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Summary

The term diffuse large B-cell lymphoma (DLBCL) includes a

heterogeneous collection of biologically distinct tumours.

This heterogeneity currently presents a barrier to the success-

ful deployment of novel, biologically targeted therapies.

Molecular profiling studies have recently proposed new

molecular classification systems. These have the potential to

resolve the biological heterogeneity of DLBCL into manage-

able subgroups of tumours that rely on shared oncogenic

programmes. In many cases these biological programmes

straddle the boundaries of our existing systems for classifying

B-cell lymphomas. Here we review the findings from these

major molecular profiling studies with a specific focus on

those that propose new genetic subgroups of DLBCL. We

highlight the areas of consensus and discordance between

these studies and discuss the implications for current clinical

practice and for clinical trials. Finally, we address the out-

standing challenges and solutions to the introduction of

genomic subtyping and precision medicine in DLBCL.
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cer genetics, mutation analysis, classifications.

Diffuse large B-cell lymphoma (DLBCL) is an aggressive

non-Hodgkin lymphoma and the commonest lymphoid

malignancy.1 First-line therapy with immunochemotherapy

regimens such as cyclophosphamide, doxorubicin, vincristine,

prednisone + rituximab (R-CHOP) now cures up to 60% of

patients. However, those failing first-line therapy present a

significant clinical challenge and a majority of these patients

still die from their disease. To address this need, the molecu-

lar pathogenesis of DLBCL has been the focus of intense

study. The extent of new biological and genetic understand-

ing that has been amassed in recent years is remarkable. It

has highlighted multiple targetable oncogenic pathways and

launched the development of a plethora of promising novel

therapeutic agents. However, this excitement has been tem-

pered by more sobering statistics; since R-CHOP was intro-

duced in 2002,2 numerous phase-three trials have examined

modifications or additions to R-CHOP as first-line therapy

for DLBCL. Many have examined the use of promising novel

therapeutic agents.3–8 However, none of these trials has met

its primary end-point and first-line therapy for DLBCL has

remained unchanged for almost two decades.2 Although the

promise of molecularly targeted therapy in DLBCL may be

more elusive than we had hoped, one can also view this as

an opportunity to re-assess the design of clinical trials to

increase our chances of future improvements to clinical man-

agement.

The greatest barrier to the successful introduction of tar-

geted therapy in DLBCL is the diversity of genetic features

and phenotypes within this clinical entity. It continues to

become clear that DLBCL is not a single disease but a collec-

tion of diseases, each with defining molecular and biological

features. The full repertoire of distinguishable entities that

comprise this spectrum are beginning to be described but

remains far from fully resolved. Since each entity may rely

on distinct oncogenic pathways it is reasonable to assume

that novel therapies designed to inhibit specific oncogenic

pathways may have activity only in certain subgroups and

therefore may show little detectable activity if used in a blan-

ket approach. Recent molecular profiling studies provide us

with a handle to rationalise this biological heterogeneity into

more homogeneous subgroups of DLBCL. It is premature to

consider that knowledge of these subtypes can direct the

optimal treatment for an individual patient. However, it pro-

vides a framework on which to design and interpret the

results of future clinical trials.

Existing strategies for molecular profiling of
DLBCL

The first insight into the molecular heterogeneity of DLBCL

arose from the application of gene expression profiling using

microarray technology.9 This showed that DLBCL could be

divided into two groups with distinct gene expression
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patterns; one resembling normal germinal-centre B cells and

another sharing features with blood B cells activated in vitro.

These transcriptional subtypes became known as germinal-

centre (GCB) and activated B cell (ABC) respectively. A sta-

tistical approach was later developed to rank DLBCLs based

on their expression of these genes and assign them proba-

bilistically into one of these two groups, leaving a small

number of cases unclassified (UC).10 Although it had not

been established that these classes originated from distinct

cell types, this classification system became known as cell of

origin (COO). A number of implementations of COO classi-

fiers have since been developed that could be applied to

microarray, RNA-Seq or more focused gene expression mea-

surements including NanoString or HTG EdgeSeq technol-

ogy.11–13 The requirement for sophisticated transcriptional

profiling technology initially limited the utility of COO pro-

filing to research applications. Attempts to reproduce the

COO transcriptional classification in a standard diagnostic

setting by scoring surrogate protein markers with immuno-

histochemistry met with variable success,14,15 but at best were

able to offer a binary classification of GCB or non-GCB that

imperfectly recapitulated the transcriptional classification.

Initial excitement for this stratification related to the

observation that patients with ABC DLBCL had, on average,

a worse prognosis than GCB DLBCLs.11,16 However, perhaps

the most significant consequence of the COO classification

was to provide a framework on which to build our under-

standing of DLBCL biology. Indeed, the experimental com-

parison of ABC and GCB biopsies and cell lines has allowed

us to dissect critical oncogenic pathways unique to each sub-

type.17 In contrast, its contribution to routine clinical prac-

tice has been more limited and COO was not incorporated

into the revised WHO classification of DLBCL until 2016.18

Although there are numerous therapies targeting genetic fea-

tures that are strongly associated with only one COO, there

is currently no compelling evidence to suggest that ABC and

GCB patients receive benefit from different treatments up-

front or in the relapse setting.

An alternative strategy to subclassify DLBCL is based upon

the detection of rearrangement of MYC, BCL2 and/or BCL6

by fluorescent in-situ hybridisation (FISH), a technique rou-

tinely available in diagnostic laboratories. These double/triple

translocated cases are now assigned to a new diagnostic

entity that is currently considered distinct from DLBCL in

the 2016 revised WHO classification.18 This is termed high-

grade B-cell lymphoma with MYC and BCL2 and/or BCL6

rearrangements, or HGBL-DH/TH (also commonly referred

to as double-hit or triple-hit lymphoma), which can also

include tumours that do not have DLBCL morphology.

However, it remains far from clear that the detection of

MYC and BCL2/BCL6 rearrangements identifies a biologically

homogeneous lymphoma subtype. The impetus for this clas-

sification was driven in part by the perceived impact on

prognosis; initial retrospective series suggested a dismal sur-

vival amongst lymphomas with rearrangement of both MYC

and BCL2.19,20 However, this may partially reflect the initial

preferential testing of high-risk cases as subsequent prospec-

tive clinical trials have confirmed a definite but more modest

negative prognostic impact.21,22 The negative prognostic

impact of double-hit lymphoma (DHL) may be restricted to

those cases with translocation between MYC and the

immunoglobulin loci rather than other rearrangement part-

ners, a distinction that may not be discernible in all routinely

used FISH assays but can be revealed by dual-fusion probe

assays.22 This situation is further confounded by the exis-

tence of pseudo-double-hit lymphoma, specifically those with

t(3;8)(q27;24), which are indistinguishable from separate

BCL6 and MYC translocations by break-apart FISH.23 Many

centres have adopted intensified immunochemotherapy

approaches for double-hit patients based on retrospective

studies.24,25 However, this approach has never been tested in

a prospective, randomised setting. This widespread adoption

now acts as a barrier to a randomised trial and is a situation

we should endeavour to avoid repeating as emerging genetic

subtypes become incorporated into clinical practice.

More recently, two groups used complementary gene

expression approaches to identify MYC-driven subtypes of

DLBCLs. One of the signatures was derived from the subset

of DHL with MYC and BCL2 translocations. These cases

were almost all GCB by COO profiling and termed the

‘double-hit signature’ (DHITsig).26 The other study used a

Burkitt lymphoma signature to identify ‘Molecular High-

Grade’ (MHG) lymphomas.27 Both of these signatures iden-

tify MYC-driven DLBCL cases that overlap only partially

with HGBL-DH/TH. For example, approximately half of

tumours classified as DHITsig+ lack one of the expected

oncogene rearrangements by FISH (e.g., BCL2 or MYC).

More thorough genetic characterisation of such cases

revealed frequent cryptic rearrangements of the MYC or

BCL2 loci.28 These two related transcriptional subgroups

have clinical relevance because DHITsig/MHG tend to repre-

sent a subgroup of GCB DLBCLs with an inferior survival

relative when treated with R-CHOP. Whether intensified or

other therapy would benefit this group of patients remains to

be determined. Figure 1 provides a high-level overview of the

variety of assays in use for research and clinical application

for lymphoma diagnosis and subclassification.

Genomic profiling of DLBCL

Initial unbiased genome and exome-wide sequencing studies

reaffirmed the biological distinctions between ABC and GCB

DLBCLs as well as revealing the genetic similarities between

GCB DLBCL and follicular lymphoma.29–33 Many recurrently

mutated genes were specific to B-cell lymphoma, suggesting

biology distinct from that of epithelial malignancies. Investi-

gation of the more frequent mutations revealed lymphoma-

specific oncogenic mechanisms such as the mutation of chro-

matin modifiers in GCB DLBCL and the B-cell receptor

(BCR) pathway in ABC DLBCL.34,35 As larger numbers of
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patients were sequenced the genomic complexity of DLBCL

became increasingly apparent.36 In contrast to other haema-

tological malignancies, DLBCL shows a greater number of

mutations per patient and a larger number of recurrently

mutated genes, with a long tail of genes mutated in only a

small number of cases. Overall, the field has now converged

onto approximately 150 protein-coding driver genes that are

recurrently mutated or functional targets of somatic copy

number alterations in DLBCL. Whilst the majority of these

genes are mutated in only a minority of patients it became

clear that these mutations were not randomly distributed.

For example, cases with mutant MYD88 were more likely to

carry a mutation of CD79B. In contrast, cases with BCL2

translocation are enriched for CREBBP and EZH2 mutations.

This suggested that mutations might cluster into functional

groups that could represent biological subtypes of DLBCL.

To pursue this concept, Staudt and colleagues at the

National Cancer Institute (NCI) performed transcriptional

profiling, whole-exome sequencing, targeted mutation

sequencing and array-based copy number analysis on 574

cases of DLBCL.37 They identified the most enriched combi-

nations of genetic alterations in each transcriptional subtype

of DLBCL and found patterns of genetic features that

extended beyond the two main COO subgroups. They

devised a set of subdivisions or genetic subgroups named

after the most common distinguishing features of each

group. One of these was characterised by MYD88 and CD79B

mutations (MCD) and strongly associated with ABC

DLBCLs. Another was enriched for EZH2 mutation and

BCL2 translocation (EZB) and was prototypical of GCB

DLBCL. Stemming from an observation that BCL6 structural

alterations and NOTCH2 mutations were enriched among

cases unclassifiable by COO, a third group (BN2) was pro-

posed. They also noticed a small number of ABC patients

with mutations in NOTCH1 that were mutually exclusive

with other ABC or NOTCH2 mutations and were considered

a separate group (N1). Just over half of patients remained

UC suggesting further subtypes remained to be described. A

summary of the genetics of the NCI cohort and their rela-

tionship to COO is shown in Fig 2.

Concurrent with this work, Shipp and colleagues at Har-

vard applied a data-driven clustering strategy to mutational

and copy number data derived from whole-exome and tar-

geted sequencing of 304 DLBCLs.38 In contrast to the NCI

study, the Harvard group relied on an unsupervised consen-

sus clustering method. This resolved patients into five clus-

ters that mathematically shared the most similar repertoires

of genetic alterations. These clusters were termed C1–C5.
Despite the distinct statistical approach, considerable overlap

with the NCI findings were apparent; the C1 cluster,

enriched for BCL6 fusion and NOTCH2 mutation corre-

sponded clearly to the BN2 group. The C3 cluster, enriched

for translocation of BCL2 and mutation of CREBBP and

EZH2 clearly corresponded to the EZB group. The C5 clus-

ter, enriched for MYD88 and CD79B mutations aligned to

the MCD group. However, two new clusters emerged. C2

was dominated by mutation of TP53 and widespread copy

number alteration. C4 was enriched for somatic hypermuta-

tion of SGK1 and genes encoding histone linker proteins. A

tiny fraction of patients (4%) with no detectable mutations

were categorised as C0.

A follow-up paper from the NCI then examined further

cases not classified in their original publication.39 They noted

that these were enriched for tumours with high levels of ane-

uploidy and mutation of TP53. A second enrichment was

seen for cases with mutation of SGK1 and TET2. These

genetic features were used to seed the clustering of two new

subtypes termed A53 (aneuploidy, TP53) and ST2 (SGK1,

TET2). These corresponded closely to the Harvard C2 and

C4 clusters. Thus, each of the five Harvard clusters could

Fig 1. Molecular profiling for personalised medicine. An idealized personalised medicine workflow illustrating the diversity of sample and nucleic

acid types that might be subjected to an equally diverse selection of molecular assays with the goal of aiding selection of the most appropriate

therapeutic.
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now be mapped to one of the NCI genetic subgroups. How-

ever, there remained substantial discrepancies in how cases

are assigned to each of the corresponding subgroups and a

notable difference between studies was that over 40% of cases

remained UC or genetically composite in the NCI study. The

genetic classification system developed by the NCI became

known as LymphGen and was released as a publicly available

tool that can be applied to classify an individual case. A

comparison of the genetics and classification strategies of the

NCI (LymphGen) and Harvard studies is presented in Fig 3.

Finally, a study from the UK Haematological Malignancy

Research Network (HMRN) applied targeted sequencing of

293 genes to DNA extracted from archived formalin-fixed

paraffin-embedded (FFPE) biopsies from 928 cases of

DLBCL.40 Sequencing data were subjected to unsupervised

clustering using a Bernoulli mixture modelling strategy.

Fig 2. Classification of National Cancer Institute (NCI) cases using LymphGen genetic classifier. This oncoprint shows the mutation status of

patients sequenced in the NCI study.37 Each column represents a single patient. Selected key genes with the greatest impact on classification are

shown. Different mutation types are indicated with a distinct colour. The assignment of cell of origin (COO) of cases is shown below the onco-

print. The LymphGen genetic classifier was used to classify each patient as shown by coloured bars at the figure base. The figure highlights impor-

tant features of the LymphGen classification system. Firstly, a substantial fraction of cases remains unclassified or are assigned to more than one

class. These ‘composite’ cases have a sufficient representation of genetic features from more than one class such that their classification is more

ambiguous. A simplified classification (LymphGenSimple) is also presented whereby composite cases are assigned to a single class by selecting

only one of the assigned classes using a prioritized set of classes.
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Clustering was based predominantly on mutation data, with

copy number alterations considered only for a small number

of genes. Translocation and gene fusion data were not avail-

able for all cases and were therefore excluded from the clus-

tering. Therefore, this study differed from the NCI and

Harvard studies in several respects: the sequencing strategy

used, the types of the genetic data seen by the clustering

algorithms, and the statistical approach employed to identify

clusters. Despite this, genetic subtypes emerged that could be

mapped almost precisely to NCI and Harvard categories.

These were named according to the most enriched genetic

feature. The group termed MYD88 recapitulated the MCD/

C5 clusters. The BCL2 group corresponded to EZB/C3. A

NOTCH2 group mapped to the BN2/C1 clusters. Finally, an

SGK1 group reproduced the ST2/C4 clusters. Perhaps owing

to the greater number of cases in the HMRN study, the

SGK1 group was split into SOCS1/SGK1 and TET2/SGK1.

Overall, 27% of cases remained UC. Neither a NOTCH1

mutant group or a A53/C2 equivalent group were identified.

In fact, the frequency of N1 cases (1�7% of all DLBCL in the

NCI study) was too low to be resolvable as a distinct cate-

gory in unsupervised clustering, whereas limited copy num-

ber data precluded identification of an A53/C2 group in the

HMRN study. However, rather than being classified else-

where, both TP53 and NOTCH1 mutant patients were prin-

cipally enriched amongst the UC cases suggesting their

absence should not be considered as evidence against the

validity of these groups. A further modification of the

HMRN classification used the presence of MYC hotspot and

NOTCH1 PEST domain mutations to identify a NOTCH1

and BCL2-MYC subgroups.41 This modified HMRN classifier

showed high concordance when cases were reclassified using

the NCI LymphGen classifier (Fig 4).

It is encouraging that studies with different sequencing

and computational approaches independently converge on a

remarkably similar system for the genetic classification of

DLBCL. The degree of consensus provides strong evidence

for the validity of genetically defined, biological subtypes of

DLBCL. Gene expression profiling offers further support that

each subtype relies on fundamentally different biological

pathways.37,40 A comparison across studies and the salient

feature of each subtype are summarised in Table I. For con-

sistency we will adopt the NCI (LymphGen) nomenclature

throughout the remainder of this study, unless referring to

subgroups from a specific study. Ultimately, genetic classifi-

cation provides a means to rationalise the genetic hetero-

geneity of DLBCL into subgroups that share a common

biological pathogenesis and may therefore respond similarly

to specific therapies. We anticipate that robust publicly avail-

able methods to assign DLBCLs to these subgroups will

emerge as their definition continues to be refined. This,

therefore, begins to address one of the biggest barriers to the

introduction of targeted therapies or precision medicine to

the treatment of DLBCL.

Superimposing the biology of genetic subtypes
onto other known lymphoma entities

Examining the mutational repertoires of individual subtypes

provides clues to the biology and reveals unexpected overlap

with other categories of lymphoma distinct from DLBCL

(Figs 5 and 6, Table I). MCD tumours have the strongest

ABC expression signature and are characterised by mutations

that activate BCR and toll-like receptor pathways, both of

which converge onto increased nuclear factor kappa B

(NFKB) activity.42–44 Other frequent genetic alterations

include amplification of the BCL2 locus, deletion of the cell

cycle negative regulator CDKN2A, and mutations that con-

verge upon immune evasion.39 Almost all cases show the

transcriptional profile of ABC DLBCL including increased

signatures of NFKB and MYC activity.37,40 The genetic fea-

tures of MCD overlap strongly with those reported in the

extranodal lymphomas, including primary central nervous

system lymphoma (PCNSL), primary breast lymphoma and

primary testicular lymphoma (PTL).45–47 Indeed, cases of

PCNSL and PTL included in the above clustering studies

almost all clustered into the MCD subtype (Fig 5B). Recent

single-cell analysis of normal lymph nodes suggests a sub-

stantial proportion of MCD lymphoma may arise from a dis-

tinct pre-memory B-cell stage of post-germinal-centre B-cell

development (Fig 6).48 This finding resonates with the fre-

quent mutation of TBL1XR1 in MCD DLBCL, since

TBL1XR1 mutations in mouse models promote memory B-

cell expansion and extranodal lymphoma.49 Overall, this sug-

gests MCD DLBCL is a distinct form of DLBCL that, from a

biological perspective, overlaps more strongly with PCNSL

and PTL than it does with other forms of DLBCL not other-

wise specified (NOS). The recurrent mutation of BCR and

immune pathway genes within this subtype leads to hypothe-

ses about potential therapeutic vulnerabilities that may be

tested in future clinical trials of BCR or immune checkpoint

inhibition.

At the other end of the biological spectrum, EZB tumours

are strongly enriched for GCB DLBCLs. They are charac-

terised by translocation of BCL2 into the immunoglobulin

locus, and mutation of histone modifiers such as KMT2D,

EZH2, CREBBP and EP300. Mouse models have shown how

mutations of these genes lead to a block of differentiation

and sustained expression of the germinal-centre transcrip-

tional programme, which co-operate with BCL2 to drive

lymphomagenesis.50–58 The mutation profile of EZB matches

closely to that seen in follicular lymphoma (FL).29,33,59,60 The

HMRN study showed that DLBCLs that had transformed

from FL were strongly enriched in this cluster (Fig 5B).40

The shared genetic features of transformed FL and EZB

DLBCL is consistent with the notion that so-called de novo

cases of EZB DLBCL and FL may both arise from a common

origin (Fig 6).40 Indeed, the HMRN study revealed that 27%

of cases assigned to this subtype had evidence of previously
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undiagnosed FL discovered on lymph node or trephine

biopsy concurrent with the diagnosis of DLBCL.40 This leads

us to speculate that a substantial proportion of de novo

DLBCLs of the EZB class may arise via transformation from

an occult FL.

The EZB subtype also appears to be the primary genetic

background of DHL. The HMRN study showed how HGBL-

DH/TH cases (identified by FISH) were found predomi-

nantly within this subtype, as were the transcriptionally iden-

tified MHG cases.40 Similarly, the NCI study used the closely

related DHITsig transcriptional signature to reveal enrich-

ment of DHITsig+ cases within the EZB subtype.39 This sug-

gests the existence of a subgroup of aggressive, MYC-driven

lymphomas within the EZB cluster that represents a distinct

disease entity that may arise from germinal-centre dark-zone

centroblasts (Fig 6). It also suggests that MYC or BCL2 sin-

gle or doubly rearranged cases from other genetic subtypes

may not necessarily have the same clinical or biological

implications. In the NCI LymphGen classification system,

EZB is further subdivided into EZB–MYC+ and EZB–MYC�

to differentiate cases with and without either MYC rear-

rangement or the DHITsig gene expression signature. Simi-

larly, in a modification to the original HMRN classification

(modified HMRN), the presence of MYC hotspot mutations,

which are known to correlate strongly with rearrangement

status,61 were used to define MYC-driven cases within the

BCL2 subgroup.41 Notably, tissue collection in most of the

above studies occurred prior to the WHO revision to lym-

phoid classification which introduced the category of high-

grade B-cell lymphoma with MYC and BCL2 and/or BCL6

rearrangements. These new genetic findings challenge the

utility of this WHO disease category as a meaningful, homo-

geneous biological entity and motivate the revision of this

definition.

The BN2 subgroup does not have unifying gene expression

features and represents a mix of ABC, GCB and UC cases.

BN2 is enriched for BCL6 fusion and mutation of NOTCH2

and other NOTCH pathway genes. Interestingly, transcrip-

tional signatures of NOTCH activation were not identified in

these tumours,37,40 suggesting that the activating NOTCH2

mutations may exert their effect at a specific stage of lym-

phoma development. Other mutations enriched in the BN2

cluster appear to activate NFKB; these include loss of

TNFAIP3, gain of BCL10 and 3ʹ-untranslated region (3ʹUTR)
mutation (leading to enhanced expression) of NFKBIZ.62

Many of these genetic alterations, especially NOTCH2 muta-

tion, are reminiscent of marginal-zone lymphoma

(MZL).63,64 It is tempting to speculate that these lymphomas

arise from transformation of an underlying MZL (Fig 6).

However, evidence of pre-existing MZL was not identified in

the clustering studies.38,40 Nevertheless, it is clear that a

shared biological programme and likely a shared cellular ori-

gin may link these two diseases.

The ST2 subtype also shares genetic similarity to indolent

lymphoma — in this case nodular lymphocyte-predominant

Hodgkin lymphoma (NLPHL)65 but direct evidence of trans-

formation from the latter remains to be identified. Mutations

in this subtype (including SOCS1, DUSP2, STAT3 and

BRAF) may lead to activation of JAK/STAT and ERK sig-

nalling pathways, a suggestion supported by gene expression

signatures.40 SGK1 mutations may lead to hyperstable protein

isoforms that act in parallel to AKT in the PI3K pathway.66

In the HMRN study the SGK1 subtype was subdivided into

SOCS1/SGK1 and TET2/SGK1. The former shares genetic

overlap with primary mediastinal B-cell lymphoma, including

SOCS1, ITPKB, NFKBIE and CIITA.67,68 The SOCS1/SGK1

subtype was enriched for cases of PMBCL (Fig 5B); however,

the remaining cases did not show preferential mediastinal

involvement. This suggests that PMBCL, a tumour defined in

part by its restricted anatomical involvement, may share con-

siderable biological overlap with this subtype of nodal

DLBCL NOS. This supports previous descriptions of non-

mediastinal DLBCLs with gene expression features and genet-

ics reminiscent of PMBCL and we speculate that these con-

tribute, in part, to the SOCS1/SGK1 subgroup.69,70

The N1 subtype is dominated by mutations that remove

the degradation domain, and thereby activate the oncogene

NOTCH1. These mutations are rare in DLBCL overall (1�7%
and 2�4% in the NCI and HMRN studies respectively) but

are common in chronic lymphocytic leukaemia (CLL) and in

Richter’s syndrome.71,72 N1 cases reported in the clustering

studies do not appear to represent overt transformation of

CLL but seem to share common oncogenic programmes with

these diseases.

Finally, the A53 subtype is defined by widespread copy

number variation. Mutation or deletion of TP53 is enriched

Fig 3. Comparison of the National Cancer Institute (NCI) and Harvard clusters. (A) The frequency of mutations in key genes associated with dif-

fuse large B-cell lymphoma (DLBCL) genetic subgroups are compared between the NCI and Harvard cohorts for the four largest subgroups.

Whilst strong agreement is seen for some genes, such as those defining the BN2/C1 group, there is more variable consensus across other subtypes,

exemplified by genes such as TET2, BCL2 and SOCS1. (B) This oncoprint shows the genetic features of each class across three DLBCL cohorts

including the Harvard,38 NCI37 and a cohort of patients from British Columbia.74 LymphGen was applied to the genetic data from all three

cohorts and the classifications are shown with and without composite labels — LymphGen and LymphGenSimple respectively. (C) The alluvial

plot shows the relative proportion of cases from the Harvard cohort assigned to each class when reclassified by LymphGen. This reclassification

was done in two ways; with or without the A53 option enabled in the LymphGen classifier. Vertical ribbons represent individual cases and can be

followed from top to bottom. Notably, when the A53 class is available, a large number of cases switch classification from one of the core classes

to A53. The plot demonstrates relatively high consensus between the two classification systems when considering the core classes, but weaker con-

sensus over patients classified into the A53 and C2 clusters.
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but not exclusive to this subtype. Beyond TP53, very few

other coding mutations were enriched within this subtype

and tumours with prototypical mutations characteristic of

the other groups are commonly assigned A53 or composite

classes including A53. Other than sharing aneuploidy result-

ing from the loss of TP53, it is unclear whether a unifying

biology exists within this group. When Harvard cases are

reclassified using the LymphGen classifier it becomes clear

that the A53 and C2 classes show much less overlap than do

the other equivalent classes. The observation that many of

the cases classified as A53 are reclassified to one of the other

classes indicates that this classification may mask biology that

Fig 4. Comparison of the Haematological Malignancy Research Network (HMRN) and LymphGen classifications. (A) This oncoprint shows

patients from the HMRN study.40 The LymphGen classifier was applied to the same data, with the A53 option disabled due to lack of sufficient

copy number information. LymphGen and HMRN classifications are shown in the lower bar. The HMRN classification was modified as described

in Runge et al.41 to identify BCL2-MYC and NOTCH1 groups. (B) Alluvial plot showing comparison of modified HMRN and LymphGen classifi-

cations for individual cases from the HMRN study. It can be seen that cases classified by LymphGen are predominantly assigned to their equiva-

lent HMRN group. The main distinctions between LymphGen and HMRN are that the latter further subdivides ST2 into the TET2/SGK1 and the

SOCS1/SGK1 classes and has a higher classification, leaving fewer cases classified as ‘other’.
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would otherwise be revealed from other genetic features

(Fig 3). This suggests that the genetic identity A53/C2 is the

least robust of the genetic groups (Fig 3B).

The genetic heterogeneity within the diagnosis of DLBCL

NOS suggests it represents an assortment of diseases. How-

ever, comparison with other lymphoma types suggests that

the biology may straddle the boundaries between DLBCL

NOS and other lymphoma types defined by the current

World Health Organization classification system. Ultimately,

a biology-focused classification of aggressive B-cell lym-

phoma may redefine many of these boundaries.

Implications for prognosis

The molecular classification systems discussed above are

based principally upon grouping tumours with shared biol-

ogy. However, a separate question is whether genetic classifi-

cations provide us with prognostic information that could be

useful in guiding patient management. It is clear that clinical

factors remain a dominant factor determining prognosis. It is

also clear that clinical factors are not independently dis-

tributed across the genetic subtypes.40 Thus, care must be

taken when inferring the independent prognostic impact of

each subtype.

Whilst genetic subgroups may show differential responses

to targeted therapy in the future, all current information

relates to conventional immunochemotherapy. Each of the

studies discussed above examined the impact of genetic sub-

types on patient outcome. It is important to acknowledge

differences in the patient cohorts and the types of treatment

used. The Harvard study reported clinical outcomes on 259

patients treated with R-CHOP-like therapy and derived from

a combination of archived biopsy collections and the

RICOVER-60 trial of elderly DLBCL. The NCI study

reported clinical outcomes on 240 patients, enriched for ABC

DLBCL, treated with R-CHOP-like therapy and derived from

a combination of archived biopsy collections and the CALGB

50303 clinical trial. The HMRN study reported clinical data

on 690 patients from the HMRN registry, which prospec-

tively tracks outcomes of every new haematological malig-

nancy diagnosis made at a regional diagnostic referral centre.

The latter may escape the inevitable recruitment and selec-

tion biases implicit in clinical trial or pathological archives.

Finally, distinct from the previous studies, the HMRN study

also reported outcome for the 579 DLBCL patients treated

with full-dose R-CHOP. Comparison to patients treated with

R-CHOP-like regimens in the same study reveals the impor-

tance of this subtle distinction.40 A summary of five-year

overall survival (OS) outcomes by subtype across studies is

shown in Fig 7.

When comparing across studies some clear conclusions

can be drawn. First is the association of the ST2 subgroup

with a favourable outcome. It was associated with superior

survival in the NCI study (five-year OS 84%) and the Har-

vard study (five-year OS approximately 75%). In the HMRNT
ab
le

I.
(C

on
ti
n
u
ed
)

L
ym

p
h
G
en

C
lu
st
er

n
am

e
M
u
ta
te
d
ge
n
es

L
ym

p
h
G
en

W
ri
gh
t
et

al
.3
9

H
ar
va
rd

C
h
ap
u
y
et

al
.3
8

U
K
-H

M
R
N

L
ac
y
et

al
.4
0

C
O
O

R
el
at
ed

ly
m
p
h
o
m
as

O
n
co
ge
n
ic

p
at
h
w
ay
s

A
53

T
P
53

x
x

N
o
C
O
O

sk
ew

W
id
es
p
re
ad

an
eu
p
lo
id
y

17
p
d
el

x
x

N
1

N
O
T
C
H
1

x
M
o
st
ly

A
B
C

Si
m
il
ar
it
ie
s
w
it
h
R
ic
h
te
r’
s

tr
an
sf
o
rm

at
io
n
b
u
t
n
o
d
ir
ec
t

ev
id
en
ce

th
at

th
es
e
ca
se
s

re
p
re
se
n
t
tr
an
sf
o
rm

ed
C
L
L

N
O
T
C
H

ac
ti
va
ti
o
n

Q
u
ie
sc
en
ce

si
gn
at
u
re

ID
3

x

T
h
e
ke
y
ge
n
et
ic

an
d
ge
n
e
ex
p
re
ss
io
n
si
gn
at
u
re
s,
li
ke
ly

o
n
co
ge
n
ic

p
at
h
w
ay
s
an
d
re
la
te
d
ly
m
p
h
o
id

m
al
ig
n
an
ci
es
,
ar
e
su
m
m
ar
is
ed

fo
r
ea
ch

o
f
th
e
m
o
le
cu
la
r
su
b
ty
p
es
.

A
B
C
,
ac
ti
va
te
d
B
ce
ll
;
C
L
L
,
ch
ro
n
ic

ly
m
p
h
o
cy
ti
c
le
u
ka
em

ia
;
C
O
O
,
ce
ll
o
f
o
ri
gi
n
;
F
L
,
fo
ll
ic
u
la
r
ly
m
p
h
o
m
a;

G
C
B
,
ge
rm

in
al
-c
en
tr
e
B
ce
ll
;
H
M
R
N
,
h
ae
m
at
o
lo
gi
ca
l
m
al
ig
n
an
cy

re
se
ar
ch

n
et
w
o
rk
;
M
Z
L
,

m
ar
gi
n
al
-z
o
n
e
ly
m
p
h
o
m
a;

N
F
K
B
,
n
u
cl
ea
r
fa
ct
o
r
ka
p
p
a
B
;
P
C
N
SL

,
p
ri
m
ar
y
ce
n
tr
al

n
er
vo
u
s
sy
st
em

ly
m
p
h
o
m
a.

Review

10 ª 2021 The Authors. British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd.



study, SOCS1/SGK1 was the subtype associated with the

highest OS (five-year OS 80%) in R-CHOP-treated patients

and the lowest hazard ratio, when adjusted for International

Prognostic Index (IPI). Therefore, clear consensus exists

around the favourable outcome in this genetic subtype. Con-

versely, consensus also exists around the poor outcome of

patients with the N1 subtype; five-year OS was 27% in the

NCI study39 and 40% using a modified HMRN classifica-

tion.41 Similarly poor survival was seen for EZB–MYC

patients identified by expression profiling in the NCI study

(five-year OS 48%)39 or BCL2-MYC cases in the HMRN

study (five-year OS 40%).41

The potential prognostic impact of the other groups is not

as clear. EZB patients had an intermediate outcome (five-

year OS 70%) in the NCI study, a good outcome in the

HMRN study (five-year OS 82%) but one of the poorest sur-

vivals (five-year OS 60%) in the Harvard study (Fig 7). The

MCD subtype had an extremely poor survival in the NCI

study (five-year OS 40%). However, in the Harvard study

the MCD equivalent (C5) showed outcomes identical to the

EZB/C3 subgroup (five-year OS 60%). Interestingly, the

HMRN study showed a poor outcome amongst curatively

treated (R-CHOP-like) patients, but this effect was greatly

reduced when the analysis was restricted to cases treated with

full-dose R-CHOP (Fig 7). Thus, the negative outcome in

this subtype may in part reflect an overrepresentation of

older or comorbid patients who are unable to tolerate full-

dose treatment and are therefore generally excluded from

clinical studies. The BN2 subgroup shows an intermediate

outcome in the NCI study (five-year OS 67%), an excellent

outcome in the Harvard study (five-year OS 80%), but a

poor outcome in the HMRN study (five-year OS 55%). The

A53 group showed an intermediate prognosis in both the

NCI and Harvard studies (five-year OS 65%).

In summary, whilst the effect of some groups is clear

(ST2, N1, EZB–MYC), the true prognostic impact of the

other groups remains to be determined in prospective trials.

However, the real value of a genetic classification system does

not lie in its ability to predict response to R-CHOP. Rather

it will be to identify homogeneous groups of tumours with

shared biology that may respond similarly to specific targeted

therapies.

Challenges of implementing molecular
subtyping

Implementing a genomic classifier in clinical practice will be

associated with a number of challenges. Important

Fig 5. A guide and unified colour scheme for the plethora of diffuse large B-cell lymphoma (DLBCL) classification systems. (A) The diagnosis of

DLBCL has grown progressively more complex as we continue to refine methods to delineate cases with distinct pathobiology. Several clinical

entities that share features with DLBCL have been re-defined as distinct entities (column 1). The cell of origin (COO) system has been refined

further to separate cases with gene expression profiles resembling double-hit lymphomas (DHITsig+) or Burkitt lymphoma (MHG) (Column 2).

Columns 3–5 show the relationship between subgroups defined in the three systems discussed in the text. Each of the LymphGen [National Can-

cer Institute (NCI)] and revised Haematological Malignancy Research Network (HMRN) systems include a subgroup defined by activating muta-

tions in NOTCH1. Both the NCI and Harvard systems (but not HMRN) accommodate aneuploid cases with (or without) TP53 mutations. This

figure uses a colour palette that was carefully designed to allow for the consistent representation of the main diagnostic entities, molecular and

genetic classifications for DLBCL. The colour codes and utilities to allow the use of this palette are available as an open-source package at https://

github.com/morinlab/ggsci. (B) Using this colour scheme, we have re-illustrated the data from the HMRN study to show the relationship between

the lymphoma diagnostic entities and the HMRN genetic classes.
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considerations include the type of sequencing required and

choice of classifier to be used (Fig 1). The NCI and Harvard

studies used whole-exome sequencing to identify mutation

and copy number alteration in a combination of fresh frozen

and FFPE biopsies. The HMRN study used a targeted

sequencing panel applied to FFPE biopsies, an approach that

might be more suited to a diagnostic laboratory. Indeed, for

all classifiers the vast majority of information comes from the

genetic status of about 100–150 genes. However, the absence

of genome-wide copy number precludes identification of the

A53 group. Targeted copy number assays or shallow whole-

genome sequencing may ultimately become cost-efficient

ways to identify the A53 group. However, for now, for indi-

vidual research groups, the added value of identifying the

A53 group (6�6% of patients) will need to be weighed

against the significant increase in sequencing required for

A53 identification.

The choice of classifier is also important. Initial studies

relied upon clustering of large numbers of patients. Translat-

ing this to a single patient is now possible using the NCI

Fig 6. Distinct stages of B-cell differentiation hijacked by subtypes of diffuse large B-cell lymphoma (DLBCL) and related lymphoid malignancies.

The progression of a B cell through the germinal centre is shown including lymphoma types that may originate from each of these stages of dif-

ferentiation. The molecular subclassifications described by the LymphGen, Harvard and HMRN groups are shown, associated with the alternative

lymphoid malignancies they most closely resemble. These include primary central nervous system lymphoma (PCNSL), primary testicular lym-

phoma (PTL), and Waldenstr€om macroglobulinaemia (WM), which most likely derive from a precursor memory B cell and share features with

the MCD subtype. The characteristics of BN2 cases suggest similarity to marginal zone lymphoma (MZL). EZB tumours recapitulate the genetics

of follicular lymphoma (FL), and likely derive from light-zone centrocytes. In contrast, EZB–MYC+ cases most likely arise from dark-zone cen-

troblasts. NOTCH1 mutations, whilst rare in DLBCL, suggest a possible a link to chronic lymphocytic leukaemia (CLL), with either a na€ıve B cell

or precursor memory B cell (MBC) origin. ST2 cases have a genetic signature similar to nodular lymphocyte-predominant Hodgkin lymphoma

(NLPHL) and primary mediastinal large B cell lymphoma (PMBCL) and arise from germinal-centre B cells. The biology and cellular origin of the

A53/C2 subtype remain unclear. The most enriched gene mutations and gene expression signatures are indicated below each subtype.
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LymphGen classifier39 or the code linked to the HMRN

study.40 Importantly the LymphGen classifier is designed to

work with ‘imperfect data’ meaning it can be used for both

targeted or whole-exome sequencing. A further classifier

from the Harvard group has been described in abstract that

relies on just 22 genetic features but is not publicly available.

A recent publication applied the LymphGen classifier to cases

classified in the HMRN study and showed high concordance

with the original HMRN assignment.41 Indeed, the greatest

source of variability was the number of cases classified at all

rather than the movement between subtypes (Fig 5B).

LymphGen assigned a unique classification to 53% of cases,

whereas HMRN classified 73% of cases.41 In contrast, the

Harvard classifier, according to their original clustering

paper, assigns a classification to 96% of cases. These numbers

are clearly very different and raise the important question of

how to judge which provides the most correct answer. Whilst

the general description of individual molecular subgroups is

an area of agreement, precisely where to place the boundaries

around them is not. In the absence of a gold standard refer-

ence this may prove challenging to resolve. The answer will

ultimately come from the ability of a classifier to identify

patient groups that respond to targeted therapies. Until con-

sensus is reached it would seem prudent for clinical trials to

capture as much genetic information as is reasonably practi-

cable in order to employ both existing and future classifiers.

An important source of variability between studies is the

strategy for calling genetic variants. Current classifications

have been constructed based upon a binary call of mutant

versus not-mutant for each gene. However, it is not always

straightforward to determine the significance of an individual

mutation, especially in the absence of germline DNA. Whilst

this is straightforward for driver genes with well-established

hotspot codons like MYD88 L265P, it is more challenging to

interpret the significance of scattered missense mutations in

genes that are subject to somatic hypermutation (SHM).

Whilst not all of these have a lymphoma driver function it

seems clear that patterns of hypermutated genes differ across

subtypes, suggesting these mutations may represent useful

classification markers.73 This question of whether to report

SHM as a genetic marker independent of a driver mutation

role is approached differently in different studies. Examples

of genes with widely different mutation frequencies include

SOCS1, TET2 and BCL2 (Fig 3A). This most likely reflects

different variant filtering strategies. Thus, different variant

calling strategies may provide different outputs even when

the same classifier is used. This may become a more signifi-

cant problem as classifiers attempt to focus onto a smaller

number of classifier genes, where the opportunity to spread

the risk of classifying individual genes is reduced.

It remains likely that a significant number of cases will

not fit into the current genetic subtypes and that further sub-

types remain to be discovered. Given the number of cases of

DLBCL that have been subjected to exome sequencing it

seems less likely that new driver mutations will be discovered

in protein-coding genes. However, the next wave of whole-

genome sequencing may reveal previously undiscovered alter-

ations in non-coding and regulatory regions. A recent exam-

ple is the frequent mutation of the 3ʹUTR of NFKBIZ,

leading to elevated protein expression in ABC DLBCL.74 Fur-

ther such discoveries may reveal new subgroups within the

UC cases or may refine the current classification in a manner

similar to how gene expression profiling has identified a

MYC-driven subgroup of EZB. Advances in technology for

proteomic quantification, assessment of host immune status

or the involvement of viral pathogens in driving lymphoma-

genesis may all contribute new understanding to the chal-

lenge of defining molecular subtypes of DLBCL in coming

years.

Finally, there are logistical considerations associated with

the need for sufficient quantity and quality of biopsy tissue,

and the ability to return sequencing data in a clinically

meaningful timeframe. The recent UK REMoDL-B study

overcame similar challenges for microarray assays and

returned gene expression data within a three-week window

for nationally recruited patients analysed at a central diag-

nostic laboratory.6 We believe a similar approach could be

applied to genetic profiling. Furthermore, advances in circu-

lating tumour DNA technology may ultimately allow DLBCL

genotyping to be performed on a plasma sample.75

Why now is the time to invest in genomic
profiling for DLBCL

It is important to be clear about the potential value of any

form of molecular profiling. Broadly there are three reasons

Fig 7. Comparison of survival outcomes by genetic subtype across

studies. The five-year overall survival is shown for each subtype as

described across their respective publications. Equivalent subtypes

share the colour scheme described in Fig 5. The classification system

used, the relevant published study, treatment received [(cyclophos-

phamide, doxorubicin, vincristine, prednisone + rituximab) (R-

CHOP) versus R-CHOP-like], and number of patients contributing

to survival analysis in each study are shown below the graph.
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to do this: (i) to inform on prognosis; (ii) to allow selection

of optimal therapy; and (iii) to provide a biology-based

framework on which to design and interpret clinical trials.

We have discussed how genomic profiling provides some,

although limited, prognostic information on R-CHOP-

treated DLBCL. Our current understanding of the underlying

biology already allows hypotheses to be generated about

which subgroups may respond to specific therapy. However,

at present these remain hypotheses and it would be prema-

ture to suggest that genomics subtypes can currently be used

to select therapy. Instead, the true value of genomics subtyp-

ing lies in the provision of a biology-based framework on

which to design and interpret DLBCL trials. As discussed at

the start of the review, the most significant barrier to the

introduction of new and targeted therapies to first-line

DLBCL is the considerable biological heterogeneity within

the umbrella of DLBCL. The molecular subtypes discussed

above allow the grouping of cases that share similar biology,

depend on similar oncogenic pathways and therefore may

respond in a similar way to targeted therapies. Stratifying

patients into molecular subtypes will allow us to detect

responses to therapy that may only be seen in a small but

defined molecular subgroup. This may require that we

rethink our clinical trial strategy. We envisage that future tri-

als may follow an adaptive design where novel agents are ini-

tially screened across all DLBCL types but subsequently

focused onto molecular subgroups where a potential response

signal is observed. Our current biological understanding may

allow us to narrow the therapeutic focus already; however

there will always be surprises. An example of this is the

REMoDL-B trial, which randomised first-line DLBCL

patients to R-CHOP plus or minus proteasome inhibition

with bortezomib based on the hypothesis that proteasome

inhibition might benefit ABC DLBCL patients.6 Whist

improved outcome was not seen overall, or in the hypothe-

sised subtype, a trend towards improved progression-free

survival (PFS) was unexpectedly seen in the MHG subgroup

identified by transcriptional profiling27. This result should

now be tested in a formal prospective trial in MHG patients.

As genomic profiling becomes standard in DLBCL we

should heed the lessons learned from our experiences with

COO and FISH profiling. This includes the need for a har-

monised approach, and to resist the temptation for oversim-

plified assays that provide a poor proxy for the true

classification. It also highlights the importance of prospective

studies to determine the true prognostic impact, and for ran-

domised studies to avoid the premature adoption of fashion-

able but unproven subtype-directed therapies.

We consider it is essential to now include molecular pro-

filing in all prospective drug trials in DLBCL. Whether this

should include comprehensive exome and RNA sequencing

or a more focused sequencing strategy is a debate that will

continue. But without some form of genomic testing to

resolve individual molecular subtypes it is unlikely we will

ever deploy novel therapies in DLBCL to their greatest

advantage. As our understanding of the genomics and biol-

ogy of DLBCL progresses we can expect that classification

systems will continue to evolve. The broadest possible

molecular profiling may therefore future-proof trials against

evolution in genetic subtyping. However, we should not let

this delay starting. Indeed, one important aspect of introduc-

ing molecular profiling now will be to overcome the logisti-

cal and infrastructure barriers to returning genomic data in

a clinically meaningful timeframe. To stand a chance of

being effective, biologically-targeted therapies need to be

deployed in a biologically targeted manner. Molecular sub-

typing of DLBCL is the next step in this precision medicine

journey.
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