
Pursuer Assignment and Control
Strategies in Multi-Agent
Pursuit-Evasion Under Uncertainties
Leiming Zhang1, Amanda Prorok2 and Subhrajit Bhattacharya1*

1Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA, United States, 2Department of
Computer Science and Technology, Cambridge University, Cambridge, United Kingdom

We consider a pursuit-evasion problem with a heterogeneous team of multiple pursuers
and multiple evaders. Although both the pursuers and the evaders are aware of each
others’ control and assignment strategies, they do not have exact information about the
other type of agents’ location or action. Using only noisy on-board sensors the pursuers (or
evaders) make probabilistic estimation of positions of the evaders (or pursuers). Each type
of agent use Markov localization to update the probability distribution of the other type. A
search-based control strategy is developed for the pursuers that intrinsically takes the
probability distribution of the evaders into account. Pursuers are assigned using an
assignment algorithm that takes redundancy (i.e., an excess in the number of pursuers
than the number of evaders) into account, such that the total or maximum estimated time
to capture the evaders is minimized. In this respect we assume the pursuers to have clear
advantage over the evaders. However, the objective of this work is to use assignment
strategies that minimize the capture time. This assignment strategy is based on a modified
Hungarian algorithm as well as a novel algorithm for determining assignment of redundant
pursuers. The evaders, in order to effectively avoid the pursuers, predict the assignment
based on their probabilistic knowledge of the pursuers and use a control strategy to
actively move away from those pursues. Our experimental evaluation shows that the
redundant assignment algorithm performs better than an alternative nearest-neighbor
based assignment algorithm1.
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1 INTRODUCTION

1.1 Motivation
Pursuit-evasion is an important problem in robotics with a wide range of applications including
environmental monitoring and surveillance. Very often evaders are adversarial agents whose exact
locations or actions are not known and can at best be modeled stochastically. Even when the pursuers
are more capable and more numerous than the evaders, capture time may be highly unpredictable in
such probabilistic settings. Optimization of time-to-capture in presence of uncertainties is a
challenging task, and an understanding of how best to make use of the excess resources/
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capabilities is key to achieving that. This paper address the
problem of assignment of pursuers to evaders and control of
pursuers under such stochastic settings in order to minimize the
expected time to capture.

1.2 Problem Overview
We consider a multi-agent pursuit-evasion problem where, in a
known environment, we have several surveillance robots (the
pursuers) for monitoring a workspace for potential intruders (the
evaders). Each evader emits a weak and noisy signal (for example,
wifi signal used by the evaders for communication or infrared
heat signature), that the pursuers can detect using noisy sensors
to estimate their position and try to localize them. We assume
that the signals emitted by each evader are distinct and is
different from any type of signal that the pursuers might be
emitting. Thus the pursuers can not only distinguish between the
signals from the evaders and other pursuers, but also distinguish
between the signals emitted by the different evaders. Likewise,
each pursuer emits a distinct weak and noisy signal that the
evaders can detect to localize the pursuers. Each agent is aware of
its own location in the environment and the agents of the same
type (pursuers or evaders) can communicate among themselves.
The environment (obstacle map) is assumed to be known to
either type of agents.

Each evader uses a control strategy that actively avoids the
pursuers. The pursuers need to use an assignment strategy and a
control strategy that allow them to follow the path with least
expected capture time. The evaders and pursuers are aware of
each others’ strategies (this, for example, represents real-world
scenario where every agent uses an open-source control
algorithm), however, the exact locations and actions taken by
one type of agent (evader/purser) at an instant of time is not
known to the other type (pursuer/evader). Using the noisy
signals and probabilistic sensor models, each type of agent
maintains and updates (based on sensor measurements as
well as the known control/motion strategy) a probability
distribution that random variable for evader position type
(pursuer/evader) see Figure 1. In this paper we use a first-
order dynamics (velocity control) model for point agents
(pursuers or evaders) as is typically done in many multi-agent
problems such as coverage control (Cortes et al., 2004;
Bhattacharya et al., 2014) and artificial potential function
based navigation Rimon and Koditschek (1992).

1.3 Contributions
The main contributions of this paper are novel methods for
pursuer-to-evader assignment in presence of uncertainties for
total capture time minimization as well as for maximum capture
time minimization. We also present a novel control algorithm for
pursuers based on Theta* search (Nash et al., 2007) that takes the
evaders’ probability distribution into account, and present a
control strategy for evaders that try to actively avoid the
pursuers trying to capture it. We assume that both groups of
agents (pursuers and evaders) are aware of the control strategies
employed by the other group, and can use that knowledge to
predict and update the probability distributions that are used for
internal representations of the competing group.

1.4 Overview of the Paper
Section 3 provides the technical tools and background for
formally describing the problem. In Section 4, we introduce
the control strategies for the evaders and pursuers. In presence
of uncertainties this control strategy becomes a stochastic one.
We also describe how each type of agent predict and update the
probability distributions representing the other type using this
known control strategy. In Section 5, we present algorithms for
assigning pursuers to the probabilistic evaders so as to minimize
the expected time to capture. In Section 6 simulation and
comparison results are presented.

2 RELATED WORK

The pursuit-evasion problem in a probabilistic setting requires
localization of the evaders as well as development of a controller
for the pursuer to enable it to capture the evader. Markov
localization is an effective approach for tracking probabilistic
agents in unstructured environments since it is capable of
representing probability distributions more general than
normal distributions [unlike Kalman filters (Barshan and
Durrant-Whyte, 1995)]. Compared to Monte Carlo or particle
filters (Fox et al., 1999a; Fox et al., 1999b), Markov localization is
often computationally less intensive, more accurate and has
stronger formal underpinnings.

Markov localization has been widely used for estimating an
agent’s position in known environments (Burgard et al., 1996)
and in dynamic environments (Fox et al., 1999b) using on-board
sensors, as well as for localization of evaders using noisy external
sensors (Fox et al., 1998; Fox et al., 1999b; Zhang, 2007a). More
recently, in conjunction with sensor fusion techniques, Markov
localization has been used for target tracking using multiple
sensors (Zhang, 2007b; Nagaty et al., 2015).

Detection and pursuit of an uncertain or unpredictable evader
has also been studied extensively. (Chung et al., 2011) provides a
taxonomy of search and pursuit problems in mobile robotics.
Different methods are compared in both graphs and polygonal
environments. Under that taxonomy, our work falls under the
domain of probabilistic search problems with multiple
heterogeneous searchers/pursuers and multiple targets on a
finite graph representation of the environment. Importantly,
this survey however notes that the minimization of distance
and time to capture the evaders is less studied. (Khan et al.,
2016) is another comprehensive review focused on cooperative
multi-robot targets observation. (Hollinger et al., 2007) describes
strategies for pursuit-evasion in an indoor environment which is
discretized into different cells, with each cell representing a room.
However, in our approach, the environment is discretized into
finer grids that generalize to a wider variety of environments. In
(Hespanha et al., 1999) a probabilistic framework for a pursuit-
evasion game with one evader and multiple pursuers is described.
A game-theoretic approach is used in (Hespanha et al., 2000) to
describe a pursuit-evasion game in which evaders try to actively
avoid the pursuers. (Makkapati and Tsiotras, 2019) describes an
optimal strategy for evaders in multi-agent pursuit-evasion
without uncertainties. Along similar lines, in (Oyler et al.,
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2016) the authors describe a pursuit-evasion game in presence of
obstacles in the environment. (Shkurti et al., 2018) describes a
problem involving a robot that tries to follow a moving target
using visual data. Patrolling is another approach to pursuit-
evasion problems in which persistent surveillance is desired.
Multi-robot patrolling with uncertainty have been studied
extensively in (Agmon et al., 2009), (Agmon et al., 2012) and
(Talmor and Agmon, 2017). More recently in (Shah and
Schwager, 2019), Voronoi partitioning has been used to guide
pursuers to maximally reduce the area of workspace reachable by
a single evader. Voronoi partitioning along with area
minimization has also been used for pursuer-to-evader
assignments in problems involving multiple deterministic and
localized evaders and pursuers (Pierson et al., 2017).

3 PROBLEM FORMULATION

3.1 Representing the Pursuers, Evaders,
and Environment
Since the evaders are represented by probability distributions by
the pursuers, the time-to-capture an evader by a particular
pursuer is a stochastic variable. We thus consider the
problems of pursuer-to-evader assignment and computation of
control velocities for the pursuers with a view of minimizing the
total expected capture time (the sum of the times taken to capture
each of the evaders) or the maximum expected capture time (the
maximum out of the times taken to capture each of the evaders).
We assume that the number of pursuers is greater that the
number of evaders and that the pursuers constitute a
heterogeneous team, with each having different maximum
speeds and different capture capabilities. The speed of the
pursuers are assumed to be higher than the evaders to enable
capture in any environment (even obstacle-free or unbounded
environment). The objective of this paper is to design strategies

for the pursuers to assign themselves to the evaders, and in
particular, algorithms for assignment of the excess (redundant)
pursuers, so as to minimize the total/maximum expected
capture time.

While the evaders know the pursuers’ assignment strategy, they
don’t know the pursuers’ positions, the probability distributions
that the pursuers use to represent the evaders, or the exact
assignment that the evaders determine. Instead, the evaders rely
on the probability distributions that they use to represent the
pursuers to figure out the assignments that the pursuers are likely
using. We use a Markov localization (Thrun et al., 2005) technique
to update the probability distribution of each agent.

Throughout this paper we use the following notations to
represent the agents and the environment:

Configuration Space Representation: We consider a subset of
the Euclidean plane, C ⊂ R2, as the configuration space for the
pursuers as well as the evaders, which we discretize into a set of
cells or vertices, V, where the agents can reside (Figure 1). A
vertex inVwill be represented with a lower-case letter v ∈V, while
its physical position (Euclidean coordinate vector) in C will be
represented as X(v). For simplicity, we also use a discrete time
representation.

Agents: The ith pursuer’s location is represented by ri ∈ V, and
the jth evader by yj ∈ V (we will use the same notations to refer to
the respective agents themselves). The set of the indices of all the
pursuers is denoted by Cr , and the set of the indices of all the
evaders by Cy .

Heterogeneity: Pursuer ri is assumed to have a maximum
speed of vi, and the objective being time minimization, it always
maintains that highest possible speed. It also has a capture radius
(i.e., the radius of the disk within which it can capture an evader)
of ρi.

3.2 Probabilistic Representations
The pursuers represent the jth evader by a probability distribution
overV denoted by ptj : V →R+. Likewise the evaders represent the
ith pursuer by a probability distribution over V denoted by
qti : V→R+. The pursuers maintain the evader distributions,
{ptj }j∈Cy, which are unknown to the evaders. While the evaders

FIGURE 1 |Discrete representation of the planar configuration space, C.
The dark brown cells are inaccessible (obstacles), and a vertex corresponds to
each accessible cell.

FIGURE 2 | Problem overview.
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maintain the pursuer distributions, {qti }i∈Cr , which are unknown
to the pursuers (see Figure 2). The superscript t emphasizes that
the distributions are time-varying since they are updated by each
type of agent (pursuer/evader) based on known control strategy
of the other type of agent (evader/pursuer) and models for
sensors on-board the agents.

3.2.1 Motion Model
At every time-step the known control strategy (hence, known
transition probabilities) allows one type of agent to predict the
probability distribution of the other type of agent in the next
time-step:

Pursuer’s estimation of evader’s position(prediction step): ̃ptj(y) � ∑
y′∈V

Kj(y, y′) pt−1j (y′)

Evader’s estimation of pursuer’s position(prediction step): ̃qti(r) � ∑
r′∈V

Li(r, r′) qt−1i (r′)

(1)

where using the first equation the pursuers predict the jth evader’s
probability distribution at the next time-step using the transition
probabilities Kj computed using the known control strategy of the
evader. While the second equation is used by the evaders to predict
the ith pursuer’s probability distribution using transition probabilities
Li computed from the known control strategy of the pursuers. These
control strategies and the resulting transition probabilities will be
discussed in more details in Sections 4.1 and 4.2.

3.2.2 Sensor Model
We assume that the probability that a pursuer at r ∈ V measures
signal s (in some discrete signal space S) using its on-board
sensors if the evader is at y ∈ V is given by the probability
distribution fr: S × V →R+, fr(s, y) � P(S � s | Y � y) where,
S is the random variable for signal measurement, and Y is the
random variable for evader position (see Figure 3). Likewise,
hy(s, r) � P(S � s | R � r) is the senor model used by the evaders
giving the probability that an evader at ymeasures signal s when a
pursuer is at r.

Using Bayes’ rule, the updated probability distribution of the
jth evader as computed by a pursuer at, r, based on sensor
measurement, st, and the prior probability estimate, ̃ptj , is

ptj(y) � P(Yj � y | Sj � st) � P(Sj � st | Y j � y)
P(Y j � y)
P(Sj � st) � fr(st , y) ̃ptj(y)∑y′∈V fr(st , y′) ̃ptj(y′)

If multiple signals, st1, s
t
2,/ , are received by pursuers r1, r2,/ at a

time step, they are incorporated in sequence:

Pursuer’s estimation of evader’s postion(updatestep):
ptj(y) � ∏

l

frl(stl , y)∑y′∈V frl(stl , y′) ̃ptj(y′)
̃ptj(y) (2)

Likewise, the evaders y1, y2,/measuring signals st1, s
t
2,/ update

the probability distributions that they use to represent the ith

pursuer according to

Evader’s estimation of pursuer’s postion(updatestep):
qti(r) � ∏

l

hyl(stl , r)∑r′∈Vhyl(stl , r′) ̃qti(r′)
̃qti(r) (3)

The specific functional form for f and h depend not only on the
distance between the pursuers and the evaders in the environment,
but also on the obstacles that results on degradation of the signals
emitted by the agents. The details of the specific sensor models
appear in the “Results” section (Section 6).

3.3 Assignment Fundamentals
The goal for our assignment strategy is to try to find the
assignment that minimizes either the total expected capture
time (the sum of the times taken to capture each of the
evaders in Cy) or the maximum expected capture time (the
maximum out of the times taken to capture each of the
evaders in Cy). We assume that there are more pursuers in
the environment than the number of evaders. The following
subsection provides some fundamental definitions and tools
that are used to describe and solve the optimal assignment
problem in Section 5.

3.3.1 Formal Description of Assignment
In order to formally describe the assignment problem, we use the
following notations:

Assignment: The set of pursuers assigned to the jth evader will be
represented by the set Ij. The individual assignment of ith pursuer to
jth evader will be denoted by the pair (i, j). F � {(i, j)|i ∈ Cr , j ∈ Cy}
denotes the set of all possible such pursuer-to-evader pairings.

A (valid) assignment, A4F , is such that for every
(i, j), (i′, j′) ∈ A, we should have i � i′ 0 j � j′ (i.e., a pursuer
cannot be assigned to two different evaders). This also implies
|{j | (i, j) ∈ A}|≤ 1, ∀i ∈ Cr (note that an assignment allows for
unassigned pursuers).

The set of all possible valid assignments is denoted by A �
{A4F | ∀(i, j), (i′, j′) ∈ A, i� i′0j� j′}.

3.3.2 Probabilistic Assignment Costs
In this section we consider the time that pursuer i takes to
capture evader j. We describe the computation from the
perspective of the pursuers. Since the evader j is represented

FIGURE 3 | For fixed r, y, the plot shows the probability distribution over
the signal space S.
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by the probability distribution, pj, over V, we denote Tij as the
random variable representing the uncertain travel time from
pursuer i to evader j. The probability that Tij falls within a
certain interval is the sum of all the probabilities on the vertices
of V such that the travel time from ri to the vertex is within that
interval. That is,

P Tij ∈ [τ, τ + Δτ)( ) � ∑{y ∈ V | 1vidg(ri ,y)∈[τ,τ+Δτ)}
pj(y)

We first note that Tij and Tij′ are independent variables whenever
j and j′ are different (i.e., the time taken to reach evader j does not
depend on time taken to reach evader j′). However, Tij and Ti′j are
dependent random variables since, for a given travel time (and
hence travel distance) from pursuer i to evader j, and knowing
the distance between pursuers i and i′, the possible values of
distances between pursuer i′ and evader j are constrained by the
triangle inequality. That is, for any given j, the randomvariables in the
set {Tij | i ∈ I}, where I is a set of pursuer indices, are dependent.
This can be seen more clearly by considering a potential evader
position y ∈ Vwhich has an associated probability of pj(y). Given that
position, 1vidg(y, ri) is the time taken by the pursuer i ∈ I to reach the
evader. In particular, the following holds:

P ∧
i∈I

Tij ∈ [τi, τi + Δτi)( )
� ∑

y

P ∧
i∈I

1
vi
dg(ri, y) ∈ [τi, τi + Δτi)( )

� ∑{y∈V | dg (ri ,y)
vi

∈ [τi ,τi+Δτi),∀i∈I} pj(y)
(4)

Thus, in order to compute the joint probability distributions of
{Tij | i ∈ I}, we can sample a y from the probability distribution
pj and compute the travel times τi � 1

vi
dg(ri, y), i ∈ I , and hence

populate the distribution.

3.4 Problem Objectives
In the next sections we will describe the control strategy used by a
pursuer that allows it to effectively capture the evader assigned to
it, as well as the control strategy of an evader that allows it tomove
away from the pursuers assigned to it.

In Section 5, for designing the assignment strategy for the
pursuers we will consider two metrics to minimize: 1) the total
expected capture time, which is the sum of the times taken to
capture each of the evaders, and, 2) the maximum expected
capture time, which is the times taken to capture the last
evader. While the actual assignment is computed by the
pursuers and unavailable to the evaders, the evaders will
estimate the likely assignment in order to determine their
control strategy.

As mentioned earlier, we assume that both types of agents
know all the strategies used by the other type of agents. That is,
the pursuers know the evaders’ control strategy and the evaders
know the pursuers’ control and assignment strategies. However
the pursuers do not know the evaders’ exact position and vice
versa. Instead they reason about that by maintaining probability
distributions representing the positions of the other type of agents
and update those distributions using the known control strategies
of the other type of agents and weak signals measured by onboard
sensors.

4 CONTROL STRATEGIES

Assuming a known pursuer-to-evader assignment, in this section
we describe the control strategies used by the evaders to avoid
being captured and the control strategy used by the pursuers to
capture the evaders.

4.1 Evader Control Strategy
In presence of pursuers, an evader yj actively tries to move away
from the pursuers targeting it. With the evader at y ∈ V and
deterministic pursuers, {ri}i∈Ij, trying to capture it, we define a
mean capture time as the harmonic mean of the capture time for
each of the pursuers:

τ(y, {ri}i∈Ij) � 1∑i∈Ij
1

̃dg(ri ,y)/vi
(5)

where ̃dg(ri, y) � max(0, dg(ri, y) − ρi) is the effective geodesic
distance between ri, y ∈ V (with dg(ri, y) being the geodesic
distance or shortest path length between ri and y), which accounts
for the fact that pursuer ri has a capture radius of ρi. For a given set
of pursuer positions, τ thus a function that has higher value on the
vertices in V that are farther away from the pursuers in Ij. The
reason behind taking harmonic mean is that the harmonic mean
gets lower contribution from distant pursuers and higher
contribution from the nearby pursuers.

In order to determine the best action that the evader at y′ ∈ V
can take, it computes the marginal increase in τ if it moves to y ∈ V
(Figure 4):

Δτ(y, y′, {ri}i∈Ij) � max 0, τ(y, {ri}i∈Ij)−τ(y′, {ri}i∈Ij) + ϵ( ) (6)

FIGURE 4 | Illustration of control strategy of evader at y′. Transition
probabilities, Kj (·, y′) are shown in light red shade.
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where ϵ is a small number that gives a small positive marginal
increase for some neighboring vertices in scenarios when the
evader gets cornered against an obstacle.

4.1.1 Evader’s Control Strategy
In a deterministic setup the evader at y′ will move to

y*j(y′, {ri}i∈Ij) d argmax
y∈A

y′
Δτ(y, y′, {ri}i∈Ij) (7)

where Ay′ refers to the states/vertices in the vicinity of y′ that the
evader can transition to in the next time-step. But, in the probabilistic
setup where the evaders represent the ith pursuer by the distribution
qi, with every y ∈Ay′ an evader associates a probability that it is indeed
the best transition to make. In practice, these probabilities are
computed by sampling {ri}i∈Ij from the distributions {qi}i∈Ij, and
counting the proportion of samples forwhich a y ∈Ay′ is the neighbor
that maximizes the marginal increase in capture time. The evader
then uses this probability distribution over its neighboring states to
make a stochastic transition.

4.1.2 Pursuer’s Prediction of Evader’s Distribution
Based on Known Evader Control Strategy
The pursuers know the evader’s strategy of maximizing the
marginal increase in capture time. However, they do not know
the evaders’ exact position, nor do they know the distributions, qi,
that the evaders maintain of the pursuers. The uncertainty in the
action of the evader due to that is modeled by a normal
distribution centered at y*j (y′, {ri}i∈Ij). If the evader is at y′, the
transition probability Kj (y, y′) is the assumed to be

Kj(y, y′) � κj exp −df y, y*j(y′, {ri}i ∈ Ij)( )2
2σ2j

⎛⎝ ⎞⎠, ify ∈ Ay′

0, otherwise.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(8)

where, for simplicity, df is assumed to be the Euclidean distance
between the neighboring vertices in the graph, and κj is a
normalization factor so that ∑y∈VK(y, y′) � 1.

4.2 Pursuer Control Strategy
A pursuer, ri ∈ Ij, pursuing the evader at yj needs to compute a
velocity for doing so.

In a deterministic setup, if the evader is at yj ∈ V, the pursuer’s
control strategy is to follow the shortest (geodesic) path in the
environment connecting ri to yj. This controller, in practice, can
be implemented as a gradient-descent of the square of the path

metric (geodesic distance) and is given by vi � k zdg(ri ,yj)
2

zX(ri)
�

2k dg(ri, yj) ̂zri ,yj, where k is a proportionality constant, dg (ri,
yj) is the shortest path (geodesic) distance between ri and yj, and
z
̂
ri ,yj is the unit vector to the shortest path at ri (see Figure 5).

Such a controller does not suffer from local minimas due to
presence of non-convex obstacles since the geodesic paths go
around obstacles. A formal proof of that and the fact that
zdg(r,y)
zX(r) � ̂zr,y , appeared in (Bhattacharya et al., 2014).). This
gives a simple velocity controller for the pursuer.

4.2.1 Pursuer’s Control Strategy
Since the pursuers describe the jth evader’s position by the
probability distribution ptj over V, we compute an expectation
on the velocity vectors of the ith pursuer (with i ∈ Ij) as follows:

̂vi � ∑
y∈V

2k dg(ri, y) ̂zri ,y p
t
j(y) (9)

Since the pursuer has a maximum speed of vi, and the exact
location of the evader is unknown, we always choose the
maximum as speed for the pursuer: vi � vi

̂vi
‖ ̂vi‖.

For computing dg (ri, y) we use the Theta* search algorithm
(Nash et al., 2007) on a uniform 8-connected square grid graph,
G✳, representation of the environment (Figure 5 inset). While
very similar to Dijkstra’s and A*, Theta* computes paths that are
not necessary restricted to the graph and are closer to the true
shortest path in the environment. While more advanced

FIGURE 5 | Theta* algorithm is used on a 8-connected grid graph, G✳

(top right inset) for computing geodesic distances as well as control velocities
for the pursuers.

FIGURE 6 | Environments for which statistic are presented. (A)
“AR0414SR”; (B) “AR0701SR.” Each Panel also shows an example of the
agent positions and distributions during one of the simulations. Blue hue
indicates the evaders’ prediction of pursuers’ distributions, {qi}i∈Cr , while
the red hue indicates the pursuers’ prediction of the evaders’ distributions,
{pj}j∈Cy .
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variations of the algorithm exists [such as Lazy Theta* (Nash
et al., 2010) and Incremental Phi* (Nash et al., 2009)], we choose
to use the most basic variety for simplicity. Computation of the
sum in Equation 9 can also be performed during the Theta*
search. Algorithm 1 describes the computation of dg (ri, y) (the
shortest path (geodesic) distance between ri and a point y in the
environment) and the control velocity vi.

The algorithm is reminiscent of Dijkstra’s search, maintaining
an open list, Q, and expanding the least g-score vertex at every
iteration, except that the came-from vertex (cf) of a vertex can be a
distant predecessor determined by line of sight (Lines 10–14) and
the summation in (9) is computed on-the-fly during the
execution of the search (Line 28).

We start the algorithm by initiating the open list with the
single start vertex, ri, set its g-score to zero, and its came-from
vertex, c f, to reference to itself (line 4). Every time a vertex, y
(one with the minimum g-score in the open list, maintained
using a heap data structure), is expanded, Theta* checks for the
possibility of updating a neighbor, w, from the set of neighbors,
N G +× (y), of the vertex that are not in the closed list (line 9).
Based on the existence of a direct line of sight from the came-
from vertex of y and the vertex w, the potential new came-from
vertex, cf

̄
, is set to cf(y) or y. The new potential g-score is

computed as the sum of the g-score of cf
̄

and the Euclidean
distance, dE(cf

̄
,w) � ‖X(cf̄ ) − X(w)‖, between the two

vertices. If lower, g(w) is updated, the came-from vertex of
w is set to cf

̄
, and the vertex on the path second from the start,

sc(w), is copied from that of y unless w is itself second from
start. We also compute the control velocity as part of the
Theta* search algorithm. Every time a vertex is expanded, we
add the corresponding term in the summation of Equation 9
to the vector ̂vi (line 28), which we scale to have magnitude of
the maximum possible speed of the pursuer, vi, at the end.

4.2.2 Evader’s Prediction of Pursuer’s Distribution
Based on Known Pursuer Control Strategy
Since the evaders represent the ith pursuer using the
probability distribution qi, they need to predict the
pursuer’s probability distribution in the next time step
knowing the pursuer’s control strategy. This task is assigned
to the jth evader such that i ∈ Ij (we define j

̄
(i) to be the index of

the evader assigned to pursuer i). It executes Theta* algorithm,
similar to Algorithm 1, but the start vertex being yj. Once
executed, the line segment connecting any r′ ∈ V and cf (r′)
gives the direction in which the ith pursuer at r′ would
tentatively move in the next time-step based on the

Algorithm 1 | Theta* Based Pursuer Control
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aforesaid control strategy of the pursuer. Knowing the speed of
a pursuer, the evader can thus compute the next position of the
pursuer, r*j (r′, yj), if it is currently at r′. However, in order to
account for the fact that the pursuer does not precisely know
the evader’s position (and instead use the distribution pj to
represent it), analogous to (8), we use the following transition
probability for the prediction step of updating qi

Li(r, r′) � κi exp −
df r, r*j(r′, y ̄j(i))( )2

2σ2i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, if r ∈ Ar′

0, otherwise.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(10)

where κi is the normalization factor.

5 ASSIGNMENT STRATEGIES

We first consider the assignment problem from the perspective of
the pursuers—with the evaders represented by probability
distributions {pj}j∈Cy , what’s the best pursuer-to-evader
assigment? In a probabilistic setup, where the costs (capture
times) are stochastic variables (see Section 3.3.2), and there
are excess pursuers, this needs to be solved in two stages
(Prorok, 2020): First we need to determine an initial
assignment of each evader to one pursuer. Following that we
determine the assignment of the remaining (redundant) pursuers
so as to minimize the (total or maximum) expected capture time.

5.1 Expected Capture TimeMinimization for
an Initial One-To-One Assignment
In order to determine an initial assignment A04F such that
exactly one pursuer is assigned to an evader (thus potentially
allowing unassigned pursuers).

Since for every (i, j), (i′, j′) ∈ A0, Tij and Ti′j′ are independent
variables, the problem of finding the optimal initial assignment
that minimizes the total expected capture time becomes2

A0 � arg min
A′ ⊂ F s.t.

(i,j),(i′ ,j′)∈A′ 0 i≠ i′ ,j≠ j′

E ∑
(i,j)∈A′

Tij
⎛⎝ ⎞⎠

� arg min
A′ ⊂ F s.t.

(i,j),(i′ ,j′)∈A′ 0 i≠ i′ ,j≠ j′

∑
(i,j)∈A′

E Tij( ) (11)

Thus, for computing the initial assignment, it is sufficient to use
the numerical costs of Cij � E(Tij) in the assignment of pursuer i
to evader j, and thus find an assignment that minimizes the net
cost. In practice we use a Hungarian algorithm to compute the
assignment. While a Hungarian algorithm is an efficient method

for computing the assignment that minimizes the expected total
time of capture, generalizing it to the problem of minimizing the
expected maximum capture time is non-trivial, which we
address next.

5.1.1ModifiedHungarian Algorithm forMinimization of
Maximum Capture Time
For finding the initial assignment that minimizes the maximum
expected capture time, we develop a modified version of the
Hungarian algorithm. To that end we observe that in a
Hungarian algorithm, instead of using the expected capture
times as the costs, we can use the p-th powers of the expected
capture times, Cij � (E(Tij))p. Making p → ∞ results in the
appropriate cost that makes the Hungarian algorithm compute an
assignment that minimize the maximum expected capture time
(the infinity norm). However, for computation we cannot
practically raise a number to infinity, and thus need to modify
the Hungarian algorithm at a more fundamental level.

In a simple implementation of the Hungarian algorithm
(Munkres, 1957), one performs multiple row and column
operations on the cost matrix wherein a specific element of
the cost matrix, Ci′j′, is added or subtracted from all the
elements of a selected subset of rows and columns. Thus, if
we want to use the pth powers of the costs, but choose to
maintain only the costs in the matrix (without explicitly
raising them to the power of p during storage), for the row/
column operations we can simply raise the elements of the
matrix to the power of p right before the addition/subtraction
operations, and then take the pth roots of the results before
updating the matrix entries. That is, addition of Ci′j′ to an
element Cij will be replaced by the operation

Cij⊕pCi′j′ �
��������
Cp
ij + Cp

i′j′
p
√

, and subtraction will be replaced by

the operation Cij.pCi′j′ �
��������
Cp
ij − Cp

i′j′
p
√

.
Thus, letting p → ∞, we have Cij ⊕∞Ci′j′ � max{Cij, Ci′j′} and

Cij.∞Ci′j′ � Cij, Cij >Ci′j′

0, Cij � Ci′j′
{ . Thus, we can compute the

assignment that achieves the minimization of the maximum
expected capture time using this modified algorithm, but
without actually needing to explicitly raise the costs to the
power of a large p → ∞.

5.2 Redundant Pursuer Assignment
Approach
After computation of an initial assignment,A0, we determine the
assignment of the remaining pursuers using the method proposed
in (Prorok, 2020). Formally, we first consider the problem of
selecting a set of redundant pursuer-evader matchings, A

̄
, that

minimizes the total expected travel time to evaders, under the
constraint that any pursuer is only assigned once:

Ā � arg min
A′ ⊂ F s.t.

(i,j),(i′ ,j′)∈A′∪A0 0 i≠ i′

∑
(i,j)∈A′

E(Tij). (12)

Notably, the work in (Prorok, 2020) shows that a cost function
such as (12), which considers redundant assignment under

2The expectation of the sum of two or more independent random variables is the
sum of the expectations of the variables
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uncertain travel time, is supermodular. It follows that the
assignment procedure can be implemented with a greedy
algorithm that selects redundant pursuers near-optimally3.

Algorithm 2 summarizes our greedy redundant assignment
algorithm. At the beginning of the algorithm, we sample h
|Cr| × |Cy|-dimensional points from the joint probability
distribution of {Tij}i∈Cr ,j∈Cy and store them in the set T

̃
. In

practice, the sampling is performed by sampling points, yj ∈ V,
from the evaders’ probability distributions, pj, for all j ∈ Cy. The
travel times, τij � 1

vi
dg(ri, yj), i ∈ Cr , j ∈ Cy then give the sample

from the joint probability distributions of {Tij}i∈Cr ,j∈Cy due to Eq. 4.
The zth sample is thus a set of travel times between every pursuer-
evader pair, and will be referred to as T

̃ z

� {τzij}i∈Cr ,j∈Cy ∈ T
̃
.

In this algorithm, we first consider the initial assignment,A0,
and collect all the sampled costs of edges incident on to the jth

evader into the variable S. Note that a given j ∈ Cy appears in
exactly one element ofA0, thus the assignment in Line 4 assigns
a value to a Szj exactly once. The set A

̄
contains the assignment

of the remaining/redundant pursuers, that we initiate with the
empty set.

In Line 10, we loop over all the possible pursuer-to-evader
pairings, (i, j), that are not already present inA0 orA

̄
, and which,

along with A0 or A
̄
, constitute a valid assignment. We go

through all such potential pairings, (i, j), and pick the one

with the highest marginal gain, T+
curr − T+

new. The pair with the
highest marginal gain, is thus added toA

̄
. This process is carried

out |Cr|−|Cy| times, thus ensuring that all pursuers get assigned.

5.3 Equality in Marginal Gain
One way that the inequality condition in Line 13 gets violated is
when the marginal gains Tcurr − Tnew and T+

curr − T+
new are equal.

This can in fact happen quite often when one or more redundant
pursuers are left to be assigned and all of them are far from all the
evaders, rendering marginal gains for any of the assignments
close to zero. In that case a pursuer i gets randomly assigned to an
evader j based on the order in which the pairs (i, j) ∈ F −A0−A

̄

are encountered in the for loop of Line 10.
In order to address this issue properly, we maintain a list of

“potential assignments” that corresponds to (i, j) pairs (along
with the corresponding Tnew values maintained as an associative
list, P {t4ht �}A+) that produce the same highest marginal
gains (i.e., in line 13 equality holds), and choose the one with the
median Tnew value for inserting into the assignment set in Line 19.

5.3.1 Redundant Pursuer Assignment for Minimization
of Maximum Capture Time
As for the minimization of themaximum expected capture time in
the redundant assignment process, we take a similar approach as
in Section 5.1.1. We first note that choosing (E(Tij))

p instead of
simply the expected capture time in (12) still keeps the cost
function supermodular. If we want to minimize the total (sum)
expected pth power of the capture time, the condition in the if
statement in line 13 of the above algorithm needs to be simply
changed to Tp

curr − Tp
new > (T+

curr)
p − (T+

new)
p. With p → ∞, this

Algorithm 2 | Total Time minimization Redundant Pursuer Assignment

3We note that without an initial assignmentA0, any solution that is smaller in size
than |Cy | would lead to an infinite capture time, and hence, the cost function looses
its supermodular property. Hence, the assumption that we already have an initial
assignment is necessary
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condition translates to max(Tcurr,T+
new)>max(T+

curr,Tnew).
Furthermore, to deal with the equality situations in Line 13,
instead of choosing the assignment with the median Tnew from
P {t4ht �}A+, we choose the one with the maximum Tnew,

Thus assigning a redundant pursuer to an evader (out of the
assignments that produce the same marginal gain) that has the
maximum expected capture time, thus providing some extra help
with catching the pursuer.

With these modifications, an assignment for the redundant
pursuers can be found that minimizes the maximum expected
capture time instead of total expected capture time. We call
this redundant pursuer assignment algorithm “Maximum
Time minimization Redundant Pursuer Assignment”
(MTRPA).

5.4 Evader’s Estimation of Pursuer
Assignment
Knowing the assignment strategy used by the pursuers, but the
pursuers represented by the probability distributions {qi}i∈Cr , the
evaders use the exact same assignment algorithm to estimate
which pursuer is being assigned to it. The only difference is that in
Algorithm 2 the elements in the input, T

̃
, are sample travel times

that are computed by sampling points, ri, from the probability
distribution, qi, for all i ∈ Cr , and then computing τij � 1

vi
dg(ri, yj)

as before. The assignment thus estimated is used by the evaders in
computing their control as well as for updating the pursuers’
distributions, {qi}i∈Cr , as described in Sections 4.1.1 and 4.2.2
respectively.

6 RESULTS

For the sensor models, f, h, we emulate sensing electromagnetic
radiation in the infrared or radio spectrum emitted by the
evaders/pursuers. Wi-fi signals and thermal signatures are
such examples. For simplicity, we ignore reflection of the
radiation from surfaces, and only consider a simplified
model for transmitted radiation. If Ir,y is the line segment
connecting the source, y, of the radiation to the location of a

FIGURE 7 | Comparison of the average values of maximum capture times (A, B) and total capture times (C, D) along with the standard deviation in different
environments and with different pursuer-to-evader ratios using the TTPA, NNA and MTPA algorithms. Each bar represents data from 100 simulations with randomized
initial conditions.

TABLE 1 | Win rates of TTPA and MTPA algorithms over NNA. For a given set of
initial conditions (initial position of pursuers and evaders), if TTPA takes less
total time to capture all the evaders than NNA, it is considered a win for TTPA.
While if MTPA takes less time to capture the last evader (maximum capture time)
than NNA, it is considered as a win for MTPA.

Algorithm name AR0414SR (%) AR0701SR (%)

TTPA 69.3 58.2
MTPA 78.0 71.2
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sensor, r, and is parameterized by segment length, l, we define
effective signal distance, deff (r, y) � ∫

Ir,y
ρ(l) dl, where ρ(l) � 1 in

obstacle-free space, and ρobs > 1 inside obstacles to emulate
higher absorption of the signal. The signal space, S � R+, is the
space of intensity of the measured radiation, and fr and hy are
normal distributions over S with mean k1

deff (r,y)
and standard

deviation σ � k2deff (r, y) to emulate inverse decay of signal
strength and higher noise/error for larger separation (we
truncate the normal distribution at zero to eliminate
negative signal values). In all our experiments we chose ρobs
� 3, k1 � 10. We also fix k2 � 0.3, except in the experiments in
Figure 8, where we evaluate the performance with varying
noise level (varying k2).

The motionmodels for predicting the probability distributions
are chosen as described in Section 4.1.2 and 4.2.2.

For the parameter we choose ϵ(y) ∈ (0, 0.3) (in Equation 6)
depending on whether or not y is close to an obstacle. The pursuer
(resp. evader) choose σ j � 0.3 (resp. σ i � 0.3) for modeling the
uncertainties in the evaders’ (resp. pursuers’) estimate of the
pursers’ (resp. evaders’) positions.

We Compared the Performance of the Following Algorithms

• Total Time minimizing Pursuer Assignment (TTPA): This
assignment algorithm uses the basic Hungarian algorithm
for computing the initial assignment A0, and uses the
TTRPA algorithm (Algorithm 2) for the assignment of
the redundant pursuers at every time step. Thus the
algorithm seeks to minimize the total expected capture
time (i.e., sum of the times to capture each evader).

• Maximum Time minimizing Pursuer Assignment (MTPA):
This assignment algorithm uses the modified Hungarian
algorithm described in Section 5.1.1 for computing the
initial assignment A0, and uses the MTRPA algorithm
(Section 5.3.1) for the assignment of the redundant
pursuers at every time step. Thus the algorithm seeks to
minimize the maximum expected capture time (i.e. time to
capture the last evader).

• Nearest Neighbor Assignment (NNA): In this algorithm we
first construct a |Cr| × |Cy| matrix of expected pursuer-to-
evader capture times. An assignment is made corresponding
to the smallest element of the matrix, and the corresponding
row and column are deleted. This process is repeated until each
evader gets a pursuer assigned to it. Then we start the process
all over again with the unassigned pursuers and all the evaders,
and the process continues until all the pursuers are assigned.

We evaluated the algorithms in two different environments: Game
maps “AR0414SR” and “AR0701SR” from 2D Pathfinding
Benchmarks (Sturtevant, 2012) see Figure 6. For different pursuer-
to-evader ratios in these environments, we ran 100 simulations each.
For each simulation, in environment “AR0414SR”, the initial positions
of pursuers and evaders were randomly generated, while in
environment :“AR0701SR” the initial position of the pursuers were
randomly generated in the small central circular region and the initial
position of the evaders were randomly generated in the rest of the
environment. For each generated initial conditions we ran the three
algorithms, TTPA, MTPA and NNA, to compare their performance.

1) Max capture time in “AR0414SR”
2) Max capture time in “AR0701SR”
3) Total capture time in “AR0414SR”
4) Total capture time in “AR0701SR”

Figure 7 shows a comparison between the proposed pursuer
assignment algorithms (TTPA and MTPA) and the NNA
algorithm for the aforementioned environments. From the
comparison it is clear that the MTPA algorithm consistently
outperforms the other algorithms with respect to the maximum
capture time (Figure 7A), while TTPA consistently outperforms
the other algorithms with respect to the total capture time
(Figure 7C). In addition, Table 1 shows win rates of TTPA and
MTPA over NNA (for TTPA this is the proportion of simulations
in which the total capture time for TTPA was lower than NNA,
while for MTPA this is the proportion of simulations in which the

FIGURE 8 | The effect of varying measurement noise level on maximum capture time (A) and total capture time (B).
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total capture time for MTPA was lower than NNA). TTPA has a
win rate of around 60%, and MTPA has a win rate of over 70%.

Clearly the advantage of the proposed greedy supermodular
strategy for redundant pursuer assignment is statistically
significant. Unsurprisingly, we also observe that.increasing the
number of pursuers tends to decrease the capture time.

1) Max capture time in “AR0414SR”with 7 pursuers and 5 evaders.
2) Total capture time in “AR0414SR”with 7 pursuers and 5 evaders.

Figure 8 shows a comparison of the total and maximum
capture times with varying measurement noise level (varying k2)
in the environment “AR0414SR” with a fixed number of pursuers
and evaders, and with 20 randomly generated initial conditions.
As expected, higher noise leads to more capture time for all the
algorithms. However MTPA still outperforms the other
algorithms w.r.t. maximum capture time, while TTPA
outperforms the other algorithms w.r.t. the total capture time.

7 CONCLUSION AND DISCUSSIONS

In this paper, we considered a pursuit-evasion problem with
multiple pursuers, andmultiple evaders under uncertainties. Each
type of agent (pursuer or evader) represents the individuals of the
other type using probability distributions that they update based
on known control strategies and noisy sensor measurements.
Markov localization is used to update a probability distributions.
The evaders use a control strategy to actively evade the pursuers,
while each pursuer use a control algorithm based on Theta*
search for reducing the expected distance to the probability
distribution of the evader that it’s pursuing. We used a novel
redundant pursuer assignment algorithm which utilizes an excess
number of pursuers to minimize the total or maximum expected
time to capture the evaders. Our simulation results have shown a
consistent and statistically significant reduction of time to capture
when compared against a nearest-neighbor algorithm.

We considered a very complex problem setup that is not only
stochastic in nature (each type of agent representing the other
type of agents using probability distributions that are updated
using a Markov localization model on a graph), but the
environment is non-convex (due to presence of obstacles).
While a general stability or convergence guarantee is
extremely difficult, if not impossible, in such a complex
problem setup, we can consider a simplified scenario for
observing some of the stability and convergence properties of
the control algorithm used by the pursuers. Such a simplified
analysis has been provided in the Appendix below.
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APPENDIX: SIMPLIFIED THEORETICAL
ANALYSIS

Suppose evader j is assigned to pursuer i and this assignment does
not change. We consider the case when the evader’s maximum
speed is negligible compared to the pursuer’s speed, as a
consequence of which we make the simplifying assumption
that the evader is stationary. The first observation that we can
make is that with the stationary evader, the probability
distribution for the evader’s pose is updated according to ptj �
Dt−1pt−1j (see Eq. 2), where pτj is a column vector containing the
probability values over V, and Dt−1 is a diagonal matrix that
depends on the signal received as well as the probability
distribution at the time-step such that the net probability
always adds up to 1. It’s easy to observe that a fixed point of
this iteration is a distribution in which all the probability is
concentrated on a single vertex, to which the iteration will
converge. If the measurement model is unbiased, that vertex
would be the vertex on which the actual evader resides.

Hence, after a sufficiently long period of time the evader is
fully localized. The control law in (9), by construction, simply
becomes following the negative of the gradient of the square of the
geodesic distance to the evader (see first paragraph of Section
4.2). This ensures that the geodesic distance to the evader is
decreased at every time-step (formally, the geodesic distance can
be considered as a Lyapunov functional candidate the time
derivative of which is always negative and zero when the
pursuer and the evader are at the same location), hence
ensuring the eventual capture of the evader. We summarize
this simplified analysis under the following proposition:

Proposition (informal): For a fixed persuer-to-evader
assignment, if the evader’s maximum speed is negligible
compared to the pursuer’s speed, and if the sensing
model for the sensor onboard the pursuer is unbiased,
after a sufficiently long period of time the control law in
(9) will make the pursuer’s position asymptotically
converge to the position of the evader.
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