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Abstract

Glioma-derived cell-free DNA (cfDNA) is challenging to detect using
liquid biopsy because quantities in body fluids are low. We deter-
mined the glioma-derived DNA fraction in cerebrospinal fluid (CSF),
plasma, and urine samples from patients using sequencing of
personalized capture panels guided by analysis of matched tumor
biopsies. By sequencing cfDNA across thousands of mutations, iden-
tified individually in each patient’s tumor, we detected tumor-
derived DNA in the majority of CSF (7/8), plasma (10/12), and urine
samples (10/16), with a median tumor fraction of 6.4 × 10�3, 3.1 ×
10�5, and 4.7 × 10�5, respectively. We identified a shift in the size
distribution of tumor-derived cfDNA fragments in these body fluids.
We further analyzed cfDNA fragment sizes using whole-genome
sequencing, in urine samples from 35 glioma patients, 27 individuals
with non-malignant brain disorders, and 26 healthy individuals.
cfDNA in urine of glioma patients was significantly more frag-
mented compared to urine from patients with non-malignant brain
disorders (P = 1.7 × 10�2) and healthy individuals (P = 5.2 × 10�9).
Machine learning models integrating fragment length could dif-
ferentiate urine samples from glioma patients (AUC = 0.80–0.91)
suggesting possibilities for truly non-invasive cancer detection.
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Introduction

Primary brain tumors, which are diagnosed in over 260,000 patients

worldwide annually (Wesseling & Capper, 2018), have a poor prog-

nosis and lack effective treatments. Better methods for early detec-

tion and identification of tumor recurrence may enable the

development of novel treatment strategies. The development of new

treatments would also benefit from minimally invasive methods that

characterize the evolving glioma genome (Brennan et al, 2013;

Westphal & Lamszus, 2015). DNA analysis in liquid biopsies has the

potential to replace or supplement current imaging-based monitor-

ing techniques, which have limited effectiveness, and to provide the

genomic information required for precision medicine while reducing

the morbidity associated with repeated biopsy (Mouliere et al, 2014;

Kros et al, 2015; Westphal & Lamszus, 2015). However, cell-free

tumor DNA (ctDNA) is extremely challenging to detect in the

plasma of patients with brain tumors as its fractional concentration

(mutant allele fractions, MAF) is low and appears to be in the same

range as that observed in plasma of patients with early-stage
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carcinomas (Bettegowda et al, 2014; Zill et al, 2018). Reported

detection rates for ctDNA in plasma of glioma patients are typically

around 15–30% (Bettegowda et al, 2014). Although higher rates of

detection have been claimed, the high frequency of alterations

resulting from clonal hematopoiesis may confound these results

(Zill et al, 2018; Pan et al, 2019; Piccioni et al, 2019). In addition

to plasma, ctDNA has been detected in urine for some cancer

types, however, this has been limited largely to urothelial cancers,

or patients with advanced cancers and high plasma tumor fraction

(Husain et al, 2017; Patel et al, 2017; Bosschieter et al, 2018;

Dudley et al, 2019; Hentschel et al, 2020). Cerebrospinal fluid

(CSF) has been proposed as an alternative medium for brain tumor

ctDNA analysis (De Mattos-Arruda et al, 2015; Pan et al, 2015,

2019; Wang et al, 2015; Pentsova et al, 2016; Mouliere et al,

2018b; Seoane et al, 2019), however, detection sensitivity has

remained poor in previous analyses (CSF detected in 42/85

patients, 49.4%) (Miller et al, 2019). In addition, CSF sampling via

lumbar puncture is an invasive and painful procedure for patients

and requires skilled medical staff, which severely limits its use for

research, diagnosis, and repeat sampling (Hasbun et al, 2001;

Engelborghs et al, 2017).

Here, using multi-region tumor analysis and tumor-guided deep

sequencing in body fluids, we detected and quantified tumor-

derived DNA in the majority of urine, plasma, and CSF samples

from primary brain tumor patients. This allowed us to measure the

concentrations of tumor-derived cfDNA in those body fluids, with a

sensitivity not previously attained. Importantly, when using this

sensitive technique, we found that detection rate of tumor-derived

DNA in urine or plasma was equivalent to that in CSF, despite a

higher relative tumor fraction in the latter. Thus, for some applica-

tions, the use of invasive CSF sampling could be replaced by

sampling of other body fluids. Based on previous data demonstrat-

ing the utility of cell-free DNA (cfDNA) fragmentation patterns

(Mouliere et al, 2018a; Mouliere et al, 2018b; van der Pol &

Mouliere, 2019), we used a sequencing approach that preserves the

structural properties of ctDNA. This allowed us to determine the

size profile of mutant ctDNA in matched CSF, plasma, and urine

samples from glioma patients. Analyzing urine fragmentation in

samples from five patients with low-grade glioma (LGG) and 30

with high-grade glioma (HGG), and 53 individuals without glioma,

we demonstrated that urine samples from glioma patients could be

identified by analyzing specific fragmentation patterns from shallow

whole-genome sequencing (sWGS, < 1× coverage) data using

machine learning classifiers.

Results

We recruited 35 glioma patients (30 HGG, five LGG). Among the

five LGG, three were diffuse astrocytoma, one was an oligoden-

droglioma and one a pilocytic astrocytoma. Among the 30 HGG,

29 were glioblastomas (GBM) and one was an anaplastic oligo-

dendroglioma (AO; Table EV1). In addition, we collected urine

samples from 26 healthy volunteers and 27 patients with other

pathologies of the brain or central nervous system (CNS; Fig 1

and Table 1). Body fluid samples were analyzed using two

sequencing-based approaches: patient-specific hybrid-capture

panels and sWGS.

Sensitive detection and quantification of tumor DNA using
patient-specific panels

First, we developed a tumor-guided sequencing assay to determine

whether ctDNA can be detected in the bio-fluids of eight patients,

including seven with primary GBM and one with AO. From these

eight patients, we analyzed 78 samples, including 34 tumor subparts

(3–6 per patient), buffy coat, CSF, plasma, and urine (Fig 1 and

Table EV1, Table EV2). Initially, DNA from 34 tumor subparts was

analyzed individually for each tumor specimen by whole exome

sequencing (WES) at an average of 160× coverage, resulting in iden-

tification of 5,777 single nucleotide variants (SNV) at an average of

723 SNV per patient (range 266–1,105; Dataset EV1 and

Appendix Fig S1). Mutations were initially called by analysis of indi-

vidual tumor subparts, compared to a non-tumor (buffy coat)

sample from the same individual. Next, we merged reads across

tumor subparts, thus increasing total sequencing depth, and improv-

ing sensitivity for the detection of low abundance mutations. Merg-

ing data from the tumor subparts resulted in the detection of 5,517

SNV at an average of 689 SNV per patient (range 215–1,108, Dataset

EV2). An average of 21% of the detected SNV were shared between

the two mutation calling approaches. 4,015 SNV (54%) were

detected only by analysis of the merged data. SNV from both WES

approaches were combined for designing the hybrid-capture

sequencing panels (7,336 SNV in total after removing overlapping

loci). In addition to this tumor-specific list of SNV, the panels were

supplemented by comprehensive coverage of the 52 most frequently

mutated genes in glioma (Brennan et al, 2013).

Sequencing data from the body fluids were analyzed using

INVAR (INtegration of VAriants Reads), a recently developed pipe-

line (Wan et al, 2020) that combines locus-based noise filtering,

strand selection, and enrichment of mutant fragments using biologi-

cal characteristics of ctDNA (Appendix Figs S2 and S3). The analyti-

cal sensitivity and specificity of INVAR have been defined

previously (Wan et al, 2020). Using hybrid-capture sequencing

panels, we aimed for > 600× coverage for plasma and urine sample

Figure 1. Study design.

Schematic of ctDNA detection in matched CSF, plasma and urine samples from
HGG and LGG patients using INVAR and/or sWGS. CNS, central nervous system;
CSF, cerebrospinal fluid; HGG, high grade glioma; LGG, low grade glioma;
sWGS, shallow whole-genome sequencing.

2 of 14 EMBO Molecular Medicine 13: e12881 | 2021 ª 2021 The Authors

EMBO Molecular Medicine Florent Mouliere et al



sequencing, and > 100× coverage for CSF as its tumor-derived

mutant allele fraction has previously been reported to be much

higher (Mouliere et al, 2018b; Miller et al, 2019) (Fig 2A and Dataset

EV3). After filtering of the tumor mutations by the INVAR algo-

rithm, sequencing data covering 6,383 unique tumor-derived muta-

tion loci were retained for further analysis (Fig 2B). After applying

the capture panel to the body fluids, we observed 366 patient-

specific tumor-derived mutations in CSF, 31 in plasma and 67 in

urine samples.

Across all fluid samples analyzed (including baseline pre-

treatment, post-surgery and follow-up) ctDNA was detected using

INVAR in 7/8 CSF samples, 10/12 plasma samples, and 10/16 urine

samples (Fig 2C). For three patients, samples of both urine and

plasma were obtained 6months following surgery in addition to the

baseline samples collected immediately prior to surgery (Table

EV2). The ctDNA tumor fraction was estimated as an integrated

mutant allele fractions (IMAF), which indicated for each sample the

average fraction of reads covering target loci that carried a mutant

allele that was identified in the same patient’s tumor specimens.

The mean tumor-derived fraction (IMAF) was 3.1 × 10�5 for plasma,

4.72 × 10�5 for urine, and 6.4 × 10�3 for CSF (Fig 2C). In CSF, more

mutations were detected and with a greater number of mutant

reads, than in matched plasma and urine samples (Fig 2D). In the

fluid samples collected pre-surgery, ctDNA was detected using

INVAR in CSF from 7/8 patients, plasma from 7/8 patients, and

urine from 6/8 patients (Fig 2E). IMAFs were on average 243-fold

lower in plasma samples compared to matched CSF samples (ratios

ranged from 9-fold to 1,343-fold) and 389-fold lower in urine

samples compared to matched CSF samples (ratios ranged from 50-

fold to 834-fold). Tumor-derived DNA was detected 6months post-

surgery in both plasma and urine samples for 2/3 patients (Table

EV2). Contrast agent-enhanced T1-weighted MRI demonstrated that

the two patients in which ctDNA was detected 6months after

surgery had residual or recurrent disease, whereas the patient with

no detected ctDNA had no evidence of recurrence (Fig 2F).

Of the 52 genes frequently mutated in glioma, mutations were

detected in 41/52 genes in tumor tissue DNA, 14/52 genes in CSF,

6/52 genes in plasma, and 1/52 genes in urine samples (Fig 3A). In

the analysis of body fluid samples in these 52 genes, we detected

mutation signals in plasma samples from 4/8 cases, which was

equivalent to that detected in CSF (4/8 cases, with signal detected in

both fluids in three patients). Conversely, mutant signal in these

genes was detected in the urine of only 1/8 cases (who also had

signal in plasma). No patient had mutant signal detected in all three

fluids. Among the tumor-specific mutations detected in bio-fluids,

several mutations in genes frequently altered in gliomas were

detected (Fig 3A).

Detection of ctDNA in bio-fluids is thought to be affected by

intratumoral genomic heterogeneity (De Mattos-Arruda et al, 2015).

In our dataset, 859 mutations out of 6,383 that passed INVAR filters

(13.5%) were shared across multiple tumor subparts in tumor tissue

DNA (Fig 3B and Dataset EV3). In CSF, among the 366 mutations

detected pre-surgery, 294 of them (80.3%) originated from muta-

tions shared across multiple tumor subparts (Fig 3C). Conversely, of

the 31 mutations detected in plasma samples, only 25.8% originated

from mutations shared across multiple tumor subparts (Fig 3D). In

urine, this fraction was even lower, and only 8.9% of 67 mutations

detected originated from shared tumor tissue mutations (Fig 3E).

This different representation in body fluids may reflect the high

level of intra-tumor heterogeneity, and the different accessibility to

bio-fluid spaces of the heterogeneous populations that make up the

tumor mass.

Tumor-derived cfDNA fragments are shorter than non-mutant
cfDNA in the CSF, plasma, and urine samples of glioma patients

Using paired-end sequencing reads from the hybrid-capture panels,

we determined the distribution of read lengths (fragmentation

patterns) of mutant and non-mutant cfDNA, i.e. reads carrying

mutations previously identified in matched tissue and those not

carrying mutations, in the CSF (Fig 4A), plasma (Fig 4B), and urine

of the eight glioma patients pre-surgery (Fig 4C). Reads carrying

Table 1. Patient demographics.

Parameter Parameter value

Age, years Mean (range)

Overall 54 (23–87)

Other pathologies 59 (36–87)

Healthy 41 (23–61)

Cancer 61 (24–79)

Gender n

Male (total) 44

Other pathologies 12

Healthy 14

Cancer 18

Female (total) 44

Other pathologies 15

Healthy 12

Cancer 17

Patient group n

Cancer 35

Other CNS pathologies 27

Healthy 26

Subtype n

HGG 30

LGG 5

Aneurysm 9

Radiculopathy 7

Myelopathy 4

Hydrocephalus 3

Arachnoid cyst 1

Cavernoma 1

Hemifacial spasm 1

Parkinson’s disease 1

IDH (in the cancer cohort) n

Mutant 5

Wild type 30

Study demographics for gliomas and controls.
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tumor-identified mutations represent cfDNA fragments that are

highly likely to be derived from the tumor DNA, whereas those

without a tumor-identified mutation likely represent a mixture of

non-tumor DNA and non-mutated DNA copies from tumor cells.

The use of error suppression in the sequencing data analysis results

in minimal levels of noise (Wan et al, 2020). In the three bio-fluids,

we observed a consistent and significant shift toward shorter frag-

ment sizes for mutant cfDNA in comparison with non-mutant

cfDNA: in CSF samples, median size of 148 bp for mutant cfDNA vs

169 bp for non-mutant cfDNA; in plasma samples, 160 vs 169 bp;

and in urine samples, 101 vs 133 bp (two-sided Wilcoxon, P <

0.0001 for all three body fluids). Such a shift was described previ-

ously for plasma samples of other cancer types (Mouliere et al,

2011; Underhill et al, 2016; Mouliere et al, 2018a; van der Pol &

Mouliere, 2019), but has not previously been observed directly in

the urine and CSF of patients with gliomas, or other malignancies,

A

C

E F

D

B

Figure 2. Detection of ctDNA in CSF, plasma, and urine from glioma patients using patient-specific sequencing panels and INVAR analysis.

A Schematic of ctDNA detection in matched CSF, plasma, and urine samples from glioma patients using INVAR (INtegration of VAriants Reads). Depth of sequencing
indicated is the mean across the samples analyzed. S1 to S4 indicate tumor subparts.

B Number of tumor tissue DNA mutations passing INVAR filters for the eight patients included.
C Estimated ctDNA fractions for the plasma (10/12 detected), CSF (7/8 detected), and urine samples (10/16 detected) collected from 7 patients with primary

glioblastoma and one patient (GB12) with anaplastic oligodendroglioma. The ctDNA fraction is expressed as IMAF (Integrated Mutant Allele Fraction). Detected cases
are indicated by full circle and non-detected cases as an open circle. ND: non-detected.

D Estimated tumor DNA DNA fraction (IMAF) in CSF, plasma, and urine depending on the number of mutant reads detected for each samples included and number of
informative reads supporting the observation. Detected cases are indicated by full circle and non-detected cases as an open circle. ND: non-detected.

E Estimated tumor DNA fractions (IMAF) in CSF, plasma, and urine for the matched samples collected at baseline pre-surgery. Detected cases are indicated by full circle
and non-detected cases as an open circle. ND: non-detected.

F IMAF for the CSF, plasma, and urine of the patients with samples collected at 6-month follow-up (n = 3). Matched MRI scans are added for annotation.
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by analysis of specifically mutant-derived fragments. We hypothe-

sized that, in a similar way to our previous observations in plasma

(Mouliere et al, 2018a), the size difference observed in urine could

be identified using more scalable methods, to improve ctDNA detec-

tion in this non-invasive liquid biopsy without requiring tumor

tissue DNA analysis.

Analysis of cfDNA fragmentation patterns in urine by shallow
whole-genome sequencing

We analyzed the cfDNA fragmentation patterns in 40 urine samples

from 35 patients with gliomas (30 HGG and five LGG) collected

pre-treatment with paired-end sWGS (Fig 5A and Appendix Fig S4).

We also sequenced urine cfDNA from 53 controls: 26 healthy indi-

viduals and 27 patients with other pathologies affecting the central

nervous system (cervical myelopathy, cerebral artery aneurysm—

both ruptured and unruptured, hydrocephalus and Parkinson’s

disease; Table 1 and Fig 5A). Baseline urine samples from patients

with cancer and other CNS pathologies were collected prior to

surgery, and follow-up samples were collected for a subset of the

cases (Table EV1). Age and other physiological properties of the

cases and controls were collected (Table 1 and Table EV1). All urine

samples were collected and processed according to the same proto-

col and time frame for processing to reduce potential biases due to

A

B

C D E

Figure 3. Detection of ctDNA in plasma, urine, and CSF is affected by intra-tumor heterogeneity in gliomas.

A Mutant allele fraction (MAF) measured in tumor, CSF, plasma, and urine samples (on the y axis) for the detected mutations, in the 52 genes that are most
frequently mutated in gliomas based on the TCGA databases (on the x-axis), for the eight patients analyzed by targeted sequencing panels. MAF from tumor is
derived from exome sequencing. MAF from CSF, plasma, and urine samples are derived from the capture panels sequencing.

B Number of mutations detected in tumor samples that were observed across several individual tumor biopsies (shared) or private to an individual biopsy.
C–E Comparison of the number of mutations that were detected in multiple tumor tissue subparts (red), that were private to an individual subpart (blue), or that were

rescued by merged calling (green) in CSF (C), plasma (D), and urine (E). Data are shown for samples collected immediately prior to surgery across all eight patients.
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differences in pre-analytical processing (see Materials and Methods).

The mean age of the healthy individuals was lower than for the

cancer cases (41 years old and 61 years old, respectively). We there-

fore evaluated the influence of donor age on the cfDNA fragment

size distribution of our cohort of healthy individuals and observed

no significant difference (Appendix Fig S5). Of note, the concentra-

tion of cfDNA extracted from urines increased from a mean of 4.25

ng/ml in controls to 10.1 ng/ml in glioma patients.

The cfDNA median size distribution in the urine of healthy

individuals was 137 bp, 108 bp in the urine of patients with other

brain or CNS pathologies, and 101 bp in the urine of glioma

patients (Fig 5B). cfDNA in urine of glioma patients was signifi-

cantly shorter and more fragmented than in urine of healthy indi-

viduals (Wilcoxon, P=5.2 × 10�9) and in urine of patients with

other brain pathologies (Wilcoxon, P=1.7 × 10�2). We calculated

the median empirical cumulative distribution function for each

type of sample included in the study (Fig 5C). The cumulative

distribution indicated that the median fragment size distribution of

HGG was significantly different to that of healthy controls (Kol-

mogorov–Smirnov, distance= 0.476, P < 0.001) and of other CNS

pathologies (Kolmogorov–Smirnov, distance= 0.287, P < 0.001).

We analyzed the proportion of fragments in different size ranges

and observed that the proportion of fragments between 30 and 60

bp was significantly increased in HGG and LGG cases as compared

to healthy controls (Wilcoxon, P < 0.001 for HGG and P < 0.001 for

LGG) and was also increased when compared to patients with

other brain or CNS pathologies (Wilcoxon, P < 0.001 for HGG and

P=0.03 for LGG; Fig 5D).

Leveraging fragmentation patterns of urine cfDNA for
classification of glioma patients from controls

We demonstrated previously that cfDNA fragmentation features

could be used to improve the detection of glioma in plasma samples

(Mouliere et al, 2018a). Here we explored whether these features in

urine could be used to enhance detection of tumor DNA in glioma

patients. A predictive analysis was performed using 10 fragmenta-

tion features across 93 urine samples (40 samples from 35 cancer

cases and 53 samples from 53 non-cancer controls). These 10 frag-

mentation features were based on the proportion (P) of fragments in

the following size ranges in sWGS data from each sample, using 30

bp bins: P(30–60), P(61–90), P(91–120), P(121–150), P(151–180), P

(181–210), P(210–240), P(241–270), and P(271–300) (Fig 6A and B).

The last feature corresponds to the 10 bp peaks (oscillations) in the

distribution of fragment lengths, which have been reported previ-

ously (Mouliere et al, 2018a; Mouliere et al, 2018b) and are particu-

larly pronounced in urine samples (Appendix Fig S6A and B). We

demonstrated clustering of the data using principal component anal-

ysis (PCA; Fig 6C) and t-distributed stochastic neighbor embedding

(tSNE; Fig 6D). These indicated that a higher proportion of shorter

fragments (< 91 bp) could be indicative of cancer samples (Fig 6C

and D). We performed k-means clustering, assuming k=2, and

identified a cluster with 29 data points consisting of a high propor-

tion of cancer samples (n=27/29, 94% cancer samples), and a

second cluster with 45 data points and a mixture of non-cancer and

cancer samples (n=13/45, 28% cancer samples). Analysis of

cfDNA fragments using 10 bp bin sizes showed less pronounced

clustering (Appendix Fig S7A and B). We tested the individual

features and calculated a binary classification to separate “cancer”

(HGG and LGG) from “control” samples (healthy and other CNS

disease controls; Fig 6E). The feature P30_60 (the proportion of frag-

ments between 30 and 60 bp in length) exhibited the highest classifi-

cation performance (AUC=0.885).

Variable selection and the classification of samples as “non-

cancer” or “cancer” were performed using logistic regression (LR)

and other machine learning models trained and validated on 40

cancer samples and 53 controls (Appendix Fig S8 and Fig 6B). The

performance of the models was evaluated using the 10 feature sets,

using a double cross-validation scheme and 50 random bootstrap

iterations (see Materials and Methods; Fig 6B). Using the SVM

A B C

Figure 4. Mutant cfDNA has shorter fragments than non-mutant cfDNA in the CSF, plasma, and urine samples of glioma patients.

A–C Fragment size distributions for mutant (blue) and non-mutant (red) cfDNA reads, determined from the capture sequencing data for CSF samples (A), plasma
samples, (B) and urine samples (C).
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model, we could distinguish non-cancer from cancer samples with a

median AUC=0.80 (range 0.51–1; Fig 6F and G). Sensitivity analy-

ses considering other machine learning methods as classifiers led to

similar results in terms of AUC. We compared random forest (RF),

support vector machine (SVM), and a binomial generalized linear

model with elastic-net regularization (GLMEN) to the LR model.

Using the GLMEN model, we could distinguish non-cancer from

cancer samples with a median AUC= 0.91 (range 0.76–1; Fig 6F)

and a median accuracy= 0.84 (range 0.68–0.95; Fig 6G). The RF

model exhibited a median AUC=0.91 (range 0.76–1) and median

accuracy= 0.84 (range 0.68–0.94; Fig 6F and G). The LR model

exhibited a median AUC of 0.9 (range 0.70–1) and accuracy= 0.78

(range 0.63–1). Despite the small cohort size (n=93), which might

affect the reproducibility of the models with an independent dataset,

these results suggest that the cfDNA fragmentation patterns in urine

samples may be a useful tool to provide information that can aid in

the diagnosis of gliomas.

Discussion

Tumor-derived DNA has previously been detected in the CSF of

patients with glioma and may be helpful for tumor genomic analysis

(De Mattos-Arruda et al, 2015; Pan et al, 2015; Wang et al, 2015;

Pentsova et al, 2016; Mouliere et al, 2018b; Miller et al, 2019).

However, difficulties with longitudinal CSF collection in patients

alongside the relative variability in tumor fraction detection may

hamper clinical implementation and applicability of CSF analysis.

There were different observations reported on the level of detection

of ctDNA in plasma of glioma patients (Bettegowda et al, 2014;

Westphal & Lamszus, 2015; Mouliere et al, 2018a; Pan et al, 2019).

No prior studies had, to our knowledge, explored ctDNA analysis in

urine samples from glioma patients.

Here, we have shown that ctDNA can be detected, at very low

levels, in the urine and plasma of the majority of patients with high-

grade glioma. By tracking a large number of mutations, we

A

B C D

Figure 5. cfDNA fragmentation patterns are altered in the urine of HGG and LGG patients when compared to healthy controls and other CNS diseases.

A Size distribution of urine cfDNA fragments determined from paired-end sWGS (< 1× coverage) of 26 healthy controls (in gray), 27 patients with other CNS diseases
(cerebral aneurysm, and myeloneuropathy, in blue), five patients with LGG (in orange), and 30 HGG patients (35 samples, in red). Samples from LGG and HGG patients
were collected at baseline.

B Median size distribution of urine cfDNA fragments determined from paired-end sWGS (< 1× coverage) for the different patients included in this study (median for
each of the groups in part A).

C Median of the cumulative distribution function of the urine cfDNA fragment sizes of the patients included in this study.
D Proportion of fragment sizes between 30 and 60 bp in the urine of cfDNA from healthy controls (gray), other non-cancer CNS pathologies (light blue), LGG (orange),

and HGG (red). Wilcoxson-test comparing the boxplots are added. Horizontal line within the bars represents median of the underlying population. Boxplot whiskers
show 1.5 interquartile range of highest and lowest quartile.
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demonstrated that the sensitivity for ctDNA increased and the rate

of detection improved, with ctDNA detected in the urine (6/8) and

plasma (7/8) of patients with glioma. The median ctDNA fractions

in plasma and urine were very low (IMAF of 3.1 × 10�5 and 4.72 ×

10�5, respectively). The size of this cohort (n=8 patients) will need

to be increased to demonstrate clinical impact. However, this study

reaffirms the high sensitivity and specificity of INVAR demonstrated

with other cancer types (melanoma, lung, renal cancers) and early-

stage disease (Smith et al, 2020; Wan et al, 2020). The relative simi-

larity in tumor fraction and detection rate observed between plasma

and urine samples was surprising. Prior studies, using animal

models, have suggested that the main clearance route of cfDNA

from blood is via the liver and not through the kidneys (Gauthier

et al, 1996; Du Clos et al, 1999). The potential alternate mechanisms

by which ctDNA could enter the urine will require further investiga-

tion. In addition, as a tumor-guided sequencing method, the accu-

racy of our approach is limited by the nature of the original samples

and identified mutations with which we then used to design the

capture panel. We have attempted to minimize contamination by

mutations originating from clonal expansion in healthy tissues by

collecting multiple tumor tissue subparts that were carefully

selected during pathological examination. Subsequent tumor-guided

sequencing studies will need to select normal tissue DNA and tumor

tissue DNA in order to formally exclude the risk of cross-

contamination from non-glioma mutations.

While methylation-based detection, cell-free DNA genome-wide

fragmentation, tumor-derived mitochondrial DNA, exosomes, vesi-

cles, and tumor-educated platelets have all been proposed as alter-

native methods for plasma-based detection of glioma-derived

mutant DNA, these alternative strategies provide limited informa-

tion about the tumor genome (Best et al, 2015; Moss et al, 2018;

Mouliere et al, 2018a; Shen et al, 2018; Mair et al, 2019; Nørøxe

et al, 2019; van der Pol & Mouliere, 2019; Sabedot et al, 2021).

Through tumor-guided sequencing, we have identified mutations in

the plasma and urine of GBM patients and thus demonstrate the

potential to track tumor-specific mutations with a high specificity

that may be important for monitoring tumor recurrence. In other

cancers, ctDNA has been shown to be relatively representative of

the clonal architecture of a tumor at a given time (van der Pol &

Mouliere, 2019). Here the use of multi-region tumor sampling

allowed us to identify shared and private mutations within the

primary cancer. We showed that the representation of these muta-

tions varied between the plasma and urine samples, which in our

cohort mostly represented private clones, and the CSF, which

mostly represented clonal or shared mutations. The higher level of

intratumoral heterogeneity in gliomas, and the low levels of release

of DNA into plasma, as previously documented (Mouliere et al,

2018a; Mouliere et al, 2018b; Mair et al, 2019), could explain this

discordance in representation of spatially distinct clones between

the different bio-fluids (van der Pol & Mouliere, 2019). Moreover, a

recent study identified two patterns of recurrent disease: a local,

predominantly clonal tumor recurrence and a distant predominantly

divergent tumor recurrence. It is possible that in the tumors in

which we identified mostly private mutations there was significant

diffuse disease indicative of divergent tumor evolution already

present (Kim et al, 2015). Either mechanism would potentially be

trackable using our method.

We identified size differences between mutant and non-mutant

DNA using tumor-guided sequencing in CSF, plasma, and urine of

glioma patients. We analyzed the size distributions of mutant

ctDNA by sequencing > 435 potentially mutated loci per patient at

high depth. This revealed reads that could be unequivocally iden-

tified as tumor derived and allowed a direct comparison of frag-

mentation features of ctDNA as compared to bulk cfDNA. While a

powerful technique, a potential limitation of this method is the

fact that capture-based sequencing may be biased by probe

capture efficiency and therefore may not accurately reflect ratios

between tumor and non-tumor DNA, especially for short frag-

ments < 100 bp. Nevertheless, this observation was important as it

strongly suggested that ctDNA size shift could be observed in the

plasma and the urine of glioma patients. In the case of the

former, this agrees with previous data generated using non-

capture-based methods.

We complemented this observation by analyzing the genome-

wide fragmentation patterns of urine cfDNA in 40 samples from 35

glioma patients using sWGS. We identified cfDNA fragmentation

features that could classify urine samples from glioma patients from

controls using urine samples, without a priori knowledge of somatic

aberrations. The median size of cfDNA fragments in urine from

control individuals without glioma (137 bp), patients with other

CNS diseases (121 bp), and patients with gliomas (101 bp) was dif-

ferent from previous reports on other cancer types (Cheng et al,

▸Figure 6. cfDNA fragmentation patterns enable classification of glioma patients from controls.

A Schematic of the features extracted from the global cfDNA fragmentation patterns of urine samples. 10 features were calculated from the cfDNA fragments size (the
proportion of fragments in specific size ranges: P30_60, P61_90, P91_120, P121_150, P151_180, P181_210, P211_240, P241_270, P271_300; and the amplitude of the
10bp oscillations: OSC_10bp).

B Workflow for the predictive analysis combining the urine fragment size features via LR, RF, SVM, and GLMEN models. sWGS data from 40 urine samples from patients
with gliomas and 53 urine samples from controls were split into five subsets for training/validation (80% of the samples) and testing (20% of the samples), according
to a 5-fold cross-validation approach and 50 random iterations (see Materials and Methods).

C Principal component analysis comparing cancer (HGG and LGG) and control samples (healthy and other CNS diseases) using data from the urine fragmentation
features. Red arrows indicate features tested during the predictive analysis.

D tSNE analysis comparing cancer and control samples using data from the same urine fragmentation features.
E ROC curves for binary classification of cancer and controls for each of the individual fragmentation features analyzed. AUC values are added to the plots.
F AUC distribution for the unseen test set (samples from patients with gliomas, 40; controls, 53) for four predictive models (LR, GLMEN, RF, and SVM) trained and

optimized following the scheme described in (B) and the Materials and Methods section. For each, models are shown the AUC for the 50 iterations. Horizontal line
within the bars represent median of the underlying population. Boxplot whiskers show 1.5 interquartile range of highest and lowest quartile.

G Accuracy were compared for the four classifiers and 50 iterations on the unseen test set of baseline and follow-up samples (19 samples). Horizontal line within the
bars represents median of the underlying population. Boxplot whiskers show 1.5 interquartile range of highest and lowest quartile.
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2019; Markus et al, 2021). This could indicate that the cfDNA frag-

mentation profile could be biased depending on the collection proce-

dure and pre-analytical factors. It is also possible that the shortening

of cfDNA in the urine of glioma patients compared to controls is

due, at least in part, to differences in patient physiology and that

this may directly contribute to the detection of a fragmentation-

based glioma cfDNA signal in urine. Beyond the tissue of cancer

origin, it is likely that urine cfDNA fragmentation might also be

influenced by patient physiology (Teo et al, 2019), and pre-

analytical parameters (Bosschieter et al, 2018). We attempted to

mitigate for these effects by assessing the effect of age on the cfDNA

fragmentation of urine samples, by controlling for the duration of

pre-operative fasting, by using standardized sample preparation and

DNA isolation and also by assessing the effect of tumor size on

detectability. A more in depth analysis of how biological variables

impact cfDNA fragmentation in urine samples will be needed in

order to conclude the extent to which these factors may lead to dif-

ferent fragmentation patterns in different cohorts.

Such pre-analytical differences notwithstanding, by using a

binary classification we observed that the shorter size ranges (P30–

60 and P61–90) of cfDNA fragments in urine samples showed larger

differences between cancer cases and controls. These size ranges

were similar to the size range enriched in mutant cfDNA in urine as

observed using tumor-guided capture panels. With four machine

learning analyses, we identified and tested 10 size features that can

be informative for classifying urine samples as being derived either

from healthy individuals or from patients with glioma. The LR, RF,

SVM, and GLMEN models correctly classified samples derived from

patients with glioma in most of the cases (median AUC= 0.90,

median AUC= 0.91, median AUC=0.80, and median AUC= 0.91,

respectively). The GLMEN model correctly identified samples from

cancer patients vs samples from controls with a sensitivity of 65%

and specificity of 95% in a cohort of 93 urine samples (40 cancer

samples and 53 control samples). These results from urine samples

from glioma echoed our previous work, which identified 63% of

plasma samples from glioma patients with 94% specificity using

another RF model based on integration of fragmentation features in

plasma cfDNA (Mouliere et al, 2018a). Together with other studies

that utilize methylation patterns in plasma (Nassiri et al, 2020;

Sabedot et al, 2021), our work suggests that despite a low detection

rate of mutations, epigenetic signals (i.e., fragmentation patterns)

can be robustly detected in the plasma and also urine of glioma

patients.

Our study demonstrates technical feasibility but is limited by the

use of double-stranded DNA from urine samples, which is subject to

potential biases introduced by the DNA extraction and sequencing

methods used (Burnham et al, 2016; Bosschieter et al, 2018). Analy-

sis of prospective samples that were analyzed blinded to diagnosis

would help establish the broader validity and utility of these meth-

ods. Nonetheless, we have demonstrated that classification algo-

rithms can utilize information derived from cfDNA fragmentation

features to improve the detection of glioma in patients using urine

samples. These techniques may therefore provide a method to

detect glioma in a truly non-invasive (urine) or minimally invasive

(plasma) manner and thus avoiding the morbidity and risk of

mortality associated with CSF sampling. Our results encourage

further confirmation through the analysis of a larger cohort of both

glioma patients and control individuals without cancer.

Materials and Methods

Study design

Patients were recruited at Addenbrooke’s Hospital, Cambridge, UK

as part of the BLiNG (Biopsy of Liquids in New Gliomas) study

(REC reference number: 15/EE/0094; Table 1, Tables EV1 and EV2)

and the Neurosurgical Research Initiative (18/EE/0172). Patients

with suspected GBM on pre-operative contrast-enhanced MRI were

chosen, randomly, for participation in the study. The majority of the

cohort were sampled during their initial surgery for the new diagno-

sis of glioma. One patient was sampled at recurrence although this

tumor was not found to be hypermutated (GB19) despite treatment

with temozolomide in keeping with the relative rarity of hypermuta-

tion in IDHwt GBM. Matched tumor tissue, CSF, plasma, urine, and

buffy coat samples were collected for eight patients. Urine samples

were collected from an additional 27 randomly selected patients.

Written informed consent was obtained from the patients; the stud-

ies were conducted in accordance with the Declaration of Helsinki

and were approved by an Institutional Review Board. Urine from 27

patients with other CNS diseases and 26 healthy individuals were

collected using the same collection criteria (Table 1, Tables EV1 and

EV2). Informed consent was obtained from all subjects, and all

experiments conform to the principles set out in the Declaration of

Helsinki and the Department of Health and Human Services

Belmont Report.

Sample collection and preparation

Lumbar puncture was performed immediately prior to craniotomy

for tumor debulking. After sterile field preparation, the thecal sac

was cannulated between the L3 and L5 intervertebral spaces using a

0.61-mm gauge lumbar puncture needle, and 10ml of CSF was

removed. After collection, CSF, whole blood, and urine samples

were immediately placed on ice and then rapidly transferred to a

pre-chilled centrifuge for processing. For urine samples, 0.5 M EDTA

was added within an hour of collection. Samples were centrifuged

at 1,500 g at 4°C for 10min. Supernatant was removed and further

centrifuged at 20,000 g for 10min and aliquoted into 2ml micro-

tubes for storage at �80°C (Sarstedt, Germany). Tumor tissue DNA

was extracted and isolated as described previously (Mouliere et al,

2018b). Fluids were extracted using the QIAsymphony platform

(Qiagen, Germany). Up to 10ml of plasma, 10ml of urine and 8ml

of CSF were used per sample. DNA from cancer plasma, urine, and

CSF samples was eluted in 90 ll and further concentrated down to

30 ll using a Speed-Vac concentrator (Eppendorf, Germany).

Sequencing library preparation and WES for tissue DNA

In order to identify patient-specific somatic mutations, we first

performed whole exome sequencing (WES) of all tumor tissue and

germline buffy coat DNA samples. Fifty nanograms of DNA were

fragmented to ˜ 120 bp by acoustic shearing (Covaris) according to

the manufacturer’s instructions. Libraries were prepared using the

Thruplex DNA-Seq protocol (Rubicon Genomics) with 5× cycles of

PCR. Libraries were quantified using quantitative PCR (KAPA

library quantification, KAPA biosystems) and pooled for exome

capture (TruSeq Exome Enrichment Kit, Illumina). Exome capture
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was performed with the addition of i5- and i7-specific blockers

(IDT) during the hybridization steps to prevent adaptor “daisy

chaining.” Pools were concentrated using a SpeedVac vacuum

concentrator (Eppendorf, Germany). After capture, 8× cycles of PCR

were performed. Enriched libraries were quantified using quantita-

tive PCR (KAPA library quantification, KAPA Biosystems), DNA

fragment sizes were assessed by Bioanalyzer (2100 Bioanalyzer,

Agilent Genomics), and captures were pooled in equimolar ratio for

paired-end next-generation sequencing on a HiSeq4000 (Illumina).

Sequencing reads were de-multiplexed, allowing zero mismatches

in barcodes. The reference genome was the GRCh37/b37/hg19

human reference genome—1000 Genomes GRCh37-derived reference

genome, which includes chromosomal plus unlocalized and unplaced

contigs, the rCRS mitochondrial sequence (AC:NC_012920), Human

herpesvirus 4 type 1 (AC:NC_007605) and decoy sequence derived

from HuRef, Human Bac and Fosmid clones and NA12878. The

sequence data of the patient samples were aligned to the reference

genome using BWA-MEM v0.7.15. The duplicate reads were marked

using Picard v1.122 (http://broadinstitute.github.io/picard). Somatic

SNV and indel mutations were called using GATK Mutect2 (Genome

Analysis Toolkit), (https://www.broadinstitute.org/gatk) in tumor-

normal pair mode using buffy coat as the normal.

Mutant allele fractions for each single-base locus were calculated

with MuTect2 for all bases with PHRED quality ≥ 30. After MuTect2,

we applied filtering parameters so that a mutation was called if no

mutant reads for an allele were observed in germline DNA at a locus

that was covered at least 10×, and if at least four reads supporting

the mutant were found in the tumor data with at least one read on

each strand (forward and reverse). Variants were annotated using

Ensembl Variant Effect Predictor with details about consequence on

protein coding, accession numbers for known variants and associ-

ated allele frequencies from the 1000 Genomes project.

Tumor-guided capture sequencing

Hybrid-based capture for the different body fluids (CSF, plasma,

urine) analysis was designed to cover the variants identified above

for each patient using the SureDesign software (Agilent). In addi-

tion, 52 genes of interest for glioma were included in the tumor-

guided sequencing panel based on the TCGA databases. Patients

were separated into 2 panels covering all the mutations included for

those patients (4 patients per panel). Patients GB1, GB2, GB9, and

GB16 were grouped in panel 1, and patients GB7, GB11, GB12, and

GB19 were grouped in panel 2. Panel 1 covered in total 526 kbp

(5,841 regions) and panel 2 covered 526 kbp (5,701 regions). Panels

ranged in size between 1.430Mb (panel 1) and 1.404Mb (panel 2)

with 120 bp RNA baits. Baits were designed with 5× tiling density,

moderately stringent masking and balanced boosting. 99.7% of the

targets had baits designed successfully.

Indexed sequencing libraries were prepared using the Thruplex

tag-seq kits (Takara). Libraries were captured either in 1-plex for

plasma and urine samples or 3-plex for CSF samples (to a total of

1,000 ng capture input) using the Agilent SureSelectXTHS protocol,

with the addition of i5 and i7 blocking oligos (IDT), as recom-

mended by the manufacturer for compatibility with ThruPLEX

libraries. Custom Agilent SureSelectXTHS baits were used. 13 cycles

were used for amplification of the captured libraries. Post-capture

libraries were purified with AMPure XT beads, then quantified using

quantitative PCR (KAPA library quantification, KAPA Biosystems),

and DNA fragment sizes controlled by Bioanalyzer (2100 Bioana-

lyzer, Agilent Genomics). Capture libraries were then pooled in

equimolar ratios for paired-end next-generation sequencing on a

HiSeq4000 (Illumina).

Capture sequencing analysis and INVAR

Sequencing reads were de-multiplexed, allowing zero mismatches in

barcodes. Cutadapt v1.9.1 was used to remove known 50 and 30

adaptor sequences specified in a separate FASTA of adaptor

sequences. Trimmed FASTQ files were aligned to the UCSC hg19

genome using BWA-mem v0.7.13 with a seed length of 19. Error

suppression was carried out on ThruPLEX Tag-seq library BAM files

using CONNOR. The consensus frequency threshold (-f) was set as

0.9 (90%), and the minimum family size threshold (-s) was varied

between 2 and 5 for characterization of error rates (Wan et al,

2020). Patient-specific sequencing data consists of informative reads

at multiple known patient-specific loci that were identified from

tumor sequencing (see above). Because each panel comprised muta-

tions from multiple patients, we could compare mutant allele frac-

tions across loci as a means of error-suppression. Patient’s samples

could be used as control data for another patient’s mutation panels

as long as the tumor sequencing did not identify any overlapping

mutations. The distribution of signal across loci potentially allows

for the identification of noisy loci not consistent with the overall

signal distribution. Loci that carried signal in more than 10% of

control samples or a mean allele fraction >1% were blacklisted as

noisy and removed from the analysis. Each locus was also anno-

tated with trinucleotide error rate, the corresponding tumor allele

fraction, fragment size, and whether that locus passed an additional

outlier suppression filter as identified by INVAR (INtegration of

VAriant Reads), (Wan et al, 2020) (Dataset EV4–EV6). Mutation

heat maps were produced in R with the ComplexHeatmap package.

Chord diagrams were produced in R with the circlize package.

For each sample, an IMAF (Integrated Mutant Allelic Fraction)

was determined across all loci passing pre-INVAR data processing

filters with mutant allele fraction at that locus of < 0.25; loci with

signal > 0.25 mutant allele fraction were not included in the calcula-

tion because (i) loci would not be expected to have such high

mutant allele fractions in body fluids of glioma patients (unless they

are mis-genotyped SNPs), and (ii) if the true IMAF of a sample is >

0.25, when a large number of loci are tested, they will show a distri-

bution of allele fractions such that detection is still supported by

having many low allele fraction loci with signal. Based on the

ctDNA level of the sample, the binomial probability of observing

each individual locus given the IMAF of that sample was calculated.

Loci with a Bonferroni corrected P-value < 0.05 (corrected for the

number of loci interrogated) were excluded in that sample, thereby

suppressing outliers. The detailed calculation of IMAF was previ-

ously detailed (Wan et al, 2020).

sWGS

Indexed sequencing libraries were prepared using the ThruPLEX-

Plasma Seq kit (Rubicon Genomics). Libraries were pooled in

equimolar amounts and sequenced to < 0.4× depth of coverage on a

HiSeq 4000 (Illumina) generating 150-bp paired-end reads.
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Sequence data were analyzed using an in-house pipeline that

consists of the following; paired end sequence reads were aligned to

the human reference genome (GRCh37) using BWA-mem following

the removal of contaminating adapter sequences. PCR and optical

duplicates were marked using MarkDuplicates (Picard Tools)

feature, and these were excluded from downstream analysis along

with reads of low mapping quality and supplementary alignments.

When necessary, reads were down-sampled to 10million in all

samples for comparison purposes.

Fragmentation feature analysis

The preliminary analysis was carried out on 93 samples (40 cancers

and 53 non-cancer controls). For each sample, the following features

were calculated from sWGS data: P(30–60), P(61–90), P(91–120), P

(121–150), P(151–180), P(181–210), P(211–240), P(241–270), and P

(271–300). The data were arranged in a matrix where the rows repre-

sent each sample and the columns held the aforementioned features

with an extra “class” column with the binary labels of “cancer” or

“controls.” The amplitude of the 10 bp periodic peaks (OSC_10bp)

was calculated from the sWGS data as follows: from the samples with

clear peaks, the local maxima (“peak”) and minima (“valley”) in the

range 50–140 bp were calculated. The average of their positions

across the samples was calculated: (minima: 62, 73, 84, 96, 106, 116,

126, and 137; and maxima: 58, 69, 80, 92, 102, 112, 122, and 134;

Appendix Fig S6A and B). To compute the “amplitude statistic,” we

calculated the sum of the height of the maxima and subtracted the

sum of the minima. The larger this difference, the more distinct are

the peaks. The height of the x bp peak is defined as the number of

fragments with length x divided by the total number of fragments. To

define local maxima, we selected the positions y such that y was the

largest value in the interval [y� 2, y+2]. The same rationale was

used to pick minima. PCA was calculated and visualized in R using

the package ggbiplot. The tSNE analysis was performed in R with the

Rtsne package using 1,000 iterations, Spearman correlations and a

perplexity score of 8. Plots were generated in R using ggplot2. ROC

curves were plotted in R with the plotROC package.

Predictive analysis

The following analysis was carried out in R utilizing RandomForest,

and pROC packages and in Python using scikit-learn and H2O

Python API modules. The pairwise correlations between the features

were calculated to assess multi-collinearity in the dataset

(Appendix Fig S8A). Feature importance was analyzed and quanti-

fied using a LVQ model. The algorithm was configured to explore all

possible subsets of the features. After this pre-processing, all the 10

features were retained for further analysis. The data matrix for the

93 samples (40 cancer samples and 53 controls) were randomly

partitioned into five batches of comparable size, four of which were

used for training and one was used for testing (80:20 split). For

every cross-validation, baseline and follow-up samples of the same

patient were randomly distributed in the training set or in the test

set. In each of the resulting 5-fold, the training set was split once

more using stratified 5-fold cross-validation. This cross-validation

scheme was repeated for 10 iterations, yielding 50 iterations in total.

Classification of samples as healthy or cancer was performed using

logistic regression (LR), random forest (RF), support vector machine

(SVM), and binomial generalized linear models with elastic-net

regularization (GLMEN). Predictions on the test set were stored for

each of the models 50 folds. To evaluate the performance metric of

the models, a ROC curve was calculated for each fold validation and

a mean ROC curve were then calculated based on these 50 curves.

Mean performance over 50 iterations for precision, recall, accuracy,

sensitivity, and specificity were also calculated for each model, and

in various scenarios (by selecting all samples, only baseline

samples, all features, only 4 features).

Statistical analysis

All statistics were performed using R (v3.4.3) programming

language (www.r-project.org). We also used the ggplot2 (v3.2.0)

and ggpubr (v0.2) packages.

Data availability

Raw sequencing data are deposited at the European Genome-

phenome archive (EGAS00001004355; https://ega-archive.org/stud

The paper explained

Problem
Compared to other disease types, detection of circulating cell-free
tumor DNA (cftDNA) in patients with brain tumors, in particular
gliomas (GBM), is challenging. While analysis of cftDNA in cere-
brospinal fluid (CSF) has improved detection frequencies, this bio-fluid
is both difficult to collect and associated with significant discomfort
for the patient. As such, it is unlikely that analysis of cftDNA in CSF
will be considered as a viable approach for longitudinal sampling
going forward. On the other hand, minimally invasive liquid biopsy, in
the form of plasma or urine, which do not face these same challenges,
could be highly beneficial. However, their use is hampered by the
presence of only minute levels of glioma-derived cfDNA signal.

Result
First, using tumor-guided sequencing in matched tissue and liquid
biopsy, we compared the mutational burden and detection rate of
cftDNA in CSF, plasma, and urine from GBM patients. We developed a
whole exome sequencing approach that calls mutations that are
private to or shared between multiple regions of the same tumor, in
doing so affording greater confidence in the mutations calls. These
mutations were then used to generate targeted panels for high depth
sequencing of CSF, plasma, and urine. By integrating mutation signal
across hundreds of mutations, we observed tumor-derived signal in
the majority of CSF, plasma, and urine samples.
Then, a second more rapid and cost-effective approach was developed
using low coverage WGS. This revealed a possible difference in the
fragment sizes of urine cftDNA in cancer patients as compared to
healthy individuals. Subsequent application of a machine learning
approach to this sequencing data led to the creation of classifiers that
demonstrated an ‘area under the curve’ of between 0.8 and 0.91 for
differentiating samples from patients and healthy controls.

Impact
The non-invasive nature of plasma and urine may permit more regu-
lar and less restrictive monitoring for GBM patients than CSF
sampling. While the role of liquid biopsy for diagnosis has been the
focus of much attention, both of the methods presented may provide
utility in the follow-up setting in combination with imaging.
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ies/EGAS00001004355). The INVAR code is available with the

following link: http://www.bitbucket.org/nrlab/invar.

Expanded View for this article is available online.
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