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Movement-based sleep-wake detection devices (i.e., actigraphy devices) were

first developed in the early 1970s and have repeatedly been validated against

polysomnography, which is considered the “gold-standard” of sleep measurement.

Indeed, they have become important tools for objectively inferring sleep in free-living

conditions. Standard actigraphy devices are rooted in accelerometry to measure

movement and make predictions, via scoring algorithms, as to whether the wearer

is in a state of wakefulness or sleep. Two important developments have become

incorporated in newer devices. First, additional sensors, including measures of heart

rate and heart rate variability and higher resolution movement sensing through triaxial

accelerometers, have been introduced to improve upon traditional, movement-based

scoring algorithms. Second, these devices have transcended scientific utility and are

now being manufactured and distributed to the general public. This review will provide

an overview of: (1) the history of actigraphic sleep measurement, (2) the physiological

underpinnings of heart rate and heart rate variability measurement in wearables, (3)

the refinement and validation of both standard actigraphy and newer, multisensory

devices for real-world sleep-wake detection, (4) the practical applications of actigraphy,

(5) important limitations of actigraphic measurement, and lastly (6) future directions within

the field.

Keywords: actigraphy, heart rate, photoplethysmography, wearables, validation

INTRODUCTION

The “gold-standard” measure for sleep is polysomnography (PSG). This technique includes a
variety of simultaneous recordings such as electroencephalography (EEG), electromyography
(EMG), electrooculography (EOG), electrocardiography (ECG), pulse oximetry, and respiration
detection via oronasal airflow (1). PSG, via its measurement of physiologic changes, including
measurement of brain waves from EEG electrodes, is utilized for measurement and classification
of various sleep stages such as non-rapid eye movement (NREM) and rapid eye movement (REM)
sleep. This measure, alongside the other physiologic channels, is one of the major reasons that
PSG measurement is so valuable for sleep science and medicine. It is not without limitations,
though. For example, sleep staging relies on both spatial and temporal averaging of background
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electrical activity and therefore cannot directly assess subcortical
structures (from which sleep-wake regulation is generated, like
the thalamic reticular nucleus) (2), nor can it resolve action
potentials, or local wakefulness in small cortical areas, or
influences of waveforms that fall outside of those used to score
stages (3). For these reasons and others, PSG is an indirect and
imperfect measure of sleep. Further complicating this issue is that
PSG requires human scoring of raw signals; automated scoring is
still not accepted, and it is unusual for 2 human scorers to achieve
100% agreement on any sleep record. Therefore, regardless of
the degree of precision and/or accuracy achieved by PSG, it has
inherent flaws with reliability as a gold standard, as even the same
record will be scored differently by 2 raters (4).

In addition to these limitations, PSG is still quite burdensome
and expensive, limiting assessment at scale and ability to assess
real-world sleep parameters. On average one night of PSG
measurement in a sleep lab can cost up to $2,000 dollars (5), due
to the price of the equipment as well as the study personnel who
monitor the individual over the night. This of course means that
PSG is impractical for long-term, longitudinal studies due to the
hefty price tag. To further compound this issue, there exists a
well-documented “first night effect” (6–8). Due to the number
of wires and electrodes strapped to a subject as well as sleeping
in a new unusual environment, this has been shown to lead to
increased sleep latency, decreased sleep efficiency, and decreased
REM sleep.

To combat these problems, researchers instead utilize
movement-based devices known as “actigraphs” which measure
changes in motion of an individual to predict sleep vs. wake
(9). Actigraphy is an affordable alternative to PSG that can
be used in free-living conditions to objectively measure sleep
longitudinally as well as imposing less of a burden on subjects
themselves. Actigraphy devices measure global data, including
movement, to estimate sleep timing. These devices typically
employ accelerometers which sample multiple axes at high
frequencies to detect movement. Newer, commercial devices
also house accelerometers but also include additional channels
allowing them to be classified as multi-sensory and become more
accurate in their scoring abilities (10). These newer wearable
devices have also been able to predict sleep stages thereby giving
additional scoping to their utilization for research purposes.
These devices can be used to measure common sleep variables
such as total sleep time, sleep efficiency, and wake after sleep
onset. Figure 1 depicts many of the historical milestones relating
to actigraphy and related technologies.

HISTORY OF ACTIGRAPHIC SLEEP
MEASUREMENT

In the early 1970s, the first utilization of telemetric mobility
data to estimate sleep and wake were recorded by Foster et al.
(11) and Kupfer et al. (12). These studies investigated a sample
of psychiatric patients to research the notion that movement
data allowed for predictions of an individual’s sleep timing.
The devices used were rather rudimentary but still yielded an
accurate representation of sleep and wakefulness over a 24-h

period. Use of the lightweight, wrist-based telemetric devices was
desirable due to the impracticality of using EEG-based studies for
24-h monitoring.

Kripke et al. reported similar accuracy at determining sleep-
wake patterns in free-living conditions using these devices and
were the first study to refer to this technique as “actigraphy”
(13). The device used by Kripke et al. was an improvement
of the original devices, allowing more flexibility to the wearer
and utilized piezoelectric transducers, which later became the
standard for all movement-based measurement. The technology
enabled for more sensitivity and overall improved scoring of
wake and sleep. These advances were further validated by
Mullaney et al. in the first larger-scale validation study (14).
This study incorporated a larger number of subjects (N =

102, vs. 8 and 5 in the previous studies), some of which
had various sleep disturbances. Notably, the researchers were
unable to demonstrate strong performance of actigraphy in
older individuals and in those with sleep disturbances. The
investigators also proposed the possibility of automated scoring
of actigraphic data to improve scoring reliability and standardize
the implementation of actigraphy overall. Through these early
findings, the investigators advocated for the continued use and
development of actigraphic devices due to its much lower cost
compared to EEG-based studies.

As previously mentioned, PSG requires hand scoring of raw
data with notable disagreement between scorers of the same
data (4). There has been some success with automated scoring
for PSG including a study published by Malhotra et al. which
demonstrated similar results compared to that done manually
(15). Yet, automated scoring for PSG is not fully accepted as the
field still relies on manual scoring. For actigraphic data, the first
automated scoring algorithm to demonstrate validity relative to
PSG was implemented by Webster et al. (16). The development
of Webster’s algorithm was based on the direct comparison of
actigraphy against PSG recordings. Additionally, instead of the
30-s epochs from gold-standard PSG, the algorithm used 1-min
epochs to score sleep/wake due to memory limitations of the
device. Several iterations of the algorithm were proposed using
weighted sums of the epochs to accurately determine wake from
sleep. Notably, the algorithms were more likely to misscore wake
as sleep than misscore sleep as wake—a problem that continues
to exist in modern actigraphy-based sleep/wake classification
models (17). By demonstrating a rate of agreement between PSG
and actigraphy of over 90%, the work conducted byWebster et al.
established the standard for future scoring algorithms to follow.

The next cornerstone actigraphy algorithm to be published
was described by Cole et al. (18). This group sought to
improve upon Webster’s findings by applying the principles to
determine if they were generalizable to newer, commercial micro-
computerized actigraphic devices (vs. the older, tape-based
devices). Their final algorithm demonstrated an 88.25% accuracy
compared to PSG. When the group applied Webster’s original
algorithm to the same data set, they found to accuracy to be
slightly lower at 87.73%. This finding further validated Webster’s
algorithm scoring rules. The next iteration of actigraphy-based
algorithms came a few years later, through the work of Sadeh
et al. (19). The study conducted by Sadeh et al. not only aimed
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FIGURE 1 | Timeline of major developments in wearable technology.

to develop a new means of automatic scoring but also address
the lack of pediatric and sleep-disordered patients in previous
validation efforts. The group was able to record a >91% accuracy
between actigraphy and PSG scoring. Sadeh identified large
differences between various devices but the relative scoring of
sleep/wake was maintained despite these differences.

These early validation efforts focused on correlation
coefficients and accuracy alone as the measurements for the
utility of a given device. However, attention needs to be given to
measures of sensitivity and specificity in addition to accuracy for
validation (20, 21). These measures are derived as a function of
PSG ground-truth, with accuracy corresponding with the overall
ability of a device to correctly classify epochs as either sleep or
wake, sensitivity with correctly classifying sleep epochs, and
specificity with correctly classifying wake epochs. Actigraphic
devices, and their respective scoring algorithms, are optimized
to record nighttime sleep and thus have very high sensitivity
and will correctly predict nearly all sleep epochs, but they have
moderate to poor specificity leading to misidentification of wake
as sleep. Recently, Roberts et al. demonstrated this challenge to
accuracy by utilizing a naïve model (10). In this model, every
epoch was scored as sleep and was marked with an 88% accuracy.
Because most of a sleep record is in fact sleep, these devices are
relatively accurate overall due to their high sensitivity, but poor
specificity means they will likely overestimate total sleep time.

The next iteration of the technology was represented by
accelerometry. Early devices employed amulti-directional analog
sensor and tape recorder to collect data (22). These types of
devices utilize piezoelectric accelerometers that convert changes
in pressure due to acceleration (i.e., movement) into changes
in voltage. See Figure 2. Essentially, these devices contain
piezoelectric materials, such as crystals or ceramics, that respond
to the force displacement (or compression) of a mass and convert
the physical energy into electrical energy.

The application of these accelerometers was practically
implemented into wrist worn devices which would measure
the accelerations across the radius-to-ulna axis (23). Notably,

FIGURE 2 | Schematic of Piezoelectric accelerometry.

the earlier devices relied on reaching a threshold to denote a
movement as activity. As such, these devices were less sensitive
and could fail to capture small movements such as those
occurring during sleep.

A study conducted by Terrill et al. aimed at improving
actigraphy by allowing for the storage of raw sensor data
instead of an activity score for each epoch (24). This group
also sought to record accelerometry data tri-axially with the
purpose of increasing the capacity to record more types
of movements. These findings were soon followed by the
application of developments in nanotechnology to existing
accelerometry techniques. These developments took shape in
microelectromechanical systems (MEMS) which are like the
accelerometer utilized by the Terrill study. Instead of recording
a single count for each desired epoch, MEMS accelerometers
can yield long-term recording of raw tri-axial accelerometry
at high samples rates (25). This allows for greater sensitivity
and less variability between different devices in terms of raw
data captured.
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In addition to changing hardware and devices, there is a shift
in how to utilize the captured data with the newest systems
incorporating AI and machine learning techniques for sleep
scoring and classification to improve accuracy. These techniques
work by undergoing a training phase and subsequently learning
and optimizing the model to best suit the desired analysis (26).
The process for machine learning analyses requires a time-
consuming and often expensive design but holds great promise
for improving sleep/wake scoring and overall better sleep staging.
Deep learning methods also allow for fluid processing of the data
captured by many of the modern, multisensory devices currently
available. In a recent study, Haghayegh et al. directly tested deep
learning against standard algorithms (27). The group found that
compared to algorithms, the novel deep learning model yielded
greater accuracy and specificity with a lower sensitivity. This
study indicates that the next generation of sleep scoring methods
will be rooted in these techniques.

OVERVIEW OF STANDARD ACTIGRAPHIC
DEVICES

Actigraphic devices have been validated over the years for
usage in determining sleep/wake timing. These validation studies
compare the actigraphy data to the gold standard PSG devices
to assess the relative accuracy of the device. Typically, these
studies compare devices by examining sleep parameters, such
as total sleep time (TST), sleep latency (SL), wake after sleep
onset (WASO). Using the algorithmic developments that were
previously mentioned, these devices can estimate these relative
sleep parameters (28). The processing methodologies vary
depending on the device and the algorithm utilized to process
the data into activity counts. These activity counts are then
codified as sleep or wake which can then be used to calculate the

various sleep intervals. These studies also utilize epoch-by-epoch
(EBE) analyses of sensitivity, specificity, and overall agreement to
compare performance to differentiate sleep from wake and, more
recently, differentiate estimations of the various EEG-derived
sleep stages.

Validation of Standard Devices Against
PSG
Standard actigraphy devices have been readily validated against
PSG for their use in objective sleep estimation (17, 29–31). These
devices generally tend to overestimate certain sleep parameters
such as TST and sleep efficiency (SE) (relative to PSG) and are
often utilized for longitudinal data collection where expensive
PSG measurement would be unfeasible or inappropriate (9).

In a study conducted by Paquet et al., four different algorithms
were used in conjunction with the Actiwatch-L (Mini-Mitter,
later acquired by Philips Respironics) and indicated that the
device significantly underestimated sleep latency across all
conditions (17). Additionally, the device tended to overestimate
TST and SE, relative to PSG. This trend was more pronounced in
sleep records that contained more wakefulness and on average.
For EBE analysis, the device had around 90% accuracy, sensitivity
around 91%, and specificity around 50%.

The Actiwatch-L was again tested against PSG and yielded
modest improvements. Rupp et al. found that the updated
device by Mini-Mitter underestimated TST and SE relative to
PSG, overestimated the number of awakenings relative to PSG,
and generally underestimated SL relative to PSG (29). For EBE
analysis, the device had an accuracy around 89%, sensitivity
around 92%, and specificity around 54%, compared to PSG.
This group also tested the Basic Mini-Motionlogger (Ambulatory
Monitoring) to find that the device underestimated TST and SE
relative to PSG (29). The EBE analysis revealed the device had

FIGURE 3 | Summary of EBE analysis of standard actigraphic devices. Accuracy measures the overall ability of a device to correctly classify epochs as either sleep or

wake, sensitivity measures ability to classify sleep epochs, and specificity measures ability to correctly classify wake epochs.
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an accuracy of 93%, sensitivity of 96%, and specificity of 63%,
compared to PSG.

Zinkhan et al. tested the validity of the ActiGraph GT3X+
(ActiGraph). The device overestimated TST and SE relative to
PSG while underestimating sleep onset latency (SOL), WASO,
and number of awakenings after sleep onset (NASO) relative to
PSG (30). These results were followed up by a study by Quante
et al. which tested different algorithms on the raw data captured
by the ActiGraph GT3X+ device (31). The Sadeh algorithm
led to underestimated TST and SE and overestimated WASO.
The Cole-Kripke algorithm led to overestimated TST and SE
and underestimated WASO relative to PSG. For EBE analysis,
the device showed accuracy 83–85%, sensitivity 91–96%, and
specificity 35–47%, compared to PSG.

Quante et al. tested the Actiwatch Spectrum device. The device
overestimated TST and SE while underestimatingWASO relative
to PSG (31). For EBE analysis, the device was shown to have
an accuracy of 84%, sensitivity of 95%, and specificity of 34%,
compared to PSG.

These findings (summarized above in Figure 3) indicate that
these devices have a high level of accuracy and sensitivity.
However, there exists a large variance across specificity with most
devices yielding moderate agreements compared to PSG. This
phenomenon exists because both devices and scoring algorithms
are optimized to measure nighttime sleep. Yet these devices are
relatively accurate overall due to their emphasis on sensitivity.
With their poor specificity means the likelihood to overestimate
total sleep time. Therefore, attention to improving the specificity
(wake detection) of these devices is warranted.

OVERVIEW OF NEXT-GENERATION
WEARABLES

Newer, multisensory devices have shown a great rate of adoption,
with devices like Fitbit trackers, Apple Watches, and Oura Ring
devices having a strong presence in the consumer market (32).
These devices notably also record aspects of cardiac function in
addition to sleep and utilize heart-rate, and sometimes heart-
rate variability, assessments in sleep-wake estimation and even
multi-stage sleep classification. Including these metrics offers
the potential for improvements in the specificity captured by
these devices.

Anatomical and Physiologic Basis of Using
HR
Mechanistically, the heart works as a double pump with the right
side and left side of the heart working in anatomically separate
circulations (33). The right-side pumps to the lungs whereas the
left side pumps out to the body. Diastole is the relaxation and
filling period of a cardiac cycle whereas systole represents the
contraction and ejection period. During diastole, the pressure
in the heart chambers is low, as the volume in the ventricles
increases over time. During systole, the pressure in the heart
chambers is increasing as the heart squeezes and contracts to eject
the pooled volume. These changes in volume and pressure are
particularly relevant for measurement at the periphery.

These mechanical, physical movements are preceded by
electrical activity priming the heart. The gold standard technique
for assessment of electrical activity of the heart is the
electrocardiogram or ECG. ECG recording measures voltage
changes over time which underly the conduction system of the
heart (34). The electrical process and action potential is initiated
at the sinoatrial (SA) node. This structure is typically referred
to as the pacemaker of the heart. These action potentials then
travel to the atrioventricular (AV) node which notably delays the
impulse briefly to allow sufficient time for diastole. From here,
the impulse travels to the AV bundle which electrically connects
the atria and the ventricles. And finally, ending the conduction
system is the right and left bundle branches and the Purkinje
fibers. The propagation of electrical signals allows for efficient,
coordinated contraction of the heart. A schematic of this process
is depicted in Figure 4A.

The conduction system generates action potentials which can
be visually interpreted as the waveforms and segments on the
ECG recording (34). See Figure 4B. The three major waveforms
are the P wave, the QRS complex, and the T wave. The P
wave coincides with atrial depolarization, the QRS complex
with ventricular depolarization, and the T wave with ventricular
repolarization. Atrial depolarization leads to atrial contraction,
ventricular depolarization leads to ventricular contraction, and
ventricular repolarization leads to ventricular relaxation. Also
important to the utility of the ECG trace is observation of the R-R
interval. This is indicated by the arrow between two consecutive
QRS complexes. The R-R interval is the time between adjacent
R waves and is used to estimate an individual’s heart rate, or
number of beats per minute (34). Inclusion of the ECG during a
sleep measurement period allows researchers to monitor changes
in cardiac function over time to correlate with measures of sleep
vs. wakefulness.

Heart Rate Variability
Heart rate variability (HRV) measures the variance in R-R
interval timing. HRV can be used as a biomarker as high or low
values have been correlated to different physiological states. A
high heart rate variability, indicated in Figure 4C with the red
ECG trace, shows highly varied R-R intervals over time. This high
variance is indicative of parasympathetic tone, demonstrating
that the body has a higher capacity for stress and adaptation,
and indicates good fitness of the individual (35). A low heart
rate variability, indicated with the blue ECG trace in Figure 4C,
shows little to no variation across R-R intervals. This low variance
indicates factors such as high sympathetic tone, low adaptability
to changing environments, and acts as a sign of bodily stress, such
as during exercise.

HRV is rather dynamic with different factors mediating
its changes over time (36). The inputs and outputs to this
feedback mechanism are depicted in Figure 4D. They are
housed within the medulla oblongata of the brainstem which
receives sensory information from various components. Based
on the change required, the control center outputs to the
heart via the sympathetic or parasympathetic nervous system.
The sympathetic effects will increase rates of depolarization
to increase heart rate whereas the parasympathetic effects
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FIGURE 4 | (A) Conduction system of the heart. (B) Schematic for ECG recording of electrical activity. (C) High vs. low heart rate variability (HRV). (D) Schematic

depicting various factors influencing HR and HRV. (E) Correlation between R-R interval from ECG trace to P-P interval from PPG trace.

accomplish the opposite by decreasing rates of depolarization
leading to decreases in heart rate. As these changes are occurring
in real time and from beat-to-beat, measuring HRV yields an
indirect measure of the underlying autonomic control which can
be extrapolated to measures of sleep vs. wake.

Wearable Measurement of HR and HRV
Photoplethysmography (PPG) is an optical technique that can be
used to measure changes in blood volume and pressure at the
periphery (37). The twomajor components that comprise a wrist-
worn PPG sensor are (1) an LED light and (2) a photodetector
(38). This set-up is known as reflective PPG. The light emitted
by the LED penetrates the skin to the level of capillaries. There
the light is both absorbed and reflected. The light that is reflected
is received by the photodetector. These sensors process and
quantify changes in reflectance to coincide with changes in blood

volume and pressure which have been validated to show their
accuracy in measuring heart rate during both periods of rest and
activity (39).

PPG sensor technology varies across devices in the type or
wavelength of light emitted from the LED. Wearable devices
typically use green light (40), which has a comparatively shorter
wavelength compared to red or infrared light. The shorter
wavelength light contains a greater amount of energy and thus
is better able to penetrate the skin. The light is readily reflected
by vessels closer to the surface and thus is less influenced by
blood flow in deeper vascular networks and subject to less noise
effects (40). This in turn leads to green light PPG estimating pulse
rates that are strongly correlated with the R-R interval from the
ECG (40).

But how does measuring reflectance changes at the wrist
measure heart rate (HR)? When the heart beats during systole,
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blood flows out of the left side of the heart and all throughout
the body including to the periphery such as the wrist. This
increase in blood volume results in more green light absorbed
and therefore less reflectance picked up by the PPG sensors (40).
In contrast, between heart beats and during diastole, less blood
is flowing out to the periphery. As less blood volume is present,
less green light is absorbed leading to more reflectance picked
up by the PPG sensor. Wearable devices flash their LEDs at
extremely high frequencies to quantify and measure the changes
in reflectance (41). These measurements are then processed
to correlate with heart rate. Figure 4E depicts the relationship
between the RR interval from the ECG trace and the peak-to-
peak (PP) interval from the PPG trace. The PP interval represents
increased pressure at the periphery following systole. Due to the
brief time required for blood to flow out to the periphery, the
RR interval and PP interval appear to have a delay but are phase
aligned as observed in Figure 4E. In other words, the timing of
each interval is identical and allows PPG to be utilized for indirect
measurement of heart rate via RR intervals.

However, the measurement of PP intervals via PPG is not
a complete substitute for RR intervals via ECG. Therefore,
researchers should take caution in using PP intervals as a proxy
for RR intervals as it is not accurate in all individuals (42).
It has been reported that adults with pacemaker devices show
fluctuations in PP intervals without accompanying fluctuations
in RR intervals. This exists due to the downstream nature of
the PP interval. Yuda et al. recommend that PP intervals be
considered a separate biomarker but recognize that HRV has a
significant influence on changes in blood flow at the periphery.
If researchers are consistent and aware of these issues, the
utilization of PPG is suitable for indirect monitoring of changes
in cardiovascular function.

Correlation of HR and HRV to Sleep and
Sleep Staging
Snyder et al. showed that heart rate decreases progressively over
the course of the night (43). HR decreases specifically as an
individual enters deeper stages of sleep. It is highest during
wake and high during REM sleep but decreases subsequently
from Stage 1 onward. These trends are consistently found
across individuals and can be used to improve the accuracy of
sleep/wake classification by scoring algorithms. Additionally, HR
spikes with awakenings thereby giving rise to potential means
to improve specificity (wake) measurement. Other abnormalities
in HR during sleep have been demonstrated to underly certain
disease states such as obstructive sleep apnea (44, 45).

But heart rate alone is not sufficient to get an accurate
estimate of cortical sleep stages. Indeed, several studies have
tried using heart rate variability to enhance the performance
of models (46–49). The frequency-domain perspective is well-
correlated with the various sleep stages (46, 50, 51). Using
spectral analysis techniques, the specific frequency bands give
insight into the relative parasympathetic to sympathetic control.
Very low frequency (VLF) variability is seen at 0.00–0.05Hz,
Low frequency (LF) variability is 0.05–0.15Hz, High frequency

(HF) variability at 0.15–0.40Hz, and finally with total power
encompassing the entire spectrum from 0.00 to 0.05 Hz.

Correlations between sleep stages and HR frequency bands
are typically normalized to total power, because total power
itself varies by time of day. Therefore, relative power is typically
assessed to quantify the effects of changes in total spectrum
power. VLF generally yields the measure of sympathetic
influences and is seen highest during REM sleep. LF is a
mixture of both sympathetic and parasympathetic influences
with the band lowest during Stage 3 NREM sleep. HF suggests
parasympathetic influences and generally is increased in NREM
sleep and decreased in REM sleep. Specifically, this frequency
band is significantly higher during Stage 2 NREM sleep. Total
power is shown to be lowest during wake and highest in
REM sleep.

These correlations (summarized in Table 1), as well as the
general patterns observed for HR during sleep measurement,
offer the potential for improved sleep staging as well as
sleep/wake scoring in general with particular emphasis on
improving specificity.

Validation of Devices That Use Heart Rate
Due to the valuable information that heart rate and other
cardiovascular variables may contain, the desire to have
implemented heart rate and heart rate variability sensors into
devices has arisen. This inclusion allows for better scoring of
sleep/wake and predictions for sleep staging/architecture. These
devices include well-known brands such as Fitbit, WHOOP,
AppleWatch, Garmin, Polar, andOura.While themarket is quite
diverse and saturated with many different products, this review
will focus on the validation of Fitbit, Apple Watch, and Oura
Ring devices.

Fitbit
There are many Fitbit devices on the market. Most of the devices
produced in the past several years are equipped with both an
accelerometer and an optical PPG sensor (52). However, older
devices contained only an accelerometer to estimate sleep based
on movement alone. Regarding the devices with both movement
and heart rate assessment, the technology used to assess sleep vs.
wake is essentially identical across devices (53).

Montgomery-Downs et al. investigated the validity of the
original Fitbit Tracker as a tool to classify sleep/wake (54). This
device was equipped only with a tri-axial accelerometer and
no sensor to collect data on heart rate variables. The device
overestimated both TST and SE relative to PSG. For EBE analysis,
the device showed a sensitivity of 97.8% and specificity of 19.8%.

The first Fitbit device that added a PPG sensor and underwent
validation was the FitbitChargeHR. In the study by de Zambotti
et al., the FitbitChargeHR overestimated TST and SE while
underestimating WASO relative to PSG (55). The device was
found to have a sensitivity of 97% and specificity of 42%. de
Zambotti et al. later assessed the Fitbit Charge 2 in terms of
measuring sleep/wake as well as “light” (PSG N1+N2), “deep”
(PSG N3) and REM sleep (56). This device also included a
PPG sensor for the collection of heart rate variables. The device
overestimated light sleep and underestimated deep sleep, relative
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TABLE 1 | Summary chart of correlations of HRV frequency bands to sleep stages.

Frequency (Hz) ANS indications Correlated sleep stage

Very low frequency (VLF) 0.00–0.05 Sympathetic tone Highest in REM

Low frequency (LF) 0.05–0.15 Sympathovagal balance Lowest in stage 3 NREM

High frequency (HF) 0.15–0.40 Parasympathetic tone Highest in stage 2 NREM

Total Power 0.00–0.40 – Lowest in wake; highest in REM

to PSG. In EBE analysis, the device showed a sensitivity of 96%
and specificity of 61%. For individual sleep stages, the device
had an accuracy of 81% for identifying “light” sleep, 49% for
identifying “deep” sleep, and 47% for identifying REM sleep.

The large-scale Fitbit validation study conducted by Beattie
et al. assessed the Fitbit Surge device (57). The device had an
overall sensitivity of 94.6% and specificity of 69.3%. The device
also showed a 69.2% agreement with PSG measured “light” sleep
(stage N1 and N2 combined), a 62.4% agreement with PSG
measured “deep” sleep (stage N3), and a 71.6% agreement with
PSG measured REM sleep. This study also demonstrated that
the device may be more effective in measuring some people
than others. Best performance was shown in individuals with
consolidated sleep with less WASO.

A recent study conducted by Chinoy et al. assessed the Fitbit
Alta HR device (58). The device showed an overall 90% accuracy,
sensitivity of 95%, and specificity of 54%. For individual sleep
stages, the Fitbit Alta HR had an accuracy of 72% for classifying
“light” sleep, an accuracy of 86% for classifying “deep” sleep, and
an accuracy of 89% for classifying REM sleep, all relative to PSG.

Apple Watch
Apple Watch devices are equipped with a few different sensors.
Notably, these include an ambient light sensor, multiaxial
accelerometer, and optical plethysmography sensor (59). These
devices use proprietary algorithms to determine relevant
movement and heart rate data, with newer devices enabling proxy
measurements of ECG rhythms and blood oxygen concentration.

The Apple Watch, until the latest Series 6 device, did not
natively have a sleep/wake scoring function that is comparable
to other devices, but with its available sensors the data can be
recorded and subsequently scored using various analyses. Walch
et al. investigated the Apple Watch Series 2 and 3 to investigate
the validity of these devices to be used for sleep monitoring
(60). The group extracted raw accelerometry data captured by
the MEMS accelerometer and heart rate data from the PPG
sensor. Since the ambient light data is not accessible for analysis,
a “clock proxy” was also introduced to include an element of
circadian timing to improve scoring. The circadian clock proxy
was generated in two different ways. The first, used a fixed cosine
wave from the start of recording to simulate circadian rhythms.
The second, was generated using the recorded step data and
converted on a scale that coincided the movement recording, if
above a certain threshold, with the approximate lux depending
on the time of day. The best model utilized neural net methods
and the combination of accelerometry, heart rate, and circadian
data. Compared to PSG, the model yielded an accuracy of 90.1%,

sensitivity of 93%, specificity of 59.6% with a kappa of 0.449.
For sleep staging, the neural net model with all three features
led to 60% accuracy in detecting wake epochs, 65.1% accuracy
in detecting NREM epochs, and 65% accuracy in detecting REM
epochs, relative to PSG.

These devices were further investigated by Roberts et al.
by utilizing machine learning techniques (10). The group
extracted the accelerometry data and PPG heart rate data
for implementation into scoring techniques. Notably, the PPG
heart rate data was transformed into pseudo-interbeat intervals
values to allow for comparison across different devices and
manufacturers. The greatest machine learning analysis of the
Apple Watch data collected yielded an accuracy of 93%,
sensitivity of 98%, specificity of 60% with a kappa of 0.602. These
two studies showed that the AppleWatch is capable of sufficiently
scoring sleep/wake based on the data captured.

Oura Ring
The OURA ring collects data on pulse rate, HRV, respiratory
rate, body temperature, and nighttime movement (61). The Oura
Ring is notably different frommost wearables including the Fitbit
and Apple Watch because it is worn on the ring finger of an
individual rather than the wrist. Because of this difference it is
worth discussing the differences in measuring HR at the finger
before looking at validation data.

In a study conducted by Longmore et al., investigators utilized
both red and infrared-based PPG sensors and measured the
error rate compared to ECG (62). It was discovered that HR
measurement at the finger was less prone to error than HR
measurement at the wrist. The investigators postulated that this is
due to the wrist having more artifact disruption due to ligaments
and underlying tissues that interfere with adequate readings.

The validation study conducted by de Zambotti et al.
investigated the potential of this device to be used in the context
of sleep/wake scoring and classification of individual sleep stages
(63). Notably there were no significant differences between the
sleep summary variables SL, TST, and WASO as compared
to PSG. In EBE analysis, the device showed 96% sensitivity
and 48% specificity. For individual sleep stages, the device had
65% agreement in classifying “light sleep,” 51% agreement in
classifying “deep sleep,” and 61% agreement in classifying REM
sleep, as compared to PSG.

The validation study conducted by Roberts et al. also
investigated the OURA ring (10). The device had good agreement
with PSG in terms of estimates of WASO, TST, and SE. In EBE
analysis, the device showed 89.9% accuracy, 96.3% sensitivity,
41.0% specificity, and kappa of 0.423. Normalization viamachine
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learning analyses were applied to the data for additional scoring
and this process led to minor changes in EBE measures; 90.6%
accuracy, 97.1% sensitivity, 40.7% specificity, and kappa of
0.418. Oversampling of wake epochs during the training phase
improved specificity to 70.7% while reducing sensitivity to 85.3%.

Comparisons to Standard Actigraphy
Consumer wearables, including Fitbit, Apple Watch, and Oura
Ring, include more sensors (i.e., use of PPG in addition to
accelerometry), which allows for a greater opportunity to achieve
accurate sleep/wake scoring. With these improvements, these
devices may better serve clinical populations, such as those
with insomnia, based on increased specificity (wake detection).
These consumer devices are also generally less expensive and
more available than some of the older devices. As opposed
to standard actigraphic devices, these consumer wearables can
modestly predict sleep stages because of their inclusion of other
sensors. Regarding weaknesses, the scoring algorithms utilized by
these consumer devices are typically proprietary to the developers
with little access to raw data. Second, because these devices are
commonly updated with new hardware, firmware, and software
updates, it is not clear the degree to which any specific iteration
alters accuracy or other aspects of performance in context. For
example, an update could either increase or decrease the accuracy
of the device. This would be especially detrimental if such an
update occurred during an ongoing study.

Even a standard actigraph when combined with ECG and
HR data leads to improved performance (64). In this secondary
analysis conducted by Zhai et al., the MESA sleep study data,
including actigraphy data from an Actiwatch Spectrum (Phillips
Respironics) and ECG data from a Compumedics Somte System
for PSG, was extracted. The extracted movement and cardiac
data were used to generate models and algorithms to evaluate the
dataset. The results of the analysis showed that neural network
models outperform traditional machine learning and heuristic
methods for both scoring sleep vs. wake and estimation of sleep
stages. Additionally, with an ensemble method to estimating
sleep stages, the group was able to yield an accuracy of 78.2%
for three sleep stages (Wake, REM, NREM) and 65.4% accuracy
for the five individual sleep stages (Wake, REM, N1, N2, N3).
This study was significant as it demonstrated that a multimodal
approach could be utilized for accurate sleep measurement.

Figure 5 summarizes the EBE analysis for the validation
studies for Fitbit, Apple Watch, and Oura Ring devices.
Importantly, it should be noted that the Fitbit Charge 2 andApple
Watch devices performed as well or better than the standard
actigraphs included in Figure 3.

OTHER CATEGORIES OF CONSUMER
SLEEP TECHNOLOGY

Phone-Based Accelerometers
As smartphones have become ubiquitous, app developers have
leveraged the built-in accelerometers to record movement data
during sleep periods (65). The general assumption is less
movement equates with the transition from light to deep sleep.
Two of the most popular apps that record movement data are

Sleep Cycle and Sleep as Android (66). Both apps require the user
to place the device on the sleep surface thereby allowing for the
detection of movement. The Sleep Cycle application features a
“smart alarm” that seeks to wake the user during a preset time
range in the morning when it determines a “light sleep” epoch.

The Sleep Cycle application was validated against PSG with a
sample of subjects between the ages of 2 and 14 years old (67).
The study, conducted by Patel et al., demonstrated no significant
relationship for the app measured TST, SL, or SE relative to
PSG. Analysis of the data showed a random localization of
the data without systematic bias. Additionally, the sleep stage
classification from the app had no relationship with the sleep
stages as measured by PSG. The Sleep Cycle application is not
considered to be useful as a clinical tool due to these findings.

Bhat et al. conducted a validation study on the Sleep Time
application (Azumio Inc.) (68). The application significantly
overestimated SL compared to PSG. In EBE analysis, the
application showed an accuracy of 85.9%, sensitivity of 89.9%,
and specificity of 50.0%. For individual sleep stages, the device
showed an accuracy of 50% for wake, 54.5% for N1, 33.0% for
N2, 71.2% for N3, and 50.6% for REM.

Based on the lack of data validating these approaches to
sleep/wake measurement, additional validation of these mobile
technologies is needed.

Cardioballistic Sensors
Cardioballistic sensors measure the body’s recoil in response to
contraction of the left ventricle of the heart into the aortic arch
(69). This process is known as the Cardioballistic effect and is
recorded by a ballistocardiograph (BCG). A BCG records the
oscillations pertaining to each heartbeat and varies in magnitude
depending on the level of cardiac output. These sensors are also
capable of recording respiratory activity, body movement, and
relative positioning. As such, these devices are suitable for their
application in objective sleep measurement. Brink et al. designed
a sensor that was installed under each of the four posts of the bed
and allowed for the measurement of data which was utilized for
sleep/wake scoring.

Beddit is a sensor strip to be placed under the mattress
and records data pertaining to body, breathing, and heart
movement to calculate relevant sleep variables (70). Tuominen
et al. conducted a validation study on the Beddit device to
compare its measurement capacity relative to PSG (71). The
device underestimated WASO while overestimating TST and
SE. The device inherently classifies sleep into “light sleep” (PSG
N1+N2) and “deep sleep” (PSG N3). The agreement between
PSG and the Beddit device was 42.1% for wake, 55.6% for “light
sleep,” and 37.5% for “deep sleep.” Notably, the device does
not attempt to identify/classify REM sleep. For individual sleep
stages, the agreement between PSG and the Beddit device was
42.1% for wake, 9.6% for N1, 49.6% for N2, and 37.5% for N3.

Beside Sensors
Schade et al. conducted a validation study on the S+ device
(ResMed) compared to PSG (72). S+ is a non-contact sleep
monitor using radiofrequency waves to detect movement in
bed. The device overestimated TST and underestimated WASO,
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FIGURE 5 | Summary of EBE analysis for Fitbit, Apple Watch, and Oura Ring devices.

relative to PSG. In EBE analysis, the device has accuracy of
around 87%, sensitivity >90%, and specificity around 70%. For
individual sleep stages, accuracy around 64% for light sleep,
accuracy around 60% for Stage N1 sleep, accuracy around 65%
for Stage N2 sleep, accuracy between 52 and 61% depending on
the algorithm used, and accuracy around 61% for REM sleep.

The S+ device was later developed into the SleepScore Max
device. SleepScore Max (SleepScore Labs) collects movement
data from ultra-wideband radar and information on ambient
lighting and room temperature (73). Chinoy et al. investigated
the SleepScore Max device (SleepScore Labs) as compared to
PSG (58). The device significantly overestimated TST, SE, and SL
and underestimated WASO, relative to PSG. In EBE analysis, the
device had an accuracy of 88%, sensitivity of 94%, and specificity
of 50%. For individual sleep stages, SleepScore Max had an
accuracy of 64% for light sleep and an 84% accuracy for both deep
and REM sleep.

Toften et al. investigated the validity of the Somnofy device
(VitalThings) as compared to PSG (74). Somnofy collects
movement and respiration data from an impulse radio ultra-
wideband (IR-UWB) radar sensor. Additionally, the device
collects information from the sleeping environment such as:
light intensity, audible noise, room temperature, air quality, air
pressure, and air humidity, using built-in sensors. Sleep summary
estimates including TST, WASO, SE, and SL were consistent
between Somnofy and PSG. In EBE analysis, the device had
an accuracy of 75%, sensitivity of 97%, and specificity of 72%.
For individual sleep stages, Somnofy had an accuracy of 75% in
detecting Stage N1/N2 sleep, accuracy of 74% in detecting Stage
N3 sleep, and 78% accuracy in detecting REM sleep.

In-bed Sensors
In-bed sensors offer consumers the ability of non-contact sleep
measurement and assessment (75). Typically, these devices have
sensors that are placed on or under the bed and sometimes into
the mattress itself.

Emfit Bed Sensor is a system of foil electrodes placed
underneath a mattress which has the capacity to measure
movement, respiration, and HR data (76). Kortelainen et al.
conducted a validation on the Emfit device compared to PSG.
For individual sleep stages, the system had an accuracy of 81%
for wake, 75% accuracy for NREM, and 80% accuracy for REM
with a kappa of 0.44.

EarlySense is a non-contact sensor paired with a smartphone
that collects information onHR,HRV, RR interval, RR variability,
and movement to score sleep/wake (77). Tal et al. conducted a
validation study of the EarlySense device compared to PSG. The
device had good agreement with PSG for TST. In EBE analysis,
the device showed an accuracy of 90.5%, sensitivity of 92.5%, and
specificity of 80.4%. For individual sleep stages, the agreement
between EarlySense and PSG was 80.4% for wake, 64.9% for light
sleep (N1+N2), 56.2% for SWS, and 53.7% for REM.

Wearable/Portable EEG Devices
The rising interest in accurate sleep staging has led to emerging
technologies in wearable EEG devices. These devices measure
changes in brain waves to mimic the standard scalp EEG that is
utilized during a PSG sleep study.

A study conducted by Nakamura et al. investigated the
potential of an in-ear EEG device (78). The device could be worn
continuously and would reduce burden on participants using the
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device. In the study, the device was compared directly against
standard PSG to measure its overall agreement. The group
demonstrated a 74.1% accuracy for five sleep stage classification
(wakefulness, NREM1, NREM2, NREM3, and REM) with a
kappa score of 0.61.

Another category of emerging technology is EEG headbands
that can be worn to also measure changes in cortical activity. A
study conducted by Arnal et al. investigated the Dreem headband
(79). The study used 25 participants who completed a sleep study
with both PSG and the Dreem headband. The data captured by
the headband was scored automatically as well as hand scored.
The overall agreement for five sleep stage classification (wake, N1,
N2, N3, REM) was 83.5% for automatic scoring and 86.4% for
hand scoring with kappa scores of 0.748 and 0.798, respectively.
The greatest accuracy was achieved for REM sleep and the lowest
accuracy for N1 sleep.

Based on the findings of these two studies, wearable EEG
devices present themselves as potential alternatives for objective
sleep measurement and a reliable tool for measuring the various
sleep stages.

Comparisons to Wearable Actigraphy
Devices
Other categories of consumer sleep technology, including phone-
based accelerometers, Cardioballistic sensors, bedside sensors,
and in-bed sensors, have a few notable strengths and weaknesses
compared to the consumer wearables discussed earlier. For
strengths, these devices are generally easy for individuals to
use with no need to remember to charge or wear the device.
This is particularly relevant for the bedside and in-bed sensors.
Additionally, these devices have demonstrated similar validation
performance to consumer wearables regarding accuracy to PSG.
Regarding general weaknesses, these devices tend to be less
accurate for individuals who share a bed with a partner or
a pet (80). These types of devices detect movement within a
particular space, and thus register partner and pet movements.
Additionally, the angle of measurement is important and
alterations will lead to these devices becoming less accurate.

Figure 6 summarizes the EBE analyses for the various
consumer sleep technologies. In contrast to the data shown in
Figure 5 for wearable devices, these data show greater specificity
for these devices. One plausible reason for this difference is that
nearable devices, such as bedside sensors via infraredmonitoring,
record movements that would not reach the activity threshold
for wearable devices (72, 74). These bedside sensors can capture
all types of movements and therefore generate greater specificity
agreement compared to PSG.

APPLICATIONS OF ACTIGRAPHY

When considering the rich information that is captured
regarding an individual’s physiology, it is no surprise that these
devices are often leveraged in scientific research. Actigraphy
devices, as an objective sleep measurement tool, offer the ability
to monitor changes in sleep variables in several different settings.

Epidemiologic Studies
Actigraphs can be used for longitudinal measurements of sleep
for pattern generation and correlations with other variables such
as cognitive function and risk of cardiometabolic disease.

A study conducted by Blackwell et al. tested the hypothesis
that poor sleep, measured objectively by actigraphy, is associated
with lower cognition in older women (81). The data examined
came from the Study of Osteoporotic Fractures and participants
were recorded using the SleepWatch-O, which is a standard
piezoelectric actigraph. Cognitive function was assessed with the
Mini-Mental State Examination (MMSE) and the Trail Making B
Test (Trails B). Results of the study showed that all the measured
sleep variables were significantly associated with scores on the
MMSE and all, but total sleep time were associated with scores
on Trails B.

A study conducted by Stone et al. examined the relationship
between actigraphic measurement of sleep duration and
fragmentation with risk of recurrent falls in older women (82).
Like the study conducted by Blackwell et al., this group utilized
data from the Study of Osteoporotic Fractures. The information
on falls was collected via contact of the participants every 4
months during the study. Results of the study showed that both
sleep duration of 5 h or less and sleep duration more than 8 h
per night significantly increased the risk of falls. Additionally,
the researchers showed that WASO >120min also increased the
likelihood of falls.

A study conducted by Lim et al. aimed to show that sleep
fragmentation in older adults is associated with the risk for
Alzheimer’s disease and the rate of cognitive decline (83). The
data utilized for analysis came from the Rush Memory and
Aging Project (MAP) and the actigraphic device implemented
was the Actical (Philips Respironics). The participants underwent
a whole host of cognitive tests to measure global functioning.
Results of the study showed that objectively measured sleep
fragmentation was associated with higher risk for development
of Alzheimer’s disease.

A study conducted by Baron et al. aimed to investigate
measures of sleep variability, assessed by wrist actigraphy,
and its correlation with risk for cardiometabolic disease (84).
Participants underwent a 7-day assessment during which they
wore the AW-64 device to objectively measure their sleep.
Cardiometabolic disease was measured via body mass index
(BMI), fasting glucose, fasting insulin, glycosylated hemoglobin,
c-reactive protein (CRP), and cortisol levels. Results of the study
showed a significant association between higher glycosylated
hemoglobin and BMI with greater variability in sleep.

Across the Lifespan
Actigraphy proves useful in the examination of newborns
and infants because of the invasiveness of PSG and lack of
establishment for its use (85). Sadeh et al. demonstrated that
actigraphy has validity in studying this population with overall
agreement rates between 88 and 89%. The application of
actigraphy can track the development of newborn children and
monitor potential maturation deficits. These findings were also
confirmed by So et al. with the utilization of actigraphy to study
the changes in sleep time throughout early development (86).
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FIGURE 6 | Summary of EBE analysis for other consumer sleep technologies.

Notably, the group was able to show that TST starts out at around
60% of the 24-h day at 1 month of age, decreases to 50–55% by 3
months of age, and remains at that level until 12 months of age.
The group also showed no sex differences in these trends between
male and female infants.

As children continue to age, there is a marked decrease in
the amount of daytime sleep (87). Acebo et al. determined this
mediated sleep time changes rather than changes in the amount
of nocturnal sleep timing. The group utilized actigraphic records
of sleep-wake patterns to derive these trends.

By the time children are “school-age” (second, fourth, and
sixth grades), actigraphicmeasurement shows a delay in the onset
of sleep and overall decrease in total sleep time (88). Sadeh et al.
also demonstrated a high degree of sleep fragmentation present
in this age group. Additionally, it was shown that females have
great motionless sleep and more time sleep time in general, thus
indicating significant sex differences.

These sex differences continue into the adolescent stage as
shown by actigraphic measurement of males and females in ninth
and tenth grades (89). Carskadon et al. investigated the sleep
effects due to change of school start time of students transitioning
into tenth grade. The group demonstrated that the earlier wake-
up period coincided with a decrease in the TST and increased
daytime sleepiness. The use of actigraphy in this context shines
light on changes in biology occurring during this phase of life
such as circadian rhythm shifts.

In Behavioral Interventions
Cognitive behavioral therapy for insomnia (CBT-I) is a
therapeutic approach aimed at replacing negative behaviors
and cognitions surrounding sleep practices with those that will
help promote sleep (90). For these types of interventions, the
standard is to use sleep diaries which subjectively record sleep,

but the inclusion of actigraphy may complement these types
of treatments.

In a study conducted by Brooks et al., actigraphy was utilized
to measure the effects of sleep treatments within a group of
elderly individuals with insomnia (91). Sleep restriction therapy
was utilized in this study and led to decreased SL and WASO
and increased SE. The researchers highlighted that due to
the sensitivity displayed by the actigraph, it is sufficient to
demonstrate changes in sleep, which counters any biased estimate
of sleep. Any degree of over or underestimation of sleep is
likely held constant allowing for the actigraph to be reliable in
this context.

Like the study conducted by Brooks et al. and Friedman et al.
looked at the effects of sleep restriction therapy as treatment for
insomnia in older individuals (92). The group used actigraphic
measurement throughout the treatment for all subjects and
included PSG measurement in a subgroup of participants. The
study highlighted that the actigraphic TST measured was highly
correlated with the same TST as measured by PSG.

For Circadian Research
Circadian rhythmicity is a vital component in the context of sleep
vs. wake timing. As such, actigraphy offers the opportunity for
objective measurement of sleep to investigate this physiologic
driving force.

Teicher collated a review of the use of activity monitoring
in individuals with psychiatric disorders such as depression
and attention-deficit hyperactivity disorder (ADHD) to show
how variance in activity may allude details on circadian
dysregulation (93). For instance, the severity of depression
correlates with low levels of daytime activity and increases
in daytime activity have been shown in those undergoing
treatment (94). Additionally, those with ADHD show elevated
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daytime activity levels and ambulatory monitoring with these
devices, especially for children, reinforces an accurate diagnosis
and treatment. With 24-h monitoring, researchers can detect
any alterations to circadian rhythms that might underly a
particular condition.

Siegmund et al. conducted a study of habituation of Tauwema
village inhabitants to assess the effects of social zeitgebers and
familial synchronization (95). The participants underwent 7
consecutive days of actigraphy measurement. The researchers
found that the sleep/wake timing of the adults monitored
coincided with the natural light-dark cycle as indicated by
decreased activity levels in the nighttime hours. Siegmund
et al. also focused on the impact of social factors aligning
the sleep/wake timing within families. This phenomenon was
visualized via the actigraphy data collected. Actigraphic sleep
measurement did not impede the participants of the study in any
major way, allowed for raw measurement in this population, and
subsequently a look into circadian dynamics.

In a study conducted by Pollak et al., actigraphy was utilized
with concurrent measurement with PSG to demonstrate the
circadian timing of sleep and wake patterns (96). The participants
were monitored for 7 days and isolated from temporal cues,
allowing for better indication of circadian drive. The actigraphy
recordings demonstrated effectiveness by high activity measured
during wake and low activity measured during sleep. Notably,
the lower activity corresponded with “deep sleep” as measured
by PSG. The researchers concluded that actigraphy successfully
predicted wake during night periods and accurately measured
the circadian cycle length. Despite the observed overestimation of
TST and SE, the use of actigraphy was useful tomeasure circadian
effects on sleep and wake in this context.

In a recent study by Cheng et al., circadian rhythm
misalignment predictions were made using data collected by
wrist actigraphs (97). The study employed a group of 45 shift
workers to test the ability of actigraphy to predict dim light
melatonin onset (DLMO). DLMO was assessed in a laboratory
concurrently with mathematical predictions of this circadian
variable. Agreement between in-lab DLMO and actigraphy-
predicted DLMO showed a Lin’s concordance coefficient of 0.70.
The study is significant as the first to indicate the ability of
actigraphy to effectively estimate circadian timing as a suitable
replacement clinically from in-lab DLMO.

LIMITATIONS IN ACTIGRAPHIC SLEEP
MEASUREMENT

Actigraphy, like other techniques, remains an indirect measure
of sleep and thus is subject to its limitations. These devices rely
on measuring changes in movement to correlate with changes in
sleep vs. wake which presents real issues with sleep fragmentation
associated with clinical disorders.

Difficulties With Insomnia
Insomnia is often categorized as a state of hyperarousal that
effects both the central and peripheral nervous systems (98). As
a result of this hyperarousal, an individual is unable to enter

various sleep stages and remains awake. When an individual
is awake but not moving, the actigraphic device will likely
incorrectly score this epoch as being sleep when in fact it was
“quiet wakefulness” (99). This phenomenon is often found in
individuals with complaints of insomnia.

In a study conducted by Hauri et al., 36 individuals with severe
complaints of insomnia weremonitored with PSG and actigraphy
assessments for three nights in a sleep laboratory environment
(100). Over the course of the study, the actigraphy measured
sleep time was on average 49min different as compared to PSG.
In general, the actigraph overestimated TST and especially in
patients with severe insomnia. The researchers proposed that
due to these measured differences that actigraphy can be used as
an additional tool but should be paired with at least 1 night of
PSG measurement.

A more modern study assessed the validity of a consumer
device, the Fitbit Flex (an older Fitbit device that did not include
PPG), and its capacity to objectively measure sleep in patients
with insomnia (101). The accuracy was assessed in conjunction
with both actigraphy and PSG measurement with comparisons
to a population of “good sleepers.” In good sleepers, TST was
overestimated by 6.5min and SE was overestimated by 1.75%
by the Fitbit device as compared to PSG. In comparison, the
insomnia group saw TST overestimated by 32.9min and SE
overestimated by 7.9%. Because of these results, the researchers
proposed caution in using consumer sleep trackers as a proxy for
PSG for clinical and research purposes in insomnia.

Difficulties With Sleep Staging
Sleep stages were derived using EEG waveforms measured with
PSG. As such, standard actigraphy, which generally only uses
movement data for sleep staging calculations, fails to be an
accurate measure (96). Therefore, developers have utilized the
technology in PPG and other physiologic sensors to improve
these classifications.

A study conducted by Fonseca et al. aimed to investigate
the accuracy that wrist worn actigraphy combined with PPG
measurement has in determining individual sleep stages (102).
Compared to PSG, the PPG measurement led to an accuracy
of 91.5% for wake, 65.7% for N1+N2, 82.5% for N3, 75.3%
for NREM, and 78.9% for REM. These findings suggested
reliability in utilizing this technique to improve sleep stage
scoring compared to PSG.

In the previously mentioned validation study conducted by
Beattie et al. the possibility to accurately score the various
sleep stages with a consumer device was investigated (57).
The Fitbit Surge device tested demonstrated a 69% agreement
with PSG measured “light” sleep, a 62% agreement with PSG
measured “deep” sleep, and a 72% agreement with PSGmeasured
REM sleep. These results were promising given the utility for
inexpensive, reliable measurement of sleep stages.

Additionally, in the previously mentioned paper published
by Chinoy et al. several different wearables and non-wearables
were studied against PSG for their accuracies of classifying the
individual sleep stages (58). The Fitbit Alta HR had accuracies
of 72, 86, 89% for light, deep, and REM sleep, respectively. The
Garmin Fenix 5S had accuracies of 60, 87, 77% for light, deep, and
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REM sleep, respectively. The Garmin Vivosmart 3 had accuracies
of 63, 87, 75% for light, deep, and REM sleep, respectively. The
EarlySense Live nearable device had accuracies of 63, 81, 84%
for light, deep, and REM sleep, respectively. The ResMed S+
nearable device had accuracies of 64, 83, 85% for light, deep, and
REM sleep, respectively. And the SleepScore Max nearable device
had accuracies of 64, 84, 84% for light, deep, and REM sleep,
respectively. See Figure 7 for a summary of these data.

These consumer devices, while not perfect substitutes for PSG
measurement, prove to be capable of roughly estimating sleep
stages. In the previously cited study by Zhai et al. these devices
are more capable of accuracy measuring 3 sleep stages (wake,
NREM, REM) vs. 4 sleep stages (wake, REM, light, deep) and 5
sleep stages (wake, REM, N3, N2, N1) (64). This study showed
78.2% accuracy for 3 sleep stages, 71.2% for 4 sleep stages, and
65.4% for 5 sleep stages.

Difficulties With Sleep Apnea and Sleep
Fragmentation
Like individuals with insomnia, sleep apnea and other disorders
effectively fragment sleep due to arousals over the course of the
night. These arousals impact the scoring ability of actigraphy
devices and thus considerations need to be taken into account
when using these devices in scientific research (103).

Middelkoop et al. investigated the combined use of wrist
actigraphy and self-assessment measures in the screening process
for obstructive sleep apnea (OSA) with additional use of
respiratory measurement (104). The study utilized a sample of
116 subjects that were suspected to have OSA. Results of the
study showed that high apnea index (AI) scores were associated
with both self-reported sleep disturbances and increased activity
as measured by actigraphy. The only measure that significantly
correlated with high AI scores was the duration of immobility
periods. Because of this, the researchers concluded that objective
sleep measurement with actigraphy fails to reliably identify those
with OSA due to its poor specificity for wake episodes.

A potential avenue to improve objective sleep measurement
in individuals with OSA is via application of multisensory
consumer devices. One such study that investigated this
practicality was conducted by Moreno-Pino et al. with usage
of a Fitbit device (105). The study utilized individuals with
OSA alongside Fitbit and PSG assessment. Results of the study
were able to confirm the diagnosis of OSA in 55 out of 65
(84.6%) participants. The researchers concluded that consumer
wearables still have insufficient accuracy for use in clinical
settings but that optimizing features, such as wake detection
(specificity), could potentially make them more capable for use
in clinical populations.

Limitations With Different Types of Skin
A problem specific to PPG technology utilized with consumer
wearables is variability across different types of skin. In the
study conducted by Bent et al. variance tended to be more
pronounced during periods of activity as opposed to periods of
rest (106). The largest trend was variance across different devices
indicating that some devices may be more accurate than others
for larger populations of people. Notably, the Apple Watch had

the lowest error across all studied groups. But the investigators
found no statistically significant difference across skin tones. The
results of this study were, however, argued against by an editorial
published in SLEEP by Colvonen et al. The authors indicated
that the study included a very small sample size including only
nine individuals with the darkest of pigments (107). As such,
this topic warrants further consideration and devices should
be validated amongst diverse populations. This is especially
important given the growing literature addressing sleep health
disparities (108, 109).

In addition to variability in natural skin tone, tattoos may
also pose a problem for this technology. Although peer-reviewed
research on this topic is yet unavailable, a popular press report on
the Apple Watch found that the device experienced difficulties
accurately measuring heart rate in individuals with tattoos (110).
The ink from tattoos may interfere with the ability of PPG
sensors to accurately measure HR. Apple has since modified
the hardware of their devices but continue to claim on their
website that individuals with tattoos will see errors in accurate
HR detection (111).

FUTURE DIRECTIONS

Given the performance of multisensory, wearable sleep devices
compared to standard actigraphy devices, the field of clinical
sleep research should continue to utilize these power pieces
of technology for the goal of measuring as well as improving
overall sleep health. Future studies are needed to further improve
these devices both in terms of their validity as well as their
recording metrics.

Concept of Validation
In 2019, Depner et al. reported on the results of an international
consensus conference on best practices for validation studies
(112). There are three major steps that were identified for
this process: (1) validation study implementation, (2) statistical
analysis and reporting, and (3) validation study outcomes.
Specifically, the document notes that careful consideration needs
to be taken when designing a new validation study including
a necessity for direct comparison to PSG and appropriate
statistical analyses, such as Bland-Altman plots and Epoch
by Epoch analysis. The group advocated for following these
“best practices” to prioritize standardization and replication. A
device that is validated once needs to be repeatedly validated in
numerous populations.

This publication raises the notion of reconsidering the concept
of validation. In this context, validation is not an event, rather
validation is a process (113). Devices need to be continuously
and rigorously tested to determine their accuracy in measuring
sleep objectively. These points were directly addressed by both
Meghini et al. as well as a related commentary by Goldstein
and Depner (114, 115). The argument was postulated that the
weight is shifted from validity of devices to the performance of
devices. By placing more weight on the performance of devices,
a user can determine if a certain device fits the needs of an
individual or the goal of a research study. With this shift, it is
likely that consumer devices will get better footing in the realm of

Frontiers in Digital Health | www.frontiersin.org 14 August 2021 | Volume 3 | Article 721919

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Lujan et al. Review of Multisensory Wearable Technology

FIGURE 7 | Sleep staging validation for wearables and non-wearables from Chinoy et al. (58).

research as they typically perform as well or better than existing
research-grade actigraphs.

Ceiling Effect in Accuracy
Despite numerous algorithms, hardware and software
innovations, wearable devices are unable to exactly replicate
findings of gold-standard PSG. This may be due to a ceiling
effect in accuracy against this standard. For consumer devices to
quantify sleep, peripheral changes in physiology are measured
and interpreted, and these interpretations are meant to correlate
with interpretations of measures used to quantify changes
within the brain. These correlations are possible because of the
interconnected pathway between brain changes and peripheral
changes (116). But as EEG is an indirect measure of brain
activity, PPG is an indirect measure of heart activity. Aspects of
physiology are lost in translation between these two pathways
thereby indicating a limitation in the degree to which the
measures can exactly translate to each other. To combat this
problem, machine learning and AI might prove useful but likely
new metrics will need to be generated and discovered that make
sleep and wake prediction more reliable. Still, peripheral signals
may never be able to exactly approximate sleep stages. Perhaps
future directions can better explore what aspects of the sleep
experience peripheral signals can explain, which are otherwise
difficult to quantify using PSG or self-report measures (113). For
example, since PSG is unable to approximate habitual patterns
and self-report is unable to approximate arousals, perhaps
wearables (optimized to do so) may provide the most useful data
available on objective arousals in habitual sleep.

New Sensing Approaches and Novel
Biomarkers for Estimating Sleep/Wake
New potential variables will need to consider how physiologic
changes coincide with sleep (see Figure 8B for potential metrics).

As wearables are typically located at the wrist, new metrics and
signals ought to be easily measured at the periphery, but underly
important changes in physiology that occur during sleep. The
combination of multiple signals offers the potential for more
successful AI and machine learning techniques to improve sleep
staging and scoring.

Oxygen Saturation and Consumption
Oxygen saturation has traditionally been included in standard
polysomnography with pulse oximetry methods. This technique
allows for detection of hypopnea events that are associated
with physiological arousals due to sleep apnea via drops in
arterial oxygen saturation (117). Continuous recording of oxygen
saturation may elucidate limitations of actigraphic measurement
of sleep apnea as well as overall improve specificity.

Additionally, measurement of oxygen consumption (VO2)
across the night offers similar potential. In a study of eight
normal male subjects, VO2 was collected over the course of 28
subject-nights (118). The data reflected an initial decrease in VO2
followed by a rise in VO2 in the morning. The researchers also
investigated the magnitude of VO2 associated with sleep stages
across the night. These data showed that VO2 during wake and
stage 1 sleep were significantly higher than other stages of sleep,
REM sleep significantly lower than stage 2, and stage 3 and 4 were
not significantly different from either each other or REM and
stage 2 sleep. With future studies and utilizing modern devices,
these observed trends offer improved scoring for not just sleep
vs. wake but also for individual sleep stages as well.

Skin Conductance and Temperature
Changes in skin conductance via measurement of electrodermal
activity (EDA) has been characterized over the years as it has
implications for autonomic nervous system activity. Most peaks
of EDA activity have been demonstrated to occur during stage 2

Frontiers in Digital Health | www.frontiersin.org 15 August 2021 | Volume 3 | Article 721919

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Lujan et al. Review of Multisensory Wearable Technology

FIGURE 8 | (A) Ceiling effect in accuracy with wearable devices using PPG technology. (B) Potential novel metrics for sleep and wake measurement. (C) Strengths

and weaknesses of consumer sleep technology.

and stage 3/4 sleep (119). These high frequency patterns of EDA
have been termed “storms” with amplitudes highest in slow wave
sleep (SWS).More recently, EDA recording was tested against the
gold standard PSG as a method for ambulatory sleep monitoring
(120). The EDA sensor was worn at the wrist and measured
changes in skin conductance across the sleep measurement
period using the parameters of electrodermal activity-smoothed
feature (EDASEF). The study showed significant differences in
EDASEF between wake and stage 1, wake and stage 2, wake
and stage 3/4, and wake and REM. Based on these findings,
the researchers built a scoring algorithm for sleep/wake which
yielded an accuracy of 86%, sensitivity of 97%, and specificity
of 75%. With these findings substantiate this method as a valid
metric for improving scoring.

The 24-h rhythm of body temperature has been well-
documented, with redistribution of heat causing a drop in core
body temperature (121, 122). The drop in core body temperature
coincides with increases in temperature at the periphery
including both proximal and distal skin. In a study conducted
by Kräuchi et al. it was found that the increased temperature

at the extremities, including hands and feet, predicted rapid

sleep onset (123). Regarding sleep stages themselves, REM

sleep is marked by increases in sympathetic activation and
thus vasoconstriction whereas NREM sleep is associated with
parasympathetic dominance and therefore vasodilation. As a

novel metric, future studies are needed to investigate if the
observed changes in heat as well as the autonomic activity within
sleep stages themselves offer implications for improved scoring.

Ambient Light and Body Position
Since some of the earliest actigraphy devices, photometers have
been included to record light exposure over the 24-h day (124).
This pattern is generally utilized in scoring to help define the
major sleep period (9). However, these sensors have not normally
been translated over the multisensory devices for utilization in
sleep scoring. Devices such as the Apple Watch do include
ambient light sensors for auto-adjustment for the brightness of
the display, but these data are not utilized otherwise. In the
validation study for the Apple Watch conducted by Walch et al.
the group demonstrated that a light proxy by using the accessible
accelerometry data drastically improved scoring (60). Because
of the implications of ambient light in assessment of circadian
rhythms, including this metric could elucidate limitations in
these devices automatic sleep detection and improve sleep
latency measurement.

Another strategy to potentially improve these devices is
with measurement of body position and changes that occur
across the night period. This measurement will likely improve
sleep/wake measurement for those with sleep disorders such as
periodic limb movement disorder (PLMD). These associations
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were investigated amongst 11 subjects and hypothesized that
adverse body positions resulting in PLMD episodes due to spinal
cord affect or declining body tissue perfusion (125). Changes
in body position are often recorded during PSG measurement
and inclusion within multisensory wearables may offer similar
value and extrapolate use of these devices for those suffering from
sleep disorders.

Inflammatory Markers and Hormone Secretion
Cortisol impacts many aspects of physiology including
glucose mobilization and immune responses. The hormone
has been demonstrated to have a diurnal rhythm and
as such is a prominent signal for wakefulness. Reliable
measurement of cortisol levels at the periphery, in any
capacity, may dramatically improve the utility of devices to
determine wakefulness due to these trends. Additionally,
cortisol elevations have been associated with both acute
partial and total sleep deprivation (126). After periods
of sleep deprivation, plasma cortisol was elevated the
following evening thus delaying cortisol level recovery and
disrupting the normal diurnal rhythm. Other hormones
that have been correlated with circadian rhythms include
growth hormone, melatonin, leptin, and ghrelin (127).
Like cortisol, measurement of these hormones captures the
circadian rhythm and can be extrapolated for improved
scoring as well as utilized for identifying disruptions in their
normal secretion.

These contributions would similarly be improved with
measures of inflammation via recording changes in interleukin
6 (IL-6) and CRP. These markers of inflammation yield
assessment of insufficient sleep and can improve the application
of multisensory devices for their use in epidemiologic studies
and measurement of cardiometabolic risk. IL-6 and CRP have
been demonstrated to be elevated amongst short sleepers (128).
A recent study conducted by Jagannath et al. demonstrated
the potential for monitoring interleukin-1β and CRP in
individuals with inflammatory bowel disease (129). The
wearable device was able to measure these biomarkers by
analyzing sweat released by eccrine sweat glands. These
findings have yet to be demonstrated in sleep but the ability to
assessment systemic inflammation by multisensory wearables
may be useful in the context of sleep research for improving
sleep/wake detection.

CONCLUSIONS

From its inception, actigraphy has proven to be a useful tool
for objective sleep measurement. Due to the implementation of
additional sensors, such as PPG, newer devices offer the potential
for improved quantification of sleep parameters. Many of these
devices are available to the general public, even though they
have demonstrated accuracy similar to devices more traditionally
seen as scientific devices (113). Despite the limitations of this
technology, the sleep science community should continue to
invest resources into improvement of these devices for the rich
information they can provide on individuals overall health.

Figure 8C summarizes some strengths and limitations for
consumer devices. For strengths, wearable devices have a
relatively ease of use and low cost. As multisensory devices they
are tools that generally outperform accepted standard actigraphs.
With Bluetooth compatibility they offer immediate access to
data which offers potential to elucidate considerations for public
health. These devices are not without limitations, however.
Some of these include limited validation, difficulties with sleep
disorders, limited access to raw data, difficulties with darker
skin, and diminished accuracy if sharing the bed with a partner
or pet. However, with addressing some of the key limitations
and future directions in this field, consumer wearable and non-
wearable devices can readily break the stigma against their use
with shifting the focus to addressing their performance in context
rather than validity.

AUTHOR CONTRIBUTIONS

ML and MG conceptualized the paper, drafted the outline of the
document, refined the outline, and edited the final document.
ML wrote the first draft of the manuscript and generated the
figures. All authors contributed to manuscript revision, read, and
approved the submitted version.

FUNDING

This work was supported by R01DA051321 and R01MD011600.

ACKNOWLEDGMENTS

Figures 2, 4, 8 were created with BioRender.com.

REFERENCES

1. Montgomery-Downs H. Sleep Science. New York, NY: Oxford University

Press (2020).

2. Vantomme G, Osorio-Forero A, Lüthi A, Fernandez LMJ. Regulation

of local sleep by the thalamic reticular nucleus. Front Neurosci. (2019)

13:576. doi: 10.3389/fnins.2019.00576

3. Grandner MA, Perlis ML. Pharmacotherapy for insomnia

disorder in older adults. JAMA Network Open. (2019)

2:e1918214. doi: 10.1001/jamanetworkopen.2019.18214

4. Collop NA. Scoring variability between polysomnography

technologists in different sleep laboratories. Sleep Med. (2002)

3:43–7. doi: 10.1016/S1389-9457(01)00115-0

5. Peters B. What Is An Overnight Sleep Study (Polysomnogram)?: Verywell

Health. (2020). Available online at: https://www.verywellhealth.com/what-

to-expect-in-a-sleep-study-3015121

6. Tamaki M, Nittono H, Hayashi M, Hori T. Examination of the

first-night effect during the sleep-onset period. Sleep. (2005) 28:195–

202. doi: 10.1093/sleep/28.2.195

7. Agnew HW Jr, Webb WB, Williams RL. The first night

effect: an EEG study of sleep. Psychophysiology. (1966) 2:263–

6. doi: 10.1111/j.1469-8986.1966.tb02650.x

8. Newell J, Mairesse O, Verbanck P, Neu D. Is a one-night stay in the lab

really enough to conclude? First-night effect and night-to-night variability in

polysomnographic recordings among different clinical population samples.

Psychiatry Res. (2012) 200:795–801. doi: 10.1016/j.psychres.2012.07.045

Frontiers in Digital Health | www.frontiersin.org 17 August 2021 | Volume 3 | Article 721919

https://www.BioRender.com
https://doi.org/10.3389/fnins.2019.00576
https://doi.org/10.1001/jamanetworkopen.2019.18214
https://doi.org/10.1016/S1389-9457(01)00115-0
https://www.verywellhealth.com/what-to-expect-in-a-sleep-study-3015121
https://www.verywellhealth.com/what-to-expect-in-a-sleep-study-3015121
https://doi.org/10.1093/sleep/28.2.195
https://doi.org/10.1111/j.1469-8986.1966.tb02650.x
https://doi.org/10.1016/j.psychres.2012.07.045
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Lujan et al. Review of Multisensory Wearable Technology

9. Martin JL, Hakim AD. Wrist actigraphy. Chest. (2011) 139:1514–

27. doi: 10.1378/chest.10-1872

10. Roberts DM, Schade MM, Mathew GM, Gartenberg D, Buxton

OM. Detecting sleep using heart rate and motion data from

multisensor consumer-grade wearables, relative to wrist actigraphy

and polysomnography. Sleep. (2020) 43:1–19. doi: 10.1093/sleep/zsaa045

11. Foster FG, Kupfer D, Weiss G, Lipponen V, McPartland R, Delgado J.

Mobility recording and cycle research in neuropsychiatry. J Interdiscipl Cycle

Res. (1972) 3:61–72. doi: 10.1080/09291017209359298

12. Kupfer DJ, Detre TP, Foster G, Tucker GJ, Delgado J. The application of

delgado’s telemetric mobility recorder for human studies. Behav Biol. (1972)

7:585–90. doi: 10.1016/S0091-6773(72)80220-7

13. Kripke DF, Mullaney DJ, Messin S, Wyborney VG. Wrist actigraphic

measures of sleep and rhythms. Electroencephalogr Clin Neurophysiol. (1978)

44:674–6. doi: 10.1016/0013-4694(78)90133-5

14. Mullaney DJ, Kripke DF, Messin S. Wrist-actigraphic estimation of sleep

time. Sleep. (1980) 3:83–92. doi: 10.1093/sleep/3.1.83

15. Malhotra A, Younes M, Kuna ST, Benca R, Kushida CA, Walsh

J, et al. Performance of an automated polysomnography scoring

system versus computer-assisted manual scoring. Sleep. (2013)

36:573–82. doi: 10.5665/sleep.2548

16. Webster JB, Kripke DF, Messin S, Mullaney DJ, Wyborney G. An activity-

based sleep monitor system for ambulatory use. Sleep. (1982) 5:389–

99. doi: 10.1093/sleep/5.4.389

17. Paquet J, Kawinska A, Carrier J. Wake detection capacity of actigraphy

during sleep. Sleep. (2007) 30:1362–9. doi: 10.1093/sleep/30.10.1362

18. Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC. Automatic

sleep/wake identification from wrist activity. Sleep. (1992) 15:461–

9. doi: 10.1093/sleep/15.5.461

19. Sadeh A, Sharkey KM, Carskadon MA. Activity-based sleep-wake

identification: an empirical test of methodological issues. Sleep. (1994)

17:201–7. doi: 10.1093/sleep/17.3.201

20. Tilmanne J, Urbain J, Kothare MV, Wouwer AV, Kothare SV. Algorithms

for sleep-wake identification using actigraphy: a comparative study and new

results. J Sleep Res. (2009) 18:85–98. doi: 10.1111/j.1365-2869.2008.00706.x

21. Marino M, Li Y, Rueschman MN, Winkelman JW, Ellenbogen JM,

Solet JM, et al. Measuring sleep: accuracy, sensitivity, and specificity of

wrist actigraphy compared to polysomnography. Sleep. (2013) 36:1747–

55. doi: 10.5665/sleep.3142

22. Jean-Louis G, Kripke DF, Cole RJ, Assmus JD, Langer RD. Sleep detection

with an accelerometer actigraph: comparisons with polysomnography.

Physiol Behav. (2001) 72:21–8. doi: 10.1016/S0031-9384(00)00355-3

23. Jean-Louis G, Kripke DF, Mason WJ, Elliott JA, Youngstedt SD.

Sleep estimation from wrist movement quantified by different

actigraphic modalities. Journal of Neurosci Methods. (2001)

105:185–91. doi: 10.1016/S0165-0270(00)00364-2

24. Terrill PI, Mason DG, Wilson SJ. Development of a continuous

multisite accelerometry system for studying movements during

sleep. Annu Int Conf IEEE Eng Med Biol Soc. (2010) 2010:6150–

3. doi: 10.1109/IEMBS.2010.5627780

25. te Lindert BHW, Van Someren EJW. Sleep estimates using

microelectromechanical systems (MEMS). Sleep. (2013) 36:781–

9. doi: 10.5665/sleep.2648

26. Perez-Pozuelo I, Zhai B, Palotti J, Mall R, Aupetit M, Garcia-Gomez JM, et

al. The future of sleep health: a data-driven revolution in sleep science and

medicine. NPJ Digital Med. (2020) 3:42. doi: 10.1038/s41746-020-0244-4

27. Haghayegh S, Khoshnevis S, Smolensky MH, Diller KR. Application of deep

learning to improve sleep scoring of wrist actigraphy. Sleep Med. (2020)

74:235–41. doi: 10.1016/j.sleep.2020.05.008

28. Fekedulegn D, Andrew ME, Shi M, Violanti JM, Knox S, Innes KE.

Actigraphy-based assessment of sleep parameters. Ann Work Exposures

Health. (2020) 64:350–67. doi: 10.1093/annweh/wxaa007

29. Rupp TL, Balkin TJ. Comparison of Motionlogger Watch

and Actiwatch actigraphs to polysomnography for sleep/wake

estimation in healthy young adults. Behav Res Methods. (2011)

43:1152–60. doi: 10.3758/s13428-011-0098-4

30. Zinkhan M, Berger K, Hense S, Nagel M, Obst A, Koch B, et al. Agreement

of different methods for assessing sleep characteristics: a comparison of two

actigraphs, wrist and hip placement, and self-report with polysomnography.

Sleep Med. (2014) 15:1107–14. doi: 10.1016/j.sleep.2014.04.015

31. Quante M, Kaplan ER, Cailler M, Rueschman M, Wang R, Weng J, et al.

Actigraphy-based sleep estimation in adolescents and adults: a comparison

with polysomnography using two scoring algorithms. Nat Sci Sleep. (2018)

10:13–20. doi: 10.2147/NSS.S151085

32. Baron KG, Duffecy J, Berendsen MA, Cheung Mason I, Lattie EG, Manalo

NC. Feeling validated yet? A scoping review of the use of consumer-targeted

wearable and mobile technology to measure and improve sleep. Sleep Med

Rev. (2018) 40:151–9. doi: 10.1016/j.smrv.2017.12.002

33. Boulpaep EL. Chapter 22 - the heart as a pump. In: Boron WF, Boulpaep

EL, editors. Medical Physiology. 3rd ed. Philadelphia, PA: Elsevier (2017).

p. 507–32.

34. Lederer JW. Chapter 21 - cardiac electrophysiology and the

electrocardiogram. In: Boron WF, Boulpaep EL, editors.Medical Physiology.

3rd ed. Philadelphia, PA: Elsevier (2017). p. 483–506.

35. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and

norms. Front Public Health. (2017) 5:258. doi: 10.3389/fpubh.2017.00258

36. Fatisson J, Oswald V, Lalonde F. Influence diagram of physiological and

environmental factors affecting heart rate variability: an extended literature

overview. Heart Int. (2016) 11:e32–40. doi: 10.5301/heartint.5000232

37. Allen J. Photoplethysmography and its application in clinical

physiological measurement. Physiol Measure. (2007) 28:R1–

39. doi: 10.1088/0967-3334/28/3/R01

38. Fukushima H, Kawanaka H, Bhuiyan MS, Oguri K. Estimating heart

rate using wrist-type photoplethysmography and acceleration sensor while

running 2012. In: Annual International Conference of the IEEE Engineering

in Medicine and Biology Society. Nagakute (2012). p. 2901–4.

39. Spierer DK, Rosen Z, Litman LL, Fujii K. Validation of

photoplethysmography as a method to detect heart rate

during rest and exercise. J Med Eng Technol. (2015) 39:264–

71. doi: 10.3109/03091902.2015.1047536

40. Maeda Y, Sekine M, Tamura T. The advantages of wearable

green reflected photoplethysmography. J Med Syst. (2011)

35:829–34. doi: 10.1007/s10916-010-9506-z

41. Vandenberk T, Stans J, Mortelmans C, Van Haelst R, Van Schelvergem

G, Pelckmans C, et al. Clinical validation of heart rate apps:

mixed-methods evaluation study. JMIR Mhealth Uhealth. (2017)

5:e129. doi: 10.2196/mhealth.7254

42. Yuda E, Shibata M, Ogata Y, Ueda N, Yambe T, Yoshizawa M, et al. Pulse

rate variability: a new biomarker, not a surrogate for heart rate variability. J

Physiol Anthropol. (2020) 39:21. doi: 10.1186/s40101-020-00233-x

43. Snyder F, Hobson JA, Morrison DF, Goldfrank F. Changes in respiration,

heart rate, and systolic blood pressure in human sleep. J Appl Physiol. (1964)

19:417–22. doi: 10.1152/jappl.1964.19.3.417

44. Gula LJ, Krahn AD, Skanes AC, Yee R, Klein GJ. Clinical relevance of

arrhythmias during sleep: guidance for clinicians. Heart. (2004) 90:347–

52. doi: 10.1136/hrt.2003.019323

45. Rossi VA, Stradling JR, KohlerM. Effects of obstructive sleep apnoea on heart

rhythm. Eur Respir J. (2013) 41:1439–51. doi: 10.1183/09031936.00128412

46. Busek P, Vanková J, Opavský J, Salinger J, Nevsímalová S. Spectral analysis of

the heart rate variability in sleep. Physiol Res. (2005) 54:369–76.

47. Xiao M, Yan H, Song J, Yang Y, Yang X. Sleep stages classification

based on heart rate variability and random forest. Biomed

Signal Process Control. (2013) 8:624–33. doi: 10.1016/j.bspc.2013.

06.001

48. Yuda E, Yoshida Y, Sasanabe R, Tanaka H, Shiomi T, Hayano J. Sleep

stage classification by a combination of actigraphic and heart rate

signals. J Low Power Electron Appl. (2017) 7:28. doi: 10.3390/jlpea704

0028

49. Aktaruzzaman M, Rivolta MW, Karmacharya R, Scarabottolo

N, Pugnetti L, Garegnani M, et al. Performance comparison

between wrist and chest actigraphy in combination with heart

rate variability for sleep classification. Comput Biol Med. (2017)

89:212–21. doi: 10.1016/j.compbiomed.2017.08.006

50. Vaughn BV, Quint SR, Messenheimer JA, Robertson KR. Heart period

variability in sleep. Electroencephalogr Clin Neurophysiol. (1995) 94:155–

62. doi: 10.1016/0013-4694(94)00270-U

Frontiers in Digital Health | www.frontiersin.org 18 August 2021 | Volume 3 | Article 721919

https://doi.org/10.1378/chest.10-1872
https://doi.org/10.1093/sleep/zsaa045
https://doi.org/10.1080/09291017209359298
https://doi.org/10.1016/S0091-6773(72)80220-7
https://doi.org/10.1016/0013-4694(78)90133-5
https://doi.org/10.1093/sleep/3.1.83
https://doi.org/10.5665/sleep.2548
https://doi.org/10.1093/sleep/5.4.389
https://doi.org/10.1093/sleep/30.10.1362
https://doi.org/10.1093/sleep/15.5.461
https://doi.org/10.1093/sleep/17.3.201
https://doi.org/10.1111/j.1365-2869.2008.00706.x
https://doi.org/10.5665/sleep.3142
https://doi.org/10.1016/S0031-9384(00)00355-3
https://doi.org/10.1016/S0165-0270(00)00364-2
https://doi.org/10.1109/IEMBS.2010.5627780
https://doi.org/10.5665/sleep.2648
https://doi.org/10.1038/s41746-020-0244-4
https://doi.org/10.1016/j.sleep.2020.05.008
https://doi.org/10.1093/annweh/wxaa007
https://doi.org/10.3758/s13428-011-0098-4
https://doi.org/10.1016/j.sleep.2014.04.015
https://doi.org/10.2147/NSS.S151085
https://doi.org/10.1016/j.smrv.2017.12.002
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.5301/heartint.5000232
https://doi.org/10.1088/0967-3334/28/3/R01
https://doi.org/10.3109/03091902.2015.1047536
https://doi.org/10.1007/s10916-010-9506-z
https://doi.org/10.2196/mhealth.7254
https://doi.org/10.1186/s40101-020-00233-x
https://doi.org/10.1152/jappl.1964.19.3.417
https://doi.org/10.1136/hrt.2003.019323
https://doi.org/10.1183/09031936.00128412
https://doi.org/10.1016/j.bspc.2013.06.001
https://doi.org/10.3390/jlpea7040028
https://doi.org/10.1016/j.compbiomed.2017.08.006
https://doi.org/10.1016/0013-4694(94)00270-U
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Lujan et al. Review of Multisensory Wearable Technology

51. Bonnet MH, Arand DL. Heart rate variability: sleep stage, time of night, and

arousal influences. Electroencephalogr Clin Neurophysiol. (1997) 102:390–

6. doi: 10.1016/S0921-884X(96)96070-1

52. Fitbit Technology. Fitbit (2021). Available online at: https://www.fitbit.com/

global/us/technology

53. Rezaei N, Grandner MA. Changes in sleep duration, timing, and variability

during the COVID-19 pandemic: large-scale Fitbit data from 6 major US

cities. Sleep Health. (2021) 7:303–313. doi: 10.1016/j.sleh.2021.02.008

54. Montgomery-Downs HE, Insana SP, Bond JA. Movement

toward a novel activity monitoring device. Sleep Breath. (2012)

16:913–7. doi: 10.1007/s11325-011-0585-y

55. de Zambotti M, Baker FC, Willoughby AR, Godino JG, Wing D, Patrick

K, et al. Measures of sleep and cardiac functioning during sleep using

a multi-sensory commercially-available wristband in adolescents. Physiol

Behav. (2016) 158:143–9. doi: 10.1016/j.physbeh.2016.03.006

56. de Zambotti M, Goldstone A, Claudatos S, Colrain IM, Baker

FC. A validation study of Fitbit Charge 2 compared with

polysomnography in adults. Chronobiol Int. (2018) 35:465–

76. doi: 10.1080/07420528.2017.1413578

57. Beattie Z, Oyang Y, Statan A, Ghoreyshi A, Pantelopoulos A, Russell

A, et al. Estimation of sleep stages in a healthy adult population from

optical plethysmography and accelerometer signals. Physiol Measure. (2017)

38:1968–79. doi: 10.1088/1361-6579/aa9047

58. Chinoy ED, Cuellar JA, Huwa KE, Jameson JT, Watson CH, Bessman SC,

et al. Performance of seven consumer sleep-tracking devices compared with

polysomnography. Sleep. (2020) 44:1–16. doi: 10.1093/sleep/zsaa291

59. Healthcare - Apple Watch. Apple (2021). Available online at: https://www.

apple.com/healthcare/apple-watch/

60. Walch O, Huang Y, Forger D, Goldstein C. Sleep stage prediction with

raw acceleration and photoplethysmography heart rate data derived from a

consumer wearable device. Sleep. (2019) 42:1–19. doi: 10.1093/sleep/zsz180

61. Life With Oura - Oura Ring. Oura (2021). Available online at: https://

ouraring.com/life-with-oura

62. Longmore SK, Lui GY, Naik G, Breen PP, Jalaludin B, Gargiulo GD.

A comparison of reflective photoplethysmography for detection of heart

rate, blood oxygen saturation, and respiration rate at various anatomical

locations. Sensors. (2019) 19:1–19. doi: 10.3390/s19081874

63. de Zambotti M, Rosas L, Colrain IM, Baker FC. The sleep of the ring:

comparison of the OURA sleep tracker against polysomnography. Behav

Sleep Med. (2019) 17:124–36. doi: 10.1080/15402002.2017.1300587

64. Zhai B, Perez-Pozuelo I, Clifton EAD, Palotti J, Guan Y. Making sense of

sleep: multimodal sleep stage classification in a large, diverse population

using movement and cardiac sensing. Proc ACM Interact Mob Wearable

Ubiquitous Technol. (2020) 4:67. doi: 10.1145/3397325

65. Ong AA, Gillespie MB. Overview of smartphone applications for

sleep analysis. World J Otorhinolaryngol Head Neck Surg. (2016) 2:45–

9. doi: 10.1016/j.wjorl.2016.02.001

66. Ko P-RT, Kientz JA, Choe EK, Kay M, Landis CA, Watson NF. Consumer

sleep technologies: a review of the landscape. J Clin Sleep Med. (2015)

11:1455–61. doi: 10.5664/jcsm.5288

67. Patel P, Kim JY, Brooks LJ. Accuracy of a smartphone

application in estimating sleep in children. Sleep Breath. (2017)

21:505–11. doi: 10.1007/s11325-016-1425-x

68. Bhat S, Ferraris A, Gupta D, Mozafarian M, DeBari VA, Gushway-Henry

N, et al. Is There a clinical role for smartphone sleep apps? Comparison of

sleep cycle detection by a smartphone application to polysomnography. J

Clin Sleep Med. (2015) 11:709–15. doi: 10.5664/jcsm.4840

69. Brink M, Müller CH, Schierz C. Contact-free measurement of heart rate,

respiration rate, and body movements during sleep. Behav Res Methods.

(2006) 38:511–21. doi: 10.3758/BF03192806

70. Beddit Sleep Monitor. Beddit (2021). Available online at: https://www.beddit.

com

71. Tuominen J, Peltola K, Saaresranta T, Valli K. Sleep parameter assessment

accuracy of a consumer home sleep monitoring ballistocardiograph beddit

sleep tracker: a validation study. J Clin Sleep Med. (2019) 15:483–

7. doi: 10.5664/jcsm.7682

72. Schade Margeaux M, Bauer Christopher E, Murray Billie R, Gahan L,

Doheny Emer P, Kilroy H, et al. Sleep validity of a non-contact bedside

movement and respiration-sensing device. J Clin Sleep Med. (2019) 15:1051–

61. doi: 10.5664/jcsm.7892

73. Sleep Science Tracking - SleepScore. SleepScore (2021). Available online

at: https://www.sleepscore.com/the-science/#science

74. Toften S, Pallesen S, Hrozanova M, Moen F, Grønli J. Validation of sleep

stage classification using non-contact radar technology andmachine learning

(Somnofy). Sleep Med. (2020) 75:54–61. doi: 10.1016/j.sleep.2020.02.022

75. Kelly JM, Strecker RE, Bianchi MT. Recent developments

in home sleep-monitoring devices. ISRN Neurol. (2012)

2012:768794. doi: 10.5402/2012/768794

76. Kortelainen JM, Mendez MO, Bianchi AM, Matteucci M,

Cerutti S. Sleep staging based on signals acquired through

bed sensor. IEEE Trans Information Technol Biomed. (2010)

14:776–85. doi: 10.1109/TITB.2010.2044797

77. Tal A, Shinar Z, Shaki D, Codish S, Goldbart A. Validation of contact-free

sleep monitoring device with comparison to polysomnography. J Clin Sleep

Med. (2017) 13:517–22. doi: 10.5664/jcsm.6514

78. Nakamura T, Alqurashi YD, Morrell MJ, Mandic DP. Hearables: automatic

overnight sleepmonitoring with standardized in-ear EEG sensor. IEEE Trans

Biomed Eng. (2020) 67:203–12. doi: 10.1109/TBME.2019.2911423

79. Arnal PJ, Thorey V, Debellemaniere E, Ballard ME, Bou Hernandez A,

Guillot A, et al. The Dreem Headband compared to polysomnography for

electroencephalographic signal acquisition and sleep staging. Sleep. (2020)

43:1–13. doi: 10.1093/sleep/zsaa097

80. Gradl S, Leutheuser H, Kugler P, Biermann T, Kreil S, Kornhuber J, et al.

editors. Somnography using unobtrusive motion sensors and Android-based

mobile phones 2013. In: 35th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC). Erlangen (2013).

81. Blackwell T, Yaffe K, Ancoli-Israel S, Schneider JL, Cauley JA, Hillier TA, et

al. Poor sleep is associated with impaired cognitive function in older women:

the study of osteoporotic fractures. J Gerontol A Biol Sci Med Sci. (2006)

61:405–10. doi: 10.1093/gerona/61.4.405

82. Stone KL, Ancoli-Israel S, Blackwell T, Ensrud KE, Cauley JA, Redline S, et al.

Actigraphy-measured sleep characteristics and risk of falls in older women.

Arch Internal Med. (2008) 168:1768–75. doi: 10.1001/archinte.168.16.1768

83. Lim ASP, Kowgier M, Yu L, Buchman AS, Bennett DA. Sleep fragmentation

and the risk of incident alzheimer’s disease and cognitive decline in older

persons. Sleep. (2013) 36:1027–32. doi: 10.5665/sleep.2802

84. Baron KG, Reid KJ, Malkani RG, Kang J, Zee PC. Sleep variability

among older adults with insomnia: associations with sleep quality

and cardiometabolic disease risk. Behav Sleep Med. (2017) 15:144–

57. doi: 10.1080/15402002.2015.1120200

85. Sadeh A, Acebo C, Seifer R, Aytur S, Carskadon MA. Activity-based

assessment of sleep-wake patterns during the 1st year of life. Infant Behav

Dev. (1995) 18:329–37. doi: 10.1016/0163-6383(95)90021-7

86. So K, Adamson TM, Horne RS. The use of actigraphy for assessment of the

development of sleep/wake patterns in infants during the first 12 months of

life. J Sleep Res. (2007) 16:181–7. doi: 10.1111/j.1365-2869.2007.00582.x

87. Acebo C, Sadeh A, Seifer R, Tzischinsky O, Hafer A, Carskadon MA.

Sleep/wake patterns derived from activity monitoring and maternal

report for healthy 1- to 5-year-old children. Sleep. (2005) 28:1568–

77. doi: 10.1093/sleep/28.12.1568

88. Sadeh A, Raviv A, Gruber R. Sleep patterns and sleep

disruptions in school-age children. Dev Psychol. (2000) 36:291–

301. doi: 10.1037/0012-1649.36.3.291

89. Carskadon MA, Wolfson AR, Acebo C, Tzischinsky O, Seifer R. Adolescent

sleep patterns, circadian timing, and sleepiness at a transition to early school

days. Sleep. (1998) 21:871–81. doi: 10.1093/sleep/21.8.871

90. Vargas I, Garland SN, Kloss JD, Perlis ML. Chapter 28 - insomnia and

psychiatric disorders. In: Grandner MA, editor. Sleep and Health. Tucson,

AZ: Academic Press (2019) p. 373–89.

91. Brooks JO III, Friedman L, Bliwise DL, Yesavage JA. Use of the wrist

actigraph to study insomnia in older adults. Sleep. (1993) 16:151–

5. doi: 10.1093/sleep/16.2.151

92. Friedman L, Benson K, Noda A, Zarcone V, Wicks DA, O’Connell K,

et al. An actigraphic comparison of sleep restriction and sleep hygiene

treatments for insomnia in older adults. J Geriatr Psychiatry Neurol. (2000)

13:17–27. doi: 10.1177/089198870001300103

Frontiers in Digital Health | www.frontiersin.org 19 August 2021 | Volume 3 | Article 721919

https://doi.org/10.1016/S0921-884X(96)96070-1
https://www.fitbit.com/global/us/technology
https://www.fitbit.com/global/us/technology
https://doi.org/10.1016/j.sleh.2021.02.008
https://doi.org/10.1007/s11325-011-0585-y
https://doi.org/10.1016/j.physbeh.2016.03.006
https://doi.org/10.1080/07420528.2017.1413578
https://doi.org/10.1088/1361-6579/aa9047
https://doi.org/10.1093/sleep/zsaa291
https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://doi.org/10.1093/sleep/zsz180
https://ouraring.com/life-with-oura
https://ouraring.com/life-with-oura
https://doi.org/10.3390/s19081874
https://doi.org/10.1080/15402002.2017.1300587
https://doi.org/10.1145/3397325
https://doi.org/10.1016/j.wjorl.2016.02.001
https://doi.org/10.5664/jcsm.5288
https://doi.org/10.1007/s11325-016-1425-x
https://doi.org/10.5664/jcsm.4840
https://doi.org/10.3758/BF03192806
https://www.beddit.com
https://www.beddit.com
https://doi.org/10.5664/jcsm.7682
https://doi.org/10.5664/jcsm.7892
https://www.sleepscore.com/the-science/#science
https://doi.org/10.1016/j.sleep.2020.02.022
https://doi.org/10.5402/2012/768794
https://doi.org/10.1109/TITB.2010.2044797
https://doi.org/10.5664/jcsm.6514
https://doi.org/10.1109/TBME.2019.2911423
https://doi.org/10.1093/sleep/zsaa097
https://doi.org/10.1093/gerona/61.4.405
https://doi.org/10.1001/archinte.168.16.1768
https://doi.org/10.5665/sleep.2802
https://doi.org/10.1080/15402002.2015.1120200
https://doi.org/10.1016/0163-6383(95)90021-7
https://doi.org/10.1111/j.1365-2869.2007.00582.x
https://doi.org/10.1093/sleep/28.12.1568
https://doi.org/10.1037/0012-1649.36.3.291
https://doi.org/10.1093/sleep/21.8.871
https://doi.org/10.1093/sleep/16.2.151
https://doi.org/10.1177/089198870001300103
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Lujan et al. Review of Multisensory Wearable Technology

93. Teicher MH. Actigraphy and motion analysis: new tools for psychiatry.Harv

Rev Psychiatry. (1995) 3:18–35. doi: 10.3109/10673229509017161

94. Kupfer DJ, Weiss BL, Foster FG, Detre TP, Delgado J, McPartland R.

Psychomotor activity in affective states. Arch General Psychiatry. (1974)

30:765–8. doi: 10.1001/archpsyc.1974.01760120029005

95. Siegmund R, Tittel M, Schiefenhövel W. Activity monitoring of the

inhabitants in tauwema, a traditional melanesian village: rest/activity

behaviour of trobriand islanders (papua new Guinea). Biol Rhythm Res.

(1998) 29:49–59. doi: 10.1076/brhm.29.1.49.3045

96. Pollak CP, Tryon WW, Nagaraja H, Dzwonczyk R. How accurately does

wrist actigraphy identify the states of sleep and wakefulness? Sleep. (2001)

24:957–65. doi: 10.1093/sleep/24.8.957

97. Cheng P, Walch O, Huang Y, Mayer C, Sagong C, Cuamatzi Castelan A, et al.

Predicting circadian misalignment with wearable technology: validation of

wrist-worn actigraphy and photometry in night shift workers. Sleep. (2020)

44:1–8. doi: 10.1093/sleep/zsaa180

98. Levenson JC, Kay DB, Buysse DJ. The pathophysiology of insomnia. Chest.

(2015) 147:1179–92. doi: 10.1378/chest.14-1617

99. Lichstein KL, Stone KC, Donaldson J, Nau SD, Soeffing JP, Murray

D, et al. Actigraphy validation with insomnia. Sleep. (2006) 29:232–9.

doi: 10.1093/sleep/29.2.232

100. Hauri PJ, Wisbey J. Wrist actigraphy in insomnia. Sleep. (1992) 15:293–

301. doi: 10.1093/sleep/15.4.293

101. Kang S-G, Kang JM, Ko K-P, Park S-C, Mariani S, Weng J.

Validity of a commercial wearable sleep tracker in adult insomnia

disorder patients and good sleepers. J Psychosomatic Res. (2017)

97:38–44. doi: 10.1016/j.jpsychores.2017.03.009

102. Fonseca P,Weysen T, GoelemaMS,Møst EIS, RadhaM, Lunsingh Scheurleer

C, et al. Validation of photoplethysmography-based sleep staging compared

with polysomnography in healthy middle-aged adults. Sleep. (2017) 40:1–

10. doi: 10.1093/sleep/zsx097

103. Littner M, Kushida CA, Anderson WM, Bailey D, Berry RB, Davila DG,

et al. Practice parameters for the role of actigraphy in the study of

sleep and circadian rhythms: an update for 2002. Sleep. (2003) 26:337–

41. doi: 10.1093/sleep/26.3.337

104. Middelkoop HA, Knuistingh Neven A, van Hilten JJ, Ruwhof CW,

Kamphuisen HA. Wrist actigraphic assessment of sleep in 116 community

based subjects suspected of obstructive sleep apnoea syndrome. Thorax.

(1995) 50:284–9. doi: 10.1136/thx.50.3.284

105. Moreno-Pino F, Porras-Segovia A, López-Esteban P, Artés A, Baca-García E.

Validation of Fitbit charge 2 and Fitbit Alta HR against polysomnography

for assessing sleep in adults with obstructive sleep Apnea. J Clin Sleep Med.

(2019) 15:1645–53. doi: 10.5664/jcsm.8032

106. Bent B, Goldstein BA, Kibbe WA, Dunn JP. Investigating sources of

inaccuracy in wearable optical heart rate sensors. NPJ Digital Med. (2020)

3:18. doi: 10.1038/s41746-020-0226-6

107. Colvonen PJ, DeYoung PN, Bosompra N-OA, Owens RL. Limiting racial

disparities and bias for wearable devices in health science research. Sleep.

(2020) 43:1–3. doi: 10.1093/sleep/zsaa159

108. Jackson CL, Redline S, Emmons KM. Sleep as a potential fundamental

contributor to disparities in cardiovascular health. Annu Rev Public Health.

(2015) 36:417–40. doi: 10.1146/annurev-publhealth-031914-122838

109. Grandner MA, Williams NJ, Knutson KL, Roberts D, Jean-Louis G. Sleep

disparity, race/ethnicity, and socioeconomic position. Sleep Med. (2016)

18:7–18. doi: 10.1016/j.sleep.2015.01.020

110. Caldwell S. Apple Watch, Heart Rate Sensors, and Wrist Tattoos: What You

Need to Know!. iMore (2015). Available online at: https://www.imore.com/

heres-why-apple-watch-does-not-play-nice-with-some-tattoos

111. Get the Most Accurate Measurements Using Your Apple Watch. Apple (2019).

Available online at: https://support.apple.com/en-us/HT207941#heartrate

112. Depner CM, Cheng PC, Devine JK, Khosla S, de Zambotti M, Robillard

R, et al. Wearable technologies for developing sleep and circadian

biomarkers: a summary of workshop discussions. Sleep. (2019) 43:1–

13. doi: 10.1093/sleep/zsz254

113. Grandner MA, Lujan MR, Ghani SB. Sleep tracking technology

in scientific research: looking to the future. Sleep. (2021) 44:1–3.

doi: 10.1093/sleep/zsab071

114. Menghini L, Cellini N, Goldstone A, Baker FC, de Zambotti M. A

standardized framework for testing the performance of sleep-tracking

technology: step-by-step guidelines and open-source code. Sleep. (2021)

44:1–12. doi: 10.1093/sleep/zsaa170

115. Goldstein CA, Depner C. Miles to go before we sleep. . . a step toward

transparent evaluation of consumer sleep tracking devices. Sleep. (2021)

44:1–3. doi: 10.1093/sleep/zsab020

116. Boulpaep EL. Chapter 23 - regulation of arterial pressure and cardiac output.

In: BoronWF, Boulpaep EL, editors.Medical Physiology, 3rd ed. Philadelphia,

PA: Elsevier (2017). p. 533–55.

117. Strohl KP, Altose MD. Oxygen saturation during breath-holding and during

Apneas in sleep. Chest. (1984) 85:181–6. doi: 10.1378/chest.85.2.181

118. Ryan T, Mlynczak S, Erickson T, Man SF, Man GC. Oxygen consumption

during sleep: influence of sleep stage and time of night. Sleep.

(1989) 12:201–10.

119. Sano A, Picard RW, Stickgold R. Quantitative analysis of wrist

electrodermal activity during sleep. Int J Psychophysiol. (2014)

94:382–9. doi: 10.1016/j.ijpsycho.2014.09.011

120. Herlan A, Ottenbacher J, Schneider J, Riemann D, Feige B.

Electrodermal activity patterns in sleep stages and their utility for

sleep versus wake classification. Journal of Sleep Research. (2019)

28:e12694. doi: 10.1111/jsr.12694

121. Barrett J, Lack L, Morris M. The sleep-evoked decrease of body temperature.

Sleep. (1993) 16:93–9.

122. Murphy PJ, Campbell SS. Nighttime drop in body temperature:

a physiological trigger for sleep onset? Sleep. (1997) 20:505–

11. doi: 10.1093/sleep/20.7.505

123. Kräuchi K, Cajochen C, Werth E, Wirz-Justice A. Warm feet promote the

rapid onset of sleep. Nature. (1999) 401:36–7. doi: 10.1038/43366

124. Jean-Louis G, Kripke DF, Ancoli-Israel S, Klauber MR, Sepulveda RS.

Sleep duration, illumination, and activity patterns in a population

sample: effects of gender and ethnicity. Biol Psychiatry. (2000) 47:921–

7. doi: 10.1016/S0006-3223(99)00169-9

125. Dzvonik ML, Kripke DF, Klauber M, Ancoli-Israel S. Body

position changes and periodic movements in sleep. Sleep. (1986)

9:484–91. doi: 10.1093/sleep/9.4.484

126. Leproult R, Copinschi G, Buxton O, Van Cauter E. Sleep loss results in an

elevation of cortisol levels the next evening. Sleep. (1997) 20:865–70.

127. Kim TW, Jeong J-H, Hong S-C. The impact of sleep and circadian

disturbance on hormones and metabolism. Int J Endocrinol. (2015)

2015:591729. doi: 10.1155/2015/591729

128. Haack M, Sanchez E, Mullington JM. Elevated inflammatory

markers in response to prolonged sleep restriction are associated

with increased pain experience in healthy volunteers. Sleep. (2007)

30:1145–52. doi: 10.1093/sleep/30.9.1145

129. Jagannath B, Lin KC, Pali M, Sankhala D, Muthukumar S, Prasad S. A sweat-

based wearable enabling technology for real-time monitoring of IL-1β and

CRP as potential markers for inflammatory bowel disease. Inflamm Bowel

Dis. (2020) 26:1533–42. doi: 10.1093/ibd/izaa191

Conflict of Interest: MG reports grants in the past 12 months from Jazz

Pharmaceuticals, Kemin Foods, and CeraZ Technologies. He has received

consulting fees from Fitbit, Casper, Athleta, Natrol, and Idorsia.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Lujan, Perez-Pozuelo and Grandner. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Digital Health | www.frontiersin.org 20 August 2021 | Volume 3 | Article 721919

https://doi.org/10.3109/10673229509017161
https://doi.org/10.1001/archpsyc.1974.01760120029005
https://doi.org/10.1076/brhm.29.1.49.3045
https://doi.org/10.1093/sleep/24.8.957
https://doi.org/10.1093/sleep/zsaa180
https://doi.org/10.1378/chest.14-1617
https://doi.org/10.1093/sleep/29.2.232
https://doi.org/10.1093/sleep/15.4.293
https://doi.org/10.1016/j.jpsychores.2017.03.009
https://doi.org/10.1093/sleep/zsx097
https://doi.org/10.1093/sleep/26.3.337
https://doi.org/10.1136/thx.50.3.284
https://doi.org/10.5664/jcsm.8032
https://doi.org/10.1038/s41746-020-0226-6
https://doi.org/10.1093/sleep/zsaa159
https://doi.org/10.1146/annurev-publhealth-031914-122838
https://doi.org/10.1016/j.sleep.2015.01.020
https://www.imore.com/heres-why-apple-watch-does-not-play-nice-with-some-tattoos
https://www.imore.com/heres-why-apple-watch-does-not-play-nice-with-some-tattoos
https://support.apple.com/en-us/HT207941#heartrate
https://doi.org/10.1093/sleep/zsz254
https://doi.org/10.1093/sleep/zsab071
https://doi.org/10.1093/sleep/zsaa170
https://doi.org/10.1093/sleep/zsab020
https://doi.org/10.1378/chest.85.2.181
https://doi.org/10.1016/j.ijpsycho.2014.09.011
https://doi.org/10.1111/jsr.12694
https://doi.org/10.1093/sleep/20.7.505
https://doi.org/10.1038/43366
https://doi.org/10.1016/S0006-3223(99)00169-9
https://doi.org/10.1093/sleep/9.4.484
https://doi.org/10.1155/2015/591729
https://doi.org/10.1093/sleep/30.9.1145
https://doi.org/10.1093/ibd/izaa191
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles

	Past, Present, and Future of Multisensory Wearable Technology to Monitor Sleep and Circadian Rhythms
	Introduction
	History of Actigraphic Sleep Measurement
	Overview of Standard Actigraphic Devices
	Validation of Standard Devices Against PSG

	Overview of Next-Generation Wearables
	Anatomical and Physiologic Basis of Using HR
	Heart Rate Variability
	Wearable Measurement of HR and HRV
	Correlation of HR and HRV to Sleep and Sleep Staging
	Validation of Devices That Use Heart Rate
	Fitbit
	Apple Watch
	Oura Ring

	Comparisons to Standard Actigraphy

	Other Categories of Consumer Sleep Technology
	Phone-Based Accelerometers
	Cardioballistic Sensors
	Beside Sensors
	In-bed Sensors
	Wearable/Portable EEG Devices
	Comparisons to Wearable Actigraphy Devices

	Applications Of Actigraphy
	Epidemiologic Studies
	Across the Lifespan
	In Behavioral Interventions
	For Circadian Research

	Limitations in Actigraphic Sleep Measurement
	Difficulties With Insomnia
	Difficulties With Sleep Staging
	Difficulties With Sleep Apnea and Sleep Fragmentation
	Limitations With Different Types of Skin

	Future Directions
	Concept of Validation
	Ceiling Effect in Accuracy
	New Sensing Approaches and Novel Biomarkers for Estimating Sleep/Wake
	Oxygen Saturation and Consumption
	Skin Conductance and Temperature
	Ambient Light and Body Position
	Inflammatory Markers and Hormone Secretion


	Conclusions
	Author Contributions
	Funding
	Acknowledgments
	References


