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Abstract: Distribution system state estimation (DSSE) plays a significant role for the system operation
management and control. Due to the multiple uncertainties caused by the non-Gaussian measurement
noise, inaccurate line parameters, stochastic power outputs of distributed generations (DG), and plug-
in electric vehicles (EV) in distribution systems, the existing interval state estimation (ISE) approaches
for DSSE provide fairly conservative estimation results. In this paper, a new ISE model is proposed
for distribution systems where the multiple uncertainties mentioned above are well considered and
accurately established. Moreover, a modified Krawczyk-operator (MKO) in conjunction with interval
constraint-propagation (ICP) algorithm is proposed to solve the ISE problem and efficiently provides
better estimation results with less conservativeness. Simulation results carried out on the IEEE 33-bus,
69-bus, and 123-bus distribution systems show that the our proposed algorithm can provide tighter
upper and lower bounds of state estimation results than the existing approaches such as the ICP,
Krawczyk-Moore ICP(KM-ICP), Hansen, and MKO.

Keywords: interval state estimation; multiple uncertainties; distributed generation; modified Krawczyk-
operator; interval constraint-propagation

1. Introduction

The distribution system state estimation (DSSE) continuously utilizes the raw data
measured by the supervisory control and data acquisition (SCADA) or the phasor mea-
surement unit (PMU) to acquire the system state variables for the system controller [1–4].
With the widespread application of distributed generation (DG) and electric vehicle (EV)
in the distribution systems, the DSSE would contain more significant uncertainties caused
by the stochastic power outputs of DG and the plug-in EV [5–7]. In addition, the effects
of other uncertainties generated by the inaccurate line parameters and the non-Gaussian
measurement noise statistics can also be non-negligible in DSSE [8–10]. Many researchers
propose the interval state estimation (ISE) methods to model and analyze distribution
systems with multiple uncertainties [8,11,12]. The work in [11] uses different estimators to
analyze the sensitivity of the uncertainty interval state estimation model. A robust interval
state estimation algorithm is proposed to eliminate the assumption of specific probability
density function (PDF) for the measurement error of smart meters in [12]. The work in [8]
proposes an interval algorithm to calculate the unbalanced distribution system model with
some uncertainties. However, one possible shortcoming of the above methods is that the
uncertainties are considered partially.

The ISE model that can truly represent the characteristics of distribution systems
is of great significance to DSSE [13,14]. Note that most of models utilized in DSSE are
similar to those of transmission system and the bus voltage or branch current are taken
as the state variables [15,16]. In addition, the branch injection power is taken as the state
variables so as to reduce the influence of bad data on the state estimation results [16].
One possible disadvantage of these models is that the line parameters and power sources

Sensors 2021, 21, 4644. https://doi.org/10.3390/s21144644 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0404-031X
https://orcid.org/0000-0002-8614-2864
https://doi.org/10.3390/s21144644
https://doi.org/10.3390/s21144644
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21144644
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21144644?type=check_update&version=1


Sensors 2021, 21, 4644 2 of 15

are assumed to be consistent. However, the utilized parameters may be affected by the
complex working environment and some unavailable equipments, and then some errors
would be generated [17–19]. Therefore, the authors of [17] establish a model considering
the line parameter uncertainty and measurement uncertainty, which aims to analyze the
influence of network parameter uncertainty on DSSE. The authors of [11] propose an ISE
model including line parameter uncertainties and analyzes the influence of line parameters
in multiple state estimators on the state estimation results. However, the ISE models
mentioned above are expressed in the form of interval number, which would make the
model parameters inaccurate.

Considering that a great amount of DGs and EVs are currently incorporated into the
distribution systems, the uncertainties caused by the DG and EV should be well described
in the ISE model [20]. The work in [21] obtains the probability density function (PDF) of
DG based on the historical statistical data to characterize its uncertainty and shows that the
distribution of the DG behavior is non-Gaussian. The work in [22] establishes a Gaussian
mixture model that can represent any PDF, such as the PDF of DG and EV. Nevertheless,
these ISE models usually assume that DG and EV obey a Gaussian distribution, which is
not always true in reality. As the inaccurate settings of multiple uncertainties would lead to
inaccurate state estimation results, the work in [7] uses a non-Gaussian estimator to solve
the DSSE problem considering uncertainty. In comparison, the interval number model is
used to describe state estimation model with uncertainties, which reduces the calculation
time and increases the calculation efficiency.

Many algorithms are proposed for the distribution systems to solve the upper and
lower bound of state estimation variables. For example, the Hansen algorithm presented
in [23] and the Krawczyk operator algorithm proposed in [24] are commonly used in
solving the ISE problem. Note that the Krawczyk operator algorithm is commonly to be
used to solve the linear ISE problem. When the measurements are collected from the PMUs
and SCADA at the meantime, the measurement model becomes nonlinear and another ISE
based on the Krawczyk operator is presented in [24]. The authors of [8] propose a modified
Krawczyk-operator (MKO) algorithm to solve the ISE problem and the state estimation
results obtained by the MKO algorithm are more accurate than the solutions obtained by
the Krawczyk operator algorithm. One shortcoming of the approaches mentioned above is
that they cannot reduce the conservativeness of the state estimation results. The interval
constraint-propagation (ICP) [14] is another algorithm that can solve the ISE problem.
Considering that the ICP algorithm relies heavily on the setting of the initial value, the
work in [25] proposes a KM-ICP algorithm consisting of the Krawczyk–Moore (KM) [23]
and the ICP to select a useful initial value to reduce the conservatism of the state estimation
results. Perhaps one disadvantage is that the introduction of DG and EV would not
only aggravate the conservativeness of the state estimation results, but also reduces the
computational accuracy of the above algorithms.

To the best of our knowledge, the existing ISE models only consider some uncertainties
and the existing ISE solving approaches are still too conservative. Therefore, this paper
establishes an ISE model including the uncertainties caused by the non-Gaussian measure-
ment noise, the inaccurate line parameters, the stochastic power outputs of distributed
generations (DG), and the plug-in electric vehicles (EV) in distribution systems, and then
proposes a new ISE approach to solve the ISE problem to obtain tighter upper and lower
bounds of state estimation results. The main contributions of this paper are as follows:

• A more accurate ISE model including the multiple uncertainties caused by the the non-
Gaussian measurement noise, inaccurate line parameters, stochastic power outputs of
DG, and plug-in EV are proposed for DSSE. To the best of our knowledge, there is no
existing ISE model that includes such kind of uncertainties completely.

• A new ISE algorithm based on the MKO and ICP is proposed for the distribution
systems to deal with the multiple uncertainties mentioned above and reduce the
conservativeness of state estimation results.
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• The proposed algorithm can obtain more tighter upper and lower bounds of state
estimation results than other existing methods such as the Hansen, Krawczyk, KM-ICP,
MKO, and ICP algorithms.

The rest of paper is organized as follows. The traditional state estimation model is
expounded in Section 2. The proposed ISE model and algorithm are presented in Section 3.
Simulations on the IEEE 33-bus, 69-bus, and 123-bus systems are introduced in Section 4.
The conclusion is drawn in Section 5.

2. Distribution System State Estimation Model
2.1. Measurement Model

The measurement model used in distribution system state estimation is given by [2,26]

z = h(x) + e (1)

where

z = [z1, z2, . . . , zm]
T

x = [x1, x2, . . . , xn]
T

h(x) = [h1(x), h2(x), . . . , hm(x)]T

e = [e1, e2, . . . , em]
T

in which z is the measurement vector and x is the state vector. h(x) is the nonlinear
measurement function relating z to x. e represents the measurement error.

The weighted least squares (WLS) estimator is widely utilized in DSSE [2]. The state
estimation vector x̂ can be obtained by minimizing the weighted sum of the squares of the
measurement residuals

J(x) = [z− h(x)]TW[z− h(x)] = [z− h(x)]T R−1[z− h(x)] (2)

where R = diag(σ2
1 , . . . , σ2

m) is a covariance matrix related to the measurement noise and
W = R−1 is the weighting matrix. Let the partial derivative of the function with respect to
x be equal to 0, that is,

∂J(x)/∂x = HT(x)R−1[z− h(x)] = 0 (3)

HT(x)R−1H(x)∆x = HT(x)R−1[z− h(x)] (4)

where H(x) = ∂h(x)/∂x is the Jacobian matrix. In order to make the solution x̂ more
precisely, an iteration formula to obtain x̂ is given as

x̂k+1 = x̂k + ∆x̂k

= x̂k + [Π(x̂k)]−1HT(x̂k)R−1[z− h(x̂k)] (5)

where Π(x̂k) = HT(x̂k)R−1H(x̂k) is the gain matrix. The iterative process will be termi-
nated if the ∆x̂k less than a predeterminate tolerance or the iteration step k is larger than a
maximum number.

2.2. ISE Model

In this section, in order to show the impact of uncertainties on state variables more
accurately, the ISE model is established. The state variables are expressed in the form of
interval numbers. The settings of interval state variables are given as [23]

[x̂] = [x̂, x̂] (6)

where x̂ and x̂ are the lower and upper bounds of the interval state variables, respectively.
Usually, x̂ < x̂ < x̂.
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The ISE model considering various uncertainties such as DG outputs, EV charing load
demand, inaccurate line parameters. and measurement noise is described as follows. More-
over, each uncertainty is independent regardless of its correlation with the other [27]. The
bounds of measurements are associated with the bounds of error, according to the setting
of different uncertainties, the corresponding error setting is also different, so measurements
of conventional load and generation can be depicted as

Z− e− < Z < Z + e+ (7)

where e+ and e− are the maximum values of the positive and negative measurement errors
in Z.

Considering the randomness of DG outputs and EV charging load demand, the
measurement formulas of DG outputs and EV charging load demand can be extended as
follows. The upper and lower bounds of DG outputs and EV charging load demand are set
out, respectively.

[ZDG1] = [PDG,l , PDG,u] (8)

[ZDG2] = [QDG,l , QDG,u] (9)

[ZEV1] = [PEV,l , PEV,u] (10)

where PDG,l and PDG,u represent the lower and upper bounds of the real power injection
with DG outputs, respectively. PEV,l and PEV,u represent the lower and upper bounds of
the real power with EV charging load demand, respectively. QDG,l and QDG,u represent the
lower and upper bounds of the reactive power injection with DG outputs, respectively. The
ISE model considers the uncertainty from measurements, the measurement vector mainly
includes load demand and power outputs of DG [8] and EV charging load demand. The
power outputs of DG are taken as the pseudo-measurements to achieve system observabil-
ity. Although the instantaneous wind speed can be predicted more accurately, their own
prediction errors will inevitably lead to greater prediction errors of DG power outputs.

Primarily, measurement data is obtained mainly through SCADA in distribution
systems. SCADA can provide the data of bus voltage magnitude, branch power, and bus
injection power [2]. Pi and Qi are the real and reactive power injection measurement of bus
i, respectively, and are given as [12]

Pi = Vi

m

∑
j=1

Vj(Gijcosθij + Bijsinθij) (11)

Qi = Vi

m

∑
j=1

Vj(Gijsinθij − Bijcosθij) (12)

where θij = θi − θj. Gij and Bij represent the line conductance and the line susceptance,
respectively. i and j are the bus numbers.

According to the given power factor (this paper sets the power factor to 0.95 in the
subsequent calculation example verification link) [8], the conventional load and wind
turbine outputs can be calculated. For the EV units [28], unit power factor control is
adopted, and the reactive power demand for charging is zero. In this paper, the estimated
results of adding DG units to the distribution system are obtained. As the outputs of EV
units are uncertain, it is more feasible to model DG outputs and EV charging load demand
to quantify the uncertainty level in interval prediction.
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Considering that the dimension of measurement is lager than the dimension of state
variables, the modeling and solving of the interval overdetermined equation is more
difficult [8]. Therefore, the overdetermined equations are converted into a square matrix[

[H1]
[H2]

]T[W1 0
0 W2

][
[H1]
[H2]

]
[x̂] =

[
[H1]
[H2]

]T[W1 0
0 W2

][
[Z1]
[Z2]

]
(13)

where [x̂] is the interval state vector, [Z1] is the interval measurement vector, and [Z2] is
the interval variables of DG power outputs and EV charging power demand. [H1] is the
Jacobian matrix of the traditional measurements and [H2] is the Jacobian matrix of the DG
and EV measurements. W1 is the weighting matrix of the traditional measurements and
W2 is the weighting matrix of the DG and EV measurements.

3. Proposed ISE Approach
3.1. Proposed ISE Model

In this section, based on interval measurement model, the detailed description of
various uncertainties such as measurement z, measurement function H, and error e are
analyzed.

This paper considers the influence of the uncertainty due to the possible changes of
system parameter values on the state estimation results. Considering that the influence
of line parameter on the results of interval state estimation is mainly reflected in the
measurement function, the extended measurement model as follows [17]:

z = h(x, p) + e (14)

where p is the system parameter vector. The Taylor expansion of this formula (only keep
first-order terms and neglect higher-order terms) as follows:

z ≈ h(x, p) +
∂h
∂p
4p + e

= h(x, p) + w + e (15)

where4p is the deviation of system and w = ∂h
∂p4p. ∂h

∂p represents the partial derivative
matrix of the measurement function with the parameter vector, expressed as Hp. Note
that the model presented by Moore is a fundamental interval model including linear and
nonlinear models. Considering various distribution system uncertainties, the proposed
ISE model is an extension of the linear Moore model. As (14) is a nonlinear model, the
first-order Taylor series expansion of the proposed model can be taken as a linear model.
Besides, the uncertainties such as inaccurate line parameters and noise are also included
in the nonlinear model and would be further linearized. The impacts of the DG and EV
uncertainties on the model are mainly reflected in the increasing number of measurements.

Traditional state estimation is mainly based on the assumption of statistical noise.
However, the pseudo-measurement of load in the distribution systems does not meet the
assumption of Gaussian distribution [21]. According to the works in [29,30], the DG outputs
obey non-Gaussian distribution or Gaussian mixture models. Moreover, the distribution of
real-time measurement error is not always Gaussian especially due to system errors and
quantization errors of acquisition equipment [9,10].

For the traditional distribution system state estimation problem, the distribution of
measurement noise is usually assumed to be Gaussian. However, this assumption is only
an approximation to reality [31]. One report conducted by Pacific Northwest National
Laboratory reveals that PMU measurement noise is non-Gaussian [32]. The t-distribution
with the “heavy tail” property is flexible to characterize Gaussian or non-Gaussian noise
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statistics [33]. That is the main reason to utilize the t-distribution to characterize the
measurement error. The PDF of t-distribution is given by

fi(ei) =
Γ( vi+1

2 )
√

viπ(ξi)Γ(
vi
2 )

(
1 +

|ei|2

(ξi)
2vi

)− vi+1
2

(16)

where Γ(·) is the gamma function, ξi is the scale parameter, and vi is the shape parameter. In
addition, to the best of our knowledge, only the symmetrical distributions such as Gaussian
model [34,35] and Gaussian mixture models [29] are widely used to characterize the
measurement error for the distribution system state estimation. Therefore, the symmetrical
distribution is applied in our proposed algorithm presented later.

3.2. Proposed ISE Algorithm

The MKO algorithm uses the preset value as the reference value to update iteratively
during the calculation process, but the preset value is not the true value, and preset value
is different from the true value after all. Using the ICP algorithm to solve the problem can
ensure the convergence. The solution is more in accordance with the actual operation of the
distribution system. The speed of using the ICP algorithm to obtain the solution depends
to a large extent on the initial order of the equations and variables, which makes the
calculation time longer, but ensures that the solution can contain a variety of uncertainties.
In this subsection, a new ISE algorithm based on the MKO and ICP is proposed for DSSE
to improve the ISE results. Based on (13), the linear ISE model can be further extended as
AX = B.

Considering that the initial value obtained by the MKO algorithm is a preset value
rather than a true value and the ICP algorithm can obtain an initial value that satisfies
a variety of uncertainties, the proposed algorithm would re-select an initial value. The
inverse of the midpoint matrix of A is used as the preprocessing factor M = (Mid[A])−1.
The midpoint variables of B times M to obtain an approximate solution Xs, that is, Xs =
(Mid[B])×M.

Starting from the initial preset value X(0) by (17).

X(0) = ([− ‖MB‖∞

1− ‖E−MA‖∞
,

‖MB‖∞

1− ‖E−MA‖∞
], ..., [− ‖MB‖∞

1− ‖E−MA‖∞
,

‖MB‖∞

1− ‖E−MA‖∞
])T (17)

where M satisfies ‖E−MA‖ < 1 and the E is the identity matrix.Various uncertainties are
introduced as constraints to make the final solution closer to the true value. Considering
variables Xi and a constraint c, the constraint equation is given as

d(Xi) = 0 (18)

Xc
i = gc(Xi) (19)

where d is measurement function and gc is constraint function related to state vector. Xc
i

is the value obtained by constraint function. Based on the Equations (18) and (19), the
initial value I(X(0)) can be obtained when considering the uncertainty constraints. Then,
according to X(0) and I(X(0)), the suitable initial value is given as

X(0)
New = I(X(0)) ∩ X(0) (20)

By modifying the difference between the value XNew of the k-th iteration and the
approximate solution Xs, the result is guaranteed to be sufficiently compact. Based on
formula AX = B, an interval vector u can be calculated by

A−1B = MB + (E−MA)A−1B ∈ MB + (E−MA)u (21)
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Defining l = XNew − Xs and getting an interval equation Al = B− AXs, the initial
equation of l(0) is l(0) = X(0)

New − Xs and the enclosure l(k+1) is given as

l(k+1) = (M(B− AXs) + (E−MA)l(k)) ∩ l(k) (22)

until ‖l(k+1) − l(k)‖∞ ≤ ε. The k-th solution

X(k)
New = Xs + l(k)

⊇ (MB + (E−MA)X(k)
New) ∩ X(k)

New (23)

Then, use the X(k)
New to calculate the k-th result X(k)

f , the equation gives as

X(k)
f = gc(X(k)

New) ∩ X(k)
New (24)

Then, according to the Equation (25), stop the iteration when the sum of the width of
the interval state estimation results reduces to the convergence criterion. The convergence
criterion is the Formula (26). If the result does not satisfy the convergence criterion, X(k)

f is
required to be recalculated.

r(k) = (
n

∑
k=1

(Wid(X(k+1)
f )−Wid(X(k)

f )))/n (25)

r(k) < ε (26)

where the Wid(X(k+1)
f ) is the sum of the width of the (k + 1)-th interval state estimation

results. If not convergent, X(k)
f is used as the initial value X(0)

New to recalculate.
The difference between the proposed method and the traditional ISE methods mainly

lies in the following points. First, the result of the traditional ISE methods depend largely on
the choice of initial value. The MKO algorithm uses the preset value as the reference value
to update iteratively during the calculation process. Note that the preset value is different
from the true value. The ICP method depends heavily on the setting of initial value.
Therefore, the proposed method combines the two methods to select a more appropriate
initial value to reduce the conservatism of state estimation result. Besides, the proposed
method ensures that the k-th results are close to the true value, and there will be no overall
deviation of the interval results. Thus, the (k + 1)-th interval results can still include the
true value. Combining the proposed algorithm and ISE model together, the proposed
algorithm has a certain improvement in calculation accuracy and the calculated results
are more accurate. The flow chart is shown in Figure 1. The steps of the interval state
estimation with the proposed algorithm considering multiple uncertainties as shown in
the flowchart.

According to the work in [27], the reduction of the interval is due to the reductive
interval arithmetic. Note that the arithmetic can be implemented when the correlation
between uncertainties is known. However, the strong randomness of DG outputs and
EV charing load demand makes it difficult to describe their behaviors accurately [20,24]
so that the interval state estimation is necessary. In addition, the DG and EV applied in
this paper belong to different individuals and they do not affect each other. Thus, their
parameters about the uncertainties are uncorrelated. Therefore, our proposed algorithm is
implemented on the fact that the parameters of DG and EV are uncorrelated.
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Figure 1. Flow chart of the proposed interval state estimation algorithm.

4. Simulation and Results

The simulations are performed on the IEEE 33-bus, 69-bus, and 123-bus distribution
systems. Different DG outputs and EV charging demand have different effects on all
tests. Therefore, a model containing different DG outputs, EV charging load demand, and
constant line parameters is established. The measurement values are calculated by the
power flow program. The data setting criteria for simulation are given here. The active and
reactive powers at conventional load buses and EV load bus are obtained by the power
flow program. The measurements are composed of truth value, line parameter influence
value and the measurement error. The line parameter influence value can be calculated
by the method in [17]. Assume that the maximum deviation of line parameters from the
nominal value is 10%, and it is a uniform distribution. Then, the interval measurement
values obtained by addition or subtraction errors. This paper chooses the t-distribution
noises that the vi degree of freedom is 2 and ξi is 0.005. The tolerance ε is set as 10−4. The
errors of voltage bus magnitude and phase angle are set as 0.005 and 10−4, respectively.
Besides, The output curve of DG unit is shown in the Figure 2. It is clear that the active
power output of DG unit varies in one day. The reactive power output of DG unit can be
calculated by the phase angle, where the phase angle lag is set to 0.95. The simulations
are performed in MATLAB 2010b using an Intel-i7 3.19 GHz desktop with 16 GB of RAM
memory computer and the INTLAB package is used for interval computation.
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Figure 2. DG outputs of one day.

4.1. Result Analysis

In this subsection, the average width of the voltage magnitude W1, the minimum
width of the voltage magnitude W2 and the maximum width of the voltage magnitude W3
are utilized to measure the quality of the state estimation results according to [8,25]

W1 =
1
n

n

∑
i=1

(xi − xi) (27)

W2 = min
i=1,2,...,n

(xi − xi) (28)

W3 = max
i=1,2,...,n

(xi − xi) (29)

where n is the number of state estimation variables, and xi and xi are the upper and lower
bounds of i-th state variable, respectively. The smaller the value of W1 indicates that the
upper and lower bounds of the state estimation result are closer to the true value.

The simulation results obtained by the proposed ISE algorithm and other existing
approaches are given in Table 1. When multiple uncertainties are considering, the proposed
algorithm has achieved better results than other algorithms in the IEEE 33-bus, 69-bus,
and 123-bus distribution systems. Concretely, the W1 of the three systems obtained by the
proposed algorithm are 0.0177, 0.0189, and 0.0213, respectively, and they are the smallest
in different systems. The results obtained by the proposed algorithm are better than the
ones obtained by other approaches. For example, compared with the MKO algorithm, the
proposed algorithm at least has a 9% improvement. Taking the IEEE 33-bus and 123-bus
distribution systems as the illustrative example, as shown in Figures 3 and 4, it is significant
that the proposed algorithm can obtain tighter upper and lower bounds of state estimation
variables than the Hansen, ICP, and MKO approaches. As shown in Figure 3, the maximum
width of voltage magnitude obtained by the proposed algorithm and MKO are 0.0201 and
0.0267 respectively. The minimum width of voltage magnitude obtained by the proposed
algorithm and MKO are 0.0186 and 0.0236, respectively.
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Table 1. The average width of voltage magnitudes for the three systems.

System Hansen [23] Krawczyk [24] ICP [14] KM-ICP [25] MKO [8] Proposed Algorithm

IEEE33 0.029 0.0282 0.0199 0.0192 0.0253 0.0177

Improvement 38.9 37.2 30.03 7.81 11.05 0

IEEE69 0.0276 0.0261 0.0209 0.0203 0.0227 0.0189

Improvement 31.52 27.58 16.7 6.89 9.56 0

IEEE123 0.0357 0.0354 0.0239 0.0235 0.0256 0.0213

Improvement 40.4 39.8 18.9 10.6 12.4 0

Proposed algorithm result’s improvement (%) = (Other algorithm−Proposed algorithm)

Other algorithm × 100. Proposed algorithm result’s improve-

ment over itself is 0%.
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Figure 3. Comparison of bus voltage magnitude values in interval state estimation results on the
IEEE 33 bus system.
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Figure 4. Comparison of bus voltage magnitude values in interval state estimation results on the
IEEE 123 bus system.
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In order to show the exact state estimation results obtained by the proposed algorithm
and the MKO algorithm more intuitively, the estimated bus voltage magnitudes and phase
angles on IEEE 69-bus system are shown in Figures 5 and 6. It is clear that the upper and
lower bounds of the state estimation results of two algorithms can contain true values.
However, the proposed algorithm can obtain more tighter bounds of state estimation
results than the MKO approach. Even though a variety of uncertainties occur, our proposed
algorithm can still make the state estimation results within the normal operating range and
that demonstrates that our proposed algorithm is reliable.
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Figure 5. The estimated bus voltage magnitudes obtained by the proposed algorithm and MKO on
the IEEE 69 bus system.
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Figure 6. The estimated bus voltage phase angles obtained by the proposed algorithm and MKO on
the IEEE 69 bus system.
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4.2. Effect of DG Units Uncertainty

In this section, the effectiveness of the proposed algorithm is verified when different
numbers of DG units are introduced into the IEEE 33-bus system. DG has many forms
such as wind turbine generators (WTGs) and photovoltaic (PV) panels. The DG units
introduced into the cases in this paper are all WTG units. The instability and uncertainty
of the weather make the output of WTGs have strong uncertainty. The modified IEEE
33-bus system in this section is based on the original IEEE 33-bus system, where DG units
are added to different buses. Table 2 displays the serial number of the access bus when
different DG units are connected to the system. The voltage magnitude and phase angle of
the bus also fluctuate within a certain range due to the interval fluctuation of the DG units
added in the system will improve the system voltage level to a certain extent.

The number of DG units connected to distribution systems has different effects on the
operation status of the distribution system. Figure 7 illustrates the influence of the different
numbers of DG units on the state estimation results. The W1 of voltage magnitude increases
when the number of DG units increases. The main reason is that more uncertainties are
included in the ISE model. However, the W1 is maintained in a small range, which indicates
that the proposed algorithm can effectively alleviate the conservatism.
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Figure 7. W1 of voltage magnitude with different DG units.

Table 2. The bus with DG unit in the IEEE 33-bus system.

Number Bus Node

0 -

3 21,24,32

6 14,19,24,27,32,33

9 2,3,14,19,21,24,27,32,33

4.3. Effect of EV Units Uncertainty

In order to study the influence of the uncertainty of EV charging load to the ISE,
this paper uses the Monte Carlo sampling method based on statistical data laws and
interval numbers to predict the EV charging load demand according to [28]. Figure 8
shows the load changes of electric vehicles in one day. In order to show the state estimation
results obtained by the proposed algorithm and the MKO algorithm more intuitively,
the state estimation results obtained by the two algorithms are compared on the IEEE
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69-bus system. This IEEE 69-bus system connects electric vehicles at bus 69 and record the
state estimation results change at bus 68. The state estimation results at bus 68 obtained
through the proposed algorithm and MKO algorithm are shown in Figure 9. The proposed
algorithm can obtain tighter bounds of estimation results than the MKO. In addition, the
W1 obtained by the proposed algorithm is still better than MKO, as given in Table 1. This
verifies the proposed algorithm can effectively alleviate the conservatism of the uncertain
state estimation solution, eliminating the interval state estimation of actual calculation
cannot exist.
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Figure 8. The EV units power load of one day.
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Figure 9. The daily variation of bus voltage magnitude consider EV units.

4.4. Calculation Efficiency

The following is a comparative analysis of the calculation efficiency of the six algo-
rithms, and the statistical results are as shown in Table 3. Even though the calculation
time of the proposed algorithm is a little larger than other existing methods, the proposed
algorithm can obtain tighter bounds of state estimation results according to Table 1 and
the state estimation results remain stably under a variety of uncertainties. Moreover, the
typical measurement sampling interval is 2 to 4 s while the estimates are usually updated
only once every few minutes [35–37]. Therefore, the computational time of our proposed
algorithm is acceptable in practice.
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Table 3. The calculation efficiency for the three systems.

System Hansen [23] Krawczyk [24] ICP [14] KM-ICP [25] MKO [8] Proposed Algorithm

IEEE33 0.1146 0.1247 0.2018 0.1976 0.1672 0.3025

IEEE69 0.2457 0.2488 1.0279 0.2319 1.3671 1.6142

IEEE123 14.3678 14.7462 27.623 12.9574 29.373 32.33

The calculation time unit of each algorithm: second.

5. Conclusions

In this paper, an interval state estimation model containing multiple uncertainties
consisting of the non-Gaussian measurement noise, the inaccurate line parameters, the
stochastic power outputs of distributed generations (DG), and the plug-in electric vehicles
(EV) is established. Moreover, a new ISE algorithm based on the MKO and ICP is proposed
for distribution systems so as to obtain the state estimation results with less conservative-
ness. Simulation results on the IEEE 33-bus, 69-bus, and 123-bus distribution systems
demonstrate that our proposed ISE algorithm can obtain tighter bounds of state estimation
variables than other common approaches such as the KM, ICP, KM-ICP, Hansen, and MKO.
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