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1 Introduction

The intimate relation between symmetries and charges, as manifested in the Noether the-

orem, is a fundamental result of mathematical physics. The application of these ideas in

a gravitational setting is intricate, yet fundamental to almost any investigation involving

gravity, from gravitational wave astrophysics to quantum gravity. In this paper, we apply

the prescription set out in ref. [1], which uses the covariant phase space formalism [2-9]

to propose a systematic method for determining, in principle, all possible gravitational

charges, to give a Hamiltonian derivation of a recently discovered tower of dual BMS
charges [10, 11]. One can think of dual BMS charges as generalisations of the Taub-NUT



charge [12-15] in the same way that standard BMS charges [8, 9, 16-19] generalise the
notion of the Bondi linear four-momentum [20, 21].

The recent interest on asymptotic charges, see for example refs. [22-36], is primarily
motivated by the discovery of the importance of such charges in studies of gravitational
scattering [37-40] and the application of such ideas to black hole physics [41-43]. The
potential success of such investigations and applications of asymptotic gravitational charges
relies crucially on a good understanding of just how many asymptotic charges there are,
and preferably a classification of all such charges, as envisaged in ref. [1]. The fact that in
the last couple of years, two generalisations of asymptotic gravitational charges have been
found [10, 11, 44] (see also [45]) indicates that there remains still much to be understood.
The fact that the dual BMS charges proposed in refs. [10, 11] do not appear in previous
analyses of BMS charges, such as refs. [8, 18], is particularly intriguing. While it has
been shown [11] that the dual BMS charges satisfy the necessary properties of asymptotic
charges and are therefore to be viewed as bona fide charges, an ab initio derivation has not
been given. This is the main aim of this paper: we apply the general formalism set out in
ref. [1] to provide a Hamiltonian derivation of the asymptotic dual BMS charges discovered
in refs. [10, 11].

Previous classifications of asymptotic gravitational charges have, rather naturally, be-
gan with the Einstein-Hilbert action. However, in ref. [1], it is argued that an investigation
of asymptotic charges that solely focuses on the Einstein-Hilbert term will preclude other
possible charges, such as dual charges. One must entertain the existence of all terms in the
action whose equations of motion correspond to the Einstein equation, including the addi-
tion of terms that contribute trivially to the equations of motion. The fact that different
actions that give rise to the same equations of motion are fundamentally different in the
quantum, or even semi-classical, theory is an old, and by now elementary, idea. Indeed,
such terms have been considered with a view to applications to the first law of black hole
mechanics [46] or to the study of particular solutions [47]. The inclusion of such terms
whose addition do not change the equations of motion generally necessitates working in
the first order formalism, which has been studied with a view to the definition of charges
mainly in the context of the first law of black hole mechanics [48-51] and in the context of
asymptotic charges [29, 34, 52].

In this paper, we concentrate on one such term, which one may add to the Einstein
action without altering the Einstein equation, namely the Holst term [53]. We show that
when added to the Palatini action (and more generally including other matter fields that
do not give rise to torsion), the Holst term leads to dual gravitational charges. In a setting,
where there is non-trivial torsion, as a result, for example, of the existence of fermions, the
Holst term is replaced by the topological Nieh-Yan term [54]; see refs. [55, 56].

The Holst term, or Nieh-Yan term in the presence of torsion, can, therefore, be viewed
as the gravitational analogue of the #-term in electromagnetism. Note that in the latter
case the application of the Noether theorem leads to magnetic charges and we show that
an analogous picture holds in gravity.

In the next section, 2, we review the covariant phase space formalism and apply it
in section 3 to the Palatini-Holst theory. In order to make a link with standard and



dual BMS charges, in section 4, we state the boundary conditions that are of interest and
derive the improper gauge transformations. The improper diffeomorphisms are given by
the standard BMS generators, while we derive the large local Lorentz transformations.’
In section 5, we apply the covariant phase space analysis of section 3 to these generators
to find the asymptotic charges, showing that the Palatini action gives rise to the standard
BMS charges, while the Holst term gives the dual charges. We apply the Wald-Zoupas
method to find the integrable part of the leading order charges in section 6. In section 7,
we derive the charge algebra for leading order dual charges. In the presence of torsion the
Holst term needs to be modified, but we show in section 8 that we can nevertheless find
dual charges in an asymptotically flat spacetime with torsion — this is achieved using the
Nieh-Yan term.

2 Review of the covariant phase space formalism

In this section, we review the covariant phase space formalism [2-9], which provides a way
of defining gravitational charges starting from a Lagrangian theory. This section is based
on the notation of refs. [6-9].

Given a top-form Lagrangian density L for fields ¢, the Euler-Lagrange equations E(¢)
are derived by varying the action,

SL(¢) = E(9)0¢ + dO(¢,60), (2.1)

where 6, called the presymplectic potential,? corresponds to the boundary terms, which
appear when integrating by parts in order to derive the equations of motion. As is clear
from its definition above, 6 is a one-form on phase space.

The exterior derivative on phase space of the presymplectic potential gives rise to a
presymplectic form w, a two-form on phase space

w(p, 610, 020) = 610(9, 02¢) — 020(4, 616). (2.2)

Recall, from e.g. ref. [57], that what defines a Hamiltonian flow is the existence of a Hamil-
tonian vector field T" on phase space whose 1-form dual on phase space is exact, i.e. using
some local coordinates A, B, ... on phase space

(dH7p) 4 = wapT®. (2.3)

"We use “large” instead of “improper” to avoid confusion with Lorentz transformations that include
spatial reflections or time-reversal. The Lorentz transformations that we consider are proper in the latter
sense.

2The reason why it is a presymplectic potential rather than a symplectic potential is that it is degenerate.
Indeed, the degenerate directions in phase space correspond to proper gauge transformations, i.e. those
diffeomorphisms that vanish on the boundary. In principle, we would need to factor out the degenerate
subspaces in order to construct a true (or reduced) phase space. However, in the covariant phase space
formalism one works with the presymplectic manifold, which we simply call the phase space, avoiding the
complications of having to work in the reduced phase space, which is no longer covariant.



The phase space scalar Hp thus derived is called a Hamiltonian® of the motion; it is con-
jugate in phase space to the transformation defined by 7. In other words, the direction
T in phase space corresponds to an integral curve. In canonical coordinates the above
equation reduces to Hamilton’s equations. We translate the above expression to the co-
variant phase space language we have been using by noting that as a vector field on phase
space, T corresponds to a particular transformation of the fields. Hence, equation (2.3) is
equivalent to

5Hfzéwwﬁ¢&@, (2.4)

where 7 is some transformation parameter and we integrate over some Cauchy surface X.
Thus, we have a charge associated with a transformation generated by 7 if the right hand
side of equation (2.4) is integrable. Moreover, it would be desirable to convert the integral
to a boundary integral. This is because, we will be primarily interested in asymptotic
symmetry generators, i.e. solutions that have a specific asymptotic form and corresponding
symmetry generators that keep this form intact. For the asymptotic generators to define
a bona fide charge, it would make sense for it to be given in terms of a boundary integral.
This would be the case, were w(¢, d¢, d-¢) an exact form in spacetime.

For concreteness, let us consider diffeomorphisms generated by vector fields £. In this
case, 0¢ corresponds to a Lie derivative so that

w(¢, 00, Le¢) = 00(¢, Lep) — Le0(,09). (2.5)

Using the Cartan magic formula
L¢ = dig + 1ed, (2.6)

the second term
Le0(,50) = dicb($,56) + 16d0(,58)
~ digh(6,60) + 1edL(®), (2.7)

where we have used equation (2.1) and =~ denotes an expression that is valid on-shell for
the field, as well as its variation. Therefore,

w(p, 00, Leg) =6 [0(d, Leo) — e L(@)] — digh(, 09). (2.8)

The expression in the square brackets above is called a Noether current j and one can show
that it is closed: consider the exterior derivative of the Noether current

dje = d[0(¢, Led) — 1eL(9)]
=db(¢, Led) — (Le — 1ed)L(9), (2.9)

where we have again used the magic formula (2.6). Now, using the fact that L is a top-form
so that dL = 0 and equation (2.1), we find that

dje ~ 0. (2.10)

3While, technically the appropriate term is a Hamiltonian or a moment map, we choose to follow the
more standard nomenclature by using the term “charge” or “asymptotic charge” henceforth.



The Poincaré lemma implies that [58, 59]

je = dQ¢ = 0(¢, Led) — 1eL(9), (2.11)
where Q¢ is called the Noether charge. This means that
w(9,00, Lc¢) = d[6Q¢ — 1eb(¢,09)] (2.12)
so that
te = [ {6Ge~1e0(6,56)}. (213)
ox
where the integral is a surface integral over a cross-section 0% of “infinity” — we will make

this more precise in section 4.
What remains to consider is whether the charge exists at all, i.e. whether equa-
tion (2.13) is integrable [9]. Certainly, a necessary (and sufficient [9]) condition is that

(6105 — 6201 )He = — /8 16(9,016,520) =0, (2.14)

which is not generically satisfied. This obstruction to the existence of a charge is directly
related to the existence of flux at infinity and is resolved by taking the flux into account [9)].
In order to make it clear that the expression in equation (2.13) is not necessarily integrable,
following ref. [19] we rewrite equation (2.13) as

gtie = | {50c—1e0(6.50)}. (2.15)
[o)>
Clearly, we can rewrite the above equation as
FHe = 6He + N, (2.16)

i.e. we can split the expression in terms of an integrable part given by the true variation of
an integrable charge H¢ and a non-integrable part, whose existence is directly related to
the existence of flux at infinity. However, the splitting above is ambiguous:

He — He + 1, ./\fg — ./\/Z: —0Z. (2.17)

Ref. [9] gives a prescription for fixing this ambiguity based on reasonable criteria such as
the fact that N¢ be locally constructed from dynamical fields and their derivatives and that
it vanish in the case where there is no radiation. Based on these criteria Wald-Zoupas [9]
propose that

Ne=— /82 1eO(,09), (2.18)
where O is the potential for the pull-back of the presymplectic 2-form to infinity @
w(p,610,020) = 610(¢, 62¢) — 620(¢, 019). (2.19)
Hence, the integrable charge is given by
e = | 6Qc—1e0(6.00)+ [ 10(6.60), (220)

In Einstein gravity given by the Einstein-Hilbert action, these charges are precisely
the BMS charges in the context of asymptotically flat boundary conditions. The goal in
the next sections is to apply this formalism to first order actions.



3 Gravitational theory in first order formalism

We consider as the gravitational action the Palatini action, which is a first order tetrad
formulation of Einstein’s theory plus the Holst term [53]. As noted in the introduction,
General relativity in the first order formalism, with the Holst term and without, has already
been considered in the literature principally in the context of the first law of black hole
mechanics. Indeed much of the covariant phase space analysis of this system has already
been studied in [49, 50]; we revisit the covariant phase space analysis of the Palatini-Holst
theory and identify new gravitational charges, namely dual charges [10, 11].
The action that we consider is

1
SPH = m /M Pabcd Rab(w) ne’ /\€d, (3.1)

where Latin indices a, b, ¢, ... denote tangent space indices, e® is the vierbein and w is the
spin connection and is treated as an independent field. We denote the fields collectively as
¢ = {e,w}. The 2-form Riemann curvature

R%(w) = dw® + we AwS (3.2)

and the tensor 1
Paped = Cabed + Aa[cNd)bs (3.3)

where in our convention the antisymmetrisations have weight 1 and n is the flat space
metric.

The parameter A\ is inversely proportional to the Barbero-Immirzi parameter in loop
quantum gravity (see [49] and references therein). In our case, we will consider it to be
a general parameter. When A = 0, this action is the Palatini action, while the term
proportional to A is the Holst term. It is worth noting that if the spin connection is viewed
as depending on the vierbein and solving Cartan’s first structure equation with vanishing
torsion

de® 4+ w neb =0, (3.4)

the Holst term becomes trivial as a result of the algebraic Bianchi identity. However, in the
first order formalism, where e and w are treated as independent fields, the above argument
does not apply; hence the Holst term is non-trivial. Of course, as we shall show below,
the Holst term is on-shell zero, but this is no different to the fact that the Palatini term
vanishes on-shell by virtue of the Einstein equation.
The tensor P is invertible, as a 6 X 6 tensor Plg)(.q, Where we think of the first and
last two antisymmetric indices as a single bivector index, when X\ # +1, with inverse
1 1 .
Pabcd = m (Eabcd — 21 >\77a[c77d]b) . (3-5)
When P is invertible, the variation of the action (3.1) with respect to the spin connec-

tion gives rise to the torsion-free condition (3.4), while the variation of the vierbein gives
the vacuum Einstein equation, viz. Ricci flatness. Therefore, the addition of the Holst



term has not materially affected the theory, at least at the level of the equations of motion.
However, the inclusion of the Holst term does significantly affect the Hamiltonian analy-
sis of the theory and the symplectic current therefrom. It is this difference that allows a
derivation of dual gravitational charges starting from an action. Therefore, any treatment
of a gravitational system that takes dual charges seriously must also take the Holst term
seriously.

Inspecting action (3.1), it is straightforward to see that the presymplectic potential is

1
0(¢,00) = @Pabcd e® neb ndwel. (3.6)

Note that the presymplectic potential does not depend on Je.

Before we study the set of charges that can be derived from a covariant phase space
analysis of this theory, we need to define the class of solutions we are interested in. This
will give us the set of transformations that lead to the existence of non-trivial charges.
Therefore, we turn now to the definition of asymptotically flat spacetimes and an analysis
of their asymptotic symmetry generators, which allows us to find the associated charges or
moment maps.

4 Asymptotic flatness and symmetries

We consider asymptotically flat spacetimes M as a triplet (M U ., e,w), with boundary
conditions on the fields, the vierbein and spin connection, at null infinity .# such that
the relevant quantities are well-defined at .#. The space M U .# is the unphysical space
corresponding to the conformal compactification of M.* In fact, we will not explicitly
compactify and instead follow the Bondi-Sachs approach [20, 21], albeit in a tetrad form,
as explained below.

4.1 Boundary conditions

The vierbein e}, has Greek spacetime indices y, v, ... and tangent space indices denoted by
Latin letters a,b,.... Tangent space indices are lowered and raised using the flat metric
(and its inverse),”
0 -100
-1 000
pu— 4.1
1o 001 (4.1)
0 010

4In this paper, we will consider future null infinity ., but the same methods can easily be adapted to
past null infinity as well.

5This form of the flat metric requires a complex basis of zweibeine for the two-sphere cross-sections
of .#. However, in practice we do not choose a particular basis for the 2-space and all of our expressions
are covariant along the 2-sphere directions.



In components, where the coordinates X* = (u,r, x! ), the (inverse) vierbein is given by

1
e’ = iqu + dr, ey = Oy
1
et = e’ du, ep=e 28 (au -3 Fo,+cC! af) , (4.2)
. ) 1
e =rEj (d’ — Cldu) , ei =~ Elor,
r

where I,J,... denote coordinates on a 2-sphere, e.g. ! = (0, ¢), and we denote tangent

space indices on the 2-sphere with indices ¢, 7,... .
The boundary conditions for the fields can now be given in terms of the components

above,
F I I
Flura’) =14 220 T) ooty gl oty = BT 2y
T
7 I ' N i/
Curay= DT om0 Bjura’) = B + T2 o), )

where Cry is a trace-free, symmetric tensor and F is the zweibein on a round sphere, i.e.
V17 = B} B (4.4)

with ~7; the metric on the round 2-sphere. Note that BV = A1 E} Unless explicitly
stated, throughout this paper, I, J, ... indices on tensors defined on the 2-sphere are lowered
and raised using only 7; and its inverse. Furthermore, we require that

det Bt = det E¢ (4.5)
so that in (6, ¢) coordinates
det E = sin 6. (4.6)

These boundary conditions imply the weakest boundary conditions on the metric in
order to have well-defined quantities at ., namely they are equivalent at leading order to
the boundary condition used by, for example, Sachs [21].

The torsion-free (on-shell) spin connection is given by the vielbein postulate

Vuey = 0uel — T0,e5 + wu el = 0; (4.7)
hence
Wy = € (T — Oue) (48)

where I is the affine connection, which coincides with the Christoffel symbols as a result
of vanishing torsion. Using this fact, the spin connection can also be written as
Wyab = efaezj (eac ap,ez + aUgPM) ) (49)
where
Gpv = BZ eg Nab (4'10)

and e, . = gorel = ncdeg. We list the metric, inverse metric and spin connection compo-
nents associated with vierbein (4.2) in appendix A.



4.2 Asymptotic symmetry generators

We find the diffeomorphisms and Lorentz transformations that preserve the boundary
conditions presented in the previous section.
The transformation of the inverse vierbein is

et = €YD et — el D " + Aylel. (4.11)

The boundary conditions on the vierbein, (4.2) and (4.3), are preserved for diffeomorphisms
of the form

& = flua) = s@@h)+ 5 DY, & =2 (Clorf - Digl),
I I VLT
where D is the covariant derivative on the round sphere,
W' = ElE]nY (4.13)
and Y (27) are conformal Killing vectors on the spheref
1 K
DYy = 5 DrY ™" 1. (4.14)

These are the familiar BMS transformations [20]. And the Lorentz transformations that
preserve the boundary conditions are

62'8 T
Ao1 = =07, Ao; = — E; 0r¢",
E! u r o o 0
Ay = o (FOre" +2018"), Aij =y E Ly B + o(r). (4.15)

One can show that the BMS generators satisfy the following identities

V& =0, (4.16)
ga(rv])ga =0, (417)
vt = clven (4.18)

5 Asymptotic charges

The gauge transformations of the theory (3.1) are diffeomorphisms and local Lorentz trans-
formations, with the asymptotic symmetry transformations given by the improper coordi-
nate transformations generated by the vector fields given in equation (4.12), BMS trans-
formations, and large Lorentz transformations with parameters given in equation (4.15) —
these are local Lorentz versions of BMS transformations. The question that we address

5 As emphasised before, unless stated otherwise, we always lower /raise I, J, ... indices on tensors defined
on the 2-sphere only with the metric on the round 2-sphere ~;; and its inverse.



in this section is what are the asymptotic charges corresponding to these improper gauge
transformations. We consider diffeomorphisms and Lorentz transformations in turn. How-
ever, it should be emphasised that strictly diffeomorphisms and Lorentz transformations

ought to be considered together, since the asymptotic symmetry transformations are con-

structed from the simultaneous action of diffeomorphisms and Lorentz transformations.”

It turns out that for the theories that we consider in this paper, there is a clean decoupling
of the two sets of transformations, which allows them to be considered separately.® We
choose to take advantage of this feature to consider them separately for ease of exposition.

5.1 Diffeomorphisms: standard and dual BMS charges

In section 2, we reviewed how asymptotic diffeomorphism charges are defined and showed
that

e = [ w(0.00.0c0) = | {50c—1et0.5)} (1)

where OY is a cross-section of .# 1 and

dQe = 0(, Led) — 1eL(9). (5.2)

Since the action (3.1) vanishes on-shell, the above equation reduces, on-shell, to

dQe = 0(9, Le). (5.3)

From equation (3.6),

1
0(¢p, Leg) = @Pabcd L’gwab nefnel. (5.4)
Using the magic formula (2.6), it is simple to show that the Noether charge is

1

= ﬁPabcd ngab e nel. (5.5)
T

Q¢

Therefore, using equations (3.6) and (5.5), equation (5.1) becomes

FHe = merPade/a {5 (Léw“b ec/\ed> — L <(5wab A ec/\ed)}
)
= #Pabcd /az {ngab de + e’ 5wab] net. (5.6)

Consider
el nel |os. (5.7)

In components this would be equal to
e\ d _ [c d\ _ 2ccd i i\ _ ,.25cd i g\
2 <5e[1) €)= J (6[1 eJ}) =r 51']'5( (T E?]]) =r 5z'j5< (T Eﬂ]) =0, (5.8)

"One could equally derive the asymptotic symmetries corresponding to the independent action of dif-

feomorphisms and Lorentz transformations. However, the conditions in this case would be too strong and
preclude the BMS group.
8This is not the case, for example, for the Pontryagin and Gauss-Bonnet terms [1].

~10 -



where in the second equality we use equations (4.2), in the third equality we use equa-
tion (4.5) and in the final equality we use the fact that the variation of the zweibein on the
round sphere is trivial. Therefore, equation (5.6) reduces to

1
§H: = %Pabcd /(92 Leef dw® ae. (5.9)
Using equation (3.3), we rewrite this expression as
FHe = §Q¢ +iAFQs, (5.10)
where
§o —1€bd/ Leef 5w ned §O S Le€® Swap n el (5.11)
¢ 167G e on ¢ ’ ¢ 8tG on ¢ “ )

are to be viewed as the standard (“electric”) and dual (“magnetic”) BMS charges, respec-
tively. Now, we consider each of these expressions separately.

5.1.1 Standard BMS charges
The standard BMS charge is

1
§O¢ = m%bcd /E)E L€’ Sw® nel. (5.12)

Using equation (4.9), it can be shown that”

3
- nlr coxzpl [r o5 pla " v
5Q§ 397G /62 Epvpo (9 VPG, + £V, (ea(Se ))dw adzx" . (5.14)
Of course, uv = 1J in the expression above. Let us consider the second term,
38/“/'00 g[TvT (62—66;)} ‘l) =—2 v[# (511};707—576256’)&) - 3€;Wpa 6L056P|a|v7-§7}. (5.15)

Since we integrate this over a cross-section of .# T, the first term above is a total derivative;
hence it can be neglected. Therefore,

§Q¢ = 32?7(1/ Epvpo <g"[T§UVp]5gm - eggée’J'“'VT&ﬂ) dz* ndx”,
(o))

1
= ﬂQ]W + m /aZ <€w/pg ( — 362‘7(5€p|a‘v7—€ﬂ

+ 977697, VP 4 0(log \/—g)V’f”)daz“ Adzx, (5.16)
where
1
FQrw = 55— / Euvpo (3 gn[Tgavp](ng — 97709, V1EP — 6(log v _Q)VP§U> dzt ndz”
327G o2
(5.17)

9A repeated use of the Schouten identity
56[/,Ll/pO'X‘I’] = 2€po-7—[y.Xu] + 35;;41/[ng7-] =0 (513)

for an arbitrary X is required.

- 11 -



is the Iyer-Wald charge calculated from the second order formalism [8] (see also ref. [60]).
It is equal to the Barnich-Brandt charge [18]; see ref. [60].

Since pv = I.J, this implies that the po indices in the extra terms in equation (5.16)
must be [ur]. Using equations (4.2), (4.12) and (4.16), this implies that the extra terms
are proportional to

—3eltger v, g s g, Ve 15 (log v =g) Ve = e=%58 (Ve — CTVEY), (5.18)

which vanishes by identity (4.18).
Therefore, from equation (5.16)

$Qe = fQuw. (5.19)

In summary, a first order analysis of the Palatini action reproduces the Iyer-Wald expres-
sion, which is also equal to the Barnich-Brandt expression, giving rise to the standard
leading order BMS charges [19], as well as the subleading BMS charges [44].

5.1.2 Dwual BMS charges

Now, we turn to the dual BMS charges, which arise from the Holst term in the action,

1
= — Sw™ nep. 5.20
§O¢ S7G o Leeq 0w Aey ( )
As before, using equation (4.9), it is fairly simple to show that
S 1 T a 1 J
§Q¢ = e 825 V(eraded) dx' ndz’. (5.21)

Expanding the integrand and using the antisymmetrisation in I.J

E"Vy(erae]) = &0y (erqdef) — fogT (epade])
= —(0,6" +T17,£") (erade])
= —V & (erqde€), (5.22)

where in the second equality, we have integrated by parts and ignored the total derivative
term, which is trivial. Therefore,

- 1
§Oe = 87TG/,32 ra0e4 V1€ dal ndz’. (5.23)

Consider

era0eV €T dat ndr! = e ide’y (Viel — CFv€") da! adx’
1 )
= <25gKJ + e[K|i|5ef]]> (VI§K — C’vafu) de’ ndx”’
1 .
= 5 {00rs (Vie" OBV 1€") +eridey (Vig" —CHVKE") da'nda”

1
= 559&1 (ViR — g™V &) da' nda”, (5.24)

- 12 —



where in the first equality we have used (4.2), in the third equality we have used a Schouten
identity and in the fourth equality we have used identity (4.18), as well as the form of the
inverse metric, which gives that ¢"% = g% C¥. Inserting the above equality into equa-
tion (5.23) gives!?

~ 1
5 K rK ) d 1 d J‘
§Qe = 167G o grg (V€™ — g™ V&) da' ndx
1 K K I J I J
= -2
397G o, 0gIK (V1£ +V 51) dx' ndx” + 167G /s dry dz' adx”,  (5.25)

where the first expression is the dual charge proposed in ref. [11]'' and the difference
between the two charges is proportional to the integral of

1
diy = ogx1s (V€™ — ¢ V&) — S0gx1s (V€™ +V5¢p)

1
= igKTCSQK[J (Viér = Vién) — 9% 6gr1s V&

3 T 'S
= §9K 59V 1&n — 9" Sgr 1V &

1
= §QTK59K[J (V& = Virén) — 909k Vi

=0, (5.26)
where in the third equality we have used equation (4.5) and the fact that ¢§ (detE}) =0

and in the final equality we have again used identity (4.17).
In summary,

1
327G

reproducing the dual BMS charges [10] as well as the subleading dual BMS charges [11].

FOr =

/ Sgsk (Vig" +VR¢)) da’ nda’, (5.27)
ox

5.2 Lorentz transformations

In addition to diffeomorphisms, there exist another set of non-trivial transformations in
the first order formalism; that of Lorentz transformations parametrised by A. The asymp-
totic symmetry analysis implies that the set of Lorentz transformations that preserve the
boundary conditions, and can thus be viewed as improper gauge transformations, are those
given in (4.15). In this section, we consider what the asymptotic charges associated with
these transformations are.

Applying the general discussion in section 2 to Lorentz transformations, we find that
the asymptotic charge is defined as

FH) = /E (6, 56,616), (5.28)

%Tn this subsection, we are lowering and raising all indices with g,,, and its inverse, including I.J indices.
Therefore, here &1 = gr,.&".

"The dual charge is defined in equation (3.1), (3.2) of ref. [11] and is equal to the above expression up
to a trivial total derivative.
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where

w(9,00,07¢) = 00(¢, 07p) — O0(0,09), (5.29)
where 0(¢, d¢) is given in equation (3.6). The Lorentz transformation acts on the fields as
(SAea = Aab eb’ 5Awab == —dAab + [A,W]ab~ (530)
Consider
_ L a _e b cd a b _ cd cd
oab(p,00) = 167TGPade{2A cefne’ nw 4 e ne /\5( dA“ + [A, w] )}
1
—_—p Aae e b cd Ace a b ed
e abcd{ e ne’ Aw™ + e ne’ Now }
=0, (5.31)

where in the first equality we have used equations (3.6) and (5.30), in the second equality we
have used that A = 0 and the third equality results from a Schouten identity. Furthermore,
it is simple to show that

where
1 ab _c d
Qa(9) = ez Pabea A e“ ne. (5.33)

Therefore, using equations (5.31) and (5.32), equation (5.28) simplifies to

FH) = /8 _3QA (@) (5.34)

The components of Q@ (¢) that the integral above projects to are its I.J components. From
equation (5.33),

7,2

Qarg = _mpabij A9 ey, (5.35)

where e7; is the volume form on the round 2-sphere (see appendix B). In order to obtain
the above expression, importantly, we have used the determinant condition (4.5). Clearly,
the variation of the right hand side of the above expression is zero, which implies that

FH) =0, (5.36)

i.e. asymptotic Lorentz transformations lead to trivial asymptotic charges. One way to
understand this result is that Lorentz transformations correspond to degenerate directions
in phase space. Using some local coordinates A, B, ... on phase space, recall that degenerate
directions correspond precisely to those transformations X such that

wapX? =o. (5.37)

Thus, what we thought were large Lorentz gauge transformations turned out to be proper;
consequently leading to a trivial charge.
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6 Identifying the integrable charge

We explained towards the end of section 2 how diffeomorphism charges are, in general,
not integrable. As illustrated in equation (2.16), §H, can be split into two terms: the
variation of an integrable charge H¢ and a non-integrable term Ng. The physics behind
the existence of such a non-integrable terms is clear; it is related to the existence of flux at
null infinity removing charge from the spacetime. As such equation (2.16) can be viewed
as a generalised continuity equation in the following sense (see also ref. [11]): given the
properties of the asymptotic charge, on-shell

$He (4, 0¢) = 0. (6.1)

Therefore, in this case, equation (2.16) implies that the change in the integrable charge is
balanced by the change in flux; this is a continuity equation. However, an important issue
that arises when defining the splitting in order to derive an integrable charge is how to
physically fix the ambiguity (2.17). This issue is the object of attention of Wald-Zoupas [9]
and what they find is that for standard BMS charges at leading order, the prescription that
should be followed is to pull-back the presymplectic 2-form to infinity, read off the associ-
ated potential, what they call © and subtract this from the 6 term in the definition of the
charge; see equations (2.19) and (2.20). This makes sense, because the non-integrability
comes from the existence of the 6 term in the expression for the charge (2.15) and the
pull-back of the presymplectic 2-form to infinity parametrises the flux at infinity. There-
fore, it is natural to remove the contribution of potential © associated with the pull-back
of the presymplectic 2-form from the expression involving 6 in order to determine the
integrable charge.

In this section, we show that the Wald-Zoupas prescription also works in the first order
formalism to leading order and that it determines in particular the leading order integrable
dual charge. Following ref. [9], we begin by considering the pull-back of the presymplectic
2-form to a constant r surface, i.e. we consider its ul.J component

1
&(6,616,026) = 1o Pabea 01 <e“ Aebmwcd) (1 2). (6.2)

Consider the Hodge dual of the presymplectic form
1
(*w)H = G "% Wy e, Wuvp = Epwpo (*w)°. (6.3)
The pull-back of the presymplectic 2-form to a constant r surface implies that we consider

(xw)" = €7 Paped O1€f,, €) Gow] — (1 2)

8tG
3
= 3nC (egeZeZ] 6162 09w 4 iNr 2 e 2B 17 oref, eb 52UJJ]ab) — (1 2)
1
= o (let(ehes — eqen) — eneqel] dreg by

81

+ixr2e 2B |:(51€Z eij 09W Jai — 516§ ez Sow y;p + (5163 eﬂ 52wm-jD — (14 2)
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_ 1
- 871G

+ixr2e Bl [(51(63 € 6ow ai + 1€} eg (52wuijD — (1< 2), (6.4)

(f (61e.eq — 01€7 el)) 52w§d — 2515 eleg 52w§d

where in the first equality we have substituted equations (6.3) and (6.2); in the second

urlJ _ _ —26—2651J.

equality we have used equation (3.3) and that e T ; in the third equality

we have used the definition of the vierbein (4.2) and in the fourth equality we have used
the fact that det(e};) = r2e2P det(E}). From the expressions for the spin connection (A.6),
it is fairly simple to see that

dwor = O(r~Hdu + O(r~2)dr + O(r Ydz!, dwe; = O(r~H)du+ O(r~1)da!,
dwii = O(r~Hdu + O(r~2)dr + O(r%)dx?, dwij = O(r YHdu + O(r—Ydr + O(r—dx!.

Using the above expressions and the form of the vierbein (4.2), (4.3), equation (6.4) becomes

1 A , ‘
()" = (51E” Sowrn; +iNeld 6, B8 [52WJ17; +rEY 52%@} " o(r_l)) (12

! i J 1 oy LT s i L

~ 8@ <51E 02 [E(iaW'Ej)JE}] +iAe™” 01E] 020,Ei + o(r )> —(1+2)

- _i (iélh” 020uh1 +iAe"” 61E} 820, Eig + 0(”)) ~(1+2). (6.5)
7

Now, from equation (6.3),

Wyl = 5uIJr(*W)T

B T251J
8rG

61 (iagh“ Ouhir +iXelE 6, EL- 0, E;p + 0(7“2)) —(1+2).  (6.6)

Using the expansion for E? in equation (4.3) and the fact that

B Cuy -1 w_ . CY -1
hiy=qm+ == +o(r™), " =n — to(r), (6.7)
Wuty = — ol 6y (520KL3 Crr +iX8:CKL 0,01 + 0(7‘0)) —(1+2) (6.8)
v 327G ¢ ¢ ’

where the twist of tensors on the round 2-sphere are defined in appendix B. Using equa-
tion (2.19), we conclude that at leading order

6 =~ (JC5F0,Crer +ix6CK" 0,01 ) - (6.9)

Therefore, the leading order non-integrable part of the variation of the asymptotic charges,
as defined in equation (2.18), is equal to

o _ 1
Ne 327G Jox

dQ € (50“ 0,Crcr, + iX6CHE aucKL) , (6.10)

where df? is the volume form on the unit round 2-sphere. This matches that expected from
previous studies [9-11, 19].
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What remains is to prescribe a similar procedure for finding the subleading integrable
charges. Note that whereas null infinity may be viewed as a r = constant surface, sub-
leading charges will live away from null infinity and as such will live on v = constant null
surfaces, where v is the ingoing Eddington-Finkelstein-like timelike coordinate. However,
pulling the presymplectic 2-form to v = constant surfaces does not lead to a sensible an-
swer. While, it is simple to distinguish the integrable charge at subleading orders on a
case by case basis [11, 44], it is clear that a Wald-Zoupas-like prescription that determines
the subleading integrable charge in a general, geometric, way by pulling the presymplectic
2-form to some surface is more challenging. We hope to deal with this interesting problem
in future work.

7 Charge algebra for leading order dual charges

In this section, we derive the charge algebra associated with leading order dual charges and
show that they satisfy the same algebra as the standard leading BMS charges, albeit with
a slightly different, but analogous, field dependent central extension. The leading order
dual BMS charge corresponding to the full BMS algebra is [11]2

§Qo¢ = 600" + Nog[oe] (7.1)
with
é(mt) o 1 i — fD D 5JJ + lyKCVJJD Crr— E?ID 02 (7 2)
06 = 1600 o 1Dy 1 kG175 I ) .
~ b ~IJ
Noeldd) = g5 |4 £0,C1y 6C. (7:3)

Following ref. [19], we define the bracket of the charges to bel3
~(int) X(int ~(int 7
{055, Q)Y = 66,908y + Nog, [0, 9. (7.4)

2

Inspecting equations (7.2) and (7.3), clearly the only relevant field transformations are
those acting on C7y, which transforms in the following way'4

1
0Cry = f0,Cry+0f vr5— QD(IDJ)f +YKDKC[J + 2CK(IDJ)YK — §DKYK Cry. (7.5)
Consequently, it is simple to show that
~ ~ ~ ~ 1 ~
§C = £8,C" + 25U DDV f + YEDRC! + 20U DV YE — 5DKYK cl’ (1.6)

and
6C? = f0,0? —4C" DD, f + Dy (C?YX). (7.7)

!2Note that there is a minor typographical error in equation (4.6) of ref. [11].

13Note that the relative minus sign difference with ref. [19] in the definition of the bracket is due to the
difference in defining the action of the BMS generators on the metric components. This difference can be
traced back to whether one views BMS transformations as acting actively or passively on the fields.

14Gee, for example, equation (2.18) of ref. [19].
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Using the above expressions and making extensive use of the fact that Y/ is a conformal
Killing vector on the round 2-sphere, see equation (4.14), as well as Schouten identities

described in appendix B of [44], one can show that!®

~(int) X(int ~(int ayd
{Q((Jfl)’ Q(()€2)} - Q(() [51),52] + Key 6o (7.8)

where the commutation of two BMS generators [£1, 2] corresponds to a third BMS gener-
ator & with [19]

1 1
fs=Y{Drfo= 5 fa DiY{ ~Yi Difit 5 i DY, ¥ =YDy —v Dy (7.9)

The field dependent central extension

Ke oo = 05— o '’ <f1 DiD,; DKYQK — foDrDy DKY1K>. (7.10)
’ 327G )

Compare this with the field dependent central extension corresponding to the leading order
BMS charges [19]

_ 17 K K
Ke e, = 327G J s, @y C <f1DIDJDKY2 fo DDy DYy > (7.11)

8 Fermions

In section 5, we computed the asymptotic charges corresponding to asymptotically flat
solutions of the Palatini-Holst theory (3.1), i.e. Einstein gravity in the first order formalism
with an extra term, called the Holst term, that does not contribute to the equations of
motion and hence its existence at the level of the action cannot be ruled out. A lot of what
we found for this theory relied heavily on the fact that the torsion vanished as a result
of the equation of motion for the spin connection. The fact that the Holst term does not
contribute to the equations of motion, for example, is itself a consequence of the fact that
the torsion vanishes.

In this section, we assess the extent to which similar results as in section 5 may be
obtained in the case where there exists non-trivial torsion, which is the subject of Einstein-
Cartan theory [61-63]. A simple situation in which torsion arises is in the presence of
fermions. Therefore, in this section, we consider asymptotic charges in a setting in which
one has gravity as well as fermions. We will find that asymptotic charges, including dual
charges, can still be defined, following some minor, yet important, modifications. The
results of this section were already reported in [1].

As remarked above, in the presence of torsion, the Holst term is no longer trivial in
terms of its contribution to the equation of motion (the Einstein equation). Consequently,
it must be modified. The analogous term is the Nieh-Yan term [54]

iA
167G J pq

SNy = (Rab(w) ne neb — T /\Ta) . (8.1)

15See appendix C for a detailed derivation of this result.
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Using the fact that in the presence of torsion, Cartan’s first structure equation (3.4) be-
comes
de® + wyneb = T4, (8.2)

and the algebraic Bianchi identity becomes
dT® + W AT® = R n e, (8.3)
it is fairly simple to show that
Rap(w)nenet —TUAT, = —d (e* AT,). (8.4)

Therefore, the Nieh-Yan term can be written as an exact term. In this form it is clearer to
see that it vanishes in the absence of torsion, as a result of the algebraic Bianchi identity.
In order, to maintain the connection with section 5, we want to view the Nieh-Yan term
as a correction to the Holst term in the presence of torsion. Accordingly, we use the form
of the Nieh-Yan term given in equation (8.1), rather than its simpler exact form. Adding
this term (8.1) to the Palatini-Dirac action gives

1 1 =
SpPNYD = —— / (Pabcd R“b(w) neC net —iNT® /\Ta> + = / e V1, (8.5)
167G M 2 M
where P,p.q is defined in equation (3.3), € denotes the volume form,

=il {4} =2 (8.6)

and the operator

V=v- %, Y = etV (8.7)

with the covariant derivative acting on spinors as

1
V=0 + Zwuab’}/abw- (8.8)
Varying action (8.5) with respect to 1 gives the Dirac equation

Vi =0, (8.9)

while varying with respect to w, we obtain

1

1 _
e (Pabcd[dec + w’ nef] ned — iAT}, /\eb]) + = Ecdef Dy eq ney nel =0, (8.10)
T

24

which using Cartan’s first structure equation (8.2) reduces to

1 1 _
m%bchc ne + o Ecdef @Zryc‘ie@!} eanepnel =0. (8.11)
This determines the torsion in terms of the Dirac fields

T¢ = —27G Py ep nee. (8.12)
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The Einstein equation, obtained by varying the vierbein, is'®

1 a c v (7 A
%eabccﬂz b et + ey <¢ tye V1) — w%y LyE w) =0, (8.13)
where 1
Ly = g’YaEabcd e’ nef ne. (8.14)
Equivalently,
G, + 4nG et @fy“vm — @%V’y%b) =0, (8.15)

where G*, = R*,, — %R 58 is the Einstein tensor.

The presymplectic potential corresponding to theory (8.5) is

Poped 0w™® ne€ net — 2i) §e® /\Ta> + (@ L4 O — 61 LyE w) ,  (8.16)

1
0(9:00) = {67c ( 2

while, the Noether charge, as defined by equation (2.11) is

1

Q= el (Pabcd ngab e net — 2iN ee” Ta> . (8.17)
T

We can verify that the Noether charge as defined above does indeed satisfy equation (2.11)
by taking the exterior derivative of the expression above, using Cartan’s magic formula (2.6)
and Schouten identities to find that

1
dQ = e (Pabcd ngab nefned — 2N Lee® /\Ta> — el
T
1
— mgabcd (e“ neb A LgRCd —2T%neb ngCd) . (8.18)
T

Consider the terms on the second line of the right hand side above

1
— mgabcd (ea neb A LERCd —2T%peb ng“l)
T
1
= m%bed (e“ Alg {eb /\RCd] — e AR Lgeb +2T%ne? L5w6d>
T

1 _ _ 1 _
= = Cabed <£“ [tﬁ S TR P w} -3 rew®! wzw) e’ nef e

- % (V1re Lot = Letp1re D)

where
Lep = E10u. (8.19)

In the penultimate equality we have used the Einstein equation (8.13) and the expression
for the torsion given in equation (8.12). Therefore, from equation (8.18) and the definition
of the presymplectic potential (8.16), we establish

dQ = 0(¢, Lcg) — teL. (8.20)

16Note that we have used the Dirac equation (8.9) to simplify the resulting expression.
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The variation of the asymptotic charge is given by equation (2.15), hence we consider on
the sphere
—— Popeq te€€ dw® ned — A(L e 6T, + e nueTy,)

abed Y€ S1G 3 a ¢la

5 o —
@t 8G

— % (@ Lely€ O — 01 LetyE 1/}) , (8.21)

where we have used equation (5.8) to simplify the expression on the right hand side. Again,
using equation (5.8) and ignoring total derivative terms, it is simple to show from the
definition of the torsion (8.2) that

g€ 6Ty 4 0e” nigTy = e ALeeq + 1ee® dwap neb. (8.22)
Substituting the above equation into equation (8.21) and using the definition (3.3), on the
sphere
ab 2
0Q — 10 = ——Eqbed Le€” ow ned — = (1/1 Lely€ 0 — 5 LelyE w) ——0eALeeq. (8.23)

16G 887G

In summary, the presence of torsion does not impede the definition of dual gravitational
charges and, in particular, for the Einstein-Dirac theory, we have that

" = 50" +ixgal", (8.24)
where
ﬁQ(T): ! ———Eabed Le€” Ow? Aed—l(@LLsMJ—é@LLEUJ) (8.25)
é 16 G aoc f 2 £ Y 5 Y ? :
@’QET) = ——S;G . de" NLeeq. (8.26)

Compare these expression with the asymptotic charges corresponding to vacuum Einstein
gravity, namely equations (5.10) and (5.11). It is clear that ﬂQéT) coincides with §Q¢ up
to contributions from the fermion fields, while it can also be shown that when the torsion
vanishes equation (8.26) is equivalent to (5.11).

As in section 5, the charges associated with the Lorentz transformation are trivial.
We will not repeat the argument here, since the analysis is essentially identical to that of
section 5.2.

9 Discussion

In this paper we have presented a Hamiltonian derivation of the dual BMS charges proposed
in refs. [10, 11]. This derivation justifies their interpretation as asymptotic charges. The
main motivation for the extensions of BMS charges proposed in refs. [10, 11, 44] was to
understand Newman-Penrose charges [64] as BMS charges; that is to give an asymptotic
symmetry interpretation of these charges. In ref. [44], it was found that a generalisation of
standard BMS charges contains half of the set of 10 non-linear Newman-Penrose charges,
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while it was argued in ref. [11] that a new set of dual BMS charges would contain the other
five Newman-Penrose charges. Therefore, a consequence of the results of this paper is that
we have finally given a full Hamiltonian derivation of Newman-Penrose charges.

The addition of the Holst term to the Palatini action in section 3 is controlled by
an arbitrary parameter A. Setting A = 0 gives back the Palatini action, while A\ = —1
corresponds [53] to Ashtekar variables, which is a reformulation of general relativity as an
SU(2) gauge theory [65]. There are two other independent arguments for why we ought to
choose A = —1: in ref. [11], it was found that A = —1 reproduces the correct combination
of Newman-Penrose charges, while in ref. [66], an analysis of the gravitational phase space
found that the BMS algebra acts in a well-defined manner only if A = —1. As we observed
in section 3, A = *1 is a somewhat singular choice, since in this case the P operator
is non-invertible, see equation (3.5). In fact, these choices correspond to (anti)-self-dual
Palatini gravity [67, 68]. In particular, A = —1 projects onto the self-dual part of the
Riemann curvature 2-form (or equivalently the self-dual part of the spin connection). This
means that the equations of motion are not clearly Einstein’s equation. In order to resolve
this apparent problem, we should recall that in adding the Holst term, we have made the
theory complex. Therefore, we require reality conditions in order to reduce the degrees of
freedom to that of the real theory. When \ # +1, this is simple to do: we simply require
that the solutions be real. However, when A = =£1, the reality condition that takes one
back to Einstein theory is not as clear, although one does exist [69], so that even in this
case we can be confident that we are working with a theory that is equivalent to Einstein’s,
albeit not obviously so. We do not have to worry about the details of this issue here, since
the invertibility of the P operator is not required when defining charges. Therefore, our
results are valid for the cases where A = +£1.

This work raises many further interesting questions that we wish to explore in future
work. One important question is how these ideas can be understood in the context of
the Barnich-Brandt formalism [18]. This is an alternative formalism for the derivation of
asymptotic charges that relies solely on the equations of motion, rather than the presym-
plectic structures as in the covariant phase space formalism. The justification for such
a formalism is that it relies on the only objects in the theory that matter, namely the
equations of motion, rather than objects that have many ambiguities. For standard BMS
charges, it agrees with the expression derived from the covariant phase space formalism,
see e.g. [60]. However, the main message of ref. [1] and this work is that there is more to
be considered beyond the equations of motion, which seems to go against the spirit of the
Barnich-Brandt formalism. Therefore, a question that we look forward to considering in
the near future is whether dual charges can be derived from the Barnich-Brandt formalism
at all? And if so, how? Related questions have been considered previously in refs. [70-72].

We have shown how the Wald-Zoupas prescription can be generalised to define the
leading order integrable dual charge in section 6. The identification of the integrable charge
is an important step in the construction of the charge algebra [19], which we derived here
for leading order dual charges, see section 7. A construction of the charge algebra for
subleading charges [11, 44] remains to be done. Of course, one can identify integrable
charges order by order and, hence, derive the charge algebra order by order. However, it
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would be much more satisfactory to have an all order result. In order to do this, one must
first formulate a Wald-Zoupas prescription for subleading charges.

In section 5, we found that the diffeomorphism and Lorentz generators decoupled.
Investigating each in turn, we found that the charges associated with the Lorentz generators
is trivial. Of crucial importance in deriving this result is the determinant condition (4.5).
Therefore, the decoupling of diffeomorphisms and Lorentz generators and the triviality
of the Lorentz charges seems to be inextricably linked to our definition of asymptotic
flatness, which corresponds to that of Bondi and Sachs [20, 21]. This is not so surprising
since the charges will clearly depend on the background and the boundary conditions that
we impose. In light of this, it would be interesting to consider what happens, for example
in the Newman-Unti gauge [73]? For standard BMS charges in the metric formulation of
the Barnich-Brandt formalism, this has been studied previously and it has been found that
the charges in the Newman-Unti gauge satisfy the same charge algebra as those in the
Bondi-Sachs gauge [74].
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A The metric and spin connection
For convenience, in this appendix, we list the metric and inverse metric components

Guv = €4 ey, 9" = ellel n™, (A1)
as well as the spin connection components

Wyab = efaeg] (eac auef, + a,gpu) . (A.2)
For X* = (u,r,z'), we have

_625F+r2hKLcKcL _625 —T2hJKCK

Juv = —e28 0 0 , (A?))
—r2h g CK 0 r’hry
0 —e 2 0
g = | —e 2 e F 207 |, (A.4)
0 _6—2601 T—QhIJ
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where
hiy = E{E)n;;, W' = E[E] Y. (A.5)
The spin connection components are

1 1
wor = 20,8 € + 56_2687»}7 el + EZI (
T

o8 + ge_whuarc‘]) e,

1 ro_ 1 j
| G e LD B CIR LA 2

1 1
Wi; = —Ez‘I <r815 + ;e_QﬁhIJ&’CJ) ¢’ - ?re_QﬁEilalF e

1 1
—2 I 74 I
+e s (QTF Nij — E(i8|u|Ej)[ + §F E(i3|T|Ej)[ — E(

iE‘)J(2)vICJ> el
_ 1
wij = Bio By e + e (Eé%Eﬂ, —5F BlLOy, By + BLE;,DViC7 + (2)injCJ) el
+ %E;‘C] (2)WJ7;]' Ck, (AG)

where in the above equations
E;1=nijB] = hiE/,

@v 1 is the metric connection associated with hjy, i.e.
AV hyg =0 (A7)
and @w; ;; is the spin connection associated with the zweibein E? satisfying
O Ey + Puyr’ AE§] =0. (A.8)
B Twisting on the 2-sphere

We define a twisting operation on tensors defined on the 2-sphere [10, 11] as follows. For
a symmetric tensor Xy, its twist

~ A 1
X = X UK ey = ( 01 é) detFi, &l = ( 01 é) : (B.1)

detEA}

If X7y is, furthermore, trace-free, i.e. v/ X;; = 0, then X elIK — (. Therefore, X is

symmetric without the need for explicit symmetrisation and we can simply write
X1 = xglelK. (B.2)
Moreover, we define the twist of a vector Y/ to be

v =elly;. (B.3)
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C Derivation of the leading dual charge algebra

In this appendix, we compute the charge algebra given in equations (7.8) and (7.10). We
begin by considering
~(int) ~(int) ~(int) o ~(int) o7 ~(int)
{Q0e, Qe } ~ Qe ea) = % Q0g, T MNo&:l06 0] = Qe gy
1

165G oy @ Fere (C.1)

Substituting the field transformations (7.5), (7.6) and (7.7) into the relevant expressions
given by equation (7.2) and (7.3) gives a long expression with three types of terms: terms
involving the radiative modes 9, Cry or equivalently 0uCr J; terms involving only the gen-
erators of conformal transformation on the round sphere Y and, finally, terms involving a
combination of Ys and fs. We will look at each set of terms in turn, beginning with the
terms involving the radiative modes:

ke &= F20.0" DiDyfi = fi DiDy | £20,0"
1 ~ ~ 1~
+ Y (£20.0" DicCry = Dic [£20,67 | €1y ) = 1V D1 (£20.07)

1 ~ 1
— §f2 8UCIJ <_2DKY1K Crj+ YlK.DKC[J + ZCK]DJYIK) +...

_ D, (f2 0,017 DJf1) — Dy (f1 Dy [f2aU6IJD

1

_ 1 _ _
4Y1KDK <f2 auCIJCIJ> + ZDKY1K f20.C"Cry — f2CF 10,C DYy + ..,

where we have used the Schouten identity to rewrite
11 2 1 K ~10) Ly K )
— V'D; (f20.0%) = 5YuD (f2 Cre70,C )— YD (f2 Cre70,C ) (C.2)

Furthermore, we make frequent use above and in what follows of the property that for
arbitrary covariant operators O; and Oy

O1C1x O3C7E = —0,Crx O2C7K, (C.3)
which can be proved simply from definition (B.2). Now using equation (4.14), we find that

the terms involving the radiative modes can be grouped into total derivative terms, which
can safely be discarded

ke e, = D1 (fz 8,C" D f1) ~ Dy ( fiDy [ haﬁ”}) . iDK ( f Y aué”cu) o
(C.4)
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Next, we consider terms involving solely the Y generators:

- 1 1 ~ ~ ~
Fee = 710 { (—2DLY2L CY+ Yy D 20LIDJY2L> DiCry

1 ~ ~ ~
—Dg (—2DLY2L ct yvlp,ct’ + 2CL1DJY2L> CU}

1

1~ ~
— ZYl’(DKDL (C*VH) 1 (YDLYS — YD Y{) ' Dk Cy,y

1 ~ ~
+4 <Y1LDLY2K - YQLDLYIK) DgC? + ...
1 1 ~ ~ ~
- §Y1K <—2DLY2L ¢t yvliprct o+ QCLIDJYQL) DgCry
1 1 - - .
+ ZDKYlK <—2DLY2L ct +vlipct + QCLIDJY2L> Cry

1 ~ 1 ~
— ZYIKD[DL <Y2LCJKCIJ) + ZYUDKDL (YQLCJKCIJ>

- % (VEDLYE ~YEDLYE) C1 DcCry + % <Y1LDL172K—Y2LDL171K) DgC2+...
— %DL (YEYE D Cry) CY — iYQKDLYlL DxCr;CY — %YILDLYQKCWJ DgCry

- %DL (YlLCJKé”) DS - iysz)LfflKDKC2 — (12 +...
_ %leYQL G Dy Dy Cry + icZe”‘YQL DiDKYis— (16 2) + ..., (C.5)

where we have freely integrated by parts and ignored total derivative terms and made free
use of Schouten identities to derive equations of the form (C.2) and

~ 1
CHEC e = 3 c?el’, (C.6)

Using the definition of the Riemann tensor

(D;Dy — Dy;D)VE = R ;K vE (C.7)

in both of the terms in (C.5) gives equal and opposite terms that cancel against one
another. Therefore, the expression of interest reduces to the final set of terms involving a
combination of fs and Y's:

ke, = 2f1'K DDy DD fo
1 ~ ~ ~
— f1iDDy <—2DLY2L ct +vlipct + 2CL1DJY2L>
1 ~ ~ ~
+ §Y1K (DKCIJ DiD;fs —C DKDIDJf2) +Y{Dg (C" DD, f,)

1 1 ~
+ (WDkf2 - VD~ 32 DY+ g1 DY) DD, (C8)
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Using equation (C.7), as well as the fact that

Rrjxr = YIKVJIL — VILVIK, (C.9)

it is fairly simple to show that the first term on the right hand side of equation (C.8)
vanishes. Simplifying the remaining terms by integrating by parts and using Schouten
identities as before gives

~ ~. (1
ke e = C1 {211 Dy Dy DiYy* +2YaDie Dy Dy fr = 2D DYy Dy fr = (1 2)} .

(C.10)
Consider the third term
—~2C" D ;DY Dy fr = —C e e @Dy DpYS Do fi
= —ClVegeP?(DpD Y Dofi — DpDoYS Dyfi1)
= —Cy Y Dy, (C.11)

where in the second equality we have used a Schouten identity and in the third line we
have used equation (4.14) and the fact that Cr; is symmetric and tracefree to show that
the first term in the second line vanishes, while we have used equations (C.7) and (C.9) to
simplify the second term in the second line. Using equations (C.7) and (C.9) to simplify
the second term in equation (C.10), we find that E&,& simplifies to

- 1 ~
ke = 50” (f1 DID;y DxYs* — fo DiDy DY) (C.12)

This establishes the leading dual charge algebra given by equations (7.8) and (7.10).
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References
[1] H. Godazgar, M. Godazgar and M.J. Perry, Asymptotic gravitational charges,
arXiv:2007.01257 [InSPIRE].

[2] R.E. Peierls, The Commutation laws of relativistic field theory, Proc. Roy. Soc. Lond. A 214
(1952) 143 [INSPIRE].

[3] P.G. Bergmann and R. Schiller, Classical and Quantum Field Theories in the Lagrangian
Formalism, Phys. Rev. 89 (1953) 4 [INSPIRE].

[4] C. Crnkowic and E. Witten, Covariant description of canonical formalism in geometrical
theories, in Three hundred years of gravitation, Cambridge University Press, Cambridge U.K.
(1989), pg. 676.

[5] C. Crnkovic, Symplectic Geometry of the Covariant Phase Space, Superstrings and
Superspace, Class. Quant. Grav. 5 (1988) 1557 [INSPIRE].

—97 —


https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/2007.01257
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.01257
https://doi.org/10.1098/rspa.1952.0158
https://doi.org/10.1098/rspa.1952.0158
https://inspirehep.net/search?p=find+J%20%22Proc.Roy.Soc.Lond.%2CA214%2C143%22
https://doi.org/10.1103/PhysRev.89.4
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2C89%2C4%22
https://doi.org/10.1088/0264-9381/5/12/008
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C5%2C1557%22

[6] J. Lee and R.M. Wald, Local symmetries and constraints, J. Math. Phys. 31 (1990) 725
[INSPIRE].

[7] R.M. Wald, Black hole entropy is the Noether charge, Phys. Rev. D 48 (1993) 3427
[gr-qc/9307038] [INSPIRE).

[8] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical
black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

[9] R.M. Wald and A. Zoupas, A General definition of ’conserved quantities’ in general relativity
and other theories of gravity, Phys. Rev. D 61 (2000) 084027 [gr-qc/9911095] [INSPIRE].

[10] H. Godazgar, M. Godazgar and C.N. Pope, New dual gravitational charges, Phys. Rev. D 99
(2019) 024013 [arXiv:1812.01641] [INSPIRE].

[11] H. Godazgar, M. Godazgar and C.N. Pope, Tower of subleading dual BMS charges, JHEP
03 (2019) 057 [arXiv:1812.06935] [INSPIRE].

[12] A.H. Taub, Empty space-times admitting a three parameter group of motions, Annals Math.
53 (1951) 472.

[13] E. Newman, L. Tamburino and T. Unti, Empty space generalization of the Schwarzschild
metric, J. Math. Phys. 4 (1963) 915 [INSPIRE].

[14] S. Ramaswamy and A. Sen, Dual-mass in general relativity, J. Math. Phys. 22 (1981) 2612.

[15] A. Ashtekar and A. Sen, On the role of space-time topology in quantum phenomena:
superselection of charge and emergence of nontrivial vacua, J. Math. Phys. 21 (1980) 526
[INSPIRE].

[16] R. Penrose, An Analysis of the structure of space-time (1966), in Collected works. Vol. 1,
Oxford University Press, Oxford U.K. (2010), pg. 579.

[17] T. Dray and M. Streubel, Angular momentum at null infinity, Class. Quant. Grav. 1 (1984)
15 [INSPIRE].

[18] G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation laws
and central charges, Nucl. Phys. B 633 (2002) 3 [hep-th/0111246] [INSPIRE].

[19] G. Barnich and C. Troessaert, BMS charge algebra, JHEP 12 (2011) 105 [arXiv:1106.0213]
[INSPIRE].

[20] H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general
relativity: 7. Waves from azisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962)
21.

[21] R.K. Sachs, Gravitational waves in general relativity: 8. Waves in asymptotically flat
space-times, Proc. Roy. Soc. Lond. A 270 (1962) 103.

[22] L. Freidel, F. Hopfmiiller and A. Riello, Asymptotic Renormalization in Flat Space:
Symplectic Potential and Charges of Electromagnetism, JHEP 10 (2019) 126
[arXiv:1904.04384] [INSPIRE].

[23] F. Alessio and M. Arzano, Note on the symplectic structure of asymptotically flat gravity and
BMS symmetries, Phys. Rev. D 100 (2019) 044028 [arXiv:1906.05036] [INSPIRE].

[24] A. Laddha and A. Sen, Classical proof of the classical soft graviton theorem in D > 4, Phys.
Rev. D 101 (2020) 084011 [arXiv:1906.08288] [INSPIRE].

~ 98 —


https://doi.org/10.1063/1.528801
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C31%2C725%22
https://doi.org/10.1103/PhysRevD.48.R3427
https://arxiv.org/abs/gr-qc/9307038
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9307038
https://doi.org/10.1103/PhysRevD.50.846
https://arxiv.org/abs/gr-qc/9403028
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9403028
https://doi.org/10.1103/PhysRevD.61.084027
https://arxiv.org/abs/gr-qc/9911095
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9911095
https://doi.org/10.1103/PhysRevD.99.024013
https://doi.org/10.1103/PhysRevD.99.024013
https://arxiv.org/abs/1812.01641
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.01641
https://doi.org/10.1007/JHEP03(2019)057
https://doi.org/10.1007/JHEP03(2019)057
https://arxiv.org/abs/1812.06935
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.06935
https://doi.org/10.2307/1969567
https://doi.org/10.2307/1969567
https://doi.org/10.1063/1.1704018
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C4%2C915%22
https://doi.org/10.1063/1.524839
https://doi.org/10.1063/1.524450
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C21%2C526%22
https://doi.org/10.1088/0264-9381/1/1/005
https://doi.org/10.1088/0264-9381/1/1/005
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C1%2C15%22
https://doi.org/10.1016/S0550-3213(02)00251-1
https://arxiv.org/abs/hep-th/0111246
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0111246
https://doi.org/10.1007/JHEP12(2011)105
https://arxiv.org/abs/1106.0213
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1106.0213
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0161
http://dx.doi.org/10.1098/rspa.1962.0206
https://doi.org/10.1007/JHEP10(2019)126
https://arxiv.org/abs/1904.04384
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.04384
https://doi.org/10.1103/PhysRevD.100.044028
https://arxiv.org/abs/1906.05036
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.05036
https://doi.org/10.1103/PhysRevD.101.084011
https://doi.org/10.1103/PhysRevD.101.084011
https://arxiv.org/abs/1906.08288
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.08288

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

U. Kol and M. Porrati, Properties of Dual Supertranslation Charges in Asymptotically Flat
Spacetimes, Phys. Rev. D 100 (2019) 046019 [arXiv:1907.00990] InSPIRE].

H. Bart, Quasi-local conserved charges in General Relativity, other thesis, 2019
[arXiv:1908.07504] [INSPIRE].

H. Li, P. Mao and J.-B. Wu, Asymptotic Structure of Einstein-Mazwell-Dilaton Theory and
Its Five Dimensional Origin, JHEP 11 (2019) 005 [arXiv:1909.00970] [INSPIRE].

R. Ruzziconi, Asymptotic Symmetries in the Gauge Fizing Approach and the BMS Group,
PoS (Modave2019) 003 [arXiv:1910.08367] [iNSPIRE].

G. Barnich, P. Mao and R. Ruzziconi, BMS current algebra in the context of the
Newman-Penrose formalism, Class. Quant. Grav. 37 (2020) 095010 [arXiv:1910.14588]
[INSPIRE].

S. Choi and R. Akhoury, Magnetic soft charges, dual supertranslations, and ’t Hooft line
dressings, Phys. Rev. D 102 (2020) 025001 [arXiv:1912.02224] [INSPIRE].

M. Campiglia and J. Peraza, Generalized BMS charge algebra, Phys. Rev. D 101 (2020)
104039 [arXiv:2002.06691] [INSPIRE].

M. Henneaux and C. Troessaert, A note on electric-magnetic duality and soft charges, JHEP
06 (2020) 081 [arXiv:2004.05668] [INSPIRE].

S. Gera and S. Sengupta, Emergent monopoles and magnetic charge, arXiv:2004.13083
[INSPIRE].

G. Barnich, P. Mao and R. Ruzziconi, Conserved currents in the Palatini formulation of
general relativity, PoS (CORFU2019) 171 [arXiv:2004.15002] [iNSPIRE].

L. Freidel, M. Geiller and D. Pranzetti, Fdge modes of gravity — I: Corner potentials and
charges, arXiv:2006.12527 INSPIRE].

L. Freidel, M. Geiller and D. Pranzetti, Edge modes of gravity — II: Corner metric and
Lorentz charges, arXiv:2007.03563 [INSPIRE].

A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152
[arXiv:1312.2229] [INSPIRE].

T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft
graviton theorem, JHEP 05 (2015) 151 [arXiv:1401.7026] [INSPIRE].

A. Strominger and A. Zhiboedov, Gravitational Memory, BMS Supertranslations and Soft
Theorems, JHEP 01 (2016) 086 [arXiv:1411.5745] [INSPIRE].

A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory,
arXiv:1703.05448 [INSPIRE}.

S.W. Hawking, M.J. Perry and A. Strominger, Soft Hair on Black Holes, Phys. Rev. Lett.
116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].

S.W. Hawking, M.J. Perry and A. Strominger, Superrotation Charge and Supertranslation
Hair on Black Holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [InSPIRE].

S. Haco, S.W. Hawking, M.J. Perry and A. Strominger, Black Hole Entropy and Soft Hair,
JHEP 12 (2018) 098 [arXiv:1810.01847] [INSPIRE].

H. Godazgar, M. Godazgar and C.N. Pope, Subleading BMS charges and fake news near null
infinity, JHEP 01 (2019) 143 [arXiv:1809.09076] [INSPIRE].

~ 99 —


https://doi.org/10.1103/PhysRevD.100.046019
https://arxiv.org/abs/1907.00990
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.00990
https://arxiv.org/abs/1908.07504
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.07504
https://doi.org/10.1007/JHEP11(2019)005
https://arxiv.org/abs/1909.00970
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.00970
https://doi.org/10.22323/1.384.0003
https://arxiv.org/abs/1910.08367
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.08367
https://doi.org/10.1088/1361-6382/ab7c01
https://arxiv.org/abs/1910.14588
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.14588
https://doi.org/10.1103/PhysRevD.102.025001
https://arxiv.org/abs/1912.02224
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.02224
https://doi.org/10.1103/PhysRevD.101.104039
https://doi.org/10.1103/PhysRevD.101.104039
https://arxiv.org/abs/2002.06691
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.06691
https://doi.org/10.1007/JHEP06(2020)081
https://doi.org/10.1007/JHEP06(2020)081
https://arxiv.org/abs/2004.05668
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.05668
https://arxiv.org/abs/2004.13083
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.13083
https://doi.org/10.22323/1.376.0171
https://arxiv.org/abs/2004.15002
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.15002
https://arxiv.org/abs/2006.12527
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.12527
https://arxiv.org/abs/2007.03563
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.03563
https://doi.org/10.1007/JHEP07(2014)152
https://arxiv.org/abs/1312.2229
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.2229
https://doi.org/10.1007/JHEP05(2015)151
https://arxiv.org/abs/1401.7026
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.7026
https://doi.org/10.1007/JHEP01(2016)086
https://arxiv.org/abs/1411.5745
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.5745
https://arxiv.org/abs/1703.05448
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.05448
https://doi.org/10.1103/PhysRevLett.116.231301
https://doi.org/10.1103/PhysRevLett.116.231301
https://arxiv.org/abs/1601.00921
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.00921
https://doi.org/10.1007/JHEP05(2017)161
https://arxiv.org/abs/1611.09175
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.09175
https://doi.org/10.1007/JHEP12(2018)098
https://arxiv.org/abs/1810.01847
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.01847
https://doi.org/10.1007/JHEP01(2019)143
https://arxiv.org/abs/1809.09076
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.09076

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

E. Conde and P. Mao, BMS Supertranslations and Not So Soft Gravitons, JHEP 05 (2017)
060 [arXiv:1612.08294] [INSPIRE].

T. Jacobson and A. Mohd, Black hole entropy and Lorentz-diffeomorphism Noether charge,
Phys. Rev. D 92 (2015) 124010 [arXiv:1507.01054] [INSPIRE].

R. Araneda, R. Aros, O. Miskovic and R. Olea, Pontryagin Term and Magnetic Mass in 4D
AdS Gravity, J. Phys. Conf. Ser. 1043 (2018) 012016.

E. Frodden and D. Hidalgo, Surface Charges for Gravity and Electromagnetism in the First
Order Formalism, Class. Quant. Grav. 35 (2018) 035002 [arXiv:1703.10120] InSPIRE].

E. De Paoli and S. Speziale, A gauge-invariant symplectic potential for tetrad general
relativity, JHEP 07 (2018) 040 [arXiv:1804.09685] INSPIRE].

R. Oliveri and S. Speziale, Boundary effects in General Relativity with tetrad variables,
arXiv:1912.01016 [InSPIRE].

P.B. Aneesh, S. Chakraborty, S.J. Hoque and A. Virmani, First law of black hole mechanics
with fermions, arXiv:2004.10215 [INSPIRE].

G. Barnich, P. Mao and R. Ruzziconi, Conserved currents in the Cartan formulation of
general relativity, in About Various Kinds of Interactions: Workshop in honour of
ProfeSSOR Philippe Spindel, 11, 2016 [arXiv:1611.01777] [INSPIRE].

S. Holst, Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action, Phys.
Rev. D 53 (1996) 5966 [gr-qc/9511026] [INSPIRE].

H.T. Nieh and M.L. Yan, An Identity in Riemann-Cartan Geometry, J. Math. Phys. 23
(1982) 373 [INSPIRE].

S. Mercuri, From the Einstein-Cartan to the Ashtekar-Barbero canonical constraints, passing
through the Nieh-Yan functional, Phys. Rev. D 77 (2008) 024036 [arXiv:0708.0037]
[INSPIRE].

G. Date, R.K. Kaul and S. Sengupta, Topological Interpretation of Barbero-Immirzi
Parameter, Phys. Rev. D 79 (2009) 044008 [arXiv:0811.4496] [INSPIRE].

V.I. Arnold, Mathematical methods of classical mechanics, Springer-Verlag, New York U.S.A.
(1978).

R.M. Wald, On identically closed forms locally constructed from a field, J. Math. Phys. 31
(1990) 2378.

[59] V. Iyer and R.M. Wald, A Comparison of Noether charge and Euclidean methods for

[60]

[61]

[62]

[63]

computing the entropy of stationary black holes, Phys. Rev. D 52 (1995) 4430
[gr-qc/9503052] [INSPIRE].

G. Compere and A. Fiorucci, Advanced Lectures on General Relativity, arXiv:1801.07064
[INSPIRE].

E. Cartan, Sur une généralisation de la notion de courbure de riemann et les espaces a
torsion, C.R. Acad. Sci. 174 (1922) 593.

T.W.B. Kibble, Lorentz invariance and the gravitational field, J. Math. Phys. 2 (1961) 212
[INSPIRE].

F.W. Hehl, G.D. Kerlick and P. Von Der Heyde, General relativity with spin and torsion and
its deviations from Einstein’s theory, Phys. Rev. D 10 (1974) 1066 [INSPIRE].

— 30 —


https://doi.org/10.1007/JHEP05(2017)060
https://doi.org/10.1007/JHEP05(2017)060
https://arxiv.org/abs/1612.08294
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.08294
https://doi.org/10.1103/PhysRevD.92.124010
https://arxiv.org/abs/1507.01054
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.01054
http://dx.doi.org/10.1088/1742-6596/1043/1/012016
https://doi.org/10.1088/1361-6382/aa9ba5
https://arxiv.org/abs/1703.10120
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.10120
https://doi.org/10.1007/JHEP07(2018)040
https://arxiv.org/abs/1804.09685
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.09685
https://arxiv.org/abs/1912.01016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.01016
https://arxiv.org/abs/2004.10215
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.10215
https://arxiv.org/abs/1611.01777
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.01777
https://doi.org/10.1103/PhysRevD.53.5966
https://doi.org/10.1103/PhysRevD.53.5966
https://arxiv.org/abs/gr-qc/9511026
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9511026
https://doi.org/10.1063/1.525379
https://doi.org/10.1063/1.525379
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C23%2C373%22
https://doi.org/10.1103/PhysRevD.77.024036
https://arxiv.org/abs/0708.0037
https://inspirehep.net/search?p=find+doi%20%2210.1103%2Fphysrevd.77.024036%22
https://doi.org/10.1103/PhysRevD.79.044008
https://arxiv.org/abs/0811.4496
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.4496
http://dx.doi.org/10.1063/1.528839
http://dx.doi.org/10.1063/1.528839
https://doi.org/10.1103/PhysRevD.52.4430
https://arxiv.org/abs/gr-qc/9503052
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9503052
https://arxiv.org/abs/1801.07064
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.07064
https://doi.org/10.1063/1.1703702
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C2%2C212%22
https://doi.org/10.1103/PhysRevD.10.1066
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD10%2C1066%22

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

E.T. Newman and R. Penrose, New conservation laws for zero rest-mass fields in
asymptotically flat space-time, Proc. Roy. Soc. Lond. A 305 (1968) 175.

A. Ashtekar, New Variables for Classical and Quantum Gravity, Phys. Rev. Lett. 57 (1986)
2244 [NSPIRE].

H. Godazgar, M. Godazgar and C.N. Pope, Dual gravitational charges and soft theorems,
JHEP 10 (2019) 123 [arXiv:1908.01164] [iNSPIRE].

J. Samuel, A Lagrangian basis for Ashtekar’s formulation of canonical gravity, Pramana 28
(1987) L429 [iINnSPIRE].

T. Jacobson and L. Smolin, Covariant Action for Ashtekar’s Form of Canonical Gravity,
Class. Quant. Grav. 5 (1988) 583 [INSPIRE].

G. Immirzi, The Reality conditions for the new canonical variables of general relativity,
Class. Quant. Grav. 10 (1993) 2347 [hep-th/9202071] [INSPIRE].

C.G. Torre, Some remarks on gravitational analogs of magnetic charge, Class. Quant. Grav.
12 (1995) L43 [gr-qc/9411014] INSPIRE].

G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in Einstein Yang-Mills
theory, Nucl. Phys. B 455 (1995) 357 [hep-th/9505173] [INSPIRE].

G. Barnich and C. Troessaert, Manifest spin 2 duality with electric and magnetic sources,
JHEP 01 (2009) 030 [arXiv:0812.0552] [INSPIRE].

E.T. Newman and T.W.J. Unti, Behavior of Asymptotically Flat Empty Spaces, J. Math.
Phys. 3 (1962) 891 [INSPIRE].

G. Barnich and P.-H. Lambert, A Note on the Newman-Unti group and the BMS charge
algebra in terms of Newman-Penrose coefficients, J. Phys. Conf. Ser. 410 (2013) 012142
[arXiv:1102.0589] [INSPIRE].

~ 31—


http://dx.doi.org/10.1098/rspa.1968.0112
https://doi.org/10.1103/PhysRevLett.57.2244
https://doi.org/10.1103/PhysRevLett.57.2244
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C57%2C2244%22
https://doi.org/10.1007/JHEP10(2019)123
https://arxiv.org/abs/1908.01164
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.01164
https://doi.org/10.1007/BF02847105
https://doi.org/10.1007/BF02847105
https://inspirehep.net/search?p=find+doi%20%2210.1007%2FBF02847105%22
https://doi.org/10.1088/0264-9381/5/4/006
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C5%2C583%22
https://doi.org/10.1088/0264-9381/10/11/017
https://arxiv.org/abs/hep-th/9202071
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9202071
https://doi.org/10.1088/0264-9381/12/6/001
https://doi.org/10.1088/0264-9381/12/6/001
https://arxiv.org/abs/gr-qc/9411014
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9411014
https://doi.org/10.1016/0550-3213(95)00471-4
https://arxiv.org/abs/hep-th/9505173
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9505173
https://doi.org/10.1088/1126-6708/2009/01/030
https://arxiv.org/abs/0812.0552
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0812.0552
https://doi.org/10.1063/1.1724303
https://doi.org/10.1063/1.1724303
https://inspirehep.net/search?p=find+J%20%22J.Math.Phys.%2C3%2C891%22
https://doi.org/10.1155/2012/197385
https://arxiv.org/abs/1102.0589
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1102.0589

	Introduction
	Review of the covariant phase space formalism
	Gravitational theory in first order formalism
	Asymptotic flatness and symmetries
	Boundary conditions
	Asymptotic symmetry generators

	Asymptotic charges
	Diffeomorphisms: standard and dual BMS charges
	Standard BMS charges
	Dual BMS charges

	Lorentz transformations

	Identifying the integrable charge
	Charge algebra for leading order dual charges
	Fermions
	Discussion
	The metric and spin connection
	Twisting on the 2-sphere
	Derivation of the leading dual charge algebra

