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Abstract

Background: Childhood immunisation services have been disrupted by the COVID-19 pandemic.

WHO recommends considering outbreak risk using epidemiological criteria when deciding whether

to conduct preventive vaccination campaigns during the pandemic.
Methods: We used two to three models per infection to estimate the health impact of 50%

reduced routine vaccination coverage in 2020 and delay of campaign vaccination from 2020 to 2021

for measles vaccination in Bangladesh, Chad, Ethiopia, Kenya, Nigeria, and South Sudan, for

meningococcal A vaccination in Burkina Faso, Chad, Niger, and Nigeria, and for yellow fever

vaccination in the Democratic Republic of Congo, Ghana, and Nigeria. Our counterfactual

comparative scenario was sustaining immunisation services at coverage projections made prior to

COVID-19 (i.e. without any disruption).
Results: Reduced routine vaccination coverage in 2020 without catch-up vaccination may lead to an

increase in measles and yellow fever disease burden in the modelled countries. Delaying planned

campaigns in Ethiopia and Nigeria by a year may significantly increase the risk of measles

outbreaks (both countries did complete their supplementary immunisation activities (SIAs) planned

for 2020). For yellow fever vaccination, delay in campaigns leads to a potential disease burden rise

of >1 death per 100,000 people per year until the campaigns are implemented. For meningococcal

A vaccination, short-term disruptions in 2020 are unlikely to have a significant impact due to the

persistence of direct and indirect benefits from past introductory campaigns of the 1- to 29-year-

old population, bolstered by inclusion of the vaccine into the routine immunisation schedule

accompanied by further catch-up campaigns.
Conclusions: The impact of COVID-19-related disruption to vaccination programs varies between

infections and countries. Planning and implementation of campaigns should consider country and

infection-specific epidemiological factors and local immunity gaps worsened by the COVID-19

pandemic when prioritising vaccines and strategies for catch-up vaccination.
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Introduction
Childhood immunisation services have been disrupted by the COVID-19 pandemic in at least 68

countries during 2020 with around 80 million under 1-year-old children being affected (Nelson, 2020;

Science (AAAS), 2020; UNICEF, 2020; WHO, 2020a). This has occurred for several reasons – the

diversion of health care staff, facilities, and finances to deal with COVID-19 treatment and response;

reluctance of individuals to bring children to be vaccinated due to fear of infection; barriers to travel

due to local physical distancing measures; disruptions in vaccine supply chains; lack of personal pro-

tective equipment; and decisions to stop or postpone vaccination campaigns to reduce the risk of

transmission during such campaigns.

The World Health Organization (WHO) issued guidance in March 2020 on immunisation activities

during the COVID-19 pandemic (WHO, 2020b). The guidance recommended a temporary suspen-

sion of mass vaccination campaigns, but continuation of routine immunisation services by the health

systems while maintaining physical distancing and infection prevention and control measures for

COVID-19. Routine immunisation was one of the most disrupted services relative to other essential

health services based on a WHO pulse survey in May and June 2020 that was focused on continuity

of essential health services during the COVID-19 pandemic (WHO, 2020c). WHO, UNICEF, Gavi, the

Vaccine Alliance, and their partners also conducted two pulse polls in April and June 2020 to under-

stand COVID-19-related disruptions to immunisation services (WHO, 2020d). Based on respondents

from 82 countries, pulse polls indicated that there was widespread disruption to routine immunisa-

tion services in addition to the suspension of mass vaccination campaigns. The main reasons

reported for this disruption were low availability of personal protective equipment for healthcare

workers, low availability of health workers, and travel restrictions.

Disruptions to routine health care due to the COVID-19 pandemic are projected to increase child

and maternal deaths in low-income and middle-income countries (Roberton et al., 2020). No coun-

try has made a policy decision to stop routine immunisation during a COVID-19 epidemic. Risk-bene-

fit analysis of countries in Africa shows routine immunisation to have far greater benefits than risks

even in the context of the COVID-19 pandemic (LSHTM CMMID COVID-19 Working Group et al.,

2020). Nevertheless, routine immunisation coverage has dropped in most countries (WHO, 2020d).

Evidence on the health impact of suspending vaccination campaigns during the COVID-19 pan-

demic is limited. Modelling indicates that both fixed post and door-to-door campaigns targeting

under 5-year-old children may cause temporary minor increases in total SARS-CoV-2 infections

(Hagedorn et al., 2020). However, avoiding campaigns during the local peak of SARS-CoV-2 trans-

mission is key to reducing the effect size, and SARS-CoV-2 transmission during campaigns can be

minimised with good personal protective equipment and limiting movement of vaccinators

(Hagedorn et al., 2020). The WHO recommends that countries consider the risk of outbreaks using

epidemiological criteria when deciding whether to conduct preventive vaccination campaigns during

the COVID-19 pandemic, but the guidance was not based on any quantitative assessment of trans-

mission risk for either COVID-19 or existing vaccine-preventable diseases (WHO, 2020e).

Hence, countries need to assess the health impact of postponing vaccination campaigns, which

can inform the epidemiological risk assessment for outbreaks due to campaign delays and prioritise

which vaccines to use in campaigns (WHO, 2020f). The need for such assessments is greatest in

low- and lower middle-income countries which generally have greater risks of vaccine-preventable

disease outbreaks and limited health care resources to deal with COVID-19 epidemics. It is difficult

to quantify the impact of different scenarios using only observational data, which does not give the

counterfactual to what actually happened in 2020. To address this, we used transmission dynamic

models to project alternative scenarios about postponing vaccination campaigns alongside disrup-

tion of routine immunisation, for three pathogens with high outbreak potential and for which mass

vaccination campaigns are a key delivery mode alongside routine immunisation – measles, meningo-

coccal A, and yellow fever.
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Materials and methods
Deaths and disability-adjusted life years (DALYs) due to measles, meningococcal A, and yellow fever

under different routine and campaign vaccination scenarios were projected in a subset of 10 low-

and lower middle-income countries over the years 2020–2030. Projections were made using previ-

ously validated transmission dynamic models; we used three models for measles, two models for

meningococcal A, and two models for yellow fever (summary model details are available in

Table 1a-c with full model details in Appendix Section 3; a description of the key drivers of similari-

ties and differences between models is given in Appendix Section 4). Guidance used by the different

models for DALY calculations are publicly accessible (Vaccine Impact Modelling Consortium, 2019)

and a glossary of terms can be found in Appendix 1—table 15.

The chosen countries were low- and lower-middle-income countries that had planned vaccination

campaigns in 2020 and were selected following consultations with partners in WHO, UNICEF, CDC

and other organisations. Thereby, the selected countries differ between infections – Bangladesh,

Chad, Ethiopia, Kenya, Nigeria, and South Sudan for measles; Burkina Faso, Chad, Niger, and

Nigeria for meningococcal A; Democratic Republic of the Congo, Ghana, and Nigeria for yellow

fever.

Models used routine and campaign vaccination coverage from WUENIC (WHO and UNICEF Esti-

mates of National Immunization Coverage) and post campaign surveys for 2000–2019 (Li et al.,

2021), and future projections of routine coverage based on assumptions agreed with disease and

immunisation programme experts at the global, regional, and national levels (see Appendix 1—

table 16). Assumptions for our counterfactual ‘business as usual’ scenario were determined through

consultation with disease and immunisation programme experts across partners at the global,

regional, and national levels. All assumptions varied by pathogen. For routine immunisation, assump-

tions about future coverage levels were based on historical coverage from WUENIC for 2015–19.

For vaccination campaigns or supplementary immunisation activities (SIA), assumptions about future

campaigns were based either on patterns of past campaigns or campaigns recommended by WHO.

We explored four scenarios that assumed different levels of disruption in the year 2020 to routine

immunisation and postponement of campaigns projected in the scenarios, due to COVID-19 (see

Table 2). The disruption scenarios are based on 50% reduction in routine immunisation and/or sus-

pension of campaign vaccination in 2020 and postponement to 2021. These disruption scenarios

aimed to approximate plausible drops in routine coverage levels and plausible delays to campaigns

due to the COVID-19 pandemic.

We estimated the health impact of these disruption scenarios in comparison to the counterfactual

scenario of no disruption (BAU – business-as-usual scenario) for measles, meningococcal A, and yel-

low fever during 2020–2030. We estimated the health impact of routine and campaign immunisation

disruption through projections of total deaths (and DALYs) per 100,000 population, excess deaths

(and DALYs) per 100,000 population, and excess deaths (and DALYs) during 2020–2030 which were

scaled relative to the maximum number of excess deaths (or DALYs) across all scenarios. We did not

assume any changes to case-fatality risks as a result of the COVID-19 pandemic.

The models generally produce a range of stochastic realisations based on distributions of input

parameters and/or posterior distributions of fitted parameters. In the results, we present output

from an average scenario, which is defined differently across models based on their characteristics:

model projection from mean (measles/DynaMICE) or median (YF/Imperial) of input parameters,

median projection from posterior of fitted force of infection (YF/Notre Dame), mean of stochastic

output projections (measles/IDM, measles/PSU, MenA/Cambridge, MenA/KP).

Results
The health impact varies across the disruption scenarios for the three infections in the different coun-

tries. Figure 1 shows the model-predicted total deaths per 100,000 population per year during

2020–2030 (see Appendix 1—figure 1 for similar projections for DALYs impact, Table 3 and S1 for

scenario averages over the entire time period, and Appendix 1—tables 3, 5, 7, and Appendix 1—

table 11 for absolute numbers of deaths).

In the case of measles, Bangladesh initially postponed its campaign by a few months. The two

measles models give slightly different predictions about the consequences of this. The Penn State
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Table 1. a Vaccine impact models – Summary characteristics of the transmission dynamic vaccine impact models for measles (three

models).

For IDM, separate information is shown for the models used for Ethiopia and Nigeria.

Infection Measles Measles Measles Measles

Model name DynaMICE IDM (Ethiopia) IDM (Nigeria) Penn State

Reference Verguet et al., 2015 Thakkar et al., 2019 Zimmermann et al., 2019 Chen et al., 2012

Structure Compartmental Compartmental Agent-based Semi-mechanistic

Randomness Deterministic Stochastic Stochastic Stochastic

Time step Weekly Semi-monthly Daily Annual

Age stratification Yes No Yes Yes

Model fitting Not fitted; uses country-specific
Ro (basic reproduction number)
for measles from fitted models

Fitted to observed
monthly WHO case data
(2011–2019)

Fitted to time-series, age-
distribution, and spatial
correlation between districts in
case-based surveillance data.

Fitted to observed annual WHO
case data (1980–2017)

Validation Validated through comparisons
to the Penn State and/or IDM
models in two previous model
comparison exercises (Li et al.,
2021; WHO, 2019a). Has also
been reviewed by WHO’s
Immunization and Vaccines
Implementation Research
Advisory Committee (IVIR-AC)
(WHO, 2019b)

Validated primarily via
forecasting tests in
Pakistan and Nigeria. For
example, see Figure S10
in Thakkar et al., 2019.

Calibrated to reproduce regional
time series and age distributions
of historical measles incidence as
presented in
Zimmermann et al., 2019.
Validated through comparison to
the DynaMICE and Penn State
models in a previous model
comparison exercise
(WHO, 2019a)

Model and performance of
parameter estimation was
validated through simulation
experiments as described in
Eilertson et al., 2019. Validated
through comparisons to the
DynaMICE and/or IDM models in
two previous model comparison
exercises (Li et al., 2021;
WHO, 2019a). Has also been
reviewed by WHO’s
Immunization and Vaccines
Implementation Research
Advisory Committee (IVIR-AC) in
2017 and 2019 (WHO, 2019b).

Case importations None None Random Random

Dose dependency
(SIA: supplementary
immunisation
activities, MCV1:
measles 1st dose,
MCV2: measles 2nd

dose)

SIA doses are weakly dependent
of MCV1/2 based on
Portnoy et al., 2018

MCV2 given only to
recipients
of MCV1; SIA doses
independent
of MCV1/2

MCV2 given only to recipients of
MCV1; SIA doses independent
of MCV1/2

Countries modelled Bangladesh, Chad, Ethiopia,
Kenya, Nigeria, South Sudan

Ethiopia Nigeria Bangladesh, Chad, Ethiopia,
Kenya, Nigeria, South Sudan

b. Vaccine impact models – Summary characteristics of the transmission dynamic vaccine impact models for meningococcal A (two models).

Infection MenA MenA

Model name Cambridge KP

Reference Karachaliou et al., 2015 Jackson et al., 2018

Structure Compartmental Compartmental

Randomness Stochastic Stochastic

Time step Daily Weekly

Age stratification Yes Yes

Model fitting Not fitted; calibrated by comparing the predictions
to evidence on carriage prevalence by age, disease
incidence by age, total annual incidence,
seasonality and periodicity

Fitted to carriage prevalence and disease
incidence data for Burkina Faso; calibrated
for other regions by comparing seasonality
and incidence by age to disease surveillance data

Validation Peer-review, including by IVIR-AC; two publications
Karachaliou et al., 2015; Karachaliou Prasinou et al., 2021;
calibration to observed data (although not formally fitted);

Peer-review of two publications
Jackson et al., 2018; Tartof et al., 2013;
out-of-sample validation on incidence after vaccine
introduction in Burkina Faso

Case importations None Infectious people immigrate at a rate of 0.1–1
per million population per week

Table 1 continued on next page
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model predicts that delaying the 2020 campaign increases deaths slightly (by 0.03 per 100,000 over

2020–2030) but this increase is not seen in DynaMICE. Conversely, DynaMICE predicts an increase in

deaths of 0.35 per 100,000 over 2020–2030 if routine coverage drops by 50%, but this is not seen in

the Penn State model; see Appendix 1—table 2 for further details. For Ethiopia, a reduction in rou-

tine coverage is predicted to lead to outbreaks sooner and increases in overall deaths in all three

models (DynaMICE, Penn State models and IDM), while postponing the 2020 campaign only

increases deaths in the DynaMICE model. The Ethiopian campaign was eventually reinstated only 3

months later than scheduled. For Kenya, the disruption to routine and campaign immunisation was

not predicted to lead to increased risk of outbreaks, due to high coverage of the first dose of mea-

sles vaccine and better optimally-timed campaigns in preventing outbreaks during 2020–2030,

Table 1 continued

b. Vaccine impact models – Summary characteristics of the transmission dynamic vaccine impact models for meningococcal A (two models).

Dose dependency Not applicable since 2020 campaigns are
targeting population missed by the introductory
campaign who are too old for routine immunisation

Campaigns preferentially target
unvaccinated persons

Countries modelled Burkina Faso, Chad, Niger, Nigeria

c. Vaccine impact models – Summary characteristics of the transmission dynamic vaccine impact models for yellow fever (two models).

Infection Yellow fever Yellow fever

Model name Imperial Notre Dame

Reference Gaythorpe et al., 2021b Perkins et al., 2021

Structure Semi-mechanistic Semi-mechanistic

Randomness Deterministic Deterministic

Time step Annual Annual

Age stratification Yes Yes

Model fitting Bayesian framework fitted
to occurrence and serology data

Bayesian framework fitted to
incidence and serology data

Validation Peer-review (two publications
Garske et al.; Gaythorpe et al. and EYE strategy);
calibration to serological survey data
and outbreak occurrence data within Bayesian
framework. Compared model structures.

Calibration to serological and case data.
Cross-validation of multiple alternative
models used to inform the construction of a
single ensemble prediction via stacked generalization.

Case importations None None

Dose dependency Random Random

Countries modelled Democratic Republic of the Congo, Ghana, Nigeria

Table 2. Immunisation scenarios.

Scenarios for disruption of routine immunisation and delay of mass vaccination campaigns due to the

COVID-19 pandemic for measles vaccination in six countries, meningococcal A vaccination in four

countries, and yellow fever vaccination in three countries. The counterfactual comparative scenario

(BAU – business as usual) is no disruption to routine or campaign immunisation.

Immunisation scenario Routine immunisation (RI)

Campaign immunisation/
Supplementary
immunisation activities (SIAs)

BAU No disruption No disruption

Postpone 2020
SIAs - > 2021

No disruption Postpone 2020 SIAs to 2021

50% RI 50% reduction on RI for 2020 No disruption

50% RI, postpone
2020 SIAs - > 2021

50% reduction on RI for 2020 Postpone 2020 SIAs to 2021
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Figure 1. Health impact of predicted total deaths for immunisation disruption scenarios and no disruption scenario for measles, meningococcal A, and

yellow fever. Model-predicted total deaths per 100,000 population per year for routine immunisation (RI) and campaign immunisation (SIAs –

supplementary immunisation activities) disruption scenarios and no disruption scenario (BAU – business-as-usual scenario) for measles, meningococcal

A, and yellow fever during 2020–2030.

Table 3. Excess deaths per 100,000 between 2020 and 2030 per scenario, infection and modelling group.

Scenarios for disruption of routine immunisation and delay of mass vaccination campaigns due to the COVID-19 pandemic for measles

vaccination in six countries, meningococcal A vaccination in four countries, and yellow fever vaccination in three countries. The coun-

terfactual comparative scenario (BAU – business as usual) is no disruption to routine immunisation (RI) or campaign immunisation (SIAs

– supplementary immunisation activities). The total of pathogen averages is the sum of the average excess deaths per 100,000

between 2020 and 2030 for each pathogen.

Scenario
Measles,
DynaMICE

Measles,
IDM

Measles,
Penn State

Men A,
Cambridge

Men A,
KP

Yellow fever,
Imperial

Yellow fever,
Notre Dame

Total of pathogen
averages

50% RI 1.1569 1.1873 0.0501 0.0020 0.0001 0.1474 0.0755 0.9105

Postpone 2020 SIAs -
> 2021

0.9428 0.1248 �0.0104 0.0042 �0.0001 �0.0584 �0.0103 0.3202

50% RI, postpone 2020
SIAs - > 2021

0.2401 1.3134 0.0222 0.0064 0.0000 0.0876 0.0536 0.5990
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although coverage of the second-dose of measles vaccine is suboptimal. For Nigeria, either post-

ponement of the 2020 immunisation campaign or a reduction in routine coverage is predicted to

lead to increases in measles mortality in Penn State and IDM models, but not in DynaMICE. Note

that these increases were predicted to be highly localised in the subnational IDM model; see Discus-

sion for details. For South Sudan, the postponement of immunisation campaigns from 2020 to 2021

is predicted to be beneficial in averting a potential outbreak in 2022 in both DynaMICE and Penn

State models (although note caveats in the Discussion about such predictions), but decreases in rou-

tine coverage are predicted to lead to more deaths, with a larger predicted increase in DynaMICE.

For Chad, both DynaMICE and Penn State models predict an overall increase in deaths with routine

coverage drops, but only the Penn State model predicts an increase with a postponement of cam-

paigns. Model-specific estimates of measles deaths per 100,000 over 2020–2030 per country are

provided in Appendix 1—table 2 with absolute numbers for all countries per model given in Appen-

dix 1—table 11. Model-specific estimates of measles deaths per 100,000 per year for all countries

are provided in Appendix 1—table 8.

In the case of meningococcal A (MenA), the short-term disruption to routine immunisation in Bur-

kina Faso, Niger, Nigeria, and Chad, as well as the short-term disruption of immunisation campaigns

in Nigeria and Chad would not have a significant impact on the disease incidence (see Appendix 1—

table 4 for model-specific estimates by country). These four countries conducted mass preventive

campaigns targeting 1- to 29-year-old populations between 2010 and 2014, and introduced the vac-

cine into their routine immunization schedules between 2016 and 2019. Niger and Burkina Faso

completed catch-up campaigns concomitantly with the introduction into routine, and Chad and

Nigeria have started but not completed their catch-up campaigns. A maximum of a 4% increase in

MenA deaths over the long term is projected in either of the models and with minimal change in the

short term of within 5 years. This is because of the persistence of protection against MenA due to

the vaccination strategy combining mass vaccination campaign and routine introduction, which led

to a lasting interruption of transmission, in particular from the direct and indirect effects of the initial

mass campaigns of the 1- to 29-year-old population in 2010–2014. Model-specific estimates of

meningococcal A deaths per 100,000 per year for all countries are provided in Appendix 1—table

9.

In the case of yellow fever, for the Democratic Republic of Congo and Nigeria, the postponement

of immunisation campaigns from 2020 to 2021 was predicted to cause a short-term increase in bur-

den but when campaigns were implemented, the overall burden was reduced for the time period. A

reduction in routine immunization during 2020 was predicted to increase burden over the same

period 2020–2030. For Ghana, the postponement of immunisation campaigns from 2020 to 2021

did not lead to an increase in yellow fever burden in the short-term, whereas a reduction in routine

immunization in 2020 was predicted to increase the yellow fever burden by 0.33 or 0.07 deaths per

100,000 between 2020 and 2030 in the Imperial and Notre Dame models respectively. Model-spe-

cific estimates of excess deaths by country from 2020 to 2030 are shown in Appendix 1—table 6.

Neither model was designed to specifically capture yellow fever outbreak dynamics. Therefore,

although the delay of immunisation campaigns was predicted to reduce the burden of yellow fever

for 2020–2030 in select settings by a small (less than 1%) amount, the increased risk of an outbreak

is not accounted for in the models and this could outweigh the predicted long-term benefits.

Model-specific estimates of yellow fever deaths per 100,000 per year for all countries are provided

in Appendix 1—table 10.

Figure 2 shows the model-predicted excess deaths per 100,000 population per year by model

for routine and campaign immunisation disruption scenarios in comparison to no disruption scenario

for measles, meningococcal A, and yellow fever. The excess deaths are summed over 2020–2030

(see Appendix 1—figure 2 for similar projections for DALYs impact). The scale of excess mortality

due to the immunisation service disruptions are higher for measles vaccination in comparison to

meningococcal A and yellow fever vaccination; indeed excess mortality is minimal for meningococcal

A.

Appendix 1—figure 3 shows the normalised model-predicted excess deaths per year and coun-

try by model for routine and campaign immunisation disruption scenarios in comparison to the no

disruption scenario for measles, meningococcal A, and yellow fever, with excess deaths summed and

normalised over 2020–2030 (see Appendix 1—figure 4 for similar projections for DALYs impact).

For measles, there are differences between models but usually a 50% reduction in routine
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immunisation was projected to increase the excess deaths the most in comparison to scenarios

involving the postponement of immunisation campaigns from 2020 to 2021. For MenA, a 50% reduc-

tion in routine immunisation and the postponement of immunisation campaigns from 2020 to 2021

was projected to increase the excess deaths the most for Chad, although the scale of absolute

impact is minimal (see Figure 2). For yellow fever, a reduction in routine immunisation was projected

to increase the excess deaths the most (either in conjunction with campaign delay or not). Whilst the

postponement of immunisation campaigns from 2020 to 2021 appears to have a beneficial impact of

lower deaths in comparison to immunisation campaigns in 2020 for the Democratic Republic of the

Congo in Appendix 1—figure 3, this does not capture the short-term increase in burden due to the

missed campaign. The beneficial effect is due solely to the proportionally larger campaign imple-

mented in 2021, that is a campaign with the same coverage leads to more fully vaccinated persons

as the population grows.

Figure 2. Health impact of excess deaths for immunisation disruption scenarios in comparison to no disruption scenario for measles, meningococcal A,

and yellow fever. Model-predicted excess deaths per 100,000 population per year for routine immunisation (RI) and campaign immunisation (SIAs –

supplementary immunisation activities) disruption scenarios in comparison to no disruption scenario (BAU – business-as-usual scenario) for measles,

meningococcal A, and yellow fever. Excess deaths are summed over 2020–2030.
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Discussion
The health impact of routine immunisation service disruptions and mass vaccination campaign sus-

pensions due to the COVID-19 pandemic differs widely between infections and countries, so deci-

sion-makers need to consider their local epidemiological situation. For meningococcal A and yellow

fever, we predict that postponing campaigns has a minimal short-term effect because both patho-

gens have a low effective reproduction number and strong existing herd immunity from recent cam-

paigns in the countries modelled (see Appendix 1—table 17 for list of campaigns). However, this is

influenced by the model structures and their propensity to capture outbreak dynamics, which partic-

ularly affects the predictions for yellow fever. For measles, in some countries such as Ethiopia and

Nigeria, even a 1-year postponement of immunisation campaigns could have led to large outbreaks,

but both countries were able to implement planned SIAs in 2020 after a few months’ delay. In other

countries with high routine immunisation coverage and/or recent campaigns, SIAs may be post-

poned by a year without causing large outbreaks. However, model projections about future out-

breaks differ between models in terms of both timing and magnitude. These differences capture

uncertainty around data and model structure that differ between models.

In some of our modelled scenarios, postponement of immunisation campaigns does not appear

to increase overall cases, if the delay time-period is less than the interval to the next outbreak. Such

a scenario is inferred in the immunisation disruption scenarios for postponement of measles cam-

paigns for South Sudan. This does not imply that a postponement is preferred, as we do not take

into account other contextual or programmatic factors; rather it reflects the effectiveness of cam-

paigns in closing the immunity gaps and the demographic effect of including more children in

delayed campaigns. In instances with very low routine immunisation coverage, there is a possibility

that the vaccination campaign is the main opportunity for missed children to be vaccinated. Thus,

for the same proportion of the same age group targeted by campaigns, more children will be vacci-

nated for the same coverage levels in countries with birth rates increasing over time. While these

results may be useful in the COVID-19 context, there is also considerable uncertainty around both

model findings and data inputs such as incidence and vaccine coverage that prohibits further general

comment on the optimal timing of campaigns.

The measles immunisation campaigns for 2020 in Nigeria were specifically targeted at Kogi and

Niger states, states that were originally scheduled for inclusion in the campaigns for 2019 across

northern Nigeria which were delayed for other reasons. Given the localised build-up of susceptibility

in these two states due to low routine immunisation coverage and the long window between cam-

paigns, IDM’s subnational Nigeria model indicated that further campaign delays would result in a

high risk of localised outbreaks in these states (one potential explanation for the IDM model predict-

ing worse consequences of delays in these campaigns than the other models). Campaigns targeted

specifically to these two states were implemented in October 2020. In general, for countries where

routine immunisation coverage was low even before the COVID-19 pandemic, the build-up of the

susceptible population from low routine immunisation coverage over 2–3 years between campaigns

enhances the risk of outbreaks more than recent and temporary disruptions to routine immunisation.

Further, our models did not include the possibility that COVID-19 restrictions may have temporarily

reduced measles transmissibility and the risk of measles outbreaks due to reduced chance of intro-

duction of infection into populations with immunity gaps. This risk rises again rapidly once travel

restrictions and physical distancing are relaxed. This is an additional reason (which we do not model)

for implementing postponed immunisation campaigns at the earliest opportunity to prevent measles

outbreaks as COVID-19 restrictions are lifted (LSHTM CMMID COVID-19 Working Group et al.,

2021).

While the degree of health impact of service disruptions varies, the models generally show that

reductions in routine immunisation coverage have a far greater impact on predicted excess deaths

over the next decade for all infections modeled than postponement of campaigns. This has signifi-

cant implications for countries planning catch-up strategies and highlights the need for increased

emphasis on the importance of implementing catch-up as an ongoing part of routine immunisation

(WHO, 2020f).

The disease burden averted by measles and meningococcal A vaccination are primarily among

under-5-year-old and under-10-year-old children respectively, and disease burden averted by yellow

fever vaccination are among younger age-group individuals. Since children and younger age-group
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individuals are at relatively lower risk of morbidity and mortality from COVID-19 in comparison to

elderly populations, the health benefits of sustaining measles, meningococcal A, and yellow fever

immunisation programmes during the COVID-19 pandemic outweigh the excess SARS-CoV-2 infec-

tion risk to these age groups that are associated with vaccination service delivery points. Thereby,

the delivery of measles, meningococcal A, and yellow fever immunisation services should continue,

as logistically as possible, by adapting service delivery in a COVID-secure manner with implementa-

tion of SARS-CoV-2 infection prevention and control measures.

Our study has limitations and we have not considered logistical constraints posed by the COVID-

19 prevention and control measures on vaccine supply, demand for vaccination, access, and health

workforce. Future introduction of COVID-19 vaccination may also divert the workforce normally con-

ducting campaigns for other vaccines. Our models do not reflect geographical heterogeneity sub-

nationally, whereas in reality this is a key feature. Nor do we incorporate known seasonality of infec-

tions, which may affect the window of opportunity for catching up. The models used in this analysis,

in particular for yellow fever, are best suited to capture long-term changes in disease burden due to

vaccination and cannot capture outbreak dynamics that may arise in the short-term. A key strength

of our analysis is that we used two to three models for each infection, which allowed investigation of

whether projections were sensitive to model structure and assumptions. Each model had different

strengths and limitations. For instance, some models measured epidemic properties like reproduc-

tion numbers directly, while other models used estimates from other studies. We did indeed find

quantitative differences between models of the same infection, but most models agreed on the

countries in which disruptions had the largest effect on disease burden.

A further limitation is the omission of changes to transmission in the three pathogens due to

COVID-19 mitigation measures. This is a critical area that needs further investigation; however, all

three included pathogens have substantially different dynamics to those of SARS-CoV-2. For yellow

fever, the majority of transmission is sylvatic rather than person-to-person, so COVID-19 mitigation

measures are unlikely to have a major effect on incidence, unless they decrease contact between

humans and the sylvatic cycle. For meningococcal A, we find that even with a decrease in vaccine

coverage there is limited potential for outbreaks, so decreased transmission due to COVID-19 non-

pharmaceutical interventions will only reinforce this. For measles, there is the potential for non-phar-

maceutical interventions to decrease transmission. However, measles is much more transmissible

than COVID-19 (with R0 usually well above 10 rather than 2–5 Guerra et al., 2017), and transmission

is generally concentrated among very young children rather than adults. Hence it is unclear whether

interventions designed for COVID-19 (mask wearing, closure of schools, workplaces and retail, travel

restrictions etc.) will be able to prevent measles outbreaks. Further, while COVID-19 mitigation

measures may temporarily reduce measles transmissibility and outbreak risk from measles immunity

gaps, the risk for measles outbreaks will rise rapidly once COVID-19-related contact restrictions are

lifted (LSHTM CMMID COVID-19 Working Group et al., 2021), which happens at different rates in

different parts of countries.

We conducted our health impact assessment to align with the WHO framework for decision mak-

ing using an evidence-based approach to assist in prioritisation of vaccines and strategies for catch-

up vaccination during the COVID-19 pandemic (WHO, 2020f). The framework highlights three main

steps, with the primary step being an epidemiological risk assessment for each disease based on the

burden of disease and population immunity, as well as the risk factors associated with the immunisa-

tion service disruptions. The second step focuses on the amenability of delivery strategies and oper-

ational factors for each vaccine, and the third step on the assessment of contextual factors and

competing needs.

Our health impact assessment addresses in part the primary step of an epidemiological risk

assessment by estimating the disease burden for different immunisation scenarios, but does not

include the health impact assessment of excess COVID-19 disease burden attributable to these

immunisation scenarios. While we have assessed the immunity gaps caused by immunisation service

disruptions for measles, meningococcal A, and yellow fever vaccination in 10 low- and lower middle-

income countries, sustaining routine immunisation and resuming immunisation campaigns during the

COVID-19 pandemic requires adaptations to service delivery with additional safety measures to pro-

tect the health workers and the community from SARS-CoV-2 infection (Banks and Boonstoppel,

2020). Infection prevention and control measures include personal protective equipment for health

workers, children to be vaccinated, and their parents or caregivers; additional prevention and control
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measures against SARS-CoV-2 infection at vaccination sites; physical distancing; and symptomatic

screening and triaging (WHO, 2020e). COVID-19 transmission may be further mitigated by deliver-

ing several vaccines during a single campaign (such as measles and polio vaccines), or even combin-

ing vaccines with other age-relevant interventions such as nutritional supplements. Further, social

mobilisation is needed to address the rumours, misinformation, and fear among the community to

access vaccination safely during the COVID-19 pandemic (WHO, 2020g). Therefore, our health

impact assessment needs to be followed up by planning and implementation of catch-up vaccination

to close the immunity gaps using a mixture of locally appropriate strategies to strengthen immunisa-

tion (Cutts et al., 2021), alongside access to additional operating costs to conduct routine and cam-

paign immunisation services safely in COVID-secure environments while considering contextual

factors and competing needs.

Data availability
All code, data inputs and outputs used to generate the results in the manuscript (apart from projec-

tions about vaccine coverage beyond 2020 which are commercially confidential property of Gavi) are

available at: https://github.com/vimc/vpd-covid-phase-I (Gaythorpe, 2021a; copy archived at swh:1:

rev:ebff9a24b8b7c9a7c6c5c77f783f2435a57d1d2b).
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Medah I, Jackson ML. 2013. Identifying optimal vaccination strategies for serogroup A Neisseria meningitidis
conjugate vaccine in the African meningitis belt. PLOS ONE 8:e63605. DOI: https://doi.org/10.1371/journal.
pone.0063605, PMID: 23671685

Thakkar N, Gilani SSA, Hasan Q, McCarthy KA. 2019. Decreasing measles burden by optimizing campaign
timing. PNAS 116:11069–11073. DOI: https://doi.org/10.1073/pnas.1818433116, PMID: 31085656

UNICEF. 2020. Tracking the Situation of Children During COVID-19 - UNICEF DATA: unichef.
Vaccine Impact Modelling Consortium. 2019. General Guidance for DALYs Calculation.
Verguet S, Johri M, Morris SK, Gauvreau CL, Jha P, Jit M. 2015. Controlling measles using supplemental
immunization activities: a mathematical model to inform optimal policy. Vaccine 33:1291–1296. DOI: https://
doi.org/10.1016/j.vaccine.2014.11.050, PMID: 25541214

White M, Idoko O, Sow S, Diallo A, Kampmann B, Borrow R, Trotter C. 2019. Antibody kinetics following
vaccination with MenAfriVac: an analysis of serological data from randomised trials. The Lancet Infectious
Diseases 19:327–336. DOI: https://doi.org/10.1016/S1473-3099(18)30674-1, PMID: 30745277

Gaythorpe, Abbas, Huber, et al. eLife 2021;10:e67023. DOI: https://doi.org/10.7554/eLife.67023 14 of 34

Research article Epidemiology and Global Health Medicine

https://doi.org/10.4269/ajtmh.16-0401
https://doi.org/10.4269/ajtmh.16-0401
http://www.ncbi.nlm.nih.gov/pubmed/27928091
https://doi.org/10.1093/trstmh/tru092
http://www.ncbi.nlm.nih.gov/pubmed/24980556
https://doi.org/10.1093/cid/civ508
https://doi.org/10.1093/cid/civ508
http://www.ncbi.nlm.nih.gov/pubmed/26553693
https://doi.org/10.3390/microorganisms9020461
https://doi.org/10.3390/microorganisms9020461
http://www.ncbi.nlm.nih.gov/pubmed/33672209
https://doi.org/10.1016/S0140-6736(20)32657-X
http://www.ncbi.nlm.nih.gov/pubmed/33516338
https://doi.org/10.1093/cid/civ597
http://www.ncbi.nlm.nih.gov/pubmed/26553668
https://doi.org/10.1016/S2214-109X(20)30308-9
http://www.ncbi.nlm.nih.gov/pubmed/32687792
https://doi.org/10.1186/s12916-021-01906-9
http://www.ncbi.nlm.nih.gov/pubmed/33531015
https://doi.org/10.1371/journal.pmed.0050074
http://www.ncbi.nlm.nih.gov/pubmed/18366252
https://doi.org/10.1016/S1473-3099(20)30304-2
https://doi.org/10.1016/S1473-3099(20)30304-2
http://www.ncbi.nlm.nih.gov/pubmed/32311326
https://doi.org/10.1101/2021.01.06.21249311
https://doi.org/10.1101/2021.01.06.21249311
https://doi.org/10.1016/j.vaccine.2017.10.080
https://doi.org/10.1016/j.vaccine.2017.10.080
http://www.ncbi.nlm.nih.gov/pubmed/29174680
https://doi.org/10.1016/S2214-109X(20)30229-1
https://doi.org/10.1016/S2214-109X(20)30229-1
http://www.ncbi.nlm.nih.gov/pubmed/32405459
https://www.sciencemag.org/news/2020/04/polio-measles-other-diseases-set-surge-covid-19-forces-suspension-vaccination-campaigns
https://www.sciencemag.org/news/2020/04/polio-measles-other-diseases-set-surge-covid-19-forces-suspension-vaccination-campaigns
https://doi.org/10.1016/S0140-6736(12)60522-4
http://www.ncbi.nlm.nih.gov/pubmed/22534001
https://doi.org/10.1371/journal.pone.0063605
https://doi.org/10.1371/journal.pone.0063605
http://www.ncbi.nlm.nih.gov/pubmed/23671685
https://doi.org/10.1073/pnas.1818433116
http://www.ncbi.nlm.nih.gov/pubmed/31085656
https://doi.org/10.1016/j.vaccine.2014.11.050
https://doi.org/10.1016/j.vaccine.2014.11.050
http://www.ncbi.nlm.nih.gov/pubmed/25541214
https://doi.org/10.1016/S1473-3099(18)30674-1
http://www.ncbi.nlm.nih.gov/pubmed/30745277
https://doi.org/10.7554/eLife.67023


WHO. 2019a. Feasibility Assessment of Measles and Rubella Eradication, SAGE Meeting of October 2019
https://www.who.int/immunization/sage/meetings/2019/october/Feasibility_Assessment_of_Measles_and_
Rubella_Eradication_final.pdf.

WHO 2019b. Measles–rubella eradication investment case | Weekly Epidemiological Record . https://www.who.
int/wer/2019/wer9451_52/en/.

WHO. 2020a. At Least 80 Million Children Under One at Risk of Diseases Such as Diphtheria, Measles and Polio
as COVID-19 Disrupts Routine Vaccination Efforts, Warn Gavi, WHO and UNICEF. https://www.who.int/news-
room/detail/22-05-2020-at-least-80-million-children-under-one-at-risk-of-diseases-such-as-diphtheria-measles-
and-polio-as-covid-19-disrupts-routine-vaccination-efforts-warn-gavi-who-and-unicef

WHO. 2020b. Guiding principles for immunization activities during the COVID-19 pandemic: interim guidance.
https://apps.who.int/iris/handle/10665/331590.

WHO. 2020c. Pulse survey on continuity of essential health services during the COVID-19 pandemic: interim
report https://www.who.int/publications/i/item/WHO-2019-nCoV-EHS_continuity-survey-2020.1..

WHO. 2020d. Immunization and COVID-19 - Second pulse poll offers a more detailed understanding of
disruptions to vaccination caused by COVID-19 and how to respond https://www.who.int/publications/m/item/
gin-june-2020..

WHO. 2020e. Framework for decision-making: implementation of mass vaccination campaigns in the context of
COVID-19 https://www.who.int/publications/i/item/WHO-2019-nCoV-Framework_Mass_Vaccination-2020.1..

WHO. 2020f. Leave No One Behind: Guidance for Planning and Implementing Catch-up Vaccination https://
www.who.int/teams/immunization-vaccines-and-biologicals/essential-programme-on-immunization/
implementation/catch-up-vaccination/..

WHO. 2020g. Maintaining Essential Health Services: Operational Guidance for the COVID-
19 Context Interim Guidance.

Wolfson LJ, Grais RF, Luquero FJ, Birmingham ME, Strebel PM. 2009. Estimates of measles case fatality ratios: a
comprehensive review of community-based studies. International Journal of Epidemiology 38:192–205.
DOI: https://doi.org/10.1093/ije/dyn224, PMID: 19188207

WorldPop. 2016. Open Spatial Demographic Data and Research. https://www.worldpop.org/
Yaro S, Njanpop Lafourcade BM, Ouangraoua S, Ouoba A, Kpoda H, Findlow H, Tall H, Seanehia J, Martin C,
Ouedraogo JB, Gessner B, Meda N, Borrow R, Trotter C, Mueller JE. 2019. Antibody persistence at the
population level 5 years after mass vaccination with meningococcal serogroup A conjugate vaccine (PsA-TT) in
Burkina Faso: need for a booster campaign? Clinical Infectious Diseases 68:435–443. DOI: https://doi.org/10.
1093/cid/ciy488, PMID: 30481265

Yellow Fever Expert Committee, Garske T, Van Kerkhove MD, Yactayo S, Ronveaux O, Lewis RF, Staples JE,
Perea W, Ferguson NM. 2014. Yellow fever in Africa: estimating the burden of disease and impact of mass
vaccination from outbreak and serological data. PLOS Medicine 11:e1001638. DOI: https://doi.org/10.1371/
journal.pmed.1001638, PMID: 24800812

Zimmermann M, Frey K, Hagedorn B, Oteri AJ, Yahya A, Hamisu M, Mogekwu F, Shuaib F, McCarthy KA,
Chabot-Couture G. 2019. Optimization of frequency and targeting of measles supplemental immunization
activities in Nigeria: a cost-effectiveness analysis. Vaccine 37:6039–6047. DOI: https://doi.org/10.1016/j.
vaccine.2019.08.050, PMID: 31471147

Gaythorpe, Abbas, Huber, et al. eLife 2021;10:e67023. DOI: https://doi.org/10.7554/eLife.67023 15 of 34

Research article Epidemiology and Global Health Medicine

https://www.who.int/immunization/sage/meetings/2019/october/Feasibility_Assessment_of_Measles_and_Rubella_Eradication_final.pdf
https://www.who.int/immunization/sage/meetings/2019/october/Feasibility_Assessment_of_Measles_and_Rubella_Eradication_final.pdf
https://www.who.int/wer/2019/wer9451_52/en/
https://www.who.int/wer/2019/wer9451_52/en/
https://www.who.int/news-room/detail/22-05-2020-at-least-80-million-children-under-one-at-risk-of-diseases-such-as-diphtheria-measles-and-polio-as-covid-19-disrupts-routine-vaccination-efforts-warn-gavi-who-and-unicef
https://www.who.int/news-room/detail/22-05-2020-at-least-80-million-children-under-one-at-risk-of-diseases-such-as-diphtheria-measles-and-polio-as-covid-19-disrupts-routine-vaccination-efforts-warn-gavi-who-and-unicef
https://www.who.int/news-room/detail/22-05-2020-at-least-80-million-children-under-one-at-risk-of-diseases-such-as-diphtheria-measles-and-polio-as-covid-19-disrupts-routine-vaccination-efforts-warn-gavi-who-and-unicef
https://apps.who.int/iris/handle/10665/331590
https://www.who.int/publications/i/item/WHO-2019-nCoV-EHS_continuity-survey-2020.1
https://www.who.int/publications/m/item/gin-june-2020
https://www.who.int/publications/m/item/gin-june-2020
https://www.who.int/publications/i/item/WHO-2019-nCoV-Framework_Mass_Vaccination-2020.1
https://www.who.int/teams/immunization-vaccines-and-biologicals/essential-programme-on-immunization/implementation/catch-up-vaccination/
https://www.who.int/teams/immunization-vaccines-and-biologicals/essential-programme-on-immunization/implementation/catch-up-vaccination/
https://www.who.int/teams/immunization-vaccines-and-biologicals/essential-programme-on-immunization/implementation/catch-up-vaccination/
https://doi.org/10.1093/ije/dyn224
http://www.ncbi.nlm.nih.gov/pubmed/19188207
https://www.worldpop.org/
https://doi.org/10.1093/cid/ciy488
https://doi.org/10.1093/cid/ciy488
http://www.ncbi.nlm.nih.gov/pubmed/30481265
https://doi.org/10.1371/journal.pmed.1001638
https://doi.org/10.1371/journal.pmed.1001638
http://www.ncbi.nlm.nih.gov/pubmed/24800812
https://doi.org/10.1016/j.vaccine.2019.08.050
https://doi.org/10.1016/j.vaccine.2019.08.050
http://www.ncbi.nlm.nih.gov/pubmed/31471147
https://doi.org/10.7554/eLife.67023


Appendix 1

Section 1. Tables (appendix)

Appendix 1—table 1. Excess disability-adjusted life years (DALYs) per 100,000 between

2020 and 2030 per scenario, infection and modelling group.

Scenarios for disruption of routine immunisation (RI) and delay of mass vaccination campaigns (SIAs –

supplementary immunisation activities) due to the COVID-19 pandemic for measles vaccination in six

countries, meningococcal A vaccination in four countries, and yellow fever vaccination in three coun-

tries. The counterfactual comparative scenario (BAU – business as usual) is no disruption to routine or

campaign immunisation.

Scenario
Measles,
DynaMICE

Measles,
IDM

Measles,
Penn State

Men A,
Cambridge

Men A,
KP

Yellow
fever,
Imperial

Yellow fever,
Notre Dame

50% RI 79.2110 68.5537 2.7503 0.1175 0.0037 9.3283 4.3831

Postpone 2020 SIAs
- > 2021

69.9709 5.7308 �0.0990 0.2650 �0.0027 �2.7355 �0.5797

50% RI, postpone
2020 SIAs - > 2021

17.0570 74.0683 1.6898 0.4017 0.0004 6.5284 3.1370

Appendix 1—table 2. Excess measles deaths per 100,000 between 2020 and 2030 per scenario,

country and modelling group.

The counterfactual comparative scenario (BAU – business as usual) is no disruption to routine immuni-

sation (RI) or campaign immunisation (SIAs – supplementary immunisation activities). Countries shown

are Bangladesh (BGD), Ethiopia (ETH), Kenya (KEN), Nigeria (NGA), South Sudan (SSD), and Chad

(TCD).

Country
50% RI,
DynaMICE

50%
RI,
IDM

50%
RI,
Penn
State

Postpone
2020 SIAs
- > 2021,
DynaMICE

Postpone
2020 SIAs
- > 2021,
IDM

Postpone
2020 SIAs
- > 2021,
Penn
State

50% RI,
postpone
2020 SIAs -
> 2021,
DynaMICE

50% RI,
postpone
2020 SIAs
- > 2021,
IDM

50% RI,
postpone
2020 SIAs -
> 2021,
Penn State

BGD 0.35 NA �0.03 0 NA 0.03 0.03 NA 0.01

ETH 4.67 2.1 0 5.56 �0.19 �0.03 2.05 1.82 �0.07

KEN 0 NA �0.01 0 NA 0.01 0 NA 0.01

NGA �0.12 0.68 0.15 �0.02 0.3 0.01 �0.09 1.03 0.13

SSD 3.28 NA 0.03 �6.73 NA �0.95 �7.65 NA �0.96

TCD 2.45 NA 0.02 �2.13 NA 0.12 �0.16 NA 0.01

Appendix 1—table 3. Excess measles deaths between 2020 and 2030 per scenario, country and

modelling group.

The counterfactual comparative scenario (BAU – business as usual) is no disruption to routine immuni-

sation (RI) or campaign immunisation (SIAs – supplementary immunisation activities). Countries shown

are Bangladesh (BGD), Ethiopia (ETH), Kenya (KEN), Nigeria (NGA), South Sudan (SSD), and Chad

(TCD).

Country
50% RI,
DynaMICE

50%
RI,
IDM

50%
RI,
Penn
State

Postpone
2020 SIAs
- > 2021,
DynaMICE

Postpone
2020 SIAs
- > 2021,
IDM

Postpone
2020 SIAs
- > 2021,
Penn
State

50% RI,
postpone
2020 SIAs -
> 2021,
DynaMICE

50% RI,
postpone
2020 SIAs
- > 2021,
IDM

50% RI,
postpone
2020 SIAs -
> 2021,
Penn State

BGD 6552 NA �539 0 NA 593 578 NA 276

Continued on next page
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Appendix 1—table 3 continued

Country
50% RI,
DynaMICE

50%
RI,
IDM

50%
RI,
Penn
State

Postpone
2020 SIAs
- > 2021,
DynaMICE

Postpone
2020 SIAs
- > 2021,
IDM

Postpone
2020 SIAs
- > 2021,
Penn
State

50% RI,
postpone
2020 SIAs -
> 2021,
DynaMICE

50% RI,
postpone
2020 SIAs
- > 2021,
IDM

50% RI,
postpone
2020 SIAs -
> 2021,
Penn State

ETH 66678 29951 40 79384 �2783 �473 29241 25981 �946

KEN 0 NA �40 0 NA 64 0 NA 59

NGA �3016 17545 3919 �634 7777 137 �2430 26559 3427

SSD 4493 NA 44 �9229 NA �1298 �10485 NA �1316

TCD 5125 NA 35 �4460 NA 260 �333 NA 29

Appendix 1—table 4. Excess meningococcal A deaths per 100,000 between 2020 and 2030 per

scenario, country and modelling group.

The counterfactual comparative scenario (BAU – business as usual) is no disruption to routine immuni-

sation (RI) or campaign immunisation (SIAs – supplementary immunisation activities). Countries shown

are Burkina Faso (BFA), Niger (NER), Nigeria (NGA), and Chad (TCD).

Country
50% RI,
Cambridge

50%
RI,
KP

Postpone 2020
SIAs - > 2021,
Cambridge

Postpone 2020
SIAs - > 2021,
KP

50% RI, postpone
2020 SIAs - > 2021,
Cambridge

50% RI, postpone
2020 SIAs - > 2021,
KP

BFA 0 0 0 0 0 0

NER 0 0 0 0 0 0

NGA 0 0 0 0 0 0

TCD 0.02 0 0.07 0 0.1 0

Appendix 1—table 5. Excess meningococcal A deaths between 2020 and 2030 per scenario,

country and modelling group.

The counterfactual comparative scenario (BAU – business as usual) is no disruption to routine immuni-

sation (RI) or campaign immunisation (SIAs – supplementary immunisation activities). Countries shown

are Burkina Faso (BFA), Niger (NER), Nigeria (NGA), and Chad (TCD).

Country
50% RI,
Cambridge

50%
RI,
KP

Postpone 2020
SIAs - > 2021,
Cambridge

Postpone 2020
SIAs - > 2021,
KP

50% RI, postpone
2020 SIAs - > 2021,
Cambridge

50% RI, postpone
2020 SIAs - > 2021,
KP

BFA 0 1 0 0 0 1

NER 14 0 0 0 14 0

NGA 0 0 0 -2 0 -1

TCD 52 0 142 0 201 0

Appendix 1—table 6. Excess yellow fever deaths per 100,000 between 2020 and 2030 per scenario,

country and modelling group.

The counterfactual comparative scenario (BAU – business as usual) is no disruption to routine immuni-

sation (RI) or campaign immunisation (SIAs – supplementary immunisation activities). Countries shown

are the Democratic Republic of Congo (COD), Ghana (GHA) and Nigeria (NGA).

Country
50% RI,
Imperial

50% RI,
Notre
Dame

Postpone 2020
SIAs - > 2021,
Imperial

Postpone 2020
SIAs - > 2021,
Notre Dame

50% RI, postpone
2020 SIAs - > 2021,
Imperial

50% RI, postpone
2020 SIAs - > 2021,
Notre Dame

COD 0.38 0.01 �0.23 �0.01 0.15 0

Continued on next page
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Appendix 1—table 6 continued

Country
50% RI,
Imperial

50% RI,
Notre
Dame

Postpone 2020
SIAs - > 2021,
Imperial

Postpone 2020
SIAs - > 2021,
Notre Dame

50% RI, postpone
2020 SIAs - > 2021,
Imperial

50% RI, postpone
2020 SIAs - > 2021,
Notre Dame

GHA 0.33 0.07 0.06 0.02 0.39 0.1

NGA 0.02 0.1 0 �0.02 0.01 0.07

Appendix 1—table 7. Excess yellow fever deaths between 2020 and 2030 per scenario, country and

modelling group.

The counterfactual comparative scenario (BAU – business as usual) is no disruption to routine immuni-

sation (RI) or campaign immunisation (SIAs – supplementary immunisation activities). Countries shown

are the Democratic Republic of Congo (COD), Ghana (GHA), and Nigeria (NGA).

Country
50% RI,
Imperial

50% RI,
Notre
Dame

Postpone 2020
SIAs - > 2021,
Imperial

Postpone 2020
SIAs - > 2021,
Notre Dame

50% RI, postpone
2020 SIAs - > 2021,
Imperial

50% RI, postpone
2020 SIAs - > 2021,
Notre Dame

COD 4379 137 �2590 �88 1731 25

GHA 1241 281 239 94 1481 375

NGA 421 2675 �45 �426 377 1798

Appendix 1—table 8. Excess measles deaths per 100,000 per year between 2020 and 2030 per

scenario, year and modelling group.

The counterfactual comparative scenario (BAU – business as usual) is no disruption to routine immuni-

sation (RI) or campaign immunisation (SIAs – supplementary immunisation activities).

Year
50% RI,
DynaMICE

50%
RI,
IDM

50%
RI,
Penn
State

Postpone
2020 SIAs
- > 2021,
DynaMICE

Postpone
2020 SIAs
- > 2021,
IDM

Postpone
2020 SIAs
- > 2021,
Penn State

50% RI,
postpone
2020 SIAs -
> 2021,
DynaMICE

50% RI,
postpone
2020 SIAs
- > 2021,
IDM

50% RI,
postpone
2020 SIAs -
> 2021, Penn
State

2020 0 0.34 0.06 10.46 2.32 0.7 10.46 3.25 0.82

2021 0 2.7 0.55 0.19 8.32 0.02 0.2 13.55 0.44

2022 3.44 4.98 0 �2.52 �1.27 �0.19 �2.52 0.77 �0.2

2023 28.56 6.57 0 �6.31 �5.48 �0.1 4.96 �0.96 �0.12

2024 �11.77 0.72 �0.03 �14.68 �4.5 �0.12 5.96 �2.48 �0.16

2025 �9.82 �1.52 0.02 16.07 0.67 �0.1 �14.65 0.03 �0.13

2026 �5.38 �0.26 0.01 �7.57 1.83 �0.1 �3.38 1.51 �0.11

2027 0.24 0.23 0.02 0.37 0.36 �0.03 1.08 0.6 �0.04

2028 0.79 0.08 0 0.88 �0.02 �0.03 �0.02 0.01 �0.05

2029 0.55 0.09 �0.02 �0.3 �0.03 �0.05 0.15 �0.16 �0.06

2030 6.55 0.09 0 12.95 �0.26 �0.04 1.45 �0.1 �0.05

Appendix 1—table 9. Excess meningococcal A deaths per 100,000 per year between

2020 and 2030 per scenario, year and modelling group.

The counterfactual comparative scenario (BAU – business as usual) is no disruption to routine immuni-

sation (RI) or campaign immunisation (SIAs – supplementary immunisation activities).
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Year
50% RI,
Cambridge

50%
RI,
KP

Postpone 2020 SIAs
- > 2021,
Cambridge

Postpone 2020
SIAs - > 2021,
KP

50% RI, postpone 2020
SIAs - > 2021,
Cambridge

50% RI, postpone
2020 SIAs - > 2021,
KP

2020 0 0 0 0 0

2021 0 0 0 0 0 0

2022 0 0 0 0 0 0

2023 0 0 0 0 0 0

2024 0 0 0.01 0 0.01 0

2025 0 0 0 0 0 0

2026 0 0 0 0 0 0

2027 0 0 0.01 0 0.01 0

2028 0 0 0.01 0 0.02 0

2029 0 0 0 0 0 0

2030 0.01 0 0.01 0 0.03 0

Appendix 1—table 10. Excess yellow fever deaths per 100,000 per year between 2020 and 2030

per scenario, year and modelling group.

The counterfactual comparative scenario (BAU – business as usual) is no disruption to routine immuni-

sation (RI) or campaign immunisation (SIAs – supplementary immunisation activities).

Year
50% RI,
Imperial

50% RI,
Notre
Dame

Postpone 2020
SIAs - > 2021,
Imperial

Postpone 2020
SIAs - > 2021,
Notre Dame

50% RI, postpone
2020 SIAs - > 2021,
Imperial

50% RI, postpone
2020 SIAs - > 2021,
Notre Dame

2020 0.28 0.12 1.7 0 2.02 0.12

2021 0.22 0.12 �0.36 0.86 �0.15 0.98

2022 0.18 0.09 �0.29 �0.14 �0.12 �0.07

2023 0.16 0.08 �0.25 �0.12 �0.1 0.05

2024 0.13 0.07 �0.2 �0.1 �0.07 0.04

2025 0.13 0.07 �0.19 �0.09 �0.07 �0.04

2026 0.12 0.06 �0.18 �0.09 �0.07 �0.04

2027 0.12 0.06 �0.18 �0.09 �0.06 �0.04

2028 0.11 0.06 �0.17 �0.09 �0.06 �0.04

2029 0.11 0.06 �0.16 �0.08 �0.06 �0.04

2030 0.11 0.06 �0.16 �0.08 �0.06 �0.04

Appendix 1—table 11. Excess deaths between 2020 and 2030 per scenario, infection and

modelling group.

Scenarios for disruption of routine immunisation and delay of mass vaccination campaigns due to the

COVID-19 pandemic for measles vaccination in six countries, meningococcal A vaccination in four

countries, and yellow fever vaccination in three countries. The counterfactual comparative scenario

(BAU – business as usual) is no disruption to routine immunisation (RI) or campaign immunisation

(SIAs – supplementary immunisation activities).

Scenario
Measles,
DynaMICE

Measles,
IDM*

Measles,
Penn
State

Men A,
Cambridge

Men A,
KP

Yellow
fever,
Imperial

Yellow
fever,
Notre
Dame

Total of
pathogen
averages#

50% RI 79832.13 47495.71 3459.278 66 2.174381 6042.15 3093.147 68265.66

Continued on next page
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Appendix 1—table 11 continued

Scenario
Measles,
DynaMICE

Measles,
IDM*

Measles,
Penn
State

Men A,
Cambridge

Men A,
KP

Yellow
fever,
Imperial

Yellow
fever,
Notre
Dame

Total of
pathogen
averages#

Postpone 2020
SIAs - > 2021

65061.76 4994.18 �715.324 142 �1.78694 �2395.67 �420.914 33689.78

50% RI,
postpone 2020
SIAs - > 2021

16570.58 52540.42 1529.764 215 0.06521 3589.54 2197.85 37556.73

* Measles IDM covers only two countries.
# Total of pathogen averages exclude Measles IDM as this covers only two countries.

Appendix 1—table 12. Percentage differences in deaths from baseline between 2020 and 2030 per

scenario.

Scenarios for disruption of routine immunisation and delay of mass vaccination campaigns due to the

COVID-19 pandemic for measles vaccination in six countries, meningococcal A vaccination in four

countries, and yellow fever vaccination in three countries. The counterfactual comparative scenario

(BAU – business as usual) is no disruption to routine immunisation (RI) or campaign immunisation

(SIAs – supplementary immunisation activities).

Scenario Percentage difference from baseline

50% RI 9.885481

Postpone 2020 SIAs - > 2021 3.780423

50% RI, postpone 2020 SIAs - > 2021 4.802334

Appendix 1—table 13. Percentage differences in deaths from baseline between 2020 and 2030 per

scenario, infection and modelling group.

Scenarios for disruption of routine immunisation and delay of mass vaccination campaigns due to the

COVID-19 pandemic for measles vaccination in six countries, meningococcal A vaccination in four

countries, and yellow fever vaccination in three countries. The counterfactual comparative scenario

(BAU – business as usual) is no disruption to routine immunisation (RI) or campaign immunisation

(SIAs – supplementary immunisation activities).

Scenario
Measles,
DynaMICE

Measles,
IDM

Measles,
Penn State

Men A,
Cambridge

Men A,
KP

Yellow
fever,
Imperial

Yellow fever,
Notre Dame

50% RI 19.1957 11.9708 6.4030 15.9806 5.8875 2.5026 1.9177

Postpone 2020 SIAs
- > 2021

15.6442 1.2587 �1.3240 34.3826 �4.8384 �0.9923 �0.2610

50% RI, postpone
2020 SIAs - > 2021

3.9844 13.2423 2.8315 52.0581 0.1766 1.4868 1.3626

Appendix 1—table 14. Coverage assumptions for the counterfactual comparative scenario (BAU –

business as usual), determined through consultation with disease and immunisation programme

experts across partners at the global, regional, and national levels.

Assumption

Measles
MCV1: 1 st dose measles

vaccine, MCV2: 2nd
dose measles vaccine Yellow fever (YF)

Meningococcal A (Men A)
(For countries that have
introduced routine)

Continued on next page
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Appendix 1—table 14 continued

Assumption

Measles
MCV1: 1 st dose measles

vaccine, MCV2: 2nd
dose measles vaccine Yellow fever (YF)

Meningococcal A (Men A)
(For countries that have
introduced routine)

Routine coverage 2020–
2030 (historical coverage
from WUENIC – WHO and
UNICEF Estimates of
National Immunization
Coverage)

MCV1: Mean of 2015–2019
coverage
MCV2: Highest coverage in
2015–2019
If no MCV2 coverage in
2015–19, assume 50% of
MCV1 mean coverage for
2015–19

YF: Mean of 2015–2019
coverage
If no YF coverage in 2015–
19, use MCV1 mean
coverage for 2015–19

MenA: Highest coverage in
2015–2019.
If no coverage available (for
1 + full years), use MCV1
mean coverage for 2015–19
Exception: where Men A
intro age is � 15 m, use
MCV2 highest coverage in
2015–19

Vaccine introductions Assume all countries
introduce MCV2 in 2022 if
they have not already

Assume all countries
introduce YF in 2022 if they
have not already

N/A

Campaign frequency Use historic frequency:
interval between last two
prospectively planned
national SIAs
(supplementary
immunisation activities)

2019 and 2020 completed
and planned campaigns
(both planned and reactive)
2021–2030: Mass preventive
campaigns as
recommended by the WHO
EYE strategy (2016), with
updated sequencing; no
reactive campaigns

2019 and 2020 completed
and planned campaigns
2021–2030: Assume no
campaigns

Campaign coverage Use coverage of last
national SIA

Assume 85% coverage of
the subnational target
population for all future
campaigns in 2020–2030
(and for 2019 campaigns if
actual coverage
unavailable).

2019 and 2020 actual/
forecast campaign coverage
level

Appendix 1—table 15. Glossary of terms.

Term Description

Country BFA: Burkina Faso
BGD: Bangladesh
COD: Democratic Republic of the Congo (DRC)
ETH: Ethiopia
GHA: Ghana
KEN: Kenya
NER: Niger
NGA: Nigeria
SSD: South Sudan
TCD: Chad

Vaccine MCV1: 1 st dose measles vaccine,
MCV2: 2nd dose measles vaccine,
YF: yellow fever vaccine,
MenA: meningococcal A vaccine

Year Year of vaccination

Age from Minimum age (in years)
of the target population

Age to Maximum age (in years)
of the target population

Age range verbatim Age of the target population,
as provided by WHO or other coverage source

Coverage (national level) Percentage of the target population
vaccinated, specified at a national level.

Target (national level) Number of people in the target
age range, in the entire country.

Continued on next page
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Appendix 1—table 15 continued

Term Description

Subnational campaign Campaigns which took place
sub-nationally, rather than
across the whole country.

Number vaccinated Number of individuals vaccinated in a
campaign. Where necessary, a demographic
cap was applied to constrain the number
vaccinated to be no higher than UNWPP
records of the total number in the target
age group. (UNWPP: United Nations
World Population Prospects, 2019 Revision).

Affected by COVID-19 Values are shown for 2020 campaigns only.
FALSE: 2020 campaigns unaffected by
COVID-19, for example campaigns which took
place in early 2020. These campaigns are
retained in all disruption scenarios.

Appendix 1—table 16. Routine coverage values used for the counterfactual comparative (business-

as-usual) scenario, following the assumptions in Appendix 1—table 14.

Target population taken from United Nations World Population Prospects (UNWPP) 2019 revision.

Countries: Burkina Faso (BFA), Bangladesh (BGD), Democratic Republic of the Congo (COD), Ethiopia

(ETH), Ghana (GHA), Kenya (KEN), Niger (NER), Nigeria (NGA), South Sudan (SSD), Chad (TCD). Vac-

cines: 1st dose measles vaccine (MCV1), 2nd dose measles vaccine (MCV2), yellow fever vaccine (YF),

meningococcal A vaccine (MenA).

Country Vaccine Year Age from Age to Coverage (national level)

BFA MenA 2020–2030 0 0 85%

BGD MCV1 2020–2030 0 0 97%

MCV2 2020–2030 2 2 93%

COD YF 2020–2030 0 0 74%

ETH MCV1 2020–2030 0 0 64%

MCV2 2020–2030 2 2 31%

GHA YF 2020–2030 0 0 89%

KEN MCV1 2020–2030 0 0 92%

MCV2 2020–2030 2 2 45%

NER MenA 2020–2030 0 0 96%

NGA MCV1 2020–2030 0 0 61%

MCV2 2020–2030 2 2 19%

MenA 2020–2030 0 0 61%

YF 2020–2030 0 0 60%

SSD MCV1 2020–2030 0 0 51%

TCD MCV1 2020–2030 0 0 39%

TCD MenA 2020–2030 0 0 70%

Appendix 1—table 17. Campaign coverage values used for the counterfactual comparative

(business-as-usual) scenario, following the assumptions in Appendix 1—table 14.

Countries: Bangladesh (BGD), Democratic Republic of the Congo (COD), Ethiopia (ETH), Ghana

(GHA), Kenya (KEN), Nigeria (NGA), South Sudan (SSD), Chad (TCD).
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Country Vaccine Year
Age_
from

Age_
to

Age
range
verbatim

Coverage
(national
level)

Target
(national
level)

Subnational
campaign

Number
vaccinated

Affected
by covid-
19

BGD Measles 2020 1 9 6M-9Y 1% 26,123,496 yes 292,437 FALSE

BGD Measles 2020 1 9 9M-9Y 100% 26,123,496 no 26,123,496

BGD Measles 2026 1 4 93% 10,972,070 no 10,204,025

COD YF 2020 1 60 9M-60Y 10% 82,362,957 yes 8,468,874

COD YF 2020 1 60 9M-60Y 8% 82,362,957 yes 6,707,043

COD YF 2021 1 60 9M-60Y 25% 84,982,979 yes 21,179,612

COD YF 2022 1 60 9M-60Y 17% 87,641,611 yes 14,875,225

COD YF 2023 1 60 9M-60Y 14% 90,340,189 yes 12,357,393

COD YF 2024 1 60 9M-60Y 18% 93,082,143 yes 17,200,562

ETH Measles 2019 1 14 6 M-59M;
6M-14Y

3% 41,766,446 yes 1,230,934

ETH Measles 2020 1 4 6–59 M 100% 13,314,425 no 13,314,425

ETH Measles 2027 1 4 93% 14,462,250 no 13,449,892

GHA YF 2020 10 60 10-60Y 22% 21,527,602 yes 4,758,966

KEN Measles 2020 1 4 9–59 M 100% 5,625,900 no 5,625,900

KEN Measles 2024 1 4 95% 5,839,639 no 5,547,657

KEN Measles 2028 1 4 95% 6,220,262 no 5,909,249

NGA Measles 2019 1 9 6M-9Y 1% 55,695,418 yes 436,031

NGA Measles 2019 1 5 6 M-71M 2% 32,616,304 yes 718,665

NGA Measles 2019 1 4 9–59 M 81% 26,413,460 yes 21,352,326

NGA MenA 2019 1 7 55% 44,499,793 yes 24,274,987

NGA YF 2019 1 44 9M-44Y 0.30% 167,255,829 yes 525,691

NGA YF 2019 1 44 9M-44Y 1% 167,255,829 yes 1,392,489

NGA YF 2019 1 44 9M-44Y 1% 167,255,829 yes 1,766,338

NGA YF 2019 1 44 9M-44Y 4% 167,255,829 yes 6,755,396

NGA Measles 2020 1 4 6–59 M 7% 26,844,855 yes 1,988,885

NGA MenA 2020 7 10 7–8/9–10
years

24% 22,936,865 yes 5,618,292

NGA MenA 2020 1 7 1–7 Y 15% 45,289,678 yes 6,791,329

NGA YF 2020 1 44 9M-44Y 5% 171,465,804 yes 8,624,060 FALSE

NGA YF 2020 1 44 9M-44Y 3% 171,465,804 yes 4,936,871

NGA YF 2020 1 44 9M-44Y 16% 171,465,804 yes 26,676,939

NGA YF 2021 1 44 9M-44Y 20% 175,731,488 yes 34,701,457

NGA Measles 2022 1 4 88% 27,691,758 no 24,230,288

NGA YF 2022 1 44 9M-44Y 13% 180,026,007 yes 23,699,548

NGA YF 2023 1 44 9M-44Y 13% 184,355,854 yes 23,699,548

NGA Measles 2024 1 4 88% 28,580,680 no 25,008,095

NGA Measles 2026 1 4 88% 29,575,232 no 25,878,328

NGA Measles 2028 1 4 88% 30,532,880 no 26,716,270

NGA Measles 2030 1 4 88% 31,488,385 no 27,552,337

SSD Measles 2020 1 4 6–59 M 100% 1,350,759 no 1,350,759 FALSE

SSD Measles 2020 1 4 6–59 M 49% 1,350,759 no 659,330

SSD Measles 2023 1 4 92% 1,396,213 no 1,284,516

SSD Measles 2026 1 4 92% 1,465,629 no 1,348,379
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Appendix 1—table 17 continued

Country Vaccine Year
Age_
from

Age_
to

Age
range
verbatim

Coverage
(national
level)

Target
(national
level)

Subnational
campaign

Number
vaccinated

Affected
by covid-
19

SSD Measles 2029 1 4 92% 1,513,497 no 1,392,417

TCD Measles 2019 1 9 6M-9Y 14% 4,729,086 yes 653,511

TCD Measles 2019 1 9 6M-9Y 4% 4,729,086 yes 210,185

TCD Measles 2019 1 9 6M-9Y 6% 4,729,086 yes 298,738

TCD Measles 2019 1 4 6–59 M 21% 2,259,841 yes 467,456

TCD Measles 2020 1 4 6–59 M 15% 2,306,276 yes 340,046 FALSE

TCD Measles 2020 1 4 6–59 M 2% 2,306,276 yes 43,233 FALSE

TCD Measles 2020 1 4 6–59 M 31% 2,306,276 yes 712,746

TCD Measles 2020 1 4 9–59 M 100% 2,306,276 no 2,306,276

TCD MenA 2020 1 8 1-8Y 15% 4,352,395 yes 647,065

TCD Measles 2028 1 4 82% 2,681,750 no 2,199,035

Section 2. Figures (appendix)

Appendix 1—figure 1. Health impact of predicted total disability-adjusted life years for immunisa-

tion disruption scenarios and no disruption scenario for measles, meningococcal A, and yellow fever.

Model-predicted total disability-adjusted life years (DALYs) per 100,000 population per year for

routine immunisation (RI) and campaign immunisation (SIAs – supplementary immunisation activities)

disruption scenarios and no disruption scenario (BAU – business-as-usual scenario) for measles,

meningococcal A, and yellow fever during 2020–2030.
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Appendix 1—figure 2. Health impact of excess disability-adjusted life years for immunisation disrup-

tion scenarios in comparison to no disruption scenario for measles, meningococcal A, and yellow

fever. Model-predicted excess disability-adjusted life years (DALYs) per 100,000 population per year

for routine immunisation (RI) and campaign immunisation (SIAs – supplementary immunisation

activities) disruption scenarios in comparison to no disruption scenario (BAU – business-as-usual

scenario) for measles, meningococcal A, and yellow fever. Excess DALYs are summed over 2020–

2030.
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Appendix 1—figure 3. Health impact of normalised excess deaths for immunisation disruption sce-

narios in comparison to no disruption scenario for measles, meningococcal A, and yellow fever. The

normalised model-predicted excess deaths per year for routine immunisation (RI) and campaign

immunisation (SIAs – supplementary immunisation activities) disruption scenarios in comparison to

no disruption scenario (BAU – business-as-usual scenario) for measles, meningococcal A, and yellow

fever. Excess deaths are summed over 2020–2030, and the excess deaths are normalised by setting

the BAU to 0 and maximum to 1.
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Appendix 1—figure 4. Health impact of normalised excess disability-adjusted life years for immuni-

sation disruption scenarios in comparison to no disruption scenario for measles, meningococcal A,

and yellow fever. The normalised model-predicted excess disability-adjusted life years (DALYs) per

year for routine immunisation (RI) and campaign immunisation (SIAs – supplementary immunisation

activities) disruption scenarios in comparison to no disruption scenario (BAU – business-as-usual

scenario) for measles, meningococcal A, and yellow fever. Excess DALYs are summed over 2020–

2030, and the excess DALYs are normalised by setting the BAU to 0 and maximum to 1.

Appendix 1—figure 5 continued on next page
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Appendix 1—figure 5 continued

Appendix 1—figure 5. Health impact of predicted total deaths for immunisation disruption scenar-

ios and no disruption scenario for measles. Model-predicted total deaths per year for routine

immunisation (RI) and campaign immunisation (SIAs – supplementary immunisation activities)

disruption scenarios and no disruption scenario (BAU – business-as-usual scenario) for measles

during 2020–2030 per modelling group.

Appendix 1—figure 6. Health impact of predicted total deaths for immunisation disruption scenar-

ios and no disruption scenario for meningococcal A. Model-predicted total deaths per year for

routine immunisation (RI) and campaign immunisation (SIAs – supplementary immunisation activities)

disruption scenarios and no disruption scenario (BAU – business-as-usual scenario) for

meningococcal A during 2020–2030 per modelling group.
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Appendix 1—figure 7. Health impact of predicted total deaths for immunisation disruption scenar-

ios and no disruption scenario for yellow fever. Model-predicted total deaths per year for routine

immunisation (RI) and campaign immunisation (SIAs – supplementary immunisation activities)

disruption scenarios and no disruption scenario (BAU – business-as-usual scenario) for yellow fever

during 2020–2030 per modelling group.

Section 3. Model descriptions
Measles model - Penn State

The Penn State model is a measles transmission and vaccination model developed at Pennsylvania

State University (PSU). It is an age-structured compartmental transmission dynamic model with com-

partments for susceptible, infected, recovered (due to infection or vaccination) subpopulations. A

proportion of infected people will die depending on their age and country characteristics

(Wolfson et al., 2009), as per the DynaMICE model. The model projects the total number of infec-

tions and deaths in 1 year age cohorts, up to age 100 years, in each year according to an annual

attack rate that is modeled as a logistic function of the annualised proportion of the population that

is susceptible. The slope and intercept of this logistic function, which governs the proportion of avail-

able susceptibles that are infected in each year, is fitted independently for each country to observed

annual case reporting and vaccination coverage (routine and supplemental campaigns) for each

country between 1980 and 2017; for details on the fitting methods see Eilertson et al., 2019. Vac-

cine efficacy for routine immunization is assumed to depend on the age at first dose (9 m or 12 m)

as described in Simons et al., 2012. The second routine dose is assumed to be preferentially deliv-

ered to those children who received the first dose and SIA doses are assumed to be independent of

receipt of the first routine dose.

Measles model - DynaMICE

DynaMICE (DYNAmic Measles Immunisation Calculation Engine) is a measles transmission and vacci-

nation model developed by LSHTM with input from Harvard University and the University of Mon-

treal. It is an age-structured compartmental transmission dynamic model with compartments for

maternal immune, susceptible, infected, recovered, and vaccinated subpopulations. A proportion of

infected people will die depending on their age and country characteristics (Wolfson et al., 2009).

The population is also stratified by age with weekly age classes up to age 3 years, and annual age

classes thereafter up to 100 years. The force of infection is calculated by combining an age-
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dependent social contact matrix from the POLYMOD study (Mossong et al., 2008), demographic

distribution for each country, and an estimated probability of transmission per contact. The probabil-

ity of transmission per contact is then estimated from the basic reproduction number of measles

using the principal eigenvalue method. Vaccination is incorporated as a pulse function and can be

delivered to any age or range of ages and in either routine or campaign delivery. Vaccine efficacy is

dependent on age and the number of doses received (Hughes et al., 2020). The model has been

previously described in detail (Li et al., 2021; Verguet et al., 2015), and has been validated through

comparisons to the Penn State and/or IDM models in at least two previous model comparison

exercises.

Measles models - IDM

The IDM model for Nigeria was built using EMOD – an agent-based stochastic disease transmission

model (Institute for Disease Modeling et al., 2018). The EMOD software is open-source, and the

model and documentation of the EMOD software are available at the IDM website (IDM, 2020). The

model presented here is a discrete-time (daily time steps), an individual-based form of an MSEIR

(maternally protected-susceptible-exposed-infectious-recovered) model. A specific prior application

of the EMOD model to measles in Nigeria is described in Zimmermann et al., 2019; the model

employed here is similar but is structured at a finer spatial scale. The transmission dynamics include

seasonality, age-stratified heterogeneous transmission, and spatial metapopulations coupled by

migration, the parameters of which have been calibrated to reproduce the seasonality, age-distribu-

tion, and spatial correlation of measles cases in Nigeria. Routine vaccination with a first dose is deliv-

ered to covered individuals at 9 months of age; the second dose at 12 months; and SIA vaccination

is distributed to covered individuals in the target age range in a pulse over the course of 2 weeks;

no correlation between the two routine doses or between the routine and SIA doses is assumed.

The IDM model for Ethiopia is a semi-monthly, stochastic, compartmental, measles transmission

model. The key model assumption is that measles transmission is determined by a susceptible popu-

lation and an infectious population, while all other (recovered, deceased, immunised, etc.) popula-

tions can be ignored. At a high level, children missed by routine immunization (estimated via

coverage and birth rates under vaccine efficacy assumptions similar to those in the Nigeria model)

enter the population susceptible to measles, where they can either be infected or be immunised in a

vaccination campaign. Transmission is assumed to have annual seasonality with rates estimated for

every semi-month of the year via a regression against observed cases accounting for under-reporting

as an unknown constant over the model-time period. Both the volatility in the transmission process

and the effects of past vaccination campaigns on overall susceptibility are also estimated from the

surveillance data. For a detailed example of the model applied to immunizations questions in Paki-

stan, see Thakkar et al., 2019.

Men A model - Cambridge

The University of Cambridge MenA model is a compartmental transmission dynamic model of Neis-

seria meningitidis group A (NmA) carriage and disease to investigate the impact of immunisation

with a group A meningococcal conjugate vaccine, known as MenAfriVac, as published by

Karachaliou et al., 2015. The model is age-structured (1 year age groups up to age 100) with con-

tinuous ageing between groups. Model parameters were based on the available literature and Afri-

can data wherever possible, with the model calibrated on an ad-hoc basis as described below.

The population is divided into four states, which represent their status with respect to the menin-

gitis infection. Individuals may be susceptible, carriers, ill or recovered, and in each of these states

be vaccinated or unvaccinated, with vaccinated individuals having lower risks of infection (carriage

acquisition) and disease (rate of invasion). We assume that both carriers and ill individuals are infec-

tious and can transmit the bacteria to susceptible individuals. The model captures the key features

of meningococcal epidemiology, including seasonality, which is implemented by forcing the trans-

mission rate, the extent of which varies stochastically every year.

Since only a small proportion of infected individuals develop the invasive disease, disease-

induced deaths are not included in the model. From each compartment, there is a natural death rate

from all causes. Carriage prevalence and disease incidence vary with age, and the model
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parameterised these distributions using a dataset from Niger Campagne et al., 1999; the case:car-

rier ratio consequently varies with age. The duration of ’natural immunity’ is an important driver of

disease dynamics in the absence of vaccination but good data on this parameter is lacking; instead,

prior estimates are used (Irving et al., 2012).

The model assumes that mass vaccination campaigns occur as discrete events whereas routine

immunisation takes place continuously. We allowed the duration of protection to vary uniformly

between 5 years and 20 years for the 0–4 year-olds and 10–20 years for over 5-year-olds. For the

200 runs, we selected pairs of values for these two parameters so that duration of protection for the

older age group is not shorter than the duration of protection for 0–4 year-olds (White et al., 2019;

Yaro et al., 2019). Vaccine efficacy against carriage and disease is 90%.

Disease surveillance is not comprehensive across the meningitis belt, so the disease burden is

uncertain in several countries. Therefore, the model classifies the countries into three categories,

based on the incidence levels using historical data. This classification defines the transmission

dynamic parameters. The model generates estimates of case incidence, to which a 10% case-fatality

ratio is applied to estimate mortality (Lingani et al., 2015). To estimate DALYs it is assumed that

7�2% of survivors have major disabling sequelae with a disability weight of 0.26 (Edmond et al.,

2010).

Countries were stratified into high and medium risk, and different infection risks applied based

on this stratification. As there was insufficient information to define infection risk on a country-by-

country basis, the approach/stratification was agreed upon with experts in the WHO meningitis

team. For countries only partly within the meningitis belt, only the (subnational) area at risk was

included.

To produce estimates on the impact of vaccination, 200 simulation runs were generated by sto-

chastically varying the baseline transmission rate to reflect between-year climactic or other external

variability. Although each individual simulation reflects the reality of irregular and periodic epidem-

ics, as visually compared to time series from Chad and Burkina Faso and analysis of inter-epidemic

periods, the resulting averaged estimates give a stable expected burden of disease over time.

Uncertainty in other model parameters is currently not quantified.

Men A model - KP

The KP model for serogroup A Neisseria meningitidis (MenA) was developed at Kaiser Permanente

Washington in partnership with the US Centers for Disease Control and Prevention and the Burkina

Faso Ministry of Health (Jackson et al., 2018; Tartof et al., 2013). It is a dynamic, age-structured,

stochastic compartmental transmission model, with compartments to represent MenA colonization,

disease, and immunity. Natural infection with MenA is assumed to lead to resistance to future coloni-

zation and disease, and repeated infections further reduce risk, although protection wanes over

time. The age-dependent force of infection (‘who acquires infection from whom’) matrix varies sea-

sonally to account for differential MenA transmission between dry and rainy seasons. Model parame-

ters, including the force of infection, were estimated using approximate Bayesian calculation, with

prior distributions informed by the literature. Mass campaigns occur among persons aged 1–29

years (possibly with catch-up campaigns at the initiation of routine immunization), in which immuniza-

tion is assumed to occur in the first week of the month during which a campaign is scheduled. Rou-

tine immunization is assumed to occur during the first week of the month in which a child reaches 9

months of age.

Yellow fever model - Imperial College London

The Imperial College London yellow fever model is a static transmission model assuming a constant

force of infection (FOI) for each country at risk of YF. It is estimated from YF occurrence data as well

as serological data where available. The model also uses environmental covariates, information on

vaccination activities, and demographic projections to estimate relative risk and thus transmission

intensity for YF. The original framework was developed by Yellow Fever Expert Committee et al.,

2014 and was subsequently extended by Gaythorpe et al., 2019 and Gaythorpe et al., 2021b.

The full model description is given in Gaythorpe et al., 2021b. The model was estimated within a

Bayesian hierarchical framework from serological survey data and outbreak occurrence information
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up to the year 2019; it has also been assessed against new serological surveys as they became avail-

able, shown in Jean et al., 2016.

Yellow fever model - University of Notre Dame

The University of Notre Dame yellow fever (YFV) model is a static transmission model that assumes a

constant force of infection (FOI) for each endemic country (Perkins et al., 2021). Yellow fever infec-

tions in the human population are thus modeled as spillover events from non-human primates, so

human-to-human transmission observed in urban outbreaks is not considered. Accordingly, our

model is intended to capture long-term changes in YFV burden on account of changes in vaccination

coverage rather than to realistically capture interannual variability due to YFV epizootics in non-

human primates and occasional outbreaks in humans.

We calibrated our YFV transmission model to multiple sources of epidemiological data collected

in sub-Saharan Africa at the first administrative level subnationally. First, we quantified past exposure

to YFV by estimating the force of infection in 23 administrative units using data collected in serologi-

cal surveys. We then related the predicted number of YFV infections at each of the 23 administrative

units to the corresponding reported outbreak data collated by Yellow Fever Expert Committee

et al., 2014 to quantify the extent of underreporting. We then obtained estimates of the total num-

ber of infections at each administrative unit in sub-Saharan Africa by relating our estimates of under-

reporting to the total number of reported cases and deaths in each administrative unit. This allowed

us to estimate a posterior distribution of a single FOI for each administrative unit in sub-Saharan

Africa. Because the FOIs that we estimated are sensitive to the number of reported cases and

deaths, we smoothed across our estimates by performing a regression analysis with spatial covari-

ates. We considered multiple regression models and generated an ensemble prediction by weight-

ing the predicted FOI from each regression model based on performance in ten-fold cross-validation

at the country level. National-level FOI estimates were obtained by weighting the ensemble spatial

prediction of FOI according to WorldPop 2015 population density estimates at the first administra-

tive level and then summing to obtain national FOIs (WorldPop, 2016).

To project the number of yellow fever cases and deaths in each country under a given vaccination

coverage scenario, we first scaled the national-level FOI by the proportion of the population that is

unvaccinated. We then used the scaled FOI estimate to project the annual number of YFV infections

and multiplied this quantity by the probabilities of disease and death reported by Johansson et al.,

2014 to obtain estimates of the annual number of YFV cases and deaths. We assume a 0.975 proba-

bility of protection from infection among those who are vaccinated based on Jean et al., 2016, with

this level of protection assumed to be lifelong based on a single dose. In the event of campaigns,

we assume that individuals are vaccinated randomly and irrespective of prior vaccination through

another campaign or routine vaccination.

Section 4: Drivers of model similarities and differences
Measles

All three measles models (Penn State, DynaMICE, and IDM) are MSRIV (maternally protected, sus-

ceptible, infected/infectious, recovered, vaccinated) transmission models. While Penn State and

DynaMICE models are age-structured compartmental transmission dynamic models, IDM is an

agent-based stochastic disease transmission model. The three models differ in terms of the magni-

tude of the increased burden they project due to coverage disruptions in 2020, with DynaMICE gen-

erally being the most pessimistic (greatest increase in burden) and Penn State generally the most

optimistic (smallest increase in burden).

These differences stem particularly from the way vaccine coverage is translated into vaccine

impact. DynaMICE directly translates national-level coverage into impact using vaccine efficacy

assumptions within an age-dependent mass-action model framework, modified by age at vaccination

and whether or not SIA or MCV2 doses go to those who have already received MCV1. Hence any

susceptibility gaps that develop as a result of declines in coverage or postponement of SIAs are

soon translated into increased numbers of cases.

The Penn State model fits a logistic relationship between annual attack rate and the proportion

susceptible in the population independently to each country (methods described in Eilertson et al.,
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2019). The slope and intercept of this function govern how quickly measles cases respond to

increases in the proportion susceptible; a steep slope indicates that the probability of infection

increases quickly with a small increase in the proportion susceptible (i.e. a large outbreak is likely

after a small disruption). The shape of this function is fit to the annual measles time series from 1980

to 2019. If the slope of this function is shallow based on the historical pattern, then a large reduction

in coverage (large increase in susceptibles) would be necessary to generate a large and immediate

outbreak.

The IDM model uses a similar SIR framework as DynaMICE but is an individual-based model that

reflects subnational heterogeneities in dose and disease burden distribution.

Meningococcal A

The meningococcal disease models (Cambridge, KP) are both stochastic, age-structured, compart-

mental dynamic transmission models based on the SIR framework. The major structural differences

between the models are around (a) how they handle immunity post-infection: where the Cambridge

model has waning protection from one immune compartment (in which individuals are completely

immune), the KP model assumes a gradient of susceptibility following infection with compartments

for high and low immunity; and (b) the duration of vaccine-induced immunity: where the Cambridge

model assumes a shorter duration of protection than the KP model. The differences in the results

arise mainly because of the differing assumptions about the duration of vaccine protection.

Yellow fever

The YF models (Imperial, Notre Dame) are both static cohort models which provide annual numbers

of infections, cases and deaths given existing vaccination coverage immunity. They follow a similar

format in terms of how burden is calculated given force of infection estimates. One difference here

is when vaccination is assumed to take effect with the Imperial model showing the influence of vacci-

nation from the beginning of the year and Notre Dame, from the end.

The models differ in how they estimate the force of infection for each province. Both models use

serological survey data and outbreak information but the Imperial model uses a larger number of

serological studies and only focuses on outbreak occurrence whereas the Notre Dame model also

takes into account outbreak size but includes fewer serological studies. Both models use environ-

mental covariates to extrapolate to countries with fewer data but the specific covariates incorpo-

rated differ between groups. As a result, the Imperial model generally produces higher estimates of

the force of infection except in Nigeria where the force is higher for the Notre Dame model.

Section 5: Coverage assumptions
These assumptions were determined through consultation with disease and immunisation pro-

gramme experts across partners at the global, regional, and national levels.

To generate ‘business as usual’ assumptions for routine immunisations in 2020–2030, we consid-

ered historical coverage from WUENIC (WHO and UNICEF Estimates of National Immunization Cov-

erage) for the previous five years. We assumed that MCV1 (measles first dose) coverage stayed at

the mean level seen in 2015–19, and that MCV2 (measles second dose) stayed at the highest level

seen in 2015–19. Where a country had no MCV2 coverage in the period 2015–19, we assumed that

future MCV2 coverage would be 50% of the MCV1 mean coverage for 2015–19. We assumed that

yellow fever coverage stayed at the mean level seen in 2015–19. Where a country had no yellow

fever coverage in 2015–19, we assumed this stayed constant at the mean level of MCV1 coverage

seen in 2015–19. We assumed that coverage of meningitis A stayed at the highest level seen in

2015–19. Where no meningitis A coverage was available for at least one full year, we assumed that

future meningitis coverage stayed constant at the mean level of MCV1 coverage seen in 2015–19.

However, for countries where meningitis A vaccine was targeted at infants over 15 months, we

assumed this matched the highest level of MCV2 coverage seen in 2015–19.

In terms of future vaccine introductions, we assumed that countries would introduce MCV2 and

YF in 2022 (where they had not done so already). For meningitis A, all countries considered had

already introduced routine immunisation.
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Our assumptions about the frequency and coverage level of vaccination campaigns or supple-

mentary immunisation activities (SIA) in 2020–2030 also varied by pathogen. For measles we looked

at the historic frequency, that is the interval between the last two prospectively planned national

SIAs, and assumed the same frequency in future years. We assumed the same coverage level as in

the country’s last national-level measles SIA. For yellow fever, we included all completed and

planned campaigns (both planned and reactive) in 2019 and 2020, and campaigns recommended in

WHO’s 2016 Eliminate Yellow Fever (EYE) strategy for the period 2021–2030, assuming 85% cover-

age of the subnational target population for 2020–2030 (and for 2019 if actual coverage was unavail-

able). For meningitis A, we included all completed and planned campaigns in 2019 and 2020 (at the

actual or forecasted coverage level), but assumed no further campaigns took place from 2021

onwards.
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