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A key challenge for the secondary prevention of Alzheimer’s dementia is the need to
identify individuals early on in the disease process through sensitive cognitive tests and
biomarkers. The European Prevention of Alzheimer’s Dementia (EPAD) consortium
recruited participants into a longitudinal cohort study with the aim of building a
readiness cohort for a proof-of-concept clinical trial and also to generate a rich
longitudinal data-set for disease modelling. Data have been collected on a wide range
of measurements including cognitive outcomes, neuroimaging, cerebrospinal fluid
biomarkers, genetics and other clinical and environmental risk factors, and are
available for 1,828 eligible participants at baseline, 1,567 at 6 months, 1,188 at one-
year follow-up, 383 at 2 years, and 89 participants at three-year follow-up visit. We novelly
apply state-of-the-art longitudinal modelling and risk stratification approaches to these
data in order to characterise disease progression and biological heterogeneity within the
cohort. Specifically, we use longitudinal class-specific mixed effects models to
characterise the different clinical disease trajectories and a semi-supervised Bayesian
clustering approach to explore whether participants can be stratified into homogeneous
subgroups that have different patterns of cognitive functioning evolution, while also having
subgroup-specific profiles in terms of baseline biomarkers and longitudinal rate of change
in biomarkers.
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1 INTRODUCTION

Alzheimer’s disease (AD), the leading cause of dementia globally (Livingston et al., 2017), is
characterised by synaptic dysfunction and neurodegeneration (e.g., neuronal loss), triggered by
sequential accumulation of amyloid plaques and neurofibrillary tangles (aggregates of
hyperphosphorylated tau proteins) (Braak and Braak, 1991). The exact ordering of the
pathological cascade of events, leading to clinical symptoms of cognitive deterioration and
dementia, has been actively researched over the last decade. Jack and colleagues (Jack et al.,
2010; Jack et al., 2013) hypothesised that there is an underlying disease process and that the
temporal ordering of changes in key biomarkers and their dynamics characterise the full spectrum of
the disease throughout the different successive stages of pre-clinical, prodromal and dementia.
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On the whole there have been few treatment successes (and
none of these are disease-modifying) despite substantive
investment in pharmacological compounds for Alzheimer’s
disease in symptomatic populations and early promise shown
in pre-clinical studies (Gauthier et al., 2016; Winblad et al., 2016;
Anderson et al., 2017). There may be a number of possible
explanations for the many failures including inadequate drug
dosages, incorrect treatment targets and inappropriate trial
populations where the disease process is too far along to be
amenable to treatment (Raket, 2020; Shi et al., 2020;
Yiannopoulou and Papageorgiou, 2020). There is a consensus
that the genesis of AD pathology occurs decades before the onset
of dementia symptoms (Braak and Braak, 1997; Hardy and
Selkoe, 2002; Jack et al., 2010; Bateman et al., 2012; Braak and
Del Tredici, 2012; Jack et al., 2013). This thus presents an
opportunity for early disease course modification before
dementia onset and even prior to clinical symptoms. As such
there is great interest—from both academia and industry—in
accurately identifying groups of individuals with higher
likelihood of progressing to AD dementia for natural history
studies, early phase treatment trials and for participation in
secondary prevention trials where, for example, they may have
evidence of AD pathology through relevant biomarker
abnormalities but no clinical evidence of symptoms of
dementia (Ritchie et al., 2016; Watts, 2018).

Current proposals for defining an individual’s probability for
developing AD dementia or for modelling cognitive deterioration
based on biomarkers and/or clinical symptoms have been focused
on the stage of AD close to dementia onset. Various disease
progression and sub-type approaches have been proposed and
developed. These include survival and multi-state models for
investigating transitions between disease states (Hubbard and
Zhou, 2011; Vos et al., 2013; van den Hout, 2016; Wei and
Kryscio, 2016; Robitaille et al., 2018; Zhang et al., 2019); mixed
effects models (linear, generalized, non-linear) that incorporate
subject-specific random effects and can be extended to handle
latent time shifts, random change points, latent factors, processes
and classes, hidden states, and multiple outcomes (Hall et al.,
2000; Jedynak et al., 2012; Liu et al., 2013; Proust-Lima et al.,
2013; Donohue et al., 2014; Samtani et al., 2014; Lai et al., 2016;
Zhang et al., 2016; Geifman et al., 2018; Li et al., 2018;Wang et al.,
2018; Lorenzi et al., 2019; Proust-Lima et al., 2019; Villeneuve
et al., 2019; Younes et al., 2019; Bachman et al., 2020; Kulason
et al., 2020; Raket, 2020; Segalas et al., 2020; Williams et al., 2020)
and can be combined with models for event-history data
(Marioni et al., 2014; Blanche et al., 2015; Proust-Lima et al.,
2016; Rouanet et al., 2016; Li et al., 2017; Iddi et al., 2019; Li and
Luo, 2019; Wu et al., 2020); event-based models which attempt to
model the pathological cascade of events occurring as the disease
develops and progresses through disease stages (Fonteijn et al.,
2012; Young et al., 2014; Chen et al., 2016; Goyal et al., 2018;
Oxtoby et al., 2018); and various clustering approaches for
discovering risk stratification/disease progression groups and
endotypes. For example, those based on hierarchical,
partitioning and model-based clustering algorithms/methods
(Dong et al., 2016; Racine et al., 2016; Dong et al., 2017; ten
Kate et al., 2018; Young et al., 2018). Moreover, various machine

learning and other statistical approaches have been proposed for
both disease progression, prediction and subgroup identification
in Alzheimer’s disease (Fiot et al., 2014; Schmidt-Richberg et al.,
2016; Cheng et al., 2017; Bhagwat et al., 2018; Khanna et al., 2018;
de Jong et al., 2019; Martí-Juan et al., 2019; Brand et al., 2020;
Golriz Khatami et al., 2020; Lei et al., 2020; Martí-Juan et al., 2020;
Lin et al., 2021; Zhang et al., 2021).

However, in the earlier stages of disease, the development of
disease models is far more challenging due to the relatively slow
progression of the disease and clinical measures being
insufficiently sensitive to detect such subtle changes. In order
to develop disease models in the early stages when individuals do
not have symptoms, or express only subjective complaints of
cognitive decline or have only mild cognitive symptoms, it is
necessary to undertake longitudinal follow-up of these
individuals measuring reliable biomarkers of pathological
changes alongside clinical outcomes. Ideally individuals would
be followed-up over an extended period of time to ensure
sufficient proportions make transitions through the various
disease stages to dementia. Ultimately, these disease models
would better inform patient selection into trials, improve
understanding of AD progression in individuals and allow a
more tailored approach to clinical management and targeting of
disease modifying treatments to individuals (i.e., precision
medicine) based on a range of biomarker modalities (e.g.,
neuroimaging, cerebrospinal fluid (CSF), blood), cognitive and
clinical measures and risk factors.

Against this backdrop, the European Prevention of
Alzheimer’s Dementia (EPAD) consortium (Ritchie et al.,
2016) was initiated as a large public-private partnership, and
funded by the Innovative Medicines Initiative (IMI) Joint
Undertaking. A total of 39 European organisations or
“partners” were involved in the EPAD consortium. EPAD was
developed as an interdisciplinary research initiative with an aim
of improving the understanding of the early stages of Alzheimer’s
disease and delivering new preventative treatments.

The EPAD Longitudinal Cohort Study (LCS) was a
prospective, multi-centre, pan-European study set up with the
dual objectives of developing accurate longitudinal models over
the entire course of Alzheimer’s disease (AD) prior to the onset of
dementia and creating a trial-ready cohort for potential
recruitment into the EPAD Proof-of-Concept (PoC) Trial
(Solomon et al., 2018). It was designed as a long-term
observational study with recruitment from different types of
existing parent cohorts (PCs) across Europe (e.g., population-
based, memory clinics) and then, later on, more directly from
clinical settings. It aimed to provide both a well-phenotyped
population covering the full continuum of risk of subsequent AD
dementia development and enough participants with particular
profiles potentially eligible for an adaptive designed trial. This aim
was achieved through monitoring of the evolving characteristics
of the EPAD cohort and use of a flexible and dynamic approach to
selection into the LCS that allowed over- and under-sampling by
particular characteristics already available in the PCs. The other
component of the EPAD programme, the EPAD PoC Trial, was
designed to provide an environment for testing multiple
interventions for the secondary prevention of AD dementia.
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Using the data collected in the LCS on cognitive and clinical
outcomes, biomarkers and risk factors, we aim to develop state-
of-the-art models for disease progression and stratification which
can be used 1) to inform selective recruitment and adaptation in
clinical trials, 2) for longitudinal prediction and stratification, 3)
for subgroup identification based on both baseline and
longitudinal biomarker profiles and, ultimately, 4) to help
improve treatment and clinical management decisions. We
adopt a two-stage approach, where we first identify
subpopulations/classes with different underlying, potentially
AD-related cognitive/functional trajectory patterns (i.e., latent
clinical phenotypes) over time after controlling for known
exogenous risk factors (constitutional and genetic). These
latent phenotypes are then jointly modelled with endogenous
neuroimaging and CSF biomarkers to identify homogeneous
subgroups/clusters based on biomarker profiles
(i.e., neuropathological endotypes) that are linked to these
trajectory patterns.

2 METHODS

2.1 Data
We performed all analyses on the V. IMI data release from the
EPAD cohort (http://ep-ad.org/open-access-data/access/).
Briefly, a total of 2,096 participants were screened and entered
the cohort. Any participants who failed screening, had a baseline
global clinical dementia rating (CDR) ≥1, or had a diagnosis of
Alzheimer’s dementia at baseline were excluded, leaving 1,828
eligible participants. Participants were aged at least 50 years old,
with either a CDR global score of 0 (n � 1,313) or 0.5 (n � 498)
(The CDR global scores for seventeen participants were missing.)
Recruitment occurred across 31 centres from 10 different
European countries. Follow-up visits were designed to occur at
6 months, 1 year and yearly thereafter. Unfortunately, the LCS
closed at the end of the IMI-funding period and therefore the
maximum number of visits was five. Of the 1,828 participants
with a baseline visit, 1,567 attended the 6-months visit, 1,188
attended the 1-year visit and 396 and 89 attended the 2-years and
3-years visits respectively. Two hundred and fifty four
participants only had a baseline visit, 389 had two visits
(including five who had a baseline and 1-year visit but not 6-
months), 791 had three visits (including 2 who had baseline, 1-
year and 2-years visits but not a 6-months visit; the remaining
attended the first three visits), 307 had four visits (including 2
who had baseline, 6-months, 2-years and 3-years visits but not a
1-year visit; the remaining had all visits up to 2 years) and 87 had
five visits. We restrict our study to the 1,574 participants who had
more than one visit.

The variables used in the models can be considered to belong
to four domains: 1) outcomes, 2) baseline risk factors, 3) baseline
biomarkers, and 4) longitudinal biomarkers.

Outcomes
The outcomes used were transformations of CDR sum of boxes
(CDRSB) and Mini-Mental State Examination (MMSE) scores.

To deal with floor and ceiling effects of CDRSB, a logistic
transformation was applied to CDRSB as defined in Eq. 1:

tCDRSB � −log (CDRSB + 0.1)
(18 − CDRSB + 0.1)( ) (1)

A normalising transformation was applied to MMSE values,
converting MMSE from a 0–30 scale to nMMSE on a 0–100
scale to deal with curvilinearity (Philipps et al., 2014). CDRSB was
scheduled to be collected at all visits but MMSE was not designed
to be collected at the 6-months visit.

Baseline Risk Factors
Baseline risk factors included age, sex, education, family history of
AD (first-degree relatives), and APOEϵ4 carrier status. Age is
treated as a continuous variable. Sex, family history, and APOE
are binary. Education was recorded in the LCS as years of formal
education. However, as the values have different interpretations for
different countries, years of education was converted to a three-
category highest educational attainment level variable labelled 1, 2,
and 3 on a country-specific basis (European Commission/EACEA/
Eurydice, 2018). Level 1 is defined as up to secondary education,
level 2 as beyond secondary education up to undergraduate
ordinary degree, and level 3 as postgraduate studies.

Baseline Biomarkers
Baseline biomarkers included:

• the ratio of phosphorylated tau (pTau) to amyloid-beta 42
(Aβ), derived from CSF samples using the fully automated
Roche Elecsys System in a single laboratory;

• volumetric imaging variables of the total of the left and right
hippocampi and of the total of the four ventricles adjusting
for head size by dividing by the pseudo total intracranial
factor (HV and VV), processed by IXICO using the learning
embeddings for atlas propagation (LEAP) method (Wolz
et al., 2010);

• neurological radiological reads variables obtained
through central assessment of magnetic resonance
(MR) images by IXICO raters following a standardised,
compliant and efficient workflow (Ritchie et al., 2020;
ten Kate et al., 2018):
– average of left and rightmedial temporal lobe atrophy (MTA);
– Fazekas scale deep (FSD) and Fazekas scale periventricular
(FSPV); and

– five regional age-related white matter change (ARWMC)
variables.

For EPAD participants, values of pTau/Aβ > 0.024 are here
defined as CSF “AD positive” based on the biomarker cut-offs
derived by Roche for EPAD using the methodology in (Hansson
et al., 2018; Schindler et al., 2018), and reflect either decreased
concentrations of Aβ (a marker of amyloidosis) or increased
levels of pTau (a marker of neurofibrillary tangles). All
radiological reads biomarkers were converted to binary
variables <1 and ≥1, except for Fazekas scale deep which was
dichotomised instead at 2. A score of 0 for all radiological reads

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6761683

Howlett et al. Longitudinal Modelling and Subgroup Identification

http://ep-ad.org/open-access-data/access/
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


variables indicates no pathology and scores ≥1 (and ≥2 for Fazekas
scale deep) indicate some pathology. A score of 0.5 in the average of
left and right MTA is assumed to provide inconclusive evidence of
pathology. A combined ARWMC variable was created that
counted the number of age-related regions with evidence of
white matter lesion cerebrovascular pathology, and a count ≥3
indicated that the majority of regions had signs of pathology.

Longitudinal Biomarkers
Longitudinal biomarkers considered were derived from the MR
volumetric imaging variables of total hippocampal volume and
total ventricular volume adjusting for head size. The processing of
the longitudinal volumetric variables was also performed by IXICO
using LEAP. The rates of change in the adjusted total hippocampal
and ventricles volumes were calculated by dividing the difference
between the last observed and baseline volumes by the time in
study (in years) between the taking of the last and baseline volumes.
These rate of change (i.e., annualised change) variables were used
in our analyses to describe the longitudinal changes in biomarkers.

2.2 Statistical Methods
Our analysis is based on a two-stage approach (see Figure 1)
where in the first stage a multivariate latent class linear mixed
effects modelling approach is adopted to model the longitudinal

cognitive and clinical outcomes adjusting for constitutional and
genetic risk factors purported to be important in AD disease
progression or related to selection into the EPAD LCS. From the
multivariate latent class linear mixed effects model, latent clinical
phenotypes corresponding to the latent classes are extracted to
characterise the various mean trajectory profiles which
individuals may follow over time. These latent phenotypes
result from a hard assignment of individuals to specific latent
classes based on their posterior probabilities of class membership.
In the second stage, a probabilistic outcome-guided clustering
approach based on Dirichlet process mixture modelling called
Bayesian profile regression is applied to the latent phenotypes
alongside the CSF and neuroimaging biomarkers. This aims to
identify homogeneous clusters of participants with particular
neuropathological endotypes characterised by biomarker
profiles linked to clinical disease progression. Note that the
latent phenotypes and endotypes are not meant to represent a
grouping orthogonal to disease severity or stage, but reflect and
characterise potential underlying processes and features that give
rise to or are associated with disease severity or stage.

The specific statistical formulation of this two-stage modelling
approach for disease progression, trajectory stratification and
subgroup identification are outlined in the next two subsections.
Missing response data are assumed to be missing at random

FIGURE 1 | Graphical representation of the proposed two-stage approach.
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(MAR) for both stages, which allows valid inference using
likelihood approaches.

2.2.1 Multivariate Latent Class Linear Mixed Effects
Model
We used a multivariate latent class linear mixed effects model
(MLCMM) to identify G mean profiles of trajectories
corresponding to G latent classes or sub-populations of individuals
(Lai et al., 2016; Proust-Lima et al., 2017). This model assumes that a
latent process Λi(t) generates the K longitudinal outcomes at time t,
and this latent process is characterised by the mean trajectory profile
corresponding to the latent class membership of individual i. Yijk is a
measure of outcome k (k � 1, . . ., K) for subject i (i � 1, . . ., N) at
measurement occasion j (j � 1, . . ., nik), with associated time of
outcomemeasurement from start of study tijk.Yijk is related toΛi (tijk)
via an outcome-specific link function. Here for the purposes of this
paper, we assume a linear transformation link function (others are
possible) for the outcomes with outcome-specific parameters. That is,
Yĩjk � Yijk−η1k

η2k
, k � 1, . . ., K. These transformations allow the

transformed outcomes to be interpreted as noisy measurements of
the underlying latent process with outcome-specific measurement
errors.

The general formulation of the linear mixed effects part of our
model given membership to latent class g is

Ỹ
ijk|ci�g � Λi(tijk)|ci�g + ϵijk (2)

with

Λi(tijk)|ci�g � X(1)T
ijk β + X(2)T

ijk cg + ZT
ijkυig , (3)

where ci is the latent class variable, X(1)
ijk are the covariates

associated with the class-independent fixed effects β and X(2)
ijk

are the covariates associated with the class-specific fixed effects cg.
Zijk are the covariates associated with the class-specific random
effects υig, which are from a zero-mean multivariate normal with
variance-covariance matrix ωgB, where B is left unspecified and
ωg is a positive proportionality factor (with ωG � 1 to ensure
identifiability). The measurement errors {ϵijk} are assumed to be
independent Gaussian random variables with mean 0 and
outcome-specific variances σ2k (k � 1, . . . ,K).

The latent variable ci equals g when subject i belongs to latent
class g. To complete the specification of our multivariate latent
class mixed model, the probability of individual i belonging to
class g is described by the multinomial logistic submodel without
covariates given by Eq. 4:

πig � P ci � g( ) � eξ0g

∑G
l�1eξ0l

, (4)

where ξ0g is the intercept parameter for class g. Extension of this
latent class membership submodel to include covariates is
straightforward. The full MLCMM is fitted using maximum
likelihood estimation within R (R Core Team, 2017) using the
multlcmm function in the lcmm package (Proust-Lima et al., 2017).

In our application, we included the logistic transformed
CDRSB, tCDRSB, and normalised MMSE, nMMSE, as
outcomes (K � 2) in our MLCMM formulation. For both
these outcomes and the latent process, a higher value indicates

less cognitive/functional impairment (i.e., better cognitive
functioning). We used time in study as the time scale and
allowed class-specific fixed intercepts and slopes (time in study
effects). As maximum follow-up in the EPAD study population
was 3 years and 4 months and the majority of subjects had two or
three visits, we considered only linear trends in an individual’s
underlying disease process. The baseline risk factors described in
Section 2.1 were introduced into Eq. 3 with associated class-
independent fixed effects. We included only class-specific
random intercepts into the latent process model, which are
introduced to induce correlation across the longitudinal
observations of an outcome for an individual and to better
align participants in terms of where they fall on the disease
time scale. The variance of the random intercept for the reference
class is not estimated by the model and is set to be 1. The best
choice of the number of latent classes was made using the
Bayesian Information Criterion (BIC) and the relative entropy.

All observations with either a recorded CDRSB orMMSE were
considered for inclusion in the model provided that individuals
had 2 or more visits. These corresponded to 4,795 visits on 1,574
participants. Of which, there were 3,228 visits with both CDRSB
and MMSE present, 1,558 visits with only CDRSB present, and
nine visits with only MMSE present. Of the 1,574 individuals, 86
had five observation-visits, 305, 789, 384 and 10 had 4, 3, 2 and 1
observation-visits with either CDRSB or MMSE or both present
respectively. However, 31 individuals had missing APOEϵ4
carrier status information and were excluded. This thus
resulted in 1,543 individuals be included in theMLCMM analysis.

2.2.2 Bayesian Profile Regression
Bayesian profile regression (Molitor et al., 2010) is a non-
parametric outcome-guided clustering approach that links an
outcome variable to covariates via cluster membership. Here, it
was applied to identifyG* clusters of participants, with each cluster
characterised by particular clinical disease progression phenotypes
(latent classes from the MLCMM analysis) and a particular CSF/
neuroimaging biomarker profile. These clusters can be interepreted
as corresponding to different neuropathological endotypes.

Bayesian profile regression uses a Dirichlet process mixture model
(DPMM), which can be regarded as the limit of a finitemixturemodel
as the number of components goes to infinity. That is, for observed
data Di for subject i, we have the following DPMM likelihood:

p(Di|π*,Θ) � ∑∞
h�1

p(c*i � h|π*)p(Di|c*i � h,Θ) (5)

� ∑∞
h�1

π*h f (Di|Θh), (6)

where c*i ∈ Z+ denotes latent cluster membership, π* �
(π*1, π*2, . . .)T are mixture component (cluster) weights and ΘT �
(ΘT

1 ,ΘT
2 , . . .) are component-specific parameters for the mixture

component densities, indexed by h ∈ Z+.
In addition to covariates Wi for subject i, Bayesian profile

regression models an outcome Y *
i that also informs the clustering

and is assumed to be conditionally independent of the covariates
given cluster assignment c*i . Furthermore, covariates can be a mix
of discrete and continuous, WT

i � (W(d)T
i ,W(c)T

i ), with discrete
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covariatesW(d)
i and continuous covariatesW(c)

i also assumed to
be conditionally independent given c*i . We therefore have
observed data DT

i � (Y *
i ,W

(d)T
i ,W(c)T

i ) for subject i and Eq. 6
becomes

p Y *
i ,W

(d)
i ,W(c)

i |π*,Θ( ) � ∑∞
h�1

π*hf Y *
i |Θ(o)

h( ) f W(d)
i |Θ(d)

h( ) f W(c)
i |Θ(c)

h( ),
(7)

where ΘT
h � (Θ(o)Th ,Θ(d)Th ,Θ(c)Th ) are the component-specific

parameters for the outcome, discrete covariate and continuous
covariate densities respectively.

The stick-breaking construction of the DPMM (Sethuraman,
1994) is used within Bayesian profile regression which gives the
following formulation for the prior on the mixture weights: π*1 �
V1 and π*h � Vh∏l<h(1 − Vl) for h ≥ 2 with Vh ∼iidBeta(1, α). The
concentration hyperparameter α, which itself has a gamma prior
distribution, affects the mixture weight distribution and implicitly
informs the number of non-empty clusters. One of the key
desirable properties of a DPMM approach to clustering is the
removal of the need to pre-specify the number of clusters. Prior
distributions are also placed on the component-specific
parameters Θh and Markov chain Monte Carlo (MCMC) is
used to fit the resulting profile regression model (see (Liverani
et al., 2015) for details of the prior distributions and for
computational aspects of the MCMC).

In our application, the outcome variable for each subject is the
latent class predicted from the MLCMM analysis, i.e. Y*

i � c ̂i. This
is treated as a categorical variable with cluster-dependent
parameters: Y*

i |Θ(o)
h ∼ Cat(θ(o)

h,1, θ
(o)
h,2, . . . , θ

(o)
h,G ̂), where Ĝ is the

estimated number of latent classes in the MLCMM. The
covariates used in the model are the baseline and longitudinal
biomarkers described in Section 2.1. In particular, we included five
binary baseline covariates (pTau/Aβ, MTA, FSD, FSPV, ARWMC
combined) for each subject, each independently taking a Bernoulli
distribution given cluster assigmment:W(d)

i,q |Θ(d)
h,q ∼ Bern(θ(d)h,q ) for

q � 1, . . ., 5. Additionally, four continuous covariates (standardised)
were included—adjusted total hippocampal and ventricles volumes at
baseline, HV and VV, and their corresponding longitudinal rate of
changes, HV rate and VV rate—jointly taking a multivariate
Gaussian distribution given cluster assignment:
W(c)

i |Θ(c)
h ∼ N 4(μh,Σh). This allows for the correlation between

the continuous covariates to be taken into account.
Since the clustering assignments and number of clusters vary

across theMCMC iterations, it is useful to obtain a “representative”
clustering that summarises the MCMC output. Following (Molitor
et al., 2010; Liverani et al., 2015), we find a “representative”
clustering based on the N × N posterior similarity matrix S,
where element (i, j) of S is the proportion of MCMC iterations
where subjects i and j are assigned to the same cluster. The
partitioning around medoids (PAM) clustering algorithm
(Kaufman and Rousseeuw, 1990) is applied to the posterior
dissimilarity matrix 1 − S to find a clustering of the subjects
that is consistent with S, with the optimal number of clusters
selected using the silhouette width method (Rousseeuw, 1987).

An advantage of the DPMM clustering framework is that it
takes uncertainty in the clustering (including the number of

clusters) into account. This allows the uncertainty associated
with the “representative” clustering to be investigated. If we let
C(rep)
h denote the subset of subjects allocated to cluster h in the

“representative” clustering, then at MCMC iteration r we can
calculate the average value of mixture component parameters for
subjects in C(rep)

h . For example, for the Bernoulli distribution
parameter for binary covariate q we calculate

θ ̄
(d)
h,q(r) �

1
nh

∑
i∈C(rep)

h

θ(d)
c*i (r),q

(r) (8)

where nh is the number of subjects in C(rep)
h and θ(d)c*i(r),q(r) is the

sampled Bernoulii parameter for the cluster c*i (r) that subject i is
allocated to at MCMC iteration r. The distribution of θ ̄

(d)
h,q (r)

across the MCMC iterations (i.e., the posterior distribution) gives
an insight into the uncertainty of cluster h in the “representative”
clustering; narrower credible intervals indicates a more consistent
clustering. These distributions can be computed for all of the
“representative” clusters and for all of the mixture component
parameters associated with the outcome variable and covariates.

Bayesian profile regression is implemented in the R package
PReMiuM (Liverani et al., 2015) and this was used to fit the model
and perform the post-processing analysis (PReMiuM package
version 3.2.3; R version 3.6.3; default settings for
hyperparameters used; run for 350,000 MCMC iterations with
first 100,000 discarded as burn-in). Convergence of the MCMC
procedure was investigated by checking agreement between the
“representative” clusterings from six independent chains
(quantified using the adjusted Rand index) and by inspection of
posterior parameters (see (Liverani et al., 2015) for more details of
convergence diagnostics). Consensus clustering of the consensus
dissimilarity matrix, obtained through averaging of the
dissimilarity matrices from the six independent chains and
applying PAM to this matrix, resulted in the final representative
clustering structure. The adjusted Rand indices assessing
agreement between the final representative consensus clustering
with the representative clusterings from the six independent chains
are calculated and reported. Moreover, the lower triangular part of
the individual posterior dissimilarity matrices from the six
independent chains are compared to the lower triangular part
of the consensus posterior dissimilarity matrix using Pearson’s
correlation. Risk and covariate profiles are derived through pooling
of MCMC iterations across the six chains and using the final
representative consensus clustering. Additionally, Bayesian profile
regression without the latent classes as outcome was performed to
obtain a baseline/reference clustering structure based purely on the
biomarkers. All 1,543 subjects included in the MLCMM analysis
were included in the Bayesian profile regression analysis.

2.2.3 Validation
The final results of our multivariate latent class mixed model and
Bayesian profile regression analysis on the full data-set were assessed
for class and cluster validity through stability assessment under
repeated sub-setting. We repeatedly (i.e., ten times) split the full
data-set into two subsets, by first stratifying the full data-set by
number of visits and then randomly allocating (with equal
probability) within each strata a participant to belong to either
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the first or second subset. Our proposed two-stage approach is then
applied in turn to each subset to estimate a latent class structure
followed by clustering structure as described in the previous two
subsections. For assessing class validity for each split, we begin by
using the multivariate latent class model trained on one subset to
predict the class membership of participants in the other subset and
vice versa. We next cross-tabulate the out-of-sample predictions of
class memberships (based on the model trained on the subset that
does not include the participant for whom a prediction is being
made) with the in-sample class membership assignments (obtained
from the model trained on the subset which includes the participant
for whom a prediction is being made) to assess out-of-sample
performances in the models trained on the two subsets and
stability of class structure across the two subsets. Cohen’s kappa
statistic and the adjusted Rand index are used tomeasure the out-of-
sample performances and across subset stability. Finally, the validity/
stability of the class structure obtained from the full data-set is
evaluated by a comparison of the in-sample class assignments based
on the finalmultivariate latent class mixedmodel on the full data-set
to the in-sample class assignments obtained from the multivariate
latent class models for the subsets, using again Cohen’s kappa and
the adjusted Rand index.

For assessing clustering validity, we first apply Bayesian profile
regression to the biomarker and latent class assignment data for
each subset in turn and obtain the consensus results over six
chains as described earlier. Next, the consensus dissimilarity
matrices for the subsets are compared to their corresponding
block diagonals of the consensus dissimilarity matrix from our
Bayesian profile regression on the full data-set using Pearson’s
correlation. To assess cluster stability, the corresponding PAM
consensus representative clustering structures from each subset
are compared to the final representative clustering from the full
data-set using the adjusted Rand index. Moreover, we make
predictions for the held-out subsets that allow us to compare
1) their predicted dissimilarity matrices with the corresponding
off-diagonal blocks of the final consensus dissimilarity matrix
from the full data-set using Pearson’s correlation, and 2) their
predicted clustering structures with the PAM consensus
representative clustering obtained using a model trained on
the held-out subset (clustering predictions are obtained by
using the predicted dissimilarity matrices to assign participants
in the held-out subset to the PAM consensus representative
cluster from the training subset that they are closest to).

External validation was not possible as we do not have access to
data from studies on similar populations with the corresponding
extensive baseline and longitudinal biomarker and phenotypic
information to EPAD.

3 RESULTS

3.1 Baseline Characteristics of the
European Prevention of Alzheimer’s
Dementia Longitudinal Cohort Study
Population
Table 1 describes the group of 1,574 participants with two or
more visits in the EPAD longitudinal cohort. The mean age of

these participants was 65.4 years with a standard deviation of
7.4 years. Around 56% were female and 63% had their highest
educational attainment beyond secondary education—an
indication of a highly educated cohort of participants
recruited; reflecting the eligibility criterion on minimum years
of formal education. The cohort was enriched for participants
with a family history of AD (first degree relatives) and APOEϵ4
carriers, without diminished decision-making capacity. For the
group, this enrichment corresponded to 65.5 and 37.5% with a
known family history of AD and a known carrier for APOEϵ4
respectively. 78% of this group (n � 1,226) had a global CDR of 0,
while the remaining 22% had a score of 0.5 (n � 346); two
participants had unknown baseline CDR global. Around 82% of
those with a family history of AD had a CDR global score of 0.
Whereas 70% of those without a family history of AD had a CDR
score of 0. Thus there was a clear association between CDR global
score and family history of AD favouring the recruitment of
participants with a family history who do not have any baseline
cognitive impairment and for those without a family history
enriching for early symptomatics (p < 0.0001; χ2-test). No
evidence for an association between CDR global score and
APOEϵ4 carrier status was found (p � 0.10), with 80% of non-
carriers and 76% of carriers having CDR global equal 0.

Table 1 also summarises the distributions of the EPAD
cognitive and clinical outcomes and CSF and neuroimaging
biomarkers at baseline. Ten percent of participants had an
MMSE score below 27 and 12.5% had a CDRSB score of 1 or
above; suggesting that the majority of participants had high levels
of cognitive functioning at baseline. However, varying degrees of
disease pathology at baseline were indicated on considering a
range of biomarkers. AD positivity was estimated around 20%
using the ratio of phosphorylated tau to amyloid-beta 42 in CSF.
Convincing evidence for the widening of the choroid fissure to
different degrees (average of left and right MTA ≥1) was found in
about a quarter of the participants, whilst varying percentages of
white matter lesion cerebrovascular pathology were seen ranging
from 6 to 68% based on age-related regional white matter changes
or based on an overall impression of the brain using the Fazekas
scales (approximately 16 and 39%). Nearly a quarter of the
participants (23.5%) had indications of cerebrovascular
pathology in three or more of the five age-related white matter
regions. The mean adjusted total hippocampal and ventricles
volumes at baseline (with standard deviation) were 5,793mm3

(703mm3) and 32,991mm3 (17,669mm3).

3.2 Disease Progression and Latent
Phenotypes—Results From MLCMM
Our MLCMM was able to identify four distinct mean trajectories.
Figure 2 shows these four mean trajectory profiles on the latent
process scale and on the original scales for CDRSB and MMSE.
Latent clinical phenotype classes 0 to 3 had, respectively, 1,050
(68.0%), 97 (6.3%), 106 (6.9%), and 290 (18.8%) individuals hard
assigned to them based on a posterior classification of participants’
class membership through the selection of the participant’s class
with the highest posterior class-membership probability. Latent
phenotype class 0, which had the majority of participants, is

Frontiers in Big Data | www.frontiersin.org August 2021 | Volume 4 | Article 6761687

Howlett et al. Longitudinal Modelling and Subgroup Identification

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


characterised by individuals having the highest levels of cognitive
functioning with no signs of impairment at baseline and no decline
throughout the course of the study. Class 1 contained individuals
who showed some signs of cognitive/functional impairment at
baseline but appeared to improve over time. Class 2 was
characterised by individuals who appeared cognitively and
functionally unimpaired at baseline (although cognitive functioning
levels were not as high as those in class 0) but then declined on follow-
up. Whereas class 3 contained individuals who showed the most
evident signs of early cognitive/functional impairment at baseline and
continued to show impairment on follow-up.

Table 2 reports the results from our four-class MLCMM. A
higher baseline age and a lower level of education are associated
with higher levels of cognitive/functional impairment; consistent

with findings from the neurodegenerative and AD literature. Due
to how individuals were recruited into the study (through use of a
flexible and dynamic approach to selection), biased effects of
family history of AD and APOEϵ4 carrier status were expected
and therefore the corresponding estimates of these effects were
not interpreted as they were notably affected by the selection
mechanism. For example, both were found not to be statistically
significantly associated with cognitive/functional impairment and
the effect of family history of AD was in the opposite direction to
that reported in the literature.

The measurement error variances for tCDRSB and nMMSE
are 0.531 and 3.527 respectively indicating that tCDRSB has a
stronger relationship to the underlying latent disease process. The
estimated class-specific proportionality factors, ω ̂

g (g � 0, 1, 2),

TABLE 1 | Baseline characteristics of the 1,574 participants with more than one visit.

Variable Mean (SD) Frequency (%) No. Unknown

Risk Factors Age, years 65.4 (7.4) 0
Sex Female 888 (56.4) 0

Male 686 (43.6)
Education Level 1 587 (37.3) 0

Level 2 393 (25.0)
Level 3 594 (37.7)

Family history of AD No 543 (34.5) 0
Yes 1,031 (65.5)

APOEϵ4 carrier No 965 (62.5) 31
Yes 578 (37.5)

Outcomes CDRSB 0 1,162 (73.9) 2
0.5 214 (13.6)
≥1 196 (12.5)

MMSE 29–30 999 (63.5) 1
27–28 417 (26.5)
≤26 157 (10.0)

Transformed CDRSB, tCDRSB 4.60 (1.04) 2
Normalised MMSE, nMMSE 83.6 (14.6) 1

Biomarkers pTau/Aβ ≤0.024 1,240 (80.5) 33
>0.024 301 (19.5)

MTA average 0 800 (51.2) 13
0.5 375 (24.0)
≥1 386 (24.7)

Fazekas scale deep <2 1,317 (84.4) 13
≥2 244 (15.6)

Fazekas scale periventricular <1 947 (60.7) 13
≥1 614 (39.3)

ARWMC basal ganglia <1 1,379 (88.3) 13
≥1 182 (11.7)

ARWMC frontal <1 506 (32.4) 13
≥1 1,055 (67.6)

ARWMC infratentorial <1 1,465 (93.9) 13
≥1 96 (6.1)

ARWMC parieto-occipital <1 786 (50.4) 13
≥1 775 (49.6)

ARWMC temporal <1 1,268 (81.2) 13
≥1 293 (18.8)

ARWMC combined <3 1,194 (76.5) 13
≥3 367 (23.5)

Total hippocampal volume (adj), mm3 5,793 (703) 62
Total ventricular volume (adj), mm3 32,991 (17,669) 168
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which here correspond to the variances of the class-specific
random intercepts are 0.0004 for class 0, 0.397 for class 1, and
0.957 for class 2. (The variance for the random intercept
corresponding to class 3 was set to 1 for identifiability.) The
log-likelihood of this model was −16,842.95, the BIC 33,869.44,
and the (relative) entropy 0.947. By comparison, the equivalent
three-class model had a log-likelihood of −17,097.26, a higher
BIC of 34,348.70, and a lower entropy of 0.932. Thus our four-
class model was preferred. It showed excellent ability to
discriminate between latent trajectory classes.

Moreover assessment of validity of our four-class model
through class stability under repeated sub-setting gave mean
Cohen’s kappa and adjusted Rand index values (with standard
deviations) of 0.987 (0.008) and 0.989 (0.006), respectively,
across the twenty subset comparisons and 0.993 (0.004) and
0.995 (0.003) for the ten comparisons against the full data-set.
These results indicate near perfect agreement with evidence for
stability across subsets and validity of the class structure derived
based on the full data-set. Across the ten splits, the number of
discordant classifications seen when the in-sample latent class
membership predictions for subsets are compared to the class
memberships predicted by our four-class model on the full data-
set ranged from 3 to 13 out of the 1,543 participants
(0.19–0.84%). For the twenty subsets across the ten splits,
four-class multivariate latent class mixed models were always
found to provide a better fit (based on BIC) than the alternative
three-class multivariate latent class mixed models, and these
four-class models had similar class structure as our four-class
model on the full data-set.

We further characterised these four latent phenotype classes
by baseline and change variables and (marginally) compared
these variables across classes using analysis of variance
(ANOVA) tests for the continuous variables and χ2 tests for
binary and categorical variables. The results are shown in
Table 3. We observe increasing trends in mean age and
mean baseline ventricles volume across the latent classes
from 0 to 3 and a decreasing trend in mean baseline
hippocampal volume. Class 3 differed from the other three
classes in having the highest proportions of males, lowest
educational level attainers, those with AD positivity at
baseline and with evidence on baseline MTA of widening of
choroid fissure in varying degrees from widen to end stage
atrophy. There was evidence found for differences amongst the

FIGURE 2 | (A) Predicted trajectories with 95% confidence bands for each class on the latent process scale given mean values for each of the covariates. (B) and
(C) Predicted trajectories with 95% confidence bands for each class on the CDRSB and MMSE scale given mean values for the each of the covariates with observed
outcomes for each participant.

TABLE 2 | Results of the 4-class MLCMM on the 1,543 participants.

Coefficient (SE) p-value

Class membership model Intercept class 0 1.30 (0.07) <0.0001
Intercept class 1 −1.04 (0.12) <0.0001
Intercept class 2 −0.87 (0.13) <0.0001

Fixed effects model Intercept class 0 0 (not estimated) —

Intercept class 1 −2.33 (0.15) <0.0001
Intercept class 2 −0.65 (0.14) <0.0001
Intercept class 3 −3.14 (0.22) <0.0001
Time in study class 0 −0.0040 (0.014) 0.773
Time in study class 1 2.43 (0.16) <0.0001
Time in study class 2 −1.58 (0.11) <0.0001
Time in study class 3 0.16 (0.04) 0.0001
Age −0.0033 (0.0014) 0.022
Sex male −0.015 (0.019) 0.443
Education level 2 0.022 (0.024) 0.367
Education level 3 0.043 (0.022) 0.049
Family history of AD 0.016 (0.021) 0.453
APOEϵ4 −0.021 (0.019) 0.290

Link function parameters tCDRSB η1 5.31 (0.07) <0.0001
tCDRSB η2 0.73 (0.04) <0.0001
nMMSE η1 87.96 (0.48) <0.0001
nMMSE η2 3.80 (0.30) <0.0001
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classes in the presence of white matter hyperintensities in the
entire brain as measured by the Fazekas scales, with latent class 2
having the highest proportion of participants with abnormal
pathology. No evidence of any further differences between
classes 3 and 2 (or between classes 0 and 1) was found with
regard to age-related regional white matter changes. However
evidence of differences between the lower two classes (0 and 1)
compared to the upper two classes (2 and 3) was found for a
number of these neuroimaging variables associated with white
matter lesions (Table 3).

On examining possible associations of longitudinal changes in
volumetric imaging measures and the latent phenotype classes,
we observe an increasing annualised hippocampal shrinkage with
increasing class, without a similar trend being seen between
annualised ventricular enlargement and latent phenotype class.
Notably, latent phenotype class 2 had the largest annualised
increase in ventricles volume (Table 3).

3.3 Neuropathological Endotypes—Results
From Profile Regression
For the profile regression analysis, which linksCSF and neuroimaging
biomarkers to the latent clinical trajectory phenotype, we ran six
independent MCMC chains, and obtained a posterior similarity
matrix and associated PAM “representative” clustering from the
output of each chain (see Section 2.2.2 for details). Agreement
between these six chains was high with mean pairwise Pearson’s
correlation of 0.95 (standard deviation 0.03) between the dissimilarity
matrices and mean pairwise adjusted Rand index of 0.90 (standard
deviation 0.05) between the representative clusterings. This, together
with inspection of posterior parameters for each chain, suggests that
there is no strong evidence against convergence of the MCMC and
there is a good level of robustness of the clustering structure. Three of
the “representative” clusterings have six clusters, while the other three
had seven.

TABLE 3 | Characterisation of the baseline and change variables by latent phenotype classes.

Mean (SD)

Variable Class 0 Class 1 Class 2 Class 3 ANOVA p-value

Age, years 63.9 (7.0) 65.6 (6.6) 68.1 (7.0) 69.5 (7.0) <0.0001
Total hippocampal
volume (adj), mm3 5,911 (644) 5,814 (725) 5,609 (715) 5,429 (768) <0.0001
Total ventricular
volume (adj), mm3 30,715 (16,348) 35,404 (19,823) 37,962 (18,838) 38,396 (19,405) <0.0001
Annual (adj) hippocampal
volume change, mm3/yr −9.4 (83.5) −30.4 (61.9) −40.2 (85.3) −55.3 (99.1) <0.0001
Annual (adj) ventricular
volume change, mm3/yr 988 (910) 1,430 (1,354) 1,958 (1,651) 1,688 (1,586) <0.0001

Frequency (%)

Variable Class 0 Class 1 Class 2 Class 3 χ2 p-value

Sex Female 614 (58.5) 54 (55.7) 65 (61.3) 137 (47.2) 0.005
Male 436 (41.5) 43 (44.3) 41 (38.7) 153 (52.8) —

Education Level 1 368 (35.0) 35 (36.1) 34 (32.1) 138 (47.6) 0.009
Level 2 267 (25.4) 24 (24.7) 30 (28.3) 63 (21.7) —

Level 3 415 (39.5) 38 (39.2) 42 (39.6) 89 (30.7) —

Family history of AD No 319 (30.4) 36 (37.1) 40 (37.7) 136 (46.9) <0.0001
Yes 731 (69.6) 61 (62.9) 66 (62.3) 154 (53.1) —

APOEϵ4 carrier No 656 (62.5) 68 (70.1) 73 (68.9) 168 (57.9) 0.078
Yes 394 (37.5) 29 (29.9) 33 (31.1) 122 (42.1) —

pTau/Aβ ≤0.024 906 (87.5) 74 (77.9) 71 (71.0) 167 (59.4) <0.0001
>0.024 130 (12.5) 21 (22.1) 29 (29.0) 114 (40.6) —

MTA average <1 856 (82.1) 63 (67.0) 75 (71.4) 158 (54.7) <0.0001
≥1 186 (17.9) 31 (33.0) 30 (28.6) 131 (45.3) —

Fazekas scale deep (FSD) <2 893 (85.7) 83 (88.3) 76 (72.4) 236 (81.7) 0.002
≥2 149 (14.3) 11 (11.7) 29 (27.6) 53 (18.3) —

Fazekas scale periventricular (FSPV) <1 660 (63.3) 61 (64.9) 53 (50.5) 155 (53.6) 0.002
≥1 382 (36.7) 33 (35.1) 52 (49.5) 134 (46.4) —

ARWMC basal ganglia <1 929 (89.2) 83 (88.3) 90 (85.7) 246 (85.1) 0.248
≥1 113 (10.8) 11 (11.7) 15 (14.3) 43 (14.9) —

ARWMC frontal <1 346 (33.2) 36 (38.3) 27 (25.7) 86 (29.8) 0.182
≥1 696 (66.8) 58 (61.7) 78 (74.3) 203 (70.2) —

ARWMC infratentorial <1 988 (94.8) 87 (92.6) 96 (91.4) 266 (92.0) 0.195
≥1 54 (5.2) 7 (7.4) 9 (8.6) 23 (8.0) —

ARWMC parieto-occipital <1 549 (52.7) 48 (51.1) 45 (42.9) 127 (43.9) 0.025
≥1 493 (47.3) 46 (48.9) 60 (57.1) 162 (56.1) —

ARWMC temporal <1 863 (82.8) 77 (81.9) 78 (74.3) 223 (77.2) 0.043
≥1 179 (17.2) 17 (18.1) 27 (25.7) 66 (22.8) —

ARWMC combined <3 815 (78.2) 71 (75.5) 72 (68.6) 211 (73.0) 0.061
≥3 227 (21.8) 23 (24.5) 33 (31.4) 78 (27.0) —
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We present below the results of applying consensus clustering
to aggregate the output from the six MCMC chains. The mean
Pearson’s correlation between the consensus dissimilarity matrix
and the six independent chains’ dissimilarity matrices was 0.98
(standard deviation 0.01). Similarly, the mean adjusted Rand
index between the consensus representative clustering and the six
representative clusterings from each chain was 0.93 (standard
deviation 0.03). The final consensus representative clustering has
seven clusters.

Figure 3 shows the consensus posterior similarity matrix that
summarises the output from across the six MCMC chains and the
seven representative clusters that were identified from this matrix.
Figure 4 and Table 4 describe these seven clusters and their
distinct biomarker profiles (i.e., neuropathological endotypes).
Cluster 1, which is the largest cluster (comprising of 575 out of
1,543 participants), estimated the posterior mean probability of
belonging to latent phenotype class 0 to be 92% (in agreement
with the empirical estimate of 94%). It was characterised by
participants with lower than expected/average probabilities of

having abnormal pathology on the various biomarkers and above
average healthy indicators of baseline and longitudinal
volumetric measures for hippocampus and ventricles. We label
this cluster as a “healthy brain” neuropathological endotype. It
had on average the youngest participants, with a mean age (SD) of
61.4 (6.2) years.

Cluster 2, which is a mixture of participants from both latent
phenotype classes 0 and 1 (85 and 15% respectively), had
somewhat lower than average AD positivity risk (but within
the margin of uncertainty of the overall mean) and had stable
hippocampal volume over time, but otherwise had higher than
expected risk of abnormal pathology on the other biomarkers,
including medial temporal lobe atrophy (MTA) indicating
hippocampal involvement, and 1.59 standard deviations (SDs)
higher baseline ventricles volume and 0.32 SD faster annual rate
of increase in ventricles volume above their average, which is
being tolerated so far. This cluster appears to be a non-AD driven
cluster with “kindling” cerebrovascular disease. We label it as an
“at-risk-of-vascular dementia” neuropathological endotype. The

FIGURE 3 | Posterior similarity matrix for the consensus across the six MCMC chains from the Bayesian profile regression analysis on the 1,543 EPAD participants.
Each entry (i, j) of this 1,543 × 1,543-matrix represents the proportion of times participants i and j are assigned to the same cluster over the 250,000 × 6MCMC iterations.
Color bars indicate the seven final PAM consensus representative clusters of participants identified. See Figure 4 for more information regarding these clusters.
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FIGURE 4 | Results from Bayesian Profile Regression analysis. (A) Cluster sizes for the final PAM representative consensus clusters. (B–D) Posterior distributions
for mean mixture component parameter values for each of the “representative” clusters (see Section 2.2.2). (B) Outcome variable (parameters are the probability of
belonging to each MLCMM latent class). (C) Binary covariates (parameters are the probability of the covariate having value of one). (D) Continuous covariates
(parameters are the mean covariate value). For (A–D), colors indicate clusters (see also Figure 3). For (B–D), black horizontal lines indicate the mean parameter
values across all subjects and the coloured circles indicate the upper and lower limit of the 90% credible interval.
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mean age (SD) of participants was 69.1 (7.0) years and percentage
APOEe4 positive was 28%, the lowest amongst the clusters.

Cluster 3, which is the second largest in size (409 participants;
all from latent phenotype class 0), is characterised by lower than
expected risk of both AD positivity and MTA abnormal
pathology and no clinically meaningful pathological
indications on volumetric neuroimaging; but with evidence of
white matter lesion pathology. We describe this cluster as a
“healthy ageing” endotype especially as participants are on
average older than those in cluster 1, with a mean age (SD) of
66.1 (6.5) years, and they appear to be able to compensate for
some cerebrovascular disease. Moreover, none of the differences
from overall average for any of the biomarkers were
particularly large.

Cluster 4 has 15% of the participants—with average age (SD)
of 68.1 (6.8) years–all of whom belong to latent phenotype class 3
(questionably cognitively impaired class). It is characterised by
clinically meaningful increased risk of AD positivity and MTA
abnormal pathology, early pathological indications on
hippocampal volume markers and slightly increased
proportion of APOEϵ4 carriers relative to the overall average
(0.4 versus 0.375) and may represent a subgroup of “AD high
risk” participants.

Cluster 5 represents the 5% of the cohort who have the highest
risk, worst baseline levels and fastest rate of worsening on
markers. It comprises of a mixture of participants from latent
phenotype classes 0 (6%), 2 (17%) and 3 (77%). We consider this
to be an “AD-related cluster”. Moreover, it has the highest mean
age of 74.2 years (SD 5.6 years) amongst the seven clusters and,
notably, the highest proportion of APOEϵ4 carriers (0.46) despite
the EPAD selection mechanism.

Finally clusters 6 and 7, which are the most uncertain ones
(i.e., empirical class membership proportions of 100% in class 2
for cluster 6 and class 1 for cluster 7 do not match with the

corresponding mean posterior probabilities for these classes of 73
and 46% respectively), correspond to clusters where there are,
respectively, evidence of increased abnormal pathology on all
markers (except hippocampal atrophy and MTA) and no
particular overall evidence of increased abnormal pathology
beyond expected on any particular biomarker. Cluster 6 may
be another AD-related cluster, but one, possibly, in an earlier
stage of progression (cf cluster 5) as they are on average 5.6 years
younger, with a mean age (SD) of 68.6 (6.3) years. Cluster 7
appears to have individuals with both unclear biomarker profiles
and unclear cognitive trajectories, and therefore we describe it as
an “ambiguous” cluster. The mean age (SD) here is 66.0 (6.5)
years.

We assessed clustering validity through stability under
repeated sub-setting (10 splits, totalling 20 subsets of the
data). Out of the twenty consensus representative clustering
structures obtained from applying Bayesian profile regression to
the twenty subsets, 8 and 10 of these clustering structures
consisted of four and five clusters respectively, while the
other two comprised three and six clusters. Agreement
between the consensus clusterings and the clusterings from
the corresponding six independent MCMC chains across the
twenty subsets were again high with mean adjusted Rand index
of 0.93 (standard deviation of 0.10). The reduced number of
clusters relative to the seven clusters found using the full
data-set is likely due to the 50% reduction in sample size for
the subsets. A comparison of the consensus representative
clustering obtained using the subsets of data with the
consensus representative clustering obtained using the full
data-set (restricted to those individuals in each subset for the
comparisons) resulted in a mean adjusted Rand index of 0.69
(standard deviation of 0.09). Furthermore, comparing the 20
consensus posterior dissimilarity matrices obtained from the
subsets against those obtained using the corresponding

TABLE 4 | Results from the Bayesian profile regression analysis on the 1,543 participants.

Posterior means

Probability of abnormal pathology SD distance from overall mean Class membership probability

Clusters N (%) pTau/
Aβ

MTA FSD FSPV ARWMC
combined

Mean
HV

Mean HV
rate

Mean
VV

Mean VV
rate

Class
0

Class
1

Class
2

Class
3

1 575
(37.3)

0.113 0.096 0.079 0.269 0.143 0.549 0.362 −0.674 −0.463 0.917 0.040 0.038 0.005

2 110
(7.1)

0.166 0.575 0.278 0.567 0.357 −0.706 0.047 1.590 0.321 0.791 0.133 0.038 0.039

3 409
(26.5)

0.145 0.200 0.195 0.436 0.287 −0.111 −0.066 0.101 −0.042 0.976 0.015 0.006 0.003

4 227
(14.7)

0.353 0.337 0.135 0.405 0.202 −0.300 −0.166 −0.063 0.020 0.010 0.040 0.009 0.941

5 82
(5.3)

0.553 0.810 0.380 0.675 0.524 −1.229 −1.093 1.583 1.558 0.101 0.024 0.154 0.721

6 72
(4.7)

0.308 0.309 0.276 0.529 0.319 −0.354 0.000 0.287 0.407 0.064 0.177 0.731 0.028

7 68
(4.4)

0.228 0.247 0.157 0.376 0.240 0.025 0.026 −0.109 −0.004 0.248 0.464 0.173 0.115

Overall
empirical
mean

0.194 0.247 0.158 0.393 0.236 5,793 -23.8 32,997 1,274 0.680 0.063 0.069 0.188

SD 705 88.7 17,687 1,264
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submatrices of the full data-set resulted in a mean Pearson’s
correlation of 0.860 (standard deviation of 0.049). These
comparisons indicate good agreement between the results
obtained on the subsets and those obtained using the full
data-set, giving evidence for stability of our results.

Additionally, the held-out prediction analyses (training on one
subset and predicting for the other in each split) resulted in a mean
Pearson’s correlation of 0.674 (standard deviation of 0.045) between
the predicted posterior dissimilarity matrices and the corresponding
submatrices obtained using the full data-set. Comparing each of the
estimated consensus representative clustering obtained from one
subset of the split with the predicted clustering for this subset
(predictions obtained using a model trained on the other subset
of the data split only) resulted in a mean adjusted Rand index of
0.464 (standard deviation of 0.076) over the 20 comparisons. This
performance on challenging held-out prediction tasks gives further
support for the validity and stability of our clustering results.

The consensus representative clustering structure obtained
using Bayesian profile regression without the MLCMM class
outcome (i.e., only using biomarker covariates) had an
adjusted Rand index of 0.48 with the clustering that did
include the outcome, indicating that the outcome is playing an
influential role in the clustering analysis and is facilitating
interpretation of the clusters in terms of linking them to latent
clinical phenotypes.

4 DISCUSSION

In this paper, we demonstrate the usefulness of our two-stage approach
in, firstly, characterising the evolution of correlated cognitive and
clinical outcomes for LCS participants via an underlying latent
process in which its trajectory depends on one of four latent clinical
phenotypes, and then in providing biological insight through the
identification of subgroups based on distinct biomarker profiles
(i.e., neuropathological endotypes) linked to the latent phenotypes.
Our approach recognises that the longitudinal cognitive and clinical
outcomes are the downstream clinical manifestations/consequences of
earlier endogenous biological changes occurring within the brain
whether they be due to normal brain ageing or pathological due to
a specific underlying disease process. It however does not attempt to
assess the exact ordering of the pathological cascade of events.

Our intention here was not to provide a comprehensive
clinical and biological investigation of the EPAD LCS data but
to demonstrate the utility of our two-stage strategy in uncovering
meaningful clinical and biological structure within this
heterogeneous population. Therefore we chose to use a
reduced set of coarser, but still relevant, ATN (amyloid-beta
deposition (A), pathologic tau (T), and neurodegeneration (N))
and cerebrovascular biomarkers to demonstrate our two-stage
approach. If interest lies in a more thorough investigation, then
our approach can be extended to incorporate a larger set of
biomarkers, providing more granular information (e.g., both left
and right MTAs and hippocampal volumes and all five ARWMC
regions could be considered instead of the average, total or
majority as was done in this paper; with additional markers
such as the Koedam score, which measures parietal atrophy,

included), and additional correlated cognitive or clinical
outcomes (e.g., specific cognitive domains). However, with
more biomarkers being considered, this could result in
increased uncertainty and instability in clustering structure
obtained through use of Bayesian profile regression. Therefore
we would recommend the incorporation of a variable selection
component into the Bayesian profile regression analysis in order
to identify the actual drivers of the clustering structure. Related
issues may arise regarding both the number and relevance of
latent classes arrived at when additional outcomes are added to
the multivariate latent class mixed effects analysis, especially
when weakly informative or conflicting outcomes are included.

The latent process arising from themultivariate latent classmixed
modelling (MLCMM) approach appeared to be more highly
correlated with the observed transformed CDR sum of boxes
score than to the normalised Mini-Mental State Examination
score, possibly reflecting the former being more sensitive to
underlying changes than the latter early on. Nevertheless both
CDRSB and MMSE produced concurring patterns with each
other across the four latent phenotype classes (see Figure 2).
These four trajectories correspond to a normal cognitive
functioning class throughout, a reversion class, a declining class
and a (questionable) cognitively impaired class. They are consistent
with what has been reported previously in the literature, although the
reversion class probably reflects measurement error. Interestingly,
with our Bayesian profile regression analysis, we were able to find
endotypes covering the full spectrum from “healthy brain” to “AD-
related” within the EPAD cohort; reflecting one of the aims of the
EPAD LCS to provide a well-phenotyped population covering the
full continuum of risk of subsequent AD dementia development.

We note that the diminishing numbers at each visit reflect both the
staggered opening of the 31 recruitment centres across Europe and the
LCS concluding at the end of the IMI funding period. Attempts to
further fund the cohort as a whole across Europe were not successful,
in large part due to theCOVID-19pandemic. Attempts are ongoing to
follow-up these participants in a series of studies across Europe to
provide longer term clinical and biological outcomes.

The second objective of the EPAD LCS was to create a trial-
ready cohort for potential recruitment into the EPAD PoC Trial.
Unfortunately, this trial was not realised. However, our approach
can still be used to demonstrate trial-readiness with respect to both
minimising screen failures and identifying participants with
particular biomarker profiles eligible for recruitment. For
example, participants identified/pre-screened as belonging to the
“healthy brain” or “healthy ageing” clusters would not be
considered for inclusion into trials thereby reducing screen-
failure rates currently seen in AD-related trials due to the low
prevalence of AD pathology in individuals without dementia,
especially among cognitively unimpaired. Whereas, for example,
individuals in clusters 4, 5 or 6 may be specifically targeted for
phase II trials in which volumetric neuroimaging biomarkers are
used as “surrogate” endpoints.While secondary prevention trials in
pre-clinical populations with no baseline cognitive impairment
may be more inclined to focus recruitment on participants from
cluster 6 (or class 2) when the primary endpoint is a cognitive one.

The novelty of our approach is not only in characterising the
longitudinal cognitive and clinical outcomes into latent
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phenotype trajectories and in identifying neuropathological
endotypes, but going beyond identifying substructures to also
being able to do future longitudinal clinical prediction in
individuals. Briefly, we would combine the posterior predictive
probabilities of class membership obtained from both the Bayesian
profile regression and the MLCMM, based on the observed
relevant biomarker, cognitive and risk factor data, to update the
individual’s mixture component probabilities in the MLCMM.We
would then use these as weights to average over the linear mixed
effects submodels corresponding to the four classes in order to
predict future transformed CDRSB and normalised MMSE.
Currently, the uncertainty attached to the latent trajectory
classes is not taken account of in the Bayesian profile regression
analysis in our two-stage approach, although this can be rectified
by using Markov melding (Goudie et al., 2019). However, we
expect this to have little impact on our findings.

In conclusion, we have introduced a two-stage approach for
the modelling of longitudinal cognitive and clinical outcomes,
biomarkers (baseline and longitudinal) and risk factors to analyse
the data from the EPAD Longitudinal Cohort Study and shown
its clinical and biological utility in the areas of trajectory
stratification, subgroup identification and prediction. In the
long term we envisage this approach to be applicable more
widely to precision medicine and secondary prevention in
Alzheimer’s dementia research and practice.
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