {0.1, 1, 10}.

A.3.3.4.2 Differential privacy loss accounting and hyperparameter selection

In the differential privacy experiment, we were not concerned with the extra privacy
cost of hyperparameter optimization task. Estimation of differential privacy cost at all
experiments was based on TensorFlow privacy implementation of moments accountant
for the subsampled Gaussian mechanism.1 For DP-PSVI we used the best learning
hyperparameters found for PSVI on the corresponding dataset. The demonstrated range
of privacy budgets was generated by decreasing the variance σ of additive Gaussian
noise and keeping the rest of hyperparameters involved in privacy accounting fixed.
Regarding DP-VI, over our experiments we also kept the subsampling ratio fixed. We
based our implementation of DP-VI on authors’ code,2 adapting noise calibration
according to the adjacency relation used in Section 4.3.3, and the standard differential
privacy definition (Dwork and Roth, 2014). In our experiment, we used the AdaGrad
optimizer, with learning rate 0.01, number of iterations 2, 000, and minibatch size 200.
Gradient clipping values for DP-VI results presented in Fig. 4.4, for Transactions,
ChemReact100, and Music datasets were tuned via grid search over {1, 5, 10, 50}.
The values of gradient clipping constant giving best privacy profiles for each dataset,
used in Fig. 4.4, were 10, 5, and 5 respectively.

1https://github.com/tensorflow/privacy
2https://github.com/DPBayes/DPVI-code

https://github.com/tensorflow/privacy
https://github.com/DPBayes/DPVI-code
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Synthetic Phishing ChemReact

Transactions ChemReact100 Music

Figure A.3: Comparison of PSVI and SparseVI approximate posterior quality vs CPU
time requirements for logistic regression experiment of Section 4.4.

A.3.3.5 Additional plots

A.3.3.5.1 Evaluation of CPU time requirements

Experiments were performed on a CPU cluster node with a 2x Intel Xeon Gold 6142
and 12GB RAM. In the case of PSVI the computation of coreset sizes from 1 to
100 was parallelized per single size over 32 cores in total. Fig. A.3 shows posterior
approximation error vs required CPU time for all coreset construction algorithms over
logistic regression on the small-scale and large-scale datasets. As opposed to existing
incremental coreset construction schemes, batch construction of PSVI reduces the
dependence between coreset size and processing cost: for SparseVI Θ(M2) gradient
computations are required, as this method builds up a coreset one point at a time; in
contrast, PSVI requires Θ(M) gradients since it learns all pseudodata points jointly.
Although each gradient step of PSVI is more expensive, practically this implies a steeper
decrease in approximation error over processing time compared to SparseVI. In the
case of differentially private PSVI, some extra CPU requirements are added due to the
subsampled Gaussian mechanism computations.
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A.3.3.5.2 Incremental scheme for pseudocoreset construction

We also experimented with an incremental scheme for pseudocoreset construction. Ac-
cording to this scheme, pseudodata points are added sequentially to the pseudocoreset.
Similarly to SparseVI, in the beginning of each coreset iteration, we initialize a new
pseudodata point at the true datapoint which maximizes correlation with current residual
approximation error. Next, we jointly optimize the most recently added pseudodata
point location, along with the pseudocoreset weights vector, over a gradient descent loop.
As opposed to batch construction, for large coreset sizes the incremental scheme for
PSVI does not achieve savings in CPU time compared to SparseVI.

We evaluated coreset construction methods on Bayesian logistic regression. We used
M = 100 iterations for construction, S = 100 Monte Carlo samples per gradient estima-
tion, T = 100 iterations for optimization, and learning rate γt ∝ 0.5t−1. Coreset posterior
samples over the course of construction for SparseVI and incremental PSVI were
drawn from a Laplace approximation using current coreset weights and points. We
implemented SparseVI and incremental PSVI via computing gradients on the full
dataset, as well as using stochastic gradients on subsets of size B = 256 for lowering
computational cost.

Results presented in Fig. A.4 demonstrate that incremental PSVI achieves consis-
tently the smallest posterior approximation error, offering improvement compared to
SparseVI and even achieving better performance than GIGA (Optimal). We observe
that stochastic gradients’ implementation (dashed lines) reaches a plateau at higher
values of KL compared to full gradients (solid lines), but still achieves performance
comparable with GIGA (Optimal).
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Synthetic

Phishing

ChemReact

Figure A.4: Comparison of incremental PSVI and SparseVI approximate posterior
quality vs iterations of incremental construction (left) and coreset size (right) for logistic
regression on small-scale experiment. With dashed lines is displayed the posterior quality
achieved by incremental PSVI and SparseVI constructions using gradients computed
on random data subsets of size 256.



Appendix B

Supplement for β-Cores

B.1 Models

In this section we present the derivations of β-likelihood terms Eqs. (2.23) and (2.24)
required over the β-Cores constructions for the statistical models of our experiments.

B.1.1 Gaussian likelihoods

For the β-likelihood terms of a multivariate normal distribution, we have

π(x|µ,Σ)β =
(
(2π)− d

2 |Σ|− 1
2
)β

exp
(
−β2 (x− µ)T Σ−1(x− µ)

)
, (B.1)

and, by simple calculus (see also Samek et al. (2013)),∫
X
π(χ|µ,Σ)1+βdχ =

(
(2π)− d

2 |Σ|− 1
2
)β

(1 + β)− d
2 . (B.2)

Hence, omitting the constant term due to the shift-invariance of potentials entering Al-
gorithm 2, we get up to proportionality

fn(µ) ∝ 1
β

exp
(
−β2 (x− µ)T Σ−1(x− µ)

)
. (B.3)

B.1.2 Logistic regression likelihoods

Log-likelihood terms of individual datapoints are given as follows

log π(yn|xn, θ) = − log
(
1 + e−ynzT

n θ
)
. (B.4)
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Substituting to Eq. (2.24), for the β-likelihood terms we get

fn(θ) ∝ − 1
β

(
1 + e−ynzT

n θ
)−β

+ 1
β + 1

((
1 + e−zT

n θ
)−(β+1)

+
(
1 + ezT

n θ
)−(β+1)

)
. (B.5)

B.1.3 Neural linear regression likelihoods and predictive pos-
terior

Recall that in the neural linear regression model,
(
yn − θT z(xn)

)
∼ N (0, σ2), n = 1, . . . , N .

Then the Gaussian log-likelihoods corresponding to individual observations (after drop-
ping normalization constants), are written as

fn(θ) = − 1
2σ2

(
yn − θT z(xn)

)2
. (B.6)

Assuming a prior θ ∼ N (µ0, σ
2
0I), the coreset posterior is a Gaussian πw(θ) = N (µw,Σw),

with mean and covariance computable in closed form as follows

Σw :=
(
σ−2

0 I + σ−2
M∑

m=1
wmz(xm)z(xm)T

)−1

, (B.7)

µw := Σw

(
σ−2

0 Iµ0 + σ−2
M∑

m=1
wmymz(xm)

)
. (B.8)

By substitution to Eq. (2.24) and omitting constants, the β-likelihood terms for our
adaptive basis linear regression are written as

fn(θ) ∝ e−β(yn−θT z(xn))2
/(2σ2). (B.9)

Let C be the output of the coreset applied on a dataset D. Hence, in regression problems,
the predictive posterior on a test data pair (xt, yt) via a coreset is approximated as follows

π(yt|xt,D) ≈ π(yt|xt, C)

=
∫
π(yt|xt, θ)π(θ|C)dθ. (B.10)

In the neural linear experiment, the predictive posterior is a Gaussian given by the
following formula

π(yt|xt, C) = N
(
yt;µT

wz(xt), σ2 + z(xt)T Σwz(xt)
)
. (B.11)
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B.2 Characterization of Riemannian coresets’ com-
binatorial optimization objective

When optimizing a set function, the property of submodularity is often deemed appealing
as it can allow using fast greedy selection policies with provable suboptimality guaran-
tees (Nemhauser et al., 1978; Bach, 2013). The optimization problem corresponding to
our next datapoint selection step of Eq. (5.6) can be equivalently rewritten as follows

m⋆ = arg max
m∈[N ]

−DKL

(
πβ,w←w∪{xm}||πβ

)
. (B.12)

Hence—ignoring the coreset datapoints’ reweighting step which is treated separately—it
is of interest to characterize the properties of the objective function d : 2|X | → R≤0

d(S) := −DKL

(
πβ, N

M
IS
||πβ

)
, (B.13)

where S is set of M datapoints appearing with non-zero weight in the coreset.
Below we give a tight condition for submodularity via second-order differences, which

captures its characteristic property of diminishing returns for increasing set size.

Definition 20 (Submodularity). The set function d is submodular if and only if for all
S ⊆ X and xj, xk ∈ X \S, we have d(S ∪{xj})− d(S) ≥ d(S ∪{xj, xk})− d(S ∪{xk}).

In the next proposition, we demonstrate a problem instance where the necessary and
sufficient condition of Definition 20 is violated for d considered in Eq. (B.13), hence
proving that our objective is non-submodular under no further assumptions.

Proposition 21. The set function d of Eq. (B.13) is non-submodular.

Proof. For convenience let’s focus on the case of Gaussian mean inference for the classical
Bayesian posterior (β → 0), where the objective can be handily written in closed form.
Similar arguments will in principle carry over for arbitrary βs and statistical models. We
recall from Eq. (A.3) that

d(S) = −1
2

[
−d log

(
1 +N

1 + N
M
||IS||1

)
− d+ d

(
1 +N

1 + N
M
||IS||1

)
+ (1 +N)(µ1 − µw)T (µ1 − µw)

]

= −1
2(1 +N)||µ1 − µw||22, (B.14)

where

µ1 = 1
1 +N

N∑
n=1

xn, µw = 1
1 +N

N

M

∑
xi∈S

xi. (B.15)
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Table B.1: Logistic regression datasets

Dataset d N train N test #Pos. test data
Adult (Kohavi, 1996) 10 30,162 7,413 3,700
Phishing (Dua and Graff, 2017) 10 8,844 2,210 1,230
WebSpam (Wang et al., 2012) 127 126,185 13,789 6,907
HospitalReadmissions (Strack et al., 2014) 10 55,163 6,079 3,044

Table B.2: Neural linear regression datasets

Dataset d N train N test
Housing (Dua and Graff, 2017) 13 446 50
Songs (Dua and Graff, 2017) 90 463,711 51,534

Let’s consider a set of observations containing two mirrored datapoints x0,−x0, such
that x0 ̸= µ1. Then clearly

d(S ∪ {x0})− d(S)− d(S ∪ {x0,−x0}) + d(S ∪ {−x0})
=d(S ∪ {x0}) + d(S ∪ {−x0})− 2d(X ) = d(S ∪ {x0}) + d(S ∪ {−x0}) < 0, (B.16)

where we have used the fact that d(S) = d(X ) = 0.

B.3 Datasets details
The benchmark datasets used in logistic regression (including subpopulations’ selection)
and neural linear regression experiments are detailed in Tables B.1 and B.2 respectively,
and include:

• a dataset used to predict whether a citizen’s income exceeds 50K$ per year extracted
from USA 1994 census data (Adult),

• a dataset containing webpages features and a label categorizing them as phishing
or not (Phishing),

• a corpus of webpages crawled from links found in spam emails (WebSpam),

• a set of hospitalization records for binary prediction of readmission pertaining to
diabetes patients (HospitalReadmissions),

• a set of various features from homes in the suburbs of Boston, Massachussets used
to model housing price (Housing), and

• a dataset used to predict the release year of songs from associated audio features
(Songs).

http://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Phishing+Websites
https://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/machine-learning-databases/housing/
https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
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For Adult, Phishing and HospitalReadmissions we fit our statistical mod-
els on the first 10 principal components of the datasets, while all logistic regression
benchmark datasets are evaluated on balanced subsets of the test data between the two
classes (see Table B.1).

Original versions of the six benchmark datasets were respectively downloaded from the
following URLs: http://archive.ics.uci.edu/ml/datasets/Adult, https://archive.ics.uci.edu/
ml/datasets/Phishing+Websites, https://www.cc.gatech.edu/projects/doi/WebbSpam
Corpus.html, https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+
years+1999-2008, https://archive.ics.uci.edu/ml/machine-learning-databases/housing,
and https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD.

http://archive.ics.uci.edu/ml/datasets/Adult
https://archive.ics.uci.edu/ml/datasets/Phishing+Websites
https://archive.ics.uci.edu/ml/datasets/Phishing+Websites
https://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
https://www.cc.gatech.edu/projects/doi/WebbSpamCorpus.html
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/datasets/diabetes+130-us+hospitals+for+years+1999-2008
https://archive.ics.uci.edu/ml/machine-learning-databases/housing
https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
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