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Abstract

SARS-CoV-2 infections are characterized by viral proliferation and clearance phases and

can be followed by low-level persistent viral RNA shedding. The dynamics of viral RNA con-

centration, particularly in the early stages of infection, can inform clinical measures and

interventions such as test-based screening. We used prospective longitudinal quantitative

reverse transcription PCR testing to measure the viral RNA trajectories for 68 individuals

during the resumption of the 2019–2020 National Basketball Association season. For 46

individuals with acute infections, we inferred the peak viral concentration and the duration of

the viral proliferation and clearance phases. According to our mathematical model, we

found that viral RNA concentrations peaked an average of 3.3 days (95% credible interval

[CI] 2.5, 4.2) after first possible detectability at a cycle threshold value of 22.3 (95% CI 20.5,

23.9). The viral clearance phase lasted longer for symptomatic individuals (10.9 days [95%

CI 7.9, 14.4]) than for asymptomatic individuals (7.8 days [95% CI 6.1, 9.7]). A second test

within 2 days after an initial positive PCR test substantially improves certainty about a

patient’s infection stage. The effective sensitivity of a test intended to identify infectious indi-

viduals declines substantially with test turnaround time. These findings indicate that SARS-

CoV-2 viral concentrations peak rapidly regardless of symptoms. Sequential tests can help
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reveal a patient’s progress through infection stages. Frequent, rapid-turnaround testing is

needed to effectively screen individuals before they become infectious.

Introduction

A critical strategy to curb the spread of SARS-CoV-2 is to rapidly identify and isolate infectious

individuals. Because symptoms are an unreliable indicator of infectiousness and infections are

frequently asymptomatic [1], testing is key to determining whether a person is infected and

may be contagious. Real-time quantitative reverse transcription polymerase chain reaction

(RT-qPCR) tests are the gold standard for detecting SARS-CoV-2 infection. Normally, these

tests yield a binary positive/negative diagnosis based on detection of viral RNA. However, they

can also quantify the viral titer via the cycle threshold (Ct). The Ct is the number of thermal

cycles needed to amplify sampled viral RNA to a detectable level: the higher the sampled viral

RNA concentration, the lower the Ct. This inverse correlation between Ct and viral concentra-

tion makes RT-qPCR tests far more valuable than a binary diagnostic, as they can be used to

reveal a person’s progress through key stages of infection [2], with the potential to assist clini-

cal and public health decision-making. However, the dynamics of the Ct during the earliest

stages of infection, when contagiousness is rapidly increasing, have been unclear, because diag-

nostic testing is usually performed after the onset of symptoms, when viral RNA concentration

has peaked and already begun to decline, and is performed only once [3,4]. Without a clear

picture of the course of SARS-CoV-2 viral concentrations across the full duration of acute

infection, it has been impossible to specify key elements of testing algorithms such as the fre-

quency of rapid at-home testing [5] that would be needed to reliably screen infectious individ-

uals before they transmit infection. Here, we fill this gap by analyzing the prospective

longitudinal SARS-CoV-2 RT-qPCR testing performed for players, staff, and vendors during

the resumption of the 2019–2020 National Basketball Association (NBA) season.

Methods

Data collection

The study period began in teams’ local cities from June 23 through July 9, 2020, and testing

continued for all teams as they transitioned to Orlando, Florida, through September 7, 2020. A

total of 68 individuals (90% male) were tested at least 5 times during the study period and

recorded at least 1 positive test with Ct value< 40. Most consecutive tests (85%) were recorded

within 1 day of each other, and fewer than 3% of the intervals between consecutive tests

exceeded 4 days (S1 Fig). Many individuals were being tested daily as part of Orlando campus

monitoring. Due to a lack of new infections among players and team staff after clearing quar-

antine in Orlando, all players and team staff included in the results predate the Orlando phase

of the restarted seasonAU : Ichangedrestarttorestartedseason:Ifthisisnotcorrect; pleaseedit:. A diagnosis of “acute” or “persistent” infection was abstracted from

physician records. “Acute” denoted a likely new infection. “Persistent” indicated the presence

of virus in a clinically recovered individual, likely due to infection that developed prior to the

onset of the study. There were 46 acute infections; the remaining 22 individuals were assumed

to be persistently shedding SARS-CoV-2 RNA due to a known infection that occurred prior to

the study period [6]. This persistent RNA shedding can last for weeks after an acute infection

and likely represents noninfectious viral RNA [7]. Of the individuals included in the study, 27

of the 46 with acute infections and 40 of the 68 overall were staff and vendors. The Ct values

for all tests for the 68 individuals included in the analysis, with their designations of acute or
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persistent infection, are depicted in S2–S5 Figs. A schematic diagram of the data collection and

analysis pipeline is given in Fig 1.

Ethics

Residual de-identified viral transport media from anterior nares and oropharyngeal swabs col-

lected from NBA players, staff, and vendors were obtained from Quest Diagnostics or BioRe-

ference Laboratories. In accordance with the guidelines of the Yale Human Investigation

Committee, this work with de-identified samples was approved for research not involving

human subjects by the Yale Institutional Review Board AU : IchangedYaleInternalReviewBoardtoYaleInstitutionalReviewBoard:Ifthisisnotcorrect; pleaseedit:(HIC protocol #2000028599). This

project was designated exempt by the Harvard Institutional Review Board (IRB20-1407).

Statistical analysis

Due to imperfect sampling, persistent viral shedding, and test uncertainty near the limit of

detection, a straightforward analysis of the data would be insufficient to reveal the duration

Fig 1. Illustration of the analysis pipeline. Combined anterior nares and oropharyngeal swabs were tested using a RT-qPCR assay to generate longitudinal Ct

values (“Raw data”; red points) for each person. Using a statistical model (see S6 Fig for a schematic of the model), we estimated Ct trajectories consistent with

the data, represented by the thin lines under the “Model fits” heading. These produced posterior probability distributions for the peak Ct value, the duration of

the proliferation phase (first potential detectability of infection to peak Ct), and the duration of the clearance phase (peak Ct to resolution of acute infection) for

each person. We estimated population means for these quantities (under the heading “Population estimates”). The model fits also allowed us to determine how

frequently a given Ct value or pair of Ct values within a 5-unit window (blue bars, under the heading “Predicting infection from Ct”) was associated with the

proliferation phase, the clearance phase, or a persistent infection. Finally, the model fits allowed us to measure the “effective sensitivity” of a test for predicting

future infectiousness. The schematic illustration titled “Measuring effective sensitivity” depicts the relationship between testing lags and the ability to detect

infectious individuals at a gathering. The illustrated viral trajectory surpasses the infectiousness threshold (dotted line) at the time of the gathering (vertical grey

bar), so unless this individual is screened by a pre-gathering test, he or she would attend the event while infectious. One day prior to the gathering, the

individual’s infection could be detected by either a rapid test or a PCR test. Two days prior to the event, the individual’s infection could be detected by a PCR

test but not by a rapid test. Three days prior to the event, neither test would detect the individual’s infection. Ct, cycle threshold; LOD, limit of detection; RT-

qPCR, quantitative reverse transcription polymerase chain reaction.

https://doi.org/10.1371/journal.pbio.3001333.g001
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and peak magnitude of the viral trajectory. Imperfect sampling would bias estimates of the

peak viral concentration towards lower concentrations/higher Ct values since the moment of

peak viral concentration is unlikely to be captured. Persistent shedding and test uncertainty

would bias estimates of the trajectory duration towards longer durations of infection. To

address these problems, we used a Bayesian statistical model to infer the peak Ct value and the

durations of the proliferation and clearance stages for the 46 acute infections (Fig 1; S1 Text).

We assumed that the viral concentration trajectories consisted of a proliferation phase, with

exponential growth in viral RNA concentration, followed by a clearance phase, characterized

by exponential decay in viral RNA concentration [8]. Since Ct values are roughly proportional

to the negative logarithm of viral concentration [2], this corresponds to a linear decrease in Ct

followed by a linear increase. We therefore constructed a piecewise linear regression model to

estimate the peak Ct value, the time from infection onset to peak (i.e., the duration of the pro-

liferation stage), and the time from peak to infection resolution (i.e., the duration of the clear-

ance stage). This allowed us to separate the viral trajectories into the 3 distinct phases:

proliferation (from the onset of detectability to the peak viral concentration, or to to tp in S6

Fig), clearance (from the peak viral concentration to the resolution of acute infection, or tp to

tr in S6 Fig), and persistence (lasting indefinitely after the resolution of acute infection, or after

tr in S6 Fig; see also Fig 1). Note that for the 46 individuals with acute infections, the persis-

tence phase is identified using the viral trajectory model, whereas for the 22 other infections,

the entire series of observations was classified as “persistent” due to clinical evidence of a prob-

able infection prior to the start of the study period. We estimated the parameters of the regres-

sion model by fitting to the available data using a Hamiltonian Monte Carlo algorithm [9]

yielding simulated draws from the Bayesian posterior distribution for each parameter. Full

details on the fitting procedure are given in S1 Text. Code is available at https://github.com/

gradlab/CtTrajectories [10].

Inferring stage of infection

Next, we determined whether individual or paired Ct values can reveal whether an individual

is in the proliferation, clearance, or persistent stage of infection. To assess the predictive value

of a single Ct value, we extracted all observed Ct values within a 5-unit window (e.g., between

30.0 and 34.9 CtAU : between30and35isambiguoushere : itsnotclearhowitrepresentsa5 � unitwindow:AsaninclusiverangeðwhichisthedefaultforbetweenxandywordingÞ; between30and35yieldsa6 � unitwindowð30; 31; 32; 33; 34; 35Þ:Irecommendrecasting:) and measured how frequently these values sat within the proliferation stage,

the clearance stage, or the persistent stage. We measured these frequencies across 10,000 poste-

rior parameter draws to account for the fact that Ct values near stage transitions (e.g., near the

end of the clearance stage) could be assigned to different infection stages depending on the

parameter values (see Fig 1, bottom right). We did this for 23 windows with midpoint span-

ning from Ct = 37.5 to Ct = 15.5 in increments of 1 Ct.

To calculate the probability that a Ct value sitting within a 5-unit window corre-

sponded to an acute infection (i.e., either the proliferation or the clearance stage), we

summed the proliferation and clearance frequencies for all samples within that window

and divided by the total number of samples in the window. We similarly calculated the

probability that a Ct sitting within the 5-unit window corresponded to just the prolifera-

tion phase.

To assess the information gained by conducting a second test within 2 days of an initial pos-

itive test, we restricted our attention to all samples that had a subsequent sample taken within

2 days. We repeated the above calculations for (a) consecutive tests with decreasing Ct and (b)

consecutive tests with increasing Ct. That is, we measured the frequency with which a given Ct

value sitting within a 5-unit window, followed by a second test with either a lower or a higher

Ct, sat within with the proliferation, clearance, or persistence stages.
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Measuring the effective sensitivity of screening tests

The sensitivity of a test is defined as the probability that the test correctly identifies an individ-

ual who is positive for some criterion of interest. For clinical diagnostic SARS-CoV-2 tests, the

criterion of interest is current infection with SARS-CoV-2. Alternatively, a common goal is to

predict infectiousness at some point in the future, as in the context of test-based screening

prior to a social gathering. The “effective sensitivity” of a test in this context (i.e., its ability to

predict future infectiousness) may differ substantially from its clinical sensitivity (i.e., its ability

to detect current infection). A test’s effective sensitivity depends on its inherent characteristics,

such as its limit of detection and sampling error rate, as well as the viral dynamics of infected

individuals.

To illustrate this, we estimated the effective sensitivity of (a) a test with a limit of detection

of 40 Ct and a 1% sampling error probability (akin to RT-qPCR) and (b) a test with a limit of

detection of 35 Ct and a 5% sampling error probability (akin to some rapid antigen tests). We

measured the frequency with which such tests would successfully identifyAU : IchangedsuccessfullyscreenðwhichcouldbemisreadasjustatestbeingsuccessfullyperformedÞtosuccessfullyidentifyðwhichspecficallyindicatesapositiveresultÞ:Ididlikewisewithsuccessfullyscreenedlaterinthissameparagraph:Ifthisisnotcorrect; pleaseedit:an individual who

would be infectious at the time of a gathering when the test was administered between 0 and 3

days prior to the gathering, given viral trajectories informed by the longitudinal testing data

(see schematic in Fig 1). To accomplish this, we drew 1,000 individual-level viral concentration

trajectories from the fitted model, restricting to trajectories with peak viral concentration

above a given infectiousness threshold (any samples with peak viral concentration below the

infectiousness threshold would never be infectious and so would not factor into the sensitivity

calculation). For the main analysis, we assumed that the infectiousness threshold was at 30 Ct

[11]. In a supplemental analysis, we also assessed infectiousness thresholds of 35 and 20 Ct.

We drew onset-of-detectability times (i.e., the onset of the proliferation stage) according to a

random uniform distribution so that each person would have a Ct value exceeding the infec-

tiousness threshold at the time of the gathering. Then, we calculated the fraction of trajectories

that would be successfully identified using a test with (a) a limit of detection of 40 Ct and (b) a

limit of detection of 35 Ct, administered between 0 and 3 days prior to the gathering. Full

details are given in S1 Text and S7A Fig.

Next, we shifted attention from the individual to the gathering. We estimated the number

of individuals who would be expected to arrive at a 1,000-person gathering while infectious

given each testing strategy (40-Ct limit of detection with 1% false negative rate; 35-Ct limit of

detection with 5% false negative rate) assuming a 2% prevalence of PCR-detectable infection

in the population. To do so, we again drew 1,000 individual-level viral concentration trajecto-

ries from the fitted model and drew onset-of-detectability times according to a random uni-

form distribution from the range of possible times that would allow for the person to have

detectable virus (Ct< 40) during the gathering. We counted the number of people who would

have been infectious at the gathering (a) in the absence of testing and (b) given a test adminis-

tered between 0 and 3 days prior to the gathering. As before, we assumed that the infectious-

ness threshold corresponded to a Ct value of 30AU : IchangedinfectiousnesscorrespondedtoaCtvalueof 30totheinfectiousnessthresholdcorrespondedtoaCtvalueof 30:Ifthisisnotcorrect; pleaseedit:for the main analysis and considered

infectiousness thresholds of 35 Ct and 20 Ct in a supplemental analysis. Full details are given

in S1 Text and S7B Fig. To facilitate the exploration of different scenarios, we have generated

an online tool (https://stephenkissler.shinyapps.io/shiny/) where users can input test and pop-

ulation characteristics and calculate the effective sensitivity and expected number of infectious

individuals at a gathering.

Results

Of the 46 individuals with acute infections, 13 reported symptoms at the time of diagnosis; the

timing of the onset of symptoms was not recorded. The median number of positive tests for
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the 46 individuals was 3 (IQR 2, 5). The minimum recorded Ct value across the 46 individuals

had mean 26.4 (IQR 23.2, 30.4). The recorded Ct values for the acute infections with individ-

ual-level piecewise linear regressions are depicted in Fig 2.

Based on the viral trajectory model, the mean peak Ct value for symptomatic individuals

was 22.3 (95% credible interval [CI] 19.3, 25.3), the mean duration of the proliferation phase

was 3.4 days (95% CI 2.0, 4.8), and the mean duration of clearance was 10.9 days (95% CI 7.9,

14.4) (Fig 3). This compares with 22.3 Ct (95% CI 20.0, 24.4), 3.5 days (95% CI 2.5, 4.5), and

7.8 days (95% CI 6.1, 9.7), respectively, for individuals who did not report symptoms at the

time of diagnosis (Fig 3). This yielded a slightly longer overall duration of acute infection for

individuals who reported symptoms (14.3 days [95% CI 11.0, 17.7]) versus those who did not

(11.2 days [95% CI 9.4, 13.4]). For all individuals, regardless of symptoms, the mean peak Ct

value, proliferation duration, clearance duration, and duration of acute shedding were 22.3 Ct

(95% CI 20.5, 23.9), 3.3 days (95% CI 2.5, 4.2), 8.5 days (95% CI 6.9, 10.1), and 11.7 days (95%

CI 10.1, 13.6) (S8 Fig). A full list of the model-inferred viral trajectory parameters is reported

in Table 1. There was a substantial amount of individual-level variation in the peak Ct value

and the proliferation and clearance stage durations (S9–S14 Figs).

Using the full dataset of 68 individuals, we estimated the frequency with which a given Ct

value was associated with an acute infection (i.e., the proliferation or clearance phase, but not

the persistence phase) and, if so, the probability that it was associated with the proliferation

stage alone. The probability of an acute infection increased rapidly with decreasing Ct (increas-

ing viral load), with Ct < 30 virtually guaranteeing an acute infection in this dataset (Fig 4A).

However, a single Ct value provided little information about whether an acute infection was in

Fig 2. Reported cycle threshold (Ct) values with individual-level piecewise linear fits. Ct values (points) for the 46

acute infections aligned by the date when the minimum Ct was recorded for each individual. Lines depict the best-fit

piecewise linear regression lines for each individual with breakpoint at day 0. Red points/lines represent individuals

who reported symptoms, and blue points/lines represent individuals who did not report symptoms. Five positive tests

were omitted that occurred>20 days prior to the individual’s minimum Ct value, all of which had Ct> 35. The

vertical axis on the right-hand side gives the conversion from Ct values to RNA concentration. Underlying data are

available at https://github.com/gradlab/CtTrajectories/tree/main/figure_data/Fig2 [10].

https://doi.org/10.1371/journal.pbio.3001333.g002
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Fig 3. Peak cycle threshold (Ct) value and infection stage duration distributions according to symptoms reported at time of diagnosis.

Posterior distributions obtained from 2,000 simulated draws from the posterior distributions for mean peak Ct value (A), mean duration of the

proliferation stage (first potential infection detectability to peak Ct) (B), mean duration of the clearance stage (peak Ct to resolution of acute

RNA shedding) (C), and total duration of acute shedding (D) across the 46 individuals with an acute infection. The distributions are separated

according to whether the person reported symptoms (red, 13 individuals) or did not report symptoms (blue, 33 individuals). The mean Ct

trajectory corresponding to the mean values for peak Ct, proliferation duration, and clearance duration for symptomatic versus asymptomatic
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the proliferation or the clearance stage (Fig 4B). This is unsurprising since the viral trajectory

must pass through any given value during both the proliferation and the clearance stage. With

roughly uniform sampling over time, a given Ct value is more likely to correspond to the clear-

ance stage simply because the clearance stage is longer.

We assessed whether a second test within 2 days of the first could improve these predic-

tions. A positive test AU : Pleasecheckthattheeditstothesentence}Apositivetest:::}captureyourmeaning:Ifnot; pleaseprovidecorrectwording:followed by a second test with lower Ct (higher viral RNA concentration)

was slightly more likely to be associated with an active infection than a positive test alone (Fig

4C), and was much more likely to be associated with the proliferation phase than with the

clearance phase (Fig 4D).

We next estimated how the effective sensitivity of a pre-event screening test declines with

increasing time to the event. For a test with a limit of detection of 40 Ct and a 1% chance of sam-

pling error, the effective sensitivity declines from 99% when the test coincides with the start of the

event to 76% when the test is administered 2 days prior to the event (Fig 5A), assuming a thresh-

old of infectiousness at 30 Ct [11]. This 2-day-ahead sensitivity is slightly lower than the effective

sensitivity of a test with a limit of detection at 35 Ct and a 5% sampling error administered 1 day

before the event (82%), demonstrating that limitations in testing technology can be compensated

for by reducing turnaround time. Using these effective sensitivities, we estimated the number of

infectious individuals who would be expected to arrive at a gathering with 1,000 people given a

pre-gathering screening test and a 2% prevalence of infectiousness in the population. Just as the

effective sensitivity declines with time to the gathering, the predicted number of infectious indi-

viduals rises with time to the gathering (Fig 5B) since longer delays between the screening test

and the gathering make it more likely that an individual’s infection will be undetectable at the

time of testing but the individual will be infectious at the time of the event. Changing the infec-

tiousness threshold modulates the magnitude of the decline in effective sensitivity associated with

longer testing delays; however, the overall pattern AU : Ichangedtheoveralltrendisconsistenttotheoverallpatternisconsistent:Ifthisisnotcorrect; pleaseedit:is consistent (S18 Fig).

Discussion

We provide to our knowledge the first comprehensive data on the early-infection RT-qPCR Ct

dynamics associated with SARS-CoV-2 infection. We found that viral titers peak quickly,

individuals is depicted in (E) (solid lines), where shading depicts the 90% credible intervals. Underlying data are available at https://github.

com/gradlab/CtTrajectories/tree/main/output/params_df_split.csv [10].

https://doi.org/10.1371/journal.pbio.3001333.g003

Table 1. Viral dynamic parameters, overall and separated by reported symptoms.

Parameter Mean (95% CI)

Symptoms� No symptoms� Overall

Peak Ct 22.2 (19.1, 25) 22.4 (20.2, 24.5) 22.4 (20.7, 24)

Peak viral concentration (log RNA copies/ml/day) 7.6 (6.8, 8.4) 7.5 (7, 8.1) 7.5 (7.1, 8)

Proliferation duration (days) 3.3 (1.9, 5.1) 3.4 (2.5, 4.5) 3.2 (2.4, 4.2)

Proliferation rate (Ct/day) 5.6 (3.4, 9.3) 5.2 (3.8, 7.1) 5.6 (4.2, 7.3)

Proliferation rate (log RNA copies/ml/day) 1.6 (0.9, 2.6) 1.5 (1.0, 2.0) 1.5 (1.2, 2)

Clearance duration (days) 10.9 (7.8, 14.2) 7.8 (6.1, 9.7) 8.5 (6.8, 10.2)

Clearance rate (Ct/day) 1.7 (1.2, 2.4) 2.3 (1.7, 3) 2.1 (1.7, 2.6)

Clearance rate (log RNA copies/ml/day) 0.5 (0.3, 0.7) 0.6 (0.5, 0.8) 0.6 (0.5, 0.7)

Infection duration (days) 14.3 (11, 17.8) 11.2 (9.4, 13.3) 11.7 (9.9, 13.5)

CI, credible interval; Ct, cycle threshold. Population sizes for each category are as follows: symptoms, N = 13; no symptoms, N = 33; overall, N = 46.

�Symptom reporting was imperfect as follow-up during the course of the disease was not systematic for all individuals.

https://doi.org/10.1371/journal.pbio.3001333.t001
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normally within 3 days of the first possible RT-qPCR detection, regardless of symptoms. Our

findings highlight that repeated PCR tests can be used to infer the stage of a patient’s infection.

While a single test can inform on whether a patient is in the acute or persistent viral RNA

shedding stage, a subsequent test can help identify whether viral RNA concentrations are

increasing or decreasing, thus informing clinical care. For example, patients near the begin-

ning of their infection may need to be isolated for different amounts of time than patients near

the end of their infection. For patients at risk for complications, closer monitoring and more

proactive treatment may be preferred for patients near the start of infection than for those who

are already nearing its resolution. We also show that the effective sensitivity of pre-event

screening tests declines rapidly with test turnaround time due to the rapid progression from

detectability to peak viral titers. Due to the transmission risk posed by large gatherings [12],

the trade-off between test speed and sensitivity must be weighed carefully. Our data offer to

our knowledge the first direct measurements capable of informing such decisions.

Fig 4. Relationship between single/paired cycle threshold (Ct) values and infection stage. Probability that a given Ct value lying within a

5-unit window (horizontal axis) corresponds to an acute infection (A and C) or to the proliferation phase of infection assuming an acute infection

(B and D). (A) and (B) depict the predictive probabilities for a single Ct value, while (C) and (D) depict the predictive probabilities for a positive

test paired with a subsequent test with either lower (red) or higher (blue) Ct. The curves are locally estimated scatterplot smoothing AU : PleasecheckthattheaddeddefinitionofLOESSiscorrect:(LOESS)

curves to better visualize the patternsAU : PLOSstyleisforthewordtrendtobeusedonlywhereastatisticallysignificanttrendhasbeendemonstrated; andnotforotherdescriptivepurposes:Ichangedthe5instancesinthepaperofthewordingtobettervisualizethetrendstotobettervisualizethepatterns:Ifthisisnotcorrect; pleaseedit:. Error bars represent the 90% Wald confidence interval. Underlying data are available at https://github.com/

gradlab/CtTrajectories/tree/main/figure_data/Fig4 [10].

https://doi.org/10.1371/journal.pbio.3001333.g004
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Our findings on the duration of SARS-CoV-2 viral RNA shedding expand on and agree

with previous studies [13–15] and with observations that peak Ct does not differ substantially

between symptomatic and asymptomatic individuals [3]. While previous studies have largely

relied on serial sampling of admitted hospital patients, our study used prospective sampling of

ambulatory infected individuals to characterize complete viral dynamics for the presymptom-

atic stage and for individuals who did not report symptoms. This allowed us to assess differ-

ences between the viral RNA proliferation and clearance stages for individuals with and

without reported symptoms. The similarity in the early-infection viral RNA dynamics for

symptomatic and asymptomatic individuals underscores the need for SARS-CoV-2 screening

regardless of symptoms. The progression from a negative test to a peak Ct value 2–4 days later

aligns with modeling assumptions made in various studies [5,16] to evaluate the potential

effectiveness of frequent rapid testing programs, strengthening the empirical bases for their

findings. Taken together, the dynamics of viral RNA shedding substantiate the need for fre-

quent population-level SARS-CoV-2 screening and a greater availability of diagnostic tests.

The statistical model we developed to infer the viral trajectory parameters is phenomeno-

logical: It assumes an exponential increase in viral RNA concentration followed by an expo-

nential decay but does not explicitly encode a biological mechanism leading to these

exponential rates and the transition between them. Similar phenomenological models have

been used to study the viral dynamics of HIV [17]. More biologically explicit mechanistic

models have been used to study SARS-CoV-2 [18,19], but these remain in the early stages of

development due to the limited amount of data available to inform such models. Since our pri-

mary interest is in the public health implications of SARS-CoV-2 viral trajectories with differ-

ent magnitudes and durations, a phenomenological model is suitable and has the advantage of

being straightforward to implement. The data presented here could be used to parameterize

Fig 5. Effective sensitivity and expected number of infectious attendees at an event, for tests with varying sensitivity. (A) Effective sensitivity

for a test with limit of detection of 40 Ct and 1% sampling error probability (red) and limit of detection of 35 Ct and 5% sampling error probability

(blue). (B) Number of infectious individuals expected to attend an event of size 1,000 assuming a population prevalence of 2% infectious individuals

for a test with limit of detection of 40 Ct and 1% sampling error probability (red) and limit of detection of 35 Ct and 5% sampling error probability

(blue). Shaded bands represent 90% prediction intervals generated from the quantiles of 1,000 simulated events and capture uncertainty both in the

number of infectious individuals who would arrive at the event in the absence of testing and in the probability that the test successfully identifies

infectious individuals. The dashed line depicts the expected number of infectious individuals who would attend the gathering in the absence of

testing. Underlying data are available at https://github.com/gradlab/CtTrajectories/tree/main/figure_data/Fig5 [10].

https://doi.org/10.1371/journal.pbio.3001333.g005
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detailed mechanistic models as well, from which further biological insights about SARS-CoV-

2 might be gained.

Our findings are limited for several reasons. The sample size is small, especially with respect

to symptomatic acutely infected individuals. The cohort does not constitute a representative

sample from the population, as it was a predominantly male, healthy, young population inclu-

sive of professional athletes. Viral trajectories may differ for individuals who have been vacci-

nated or who have been infected with different SARS-CoV-2 variants, which we were unable

to assess due to the time frame of our study. Some of the trajectories were sparsely sampled,

limiting the precision of our posterior estimates. Symptom reporting was imperfect, particu-

larly after initial evaluation, as follow-up during the course of the disease was not systematic

for all individuals. As with all predictive tests, the probabilities that link Ct values with infec-

tion stages (Fig 4) pertain to the population from which they were calibrated and do not neces-

sarily generalize to other populations for which the prevalence of infection and testing

protocols may differ. Still, we anticipate that the central patterns will hold across populations:

first, that low Ct values (<30) strongly predict acute infection and, second, that a follow-up

test collected within 2 days of an initial positive test can substantially help to discern whether a

patients are closer to the beginning or the end of their infection. Our study did not test for the

presence of infectious virus, though previous studies have documented a close inverse correla-

tion between Ct values and culturable virus [11]. Our assessment of pre-event testing assumed

that individuals become infectious immediately upon passing a threshold and that this thresh-

old is the same for the proliferation and for the clearance phase. In reality, the threshold for

infectiousness is unlikely to be at a fixed viral concentration for all individuals and may be at a

higher Ct/lower viral concentration during the proliferation stage than during the clearance

stage. Further studies that measure culturable virus during the various stages of infection and

that infer infectiousness based on contact tracing combined with prospective longitudinal test-

ing will help to clarify the relationship between viral concentration and infectiousness.

To manage the spread of SARS-CoV-2, we must develop novel technologies and find new

ways to extract more value from the tools that are already available. Our results suggest that

integrating the quantitative viral RNA trajectory into algorithms for clinical management

could offer benefits. The ability to chart patients’ progress through their infection underpins

our ability to provide appropriate clinical care and to institute effective measures to reduce the

risk of onward transmission. Marginally more sophisticated diagnostic and screening algo-

rithms may greatly enhance our ability to manage the spread of SARS-CoV-2 using tests that

are already available.

Supporting information

S1 Fig. Distribution of intervals between consecutive tests. Histogram of the proportion of

consecutive tests that are within n days of one another up to n = 12 days. Only 12 of 2,343

intervals (0.05%) exceeded 12 days. Underlying data are available at https://github.com/

gradlab/CtTrajectories/tree/main/figure_data/FigS1.

(PDF)

S2 Fig. Observed Ct values from the study participants (1/4). Points depict observed Ct val-

ues, which are connected with lines to better visualize patterns. Individuals with presumed

acute infections are in red. All others are in black. Underlying data are available at https://

github.com/gradlab/CtTrajectories/tree/main/data.

(PDF)
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S3 Fig. Observed Ct values from the study participants (2/4). Points depict observed Ct val-

ues, which are connected with lines to better visualize patterns. Individuals with presumed

acute infections are in red. All others are in black. Underlying data are available at https://

github.com/gradlab/CtTrajectories/tree/main/data.

(PDF)

S4 Fig. Observed Ct values from the study participants (3/4). Points depict observed Ct val-

ues, which are connected with lines to better visualize patterns. Individuals with presumed

acute infections are in red. All others are in black. Underlying data are available at https://

github.com/gradlab/CtTrajectories/tree/main/data.

(PDF)

S5 Fig. Observed Ct values from the study participants (4/4). Points depict observed Ct val-

ues, which are connected with lines to better visualize patterns. Individuals with presumed

acute infections are in red. All others are in black. Underlying data are available at https://

github.com/gradlab/CtTrajectories/tree/main/data.

(PDF)

S6 Fig. A theoretical Ct trajectory. E[Ct] is the expected Ct value on a given day. The Ct

begins at the limit of detection, then declines from the time of infection (to) to the peak at χ
cycles below the limit of detection at time tp. The Ct then rises again to the limit of detection

after tr days. The model incorporating these parameter values used to generate this piecewise

curve is given in the equation for E[Ct(t)] in S1 Text (Supplemental Methods, under the head-

ing "Model fitting").

(PDF)

S7 Fig. Schematics illustrating calculations for effective sensitivity for the expected num-

ber of infectious attendees at a gathering, given a pre-gathering test. (A) To calculate the

effective sensitivity of a test intended to screen infectious individuals before a gathering, we

first drew 1,000 viral trajectories as defined by the peak Ct, proliferation time, and clearance

time from the fitted model (step 1, with 3 draws illustrated in red, green, and blue). We

restricted to only individuals with viral concentrations above the infectiousness threshold

(here the threshold is at Ct = 30, requiring us to omit the fourth entry). Then, we assigned

detectability onset times—i.e., the times at which the trajectories could first be detected by

PCR with limit of detection at 40 Ct—according to a standard uniform distribution, ensuring

that the trajectories surpassed the infectiousness threshold at some point during the gathering

(step 2). The onset times are depicted as colored dots. Finally, for a test administered some

span of time prior to the event, we calculated the fraction of these infections the test would

detectAU : InthecaptiontoS7Fig; Ichanged5instancesoftrajectoriesbeingscreenedtotrajectoriesbeingdetected:Ifthisisnotcorrect; pleaseedit:—this is the effective sensitivity (step 3). For a test administered at the time marked by

the vertical black bar, the green trajectory would be detected by both PCR and a rapid test, the

red trajectory would be detected by PCR but not a rapid test, and the blue trajectory would not

be detected by either test. (B) To calculate the number of people who would arrive at a gather-

ing while infectious, we performed a similar procedure. First, given a gathering size N and

prevalence of PCR-detectable individuals p, we drew η trajectories from the fitted model

where η ~ Binomial(N, p). Three such draws are depicted in step 1; note that, here, the only

requirement was that the individuals were detectable (not necessarily infectious) at the time of

the gathering, and so the previously omitted value could now be chosen. Then, as before,

detectability onset times (colored dots) were drawn from a uniform distribution ensuring that

the individuals were PCR-detectable at the time of the gathering (2). Finally, in step 3, the

number of infectious individuals who would attend the gathering in the absence of a pre-gath-

ering test were counted (in this case just the blue trajectory) as well as the number of
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individuals who would attend the event given a pre-gathering test. Here, the blue trajectory

would be detected by a PCR test but not a rapid test at the test time depicted by the vertical

black bar. The purple trajectory would be detected by both a rapid test and a PCR test, yet it

would not have been infectious at the gathering (in fact, this trajectory never surpasses the

infectiousness threshold depicted here). The green trajectory would not be detected by either

test but also would not have arrived at the gathering while infectious since it has a relatively

late onset time. Repeating this procedure for many simulated gatherings gives an estimate of

the expected number of infectious people who would arrive at a gathering given a pre-gather-

ing testing protocol.

(PDF)

S8 Fig. Mean peak Ct value and distributions of the proliferation stage, clearance stage,

and acute infection duration for individuals with acute infections. Posterior distributions

obtained from 10,000 posterior draws from the distributions for peak Ct value (A), duration of

the proliferation stage (infection detection to peak Ct) (B), duration of the clearance stage

(peak Ct to resolution of acute RNA shedding) (C), and total duration of acute shedding (D)

across the 46 individuals with a verified infection. The mean Ct trajectory corresponding to

the mean values for peak Ct, proliferation duration, and clearance duration is depicted in (E)

(solid lines), where shading depicts the 90% credible interval. Underlying data are available at

https://github.com/gradlab/CtTrajectories/tree/main/output/params_df_combined.csv.

(PDF)

S9 Fig. Posterior peak Ct value distributions for the 46 individuals with acute infections.

Underlying data are available at https://github.com/gradlab/CtTrajectories/tree/main/output/

params_df_split.csv.

(PDF)

S10 Fig. Posterior distributions for the duration of the proliferation stage for 46 individu-

als with acute infections. Underlying data are available at https://github.com/gradlab/

CtTrajectories/tree/main/output/params_df_split.csv.

(PDF)

S11 Fig. Posterior distributions for the clearance stage duration for 46 individuals with

acute infections. Underlying data are available at https://github.com/gradlab/CtTrajectories/

tree/main/output/params_df_split.csv.

(PDF)

S12 Fig. Best-fit Ct trajectories for the 46 individuals with acute infections. Thin grey lines

depict 500 sampled trajectories. Points represent the observed data, with symptomatic individ-

uals represented in red and asymptomatic individuals in blue. Underlying data are available at

https://github.com/gradlab/CtTrajectories/tree/main/output/params_df_split.csv (lines) and

https://github.com/gradlab/CtTrajectories/tree/main/data (points).

(PDF)

S13 Fig. Individual-level peak Ct value and distribution of the proliferation stage, clear-

ance stage, and acute infection duration. Histograms (grey bars) of 10,000 posterior draws

from the distributions for peak Ct value (A), time from onset to peak (B), time from peak to

recovery (C), and total duration of infection (D) across the 46 individuals with an acute infec-

tion. Grey curves are kernel density estimators to more clearly exhibit the shape of the histo-

gram. Black curves represent the best-fit normal (A) or gamma (B–D) distributions to the

histograms. The duration of infection is the sum of the time from onset to peak and the time

from peak to recovery. The best-fit normal distribution to the posterior peak Ct value
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distribution had mean 22.3 and standard deviation 4.2. The best-fit gamma distribution to the

proliferation stage duration had shape parameter 2.3 and inverse scale parameter 0.7. The

best-fit gamma distribution to the clearance stage duration had shape parameter 2.4 and

inverse scale parameter 0.3. The best-fit gamma distribution to the total duration of infection

had shape parameter 4.3 and inverse scale parameter 0.4. Alternatively, the proliferation, clear-

ance, and total duration of infection distributions can be summarized as log-normal distribu-

tions. The best-fit log-normal distribution to the proliferation stage duration had location

parameter μ = 0.93 and scale parameter σ = 0.82. The best-fit log-normal distribution to the

clearance stage duration had location parameter μ = 1.9 and scale parameter σ = 0.83. The

best-fit log-normal distribution to the total duration of infection had location parameter μ =

2.3 and scale parameter σ = 0.53. Underlying data are available at https://github.com/gradlab/

CtTrajectories/tree/main/output/params_df_split.csv.

(PDF)

S14 Fig. Peak viral concentration and overall posterior viral concentration trajectories in

terms of genome equivalents per milliliter. Posterior peak viral concentration distribution

for symptomatic (red) and asymptomatic (blue) individuals (A) and for all individuals com-

bined (B). Underlying data are available at https://github.com/gradlab/CtTrajectories/tree/

main/output/params_df_split.csv (A) and https://github.com/gradlab/CtTrajectories/tree/

main/output/params_df_combined.csv (B).

(PDF)

S15 Fig. Ct values from the Yale and Florida labs. Points depict the Ct values for SARS-CoV-

2 nasal swab samples that were tested in both the Florida and Yale labs. Ct values from Florida

represent Target 1 (ORF1ab) on the Roche cobas system, and Ct values from Yale represent

N1 in the Yale multiplex assay. The solid black line depicts the best-fit linear regression (inter-

cept = −6.25, slope = 1.34, R2 = 0.86). The dashed black line marks the 1–1 line where the

points would be expected to fall if the 2 labs produced identical resultsAU : Ichangedifthe2labswereidenticaltoifthe2labsproducedidenticalresults:Ifthisisnotcorrect; pleaseedit:. Underlying data are

available at https://github.com/gradlab/CtTrajectories/tree/main/figure_data/FigS15.

(PDF)

S16 Fig. Residuals from the Yale/Florida Ct regression. Points depict the residual after

removing the best-fit linear trend AU : Pleasecheckthattheuseof trendinthelegendtoS16Figreferstoastatisticallysignificantfindingoftrendoraformalstatisticaldefinitionoftrend:Ifnot; pleasechangethewording:in the relationship between the Yale and Florida Ct values.

Underlying data are available at https://github.com/gradlab/CtTrajectories/tree/main/figure_

data/FigS16.

(PDF)

S17 Fig. Quantile–quantile plot of the residuals from the Yale/Florida Ct regression. The

residuals were standardized (by subtracting the mean of all residuals from each residual and

then dividing each residual by the standard deviation of all residuals) AU : IrecommendrecastingtheparentheticalðsubtractedthemeananddividedbythestandarddeviationÞasitisnotclearwhatnounisthesubjectofthesetwophrasesðxsubstractedthemeanandx½was�dividedbythestandarddeviationÞ; norwhatthephrasexsubtractedthemeanmeans:before being compared

with the theoretical quantiles of a normal distribution with mean 0 and standard deviation 1.

The points depict the empirical quantiles of the data points, and the line depicts where the

points would be expected to fall if they were drawn from a standard normal distribution.

Underlying data are available at https://github.com/gradlab/CtTrajectories/tree/main/figure_

data/FigS17.

(PDF)

S18 Fig. Effective sensitivity and expected number of infectious attendees at a gathering,

given a pre-gathering test and varying infectiousness thresholds. (A and C) Effective sensi-

tivity and (B and D) number of infectious individuals expected to attend a gathering of size

1,000 assuming a population prevalence of 2% infectious individuals and a test with limit of
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detection of 40 Ct and 1% sampling error probability (red) and a test with limit of detection of

35 Ct and 5% sampling error probability (blue) administered between 0 and 3 days before the

gathering. For (A) and (B) individuals are assumed to be infectious when their Ct value is

below 35. For (C) and (D) individuals are assumed to be infectious when their Ct value is

below 20. Shaded bands represent 90% prediction intervals generated from the quantiles of

1,000 simulated events and capture uncertainty both in the number of infectious individuals

who would arrive at the event in the absence of testing and in the probability that the test suc-

cessfully identifies infectious individuals. The dashed lines in (B) and (D) depict the expected

number of infectious individuals who would attend the gathering in the absence of testing. Set-

ting the infectiousness threshold at higher viral concentration (20 Ct versus 35 Ct) makes it

less likely that an individual will become infectious at all during the course of their acute infec-

tion, leading to the lower expected number of infectious individuals at the gathering in (D)

versus (B). Underlying data are available at https://github.com/gradlab/CtTrajectories/tree/

main/figure_data/FigS18.

(PDF)

S19 Fig. Illustration of why effective sensitivity declines more sharply with testing delays

for high versus low infectiousness thresholds. For a given viral trajectory conditioned on

infectiousness during a gathering, there is a wider range of possible proliferation onset times

when the infectiousness threshold is low (blue) versus when the infectiousness threshold is high

(red). Additionally, the range of possible onset times for the low infectiousness threshold versus

the high infectiousness threshold is skewed to the left since the clearance time is longer than the

proliferation time. Because of this, a low infectiousness threshold makes it easier for a pre-gather-

ing test to pick up a trajectory that would be infectious at the time of the gathering. Conversely, a

high infectiousness threshold shortens the window of possible onset times that guarantee infec-

tiousness during the gathering, making it more difficult for a pre-gathering test to detect the tra-

jectory. This is reflected in the steeper decline in the effective sensitivity for a high infectiousness

threshold (Ct = 20) than for a low infectiousness threshold (Ct = 35) (see S18A and S18C Fig).

(PDF)

S1 Table. Standard curve relationship between genome equivalents and Ct values. Synthetic

T7 RNA transcripts corresponding to a 1,363-base-pair segment of the SARS-CoV-2 nucleo-

capsid gene were serially diluted from 106 to 100 and evaluated in duplicate with RT-qPCR.

The best-fit linear regression of the average Ct on the log10-transformed standard values had

slope −3.60971 and intercept 40.93733 (R2 = 0.99).

(PDF)

S2 Table. Viral dynamic parameters for sensitivity analysis 1, omitting person 3047.

(PDF)

S3 Table. Viral dynamic parameters for sensitivity analysis 2, assuming 95% PCR sensitiv-

ity or a 5% probability of false negative.

(PDF)

S4 Table. Viral dynamic parameters for sensitivity analysis 3, removing the upper bounds

for the proliferation and clearance times.

(PDF)

S5 Table. Viral dynamic parameters for sensitivity analysis 4, using “low” priors for the

proliferation and clearance times (mean 3.5 and 7.5 days, respectively).

(PDF)
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S6 Table. Viral dynamic parameters for sensitivity analysis 5, using “high” priors for the

proliferation and clearance times (mean 10.5 days and 22.5 days, respectively).

(PDF)

S1 Text. Supplemental methods.

(PDF)
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