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Summary

The problem of interpolating functions comes up naturally in many areas of

applied mathematics and natural sciences. Radial basis function methods

provide an interpolant to values of a real function of d variables and are

highly useful in many applications, especially if the function values are given

at scattered data points.

The need for iterative procedures arises when the number of interpolation

conditions n is large, since hardly any sparsity occurs in the linear system

of interpolation equations. Solving this system with direct methods would

require O(n3) operations.

This dissertation considers several iterative techniques. They were devel-

oped from an algorithm described by Beatson, Goodsell and Powell (1995),

which is examined first. By gaining more and more theoretical insight into

the original algorithm, new algorithms are developed and connections to

known methods are made. We establish the important role a certain semi-

inner product plays in the convergence analysis of the original algorithm, and

the first proof of convergence is given. This leads to a new technique using

line searches described later. Then it is shown that the original algorithm

is equivalent to solving a certain symmetric and positive definite system of

equations by Gauss–Seidel iterations. Thus iterative techniques like Jacobi

iterations and conjugate gradient methods follow. This symmetric and posi-

tive definite system of equations can be derived from the original system of

equations by preconditioning it with a certain matrix. The preconditioned
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conjugate gradient algorithm was first suggested for this problem by Dyn et

al. (1983, 1986), motivated by the variational theory of thin plate splines.

It is helpful to view the original algorithm as a linear operator working on a

certain linear space equipped with the aforementioned semi-inner product.

The original algorithm had the drawback that the residuals had to be

updated at several stages during each iteration. Another algorithm defers

the updates till the end of each iteration, which usually improves efficiency

greatly, but divergence occurs in some cases. Therefore a line search method

is developed that ensures convergence.

The last technique described is a Krylov subspace method which proved

to be very successful. It can be applied to any algorithm that fulfils certain

criteria. If the underlying algorithm is convergent, the Krylov subspace tech-

nique speeds the convergence up. In cases of divergence, the Krylov subspace

method enforces convergence. It is shown that the Krylov subspace method

applied to the algorithm where updating the residuals is deferred till the end

of each iteration is analogous to the conjugate gradient technique applied to

the aforementioned symmetric and positive definite system of equations.

All algorithms are related to each other and theoretical insight into some

properties of one algorithm leads to an improved algorithm. These consider-

ations provide a highly useful theory, linking different techniques for iterative

radial basis function interpolation.
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Chapter 1

Introduction

1.1 Approximation theory

Interpolation of data, which might have been gathered by measurements

of a physical quantity, or by sampling a function at scattered or periodic

points of several variables, is a problem that occurs in many areas of science

and engineering. Weather stations, for example, measure the atmospheric

pressure above the earth surface and these data are then used to construct

a contour map of the atmospheric pressure. Especially in cases where the

data are sampled by measurements, they are scattered, which means that

the positions of the data points do not obey any regular pattern. Generally,

a discrete set X = {x1, . . . , xn} of points in d-dimensional space Rd and

real valued data fi, i = 1, . . . , n, are given, and the task is to construct a

continuous or sufficiently differentiable function s∗ : Rd → R that satisfies

the interpolation equations

s∗(x i) = fi, i = 1, . . . , n. (1.1.1)

1
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If s∗ depends linearly on n parameters, these equations define a n×n system

of linear equations.

Apart from approximating an unknown function, where only function

values at the data points in X are known, there are other applications of

interpolation methods. For example the underlying function might be too

complex for many evaluations on a computer, and it might be necessary to

replace it with a simpler function, retaining certain properties of the original

function, in order to keep computing time low. One also might find that one

has a set of data that is unacceptably large for computer storage. We then

choose X to be a subset of that data and s∗ is used to estimate the remaining

data, which is a form of data compression.

Another issue occurs when we know that the data fi, i = 1, . . . , n, are

subject to errors, which are often called noise, as we cannot “hear” the real

information properly. In this case interpolation is not necessarily desirable.

Then the interpolation equations (1.1.1) can be relaxed and replaced by the

condition

max{|s∗(x i)− fi| : i = 1, . . . , n} < ε, (1.1.2)

where ε is the known magnitude of the errors.

In other cases, we might want to choose a smooth s∗ which depends

on fewer than n parameters. We then have an under-determined system of

equations and one option to choose the function s∗ is by minimizing the sum

of the squares of the residuals s∗(x i)− fi, i = 1, . . . , n, which is

n∑
i=1

(s∗(x i)− fi)2. (1.1.3)

This method is known as least-squares fitting or data-smoothing. The sum of

squares is a functional acting on the difference s∗ − f . In other applications
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it might be more suitable to choose a different functional which is minimized

to determine s∗.

Another possibility is known as quasi-interpolation. There we let s∗ be

the sum of rapidly decaying functions, each of which is centred at a data

point x i and is premultiplied by the factor fi in the sum. Here it is assumed

that s∗(x) depends little on fi if x is far away from x i. In general, s∗ does

not satisfy the interpolation conditions (1.1.1) in this case.

These methods are important in both practice and theory, but this dis-

sertation is restricted to interpolation. There are many different techniques

of interpolation and we give some examples here.

When interpolating with polynomials, we choose a linear space, say P ,

of polynomials in d variables which is spanned by p1, . . . , pn, where n is the

number of interpolation conditions. Then an interpolant s∗ : Rd → R of the

form

s∗(x) =
n∑
i=1

ci pi(x), x ∈ Rd, (1.1.4)

exists if and only if the n×n matrix P with entries Pji = pi(x j) is invertible.

In more than one dimension, i.e. if d > 1, this property depends on the

positions of the data points x 1, . . . , xn, which presents a difficulty. One

possibility to overcome this difficulty is to choose a particular geometry of

the data points. In two dimensions for example, one might require that

the data points form a finite square grid or more generally a “tartan grid”.

Here we are given real numbers x1 < · · · < xk and y1 < · · · < yl. Let

n = k ∗ l, X = {x i∗j = (xi, yj) : i = 1, . . . , k, j = 1, . . . , l} and let the data be

given by fi∗j, i = 1, . . . , k, j = 1, . . . , l. Further we let Lx,i, i = 1, . . . , k, and

Ly,j, j = 1, . . . , l, be the usual univariate Lagrange interpolating polynomials
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defined by

Lx,i(xa) = δia, i, a ∈ [1, k]

Ly,j(yb) = δjb, j, b ∈ [1, l], (1.1.5)

where δia is the Kronecker symbol. Then our interpolant s∗ : R2 → R is given

by

s∗(x) =
k∑
i=1

l∑
j=1

fi∗j Lx,i(x)Ly,j(y), x = (x, y) ∈ R2. (1.1.6)

Thus the interpolant is formed using a tensor product. This method can be

extended to any number of dimensions d. It is not restricted to polynomials.

We can choose suitable univariate functions Px,i, i = 1, . . . , k, and Qy,j,

j = 1, . . . , l, and let our interpolant take the form

s∗(x) =
k∑
i=1

l∑
j=1

ci∗j Px,i(x)Qy,j(y), x = (x, y) ∈ R2. (1.1.7)

The coefficients c1, . . . , cn are obtained by solving the interpolation equations

(1.1.1). The functions Px,i, i = 1, . . . , k, and Qy,j, j = 1, . . . , l, can be chosen,

for example, to be univariate B-splines, if extra points are added outside the

two intervals [x1, xk] and [y1, yk].

These methods are important if the data are given on a tartan grid, but

what if the data points are in general positions. Some useful techniques in this

case are finite element methods. When d = 2 for example, a triangulation

of the data points is chosen, i.e. triangles are constructed such that every

data point lies on the vertex of some triangle, but not in the interior or on

the edge of any triangle. Then a polynomial is constructed on each of the

triangles using function values and partial derivative values at the vertices of

the triangulation and possibly additional points. Some of these values have to

be estimated. Usually we require that the interpolant is smooth in some way.
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Thus it is not trivial to construct polynomials such that they satisfy some

global differentiability property. As an example we refer to the Powell–Sabin

element. The Delaunay triangulation might be used in two dimensions for

example. Fast methods for constructing triangulations in higher dimensions

are not known and this limits this technique to two or three dimensions.

This dissertation considers a class of interpolants, known as radial basis

function interpolants. They are introduced in the next chapter and some of

their properties that will be useful later are established there.

1.2 Contents of the thesis

Radial basis function interpolation has the disadvantage that the matrix is

dense. Computing s∗ by direct means would require O(n3) operations. Thus

the work may become prohibitive for large n. Hence the need for fast iterative

methods arises.

We begin this thesis by describing interpolation by radial basis function

and show some of their properties which are important to our analysis.

We then first consider the algorithm developed by Beatson, Goodsell and

Powell, which will be called Algorithm A here. The first section of the third

chapter describes the ideas which lead to this algorithm and the algorithm

itself. Numerical experiments were very promising, but no proof of conver-

gence existed. The beautiful proof of convergence, which is the subject of the

next section, still excites the author. This work was done in collaboration

with Mike Powell. The semi-norm ‖ · ‖θ which will be introduced in Section

2.2 is the key to the understanding of the convergence properties of Algo-

rithm A. In every stage of each iteration the semi-norm of the difference of

the required interpolant s∗ and the current approximation s is minimized in
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a way to give a better approximation. It still fascinates the author that such

a beautiful theory appears for an algorithm whose development was based

on numerical experiments.

Then we show that Algorithm A is equivalent to solving a certain sym-

metric and positive definite system of equations by Gauss–Seidel iterations.

This system can be obtained from the original system by preconditioning

it from the left and from the right with certain matrices. We briefly men-

tion other choices of preconditioners such as suggested by Powell (1996) for

thin plate spline interpolation. Having established the system of equations

which is solved by Gauss–Seidel iterations, it is straightforward to find the

iteration matrix by which the vector of residuals fi − s(x i), i = 1, . . . , n,

at the beginning of an iteration is multiplied to give the vector of residuals

after the iteration, where s denotes the current approximation to s∗. The

spectral radius of this iteration matrix gives a measurement for the speed of

convergence.

We conclude the third chapter by considering Algorithm A as a linear

operator acting on a certain finite dimensional linear space equipped with a

semi-inner product. Some properties of the linear operator are established.

These give more insight into the algorithm and allow us to apply the Krylov

subspace method described in Chapter 6 to Algorithm A.

The next three chapters consider improvements to Algorithm A and new

techniques which arose from the insights gained from the analysis of Al-

gorithm A. One drawback of Algorithm A is that the residuals fi − s(x i),

i = 1, . . . , n, have to be updated at several stages during each iteration. This

can be very time consuming. An obvious way to speed the algorithm up

is to delay the updates till the end of each iteration. This leads to a new

algorithm, called Algorithm B, which is the subject of Chapter 4. We show
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that this method is equivalent to solving the aforementioned symmetric and

positive definite system by Jacobi iterations. Algorithm B can also be viewed

as a linear operator acting on the aforementioned linear subspace and it has

some properties in common with the linear operator associated with Algo-

rithm A. It has the additional property that it is self-adjoint. Unfortunately,

however, Algorithm B has the disadvantage that it diverges in certain cases.

Chapter 5 considers two more techniques. The idea of minimizing the

semi-norm leads to a new technique using line searches. By adding a line

search to Algorithm B, we can ensure convergence. The conjugate gradient

technique is an established method to solve symmetric and positive definite

systems. We apply it to the aforementioned preconditioned system and es-

tablish certain properties of the preconditioners. The conjugate gradient

technique is considered in detail here, because we show later that the Krylov

subspace technique applied to Algorithm B is equivalent to the precondi-

tioned conjugate gradient method.

The next chapter is the culmination of this work. The Krylov subspace

technique developed from the idea to use orthogonal search directions. It

can improve the convergence properties of any given algorithm provided it

fulfils certain criteria. We show how it is applied to Algorithm A and B

in particular. The Krylov subspace technique ensures that after the `-th

iteration, ` = 1, 2, . . ., the current approximation is a best approximation to

s∗ from a certain `-dimensional subspace of the aforementioned linear space.

Chapter 7 finally considers some numerical experiments and compares the

different techniques presented in this thesis both in two and three dimensions.

To show the development of ideas is important to the author. Analysing

the concepts behind the original method gives rise to new, improved tech-

niques. Mathematical insight gives us a beautiful and useful theory to work
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with in practice.



Chapter 2

Radial basis functions

2.1 The radial basis function method

Radial basis function methods provide interpolants to function values given

at irregularly positioned points for any value d, i.e. they can be applied

in any dimension. Often these interpolants are excellent approximations

to the underlying function. This makes these techniques very attractive.

Franke (1982) compares some thirty interpolation methods, including radial

basis functions. Compared to other tested methods, radial basis function

techniques obtain excellent accuracy when interpolating scattered data. The

range of fields in which radial basis function methods are used is very large,

including geophysics, signal processing, meteorology, orthopaedics, pattern

recognition and computational fluid dynamics, for instance (Hardy, 1990).

The amount of data which needs to be processed gets also larger and thus

the demand for faster methods grows.

We are given a fixed univariate, continuous function φ : R≥0 → R, which

is called a “radial basis function”. A radial basis function interpolant s∗ is a

9
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linear combination of translates of the function x→ φ(‖ x ‖2), x ∈ Rd, where

here and throughout ‖ · ‖2 denotes the Euclidean norm. Written explicitly,

s∗ has the form

s∗(x) =
n∑
j=1

λ∗jφ(‖ x− x j‖2), x ∈ Rd, (2.1.1)

The function x→ φ(‖ x ‖2), x ∈ Rd, is “radially symmetric”, since it clearly

depends only on the length of the vector xmeasured in the Euclidean norm. If

we define Φ to be the n×n matrix that has the elements Φij = φ(‖ x i−x j‖2),

f to be the vector (f1, . . . , fn)T in Rn whose elements are the right hand sides

of the interpolation equations (1.1.1), and λ∗ to be the vector (λ∗1, . . . , λ
∗
n)T

in Rn, then the interpolation equations (1.1.1) provide the linear system

Φλ∗ = f. (2.1.2)

For several important choices of φ, the matrix Φ is invertible under rather

mild conditions on the positions of the interpolation points x 1, . . . , xn.

The matrix Φ associated with the Gaussian radial basis function φ(r) =

exp(−cr2), where c is a positive constant, is positive definite, if all the data

points are distinct. If the distances ‖ x j − x k‖2, j 6= k, are very large, the

positive definiteness follows from the diagonal dominance. Otherwise, we can

express the (j, k)-entry of Φ as

e−c‖x j−x k‖22 =
(
c

π

)d/2 ∫
t∈Rd

e−c ‖ t ‖
2
2 e 2ci tT x j e−2ci tT x kdt. (2.1.3)

Let vj, j = 1, . . . , n, be the components of a general vector v ∈ Rn. Then the

above identity provides the formulae

vTΦ v =
(
c

π

)d/2 n∑
j,k=1

vj vk

∫
t∈Rd

e−c ‖ t ‖
2
2 e 2ci tT x j e−2ci tT x kdt

=
(
c

π

)d/2 ∫
t∈Rd

e−c ‖ t ‖
2
2

∣∣∣∣∣∣
n∑
j=1

vje
2ci tT x j

∣∣∣∣∣∣
2

dt, (2.1.4)
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which yields vTΦv ≥ 0, because the final integrand is nonnegative. Since

the integrand is a continuous function of t ∈ Rd, vTΦv vanishes only if the

integrand is identically zero, which implies

n∑
j=1

vj e
2ci tT x j = 0, for all t ∈ Rd. (2.1.5)

We can choose α ≥ 1 such that the distances ‖ αx j − αx k‖2, j 6= k, are

large enough so that the matrix Φα with entries (Φα)ij = e−c‖αx j−αx k‖22 is

diagonally dominant. Now equation (2.1.5) implies

vTΦαv =
(
c

π

)d/2∫
t∈Rd

e−c ‖ t ‖
2
2

∣∣∣∣∣∣
n∑
j=1

vj e
2ci αtT x j

∣∣∣∣∣∣
2

dt = 0, (2.1.6)

from which v = 0 follows, since Φα is positive definite. Hence expression

(2.1.4) vanishes only if v = 0, so Φ is positive definite.

For practical purposes, there are reasons to avoid this radial basis function

and it is therefore not considered in this thesis. For example, it is very

sensitive to the choice of the constant c as Franke found in 1982. On the other

hand its smoothness, rapid decay and probabilistic interpretation induces

many to use it in spite of its drawbacks.

Next we consider the choice φ(r) = (r2 + c2)1/2, r ≥ 0, where c is a

positive constant. It is known as the “multiquadric radial function” and it

is highly useful in practice. By setting c = 0, we obtain the “linear radial

function” φ(r) = r, r ≥ 0. The matrix Φ associated with these two radial

basis functions is nonsingular for all choices of d and n provided that the

data points are all different and that n ≥ 2 if c = 0. We can express the

entries of Φ by the formula

Φjk =
1

2
√
π

∫ ∞
0

α−3/2 (1− e−αc2e−α ‖x j−x k ‖22) dα. (2.1.7)
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Let v be any nonzero vector in Rn whose components sum to zero. Thus v

lies in an (n− 1)-dimensional subspace of Rn, and we can write

vTΦ v =
1

2
√
π

∫ ∞
0

n∑
j,k=1

vjvk α
−3/2 (1− e−αc2e−α ‖x j−x k ‖22) dα

=
−1

2
√
π

∫ ∞
0

α−3/2e−αc
2

 n∑
j,k=1

vjvke
−α ‖x j−x k ‖22

 dα. (2.1.8)

From the analysis of the Gaussian radial basis function we know that the

term inside the square brackets is positive for 0 < α < ∞. Thus the strict

inequality vTΦv < 0 follows. It is now possible to deduce that Φ has n − 1

negative eigenvalues. Furthermore, the trace of Φ is nonnegative and hence

Φ has one positive eigenvalue too. Therefore the matrix is nonsingular.

The multiquadric radial basis function has beautiful polynomial repro-

duction properties discovered by Buhmann (1990). The main result is that

the degree of polynomials reproduced by interpolation on an infinite regular

grid is d+ 1, so it is actually an increasing function of the dimension d.

In practice, the choice of the parameter c gives some difficulties. Franke

(1982) tested the multiquadric basis function on distributions of data points

in two dimensions such that the smallest and the largest nearest neighbour

distances did not differ too much. He obtained excellent results when c was

close to the average distance between nearest neighbours, so he recommends

this choice for c. Thus the constant c is made suitable for the interpolation

problem. We do not consider the multiquadric radial function in this thesis,

but the linear radial basis function is tested.

Another interesting choice for the radial basis function is the “inverse

multiquadric radial function” φ(r) = (r2 + c2)−1/2, r ≥ 0, where c is a

positive constant. Again the entries of Φ can be expressed using an integral,

Φjk = π−1/2
∫ ∞

0
α−1/2e−αc

2

e−α ‖x j−x k ‖22dα. (2.1.9)
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Then for any nonzero vector v ∈ Rn we can write

vTΦ v = π−1/2
∫ ∞

0
α−1/2e−αc

2

 n∑
j,k=1

vjvke
−α ‖x j−x k ‖22

 dα. (2.1.10)

The analysis of the Gaussian radial function shows that the term in square

brackets is positive for 0 < α <∞, if all the data points are distinct. Hence

we can deduce that Φ is positive definite for this choice of radial function.

The inverse multiquadric function can provide excellent approximations

(Franke, 1982). As for the multiquadric radial function, the choice of c may

be difficult. This function was not included in the experiments.

There are radial basis functions for which the matrix Φ is not always

invertible. One example is the “thin plate spline basis function” φ(r) =

r2 log r which was introduced by Duchon (1975,1976). If one data point lies

at the centre of the unit sphere and the others are distinct points on the unit

sphere, then one row and column of Φ consist entirely of zeros and thus Φ is

singular. Fortunately, it is possible to remove this difficulty by augmenting

(2.1.1) by adding a polynomial of degree at least one. The interpolant s∗

then has the form

s∗(x) =
n∑
j=1

λ∗jφ(‖ x− x j‖2) + p∗(x), x ∈ Rd, (2.1.11)

where p∗ is at least a linear polynomial. This approach is not limited to the

thin plate spline radial function. Every radial basis function approximation

can be augmented by a polynomial term of degree at most m, i.e. it lies in the

space Πm(Rd), for some fixed nonnegative integer m. As we will see later this

augmentation is very important for our purposes. We can view the translates

of the function φ and the polynomials in Πm(Rd) as the bricks with which we

build our interpolant s∗. Suitable values of m will be given.
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From (2.1.11) one sees that s∗ depends linearly on the n real coefficients

λ∗j , j = 1, . . . , n. The other part of s∗, the polynomial p∗, depends linearly

on M parameters, where M =
(
d+m
d

)
is the dimension of Πm(Rd). Thus s∗

depends on n + M parameters, but the interpolation equations (1.1.1) give

only n restrictions. It is usual to take up the remaining degrees of freedom

by imposing on the coefficients λ∗j the orthogonality conditions

n∑
j=1

λ∗jq(x j) = 0, ∀ q ∈ Πm(Rd). (2.1.12)

There are also some other approaches, for example minimizing the sum of

the squares of the coefficients λ∗j , j = 1, . . . , n. Conditions (2.1.12), however,

will be used throughout this dissertation.

If a basis of Πm(Rd) is chosen, then the above conditions (2.1.12) and the

interpolation equations (1.1.1) can be written as an (n+M)× (n+M) linear

system of equations. Specifically, let p1, . . . , pM be a basis of Πm(Rd) and let

P be the n ×M matrix whose i-th row is (p1(x i) · · · pM(x i)). If λ∗ is the

vector (λ∗1, . . . , λ
∗
n)T in Rn, then the additional constraints (2.1.12) can be

expressed in the form

P Tλ∗ = 0. (2.1.13)

Thus λ∗ lies in the null space of P T . If c∗ is the vector in RM whose compo-

nents are the coefficients of the required polynomial

p∗(x) = c∗1p1(x) + · · ·+ c∗MpM(x), x ∈ Rd, (2.1.14)

then the interpolation equations (1.1.1) are in matrix form

Φλ∗ + Pc∗ = f. (2.1.15)

Combining (2.1.13) and (2.1.15), we obtain Φ P

P T 0


 λ∗

c∗

 =

 f

0

 . (2.1.16)
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It is important to ask whether the matrix in (2.1.16) is nonsingular. As

we will see, this question was answered by Micchelli (1986). To explain this

point further we need the concept of “conditional definiteness”.

Definition 2.1.1 (conditional definiteness) A function θ : Rd → R with

θ(−x) = θ(x), x ∈ Rd, is conditionally positive (or negative) definite of order

m on Rd, if, for all sets X = {x 1, . . . , xn} ⊂ Rd with n distinct points and all

nonzero vectors λ∗ = (λ∗1, . . . , λ
∗
n)T ∈ Rn subject to the conditions (2.1.12),

or equivalently (2.1.13), the quadratic form

n∑
j=1

n∑
k=1

λ∗jλ
∗
kθ(x j − x k) (2.1.17)

is positive (or negative). Therefore, if (2.1.12) holds and (2.1.17) is zero, then

λ∗ = 0.

For radial basis functions with θ(x) = φ(‖ x ‖2), x ∈ Rd, (2.1.17) simplifies

to λ∗TΦλ∗. The term “conditionally” is used, because we do not require the

quadratic form (2.1.17) to be positive (or negative) for all nonzero vectors in

Rn. Attention is restricted to vectors of coefficients that lie in the null space

of P T .

We choose φ such that the function θ(x) = φ(‖ x ‖2), x ∈ Rd, is con-

ditional positive (or negative) definite of order m. This property is very

important since it enables us to define a certain semi-inner product which is

the main ingredient in the analysis of the following chapters. Thus we ensure

that λ∗TΦλ∗ is positive (or negative) for all nonzero vectors λ∗ satisfying

(2.1.13). We then refer to Φ as being conditionally positive (or negative)

definite. We further ensure that the positions of the interpolation points

x 1, . . . , xn cause P to have its maximum rank of M . That is equivalent to

the requirement that the data points do not lie in the zero set of a nonzero
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polynomial of degree at most m, i.e. we require that X is polynomially uni-

solvent – which is a rather mild condition and which implies that m is small

enough to ensure M ≤ n. It is now easy to deduce that the matrix in (2.1.16)

is nonsingular.

We need to show that if f = 0, then it follows that λ∗ and c∗ are zero. Mul-

tiplying (2.1.15) by λ∗T from the left and using λ∗TP = 0, we get λ∗TΦλ∗ = 0

which implies that λ∗ equals zero, since λ∗TΦλ∗ > 0 (or < 0) for all nonzero

vectors λ∗ satisfying (2.1.13). Inserting λ∗ = f = 0 in (2.1.15) gives c∗ = 0,

since P has full rank.

Micchelli (1986) establishes a link between conditionally definite functions

which are derived from radially symmetric functions, and strictly completely

monotonic derivatives.

Definition 2.1.2. (complete monotonicity) An infinitely differentiable

function f defined on R≥0 is strictly completely monotonic if and only if each

derivative in the infinite sequence of derivatives f (0), f (1), f (2), . . . has no zeros

and if these derivatives alternate in sign.

Micchelli proves the following significant result:

Theorem 2.1.1. (Micchelli’s Theorem) Let the function ψ be defined

by ψ(r) = φ(r1/2), r > 0. Let further m0 be the least integer such that

the (m0 + 1)-th derivative of ψ is strictly completely monotonic, then the

inequality

(−1)m0λ∗TΦλ∗ < 0 (2.1.18)

holds for every nonzero vector λ∗ that satisfies P Tλ∗ = 0. Hence Φ is con-

ditionally positive definite if m0 is odd and conditionally negative definite if

m0 is even (m0 6= 0). For m0 = 0, Φ is negative definite. Considering the

function θ(x) = φ(‖ x ‖2), x ∈ Rd, it follows that it is conditionally definite.
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We choose m to be greater or equal to m0. For example, in the case of the

thin plate spline function φ(r) = r2 log r, ψ(r) is the function 1
2
r log r with

derivatives ψ(1)(r) = 1
2

log r + 1
2

and ψ(k)(r) = 1
2
(−1)k(k − 2)! r1−k, k ≥ 2.

Although the first derivative ψ(1) changes sign, the second derivative ψ(2) is

strictly completely monotonic, so we require m to be greater or equal one.

Therefore we include at least a linear polynomial p∗ in expression (2.1.11),

which ensures that the linear system (2.1.16) is nonsingular. In this case the

matrix Φ is conditionally positive definite. The second derivative of ψ is also

completely monotonic in the case of the cubic radial basis function, φ(r) = r3.

For the multiquadric and linear radial basis functions the first derivative of

ψ is strictly completely monotonic and thus a constant polynomial is added

to achieve conditional negative definiteness of Φ, while if ψ is defined for the

Gaussian or inverse multiquadric function, then ψ itself is strictly completely

monotonic. This implies that in latter two cases the matrix Φ is positive

definite - as we have seen already - and no polynomial term is added.

Conditional definiteness is very important for our purposes. Therefore

we always add a suitable polynomial to achieve the conditional definiteness

of Φ, which is used in the next section to define the important semi-inner

product on which our analysis is based.

Considering the more general case of interpolation using shifts of a con-

ditionally positive (or negative) definite basis function θ : Rd → R of order

m, we let Θ be the n × n matrix with entries Θij = θ(x i − x j). Since

θ(−x) = θ(x), x ∈ Rd, holds, the matrix Θ is symmetric. In this general case

we have the system of equations Θ P

P T 0


 λ∗

c∗

 =

 f

0

 , (2.1.19)

which is nonsingular if P has rank M , where M is the dimension of Πm(Rd),
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provided that M ≤ n, since θ is conditionally definite. We also refer to Θ as

being conditionally positive (or negative) definite.

We let  Λ B

BT C

 (2.1.20)

be the inverse of the matrix given in (2.1.19) and we obtain the formula

λ∗ = Λf. (2.1.21)

Setting f to the k-th coordinate vector e k, we obtain the coefficient vector

λ k = (λk1, . . . , λkn)T of the Lagrange function

χk(x) =
n∑
j=1

λkj θ(x− x j) +
M∑
j=1

ckjpj(x), x ∈ Rd, (2.1.22)

that satisfies the Lagrange conditions χk(x i) = δik, i = 1, . . . , n, where δik

is the Kronecker delta. Since λ k is the k-th column of Λ and since Λ is

symmetric, λkj = λjk follows. This property of coefficients of Lagrange

functions over the same set of data points will become useful later.

The following properties of Λ are important to several algorithms. For

example they are put to good use by Dyn and Levin (1981, 1983).

The symmetry of Θ and the definition of Λ imply that Λ is also symmetric.

Multiplying the two matrices given in (2.1.19) and (2.1.20) gives Θ P

P T 0


 Λ B

BT C

 =

 ΘΛ + PBT ΘB + PC

P TΛ P TB

 =

 In 0

0 IM

 ,
(2.1.23)

where Ik denotes the k × k identity matrix, k = n,M . Inserting equation

(2.1.21) on the right of λ∗TΘλ∗ and using the remark ΘΛ = In − PBT , we

find

λ∗TΘλ∗ = λ∗Tf − λ∗TPBTf. (2.1.24)
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The second term vanishes, since λ∗ lies in the null space of P T . Therefore

(2.1.21) implies λ∗TΘλ∗ = fTΛ f . It follows that fTΛ f inherits the con-

stant sign of λ∗TΘλ∗. Thus all the eigenvalues of the symmetric matrix Λ

are nonnegative (or nonpositive). Further, fTΛ f is zero if and only if the

interpolation conditions (1.1.1) allow s∗ to be a polynomial of degree at most

m. This is the case if f lies in the M -dimensional subspace of Rn spanned by

the columns of P , and then the vector of coefficients λ∗ is zero. Therefore Λ

has M eigenvalues of zero, the remaining n −M eigenvalues being positive

(or negative). System (2.1.19) causes λ∗ = Λf to satisfy P Tλ∗ = 0 for every

f ∈ Rn, which is equivalent to the condition P TΛ = 0. The symmetry of Λ

yields ΛP = 0.

The methods of Dyn and Levin (1981, 1983) generate an estimate, Ŵ

say, of Λ, which has the properties of Λ given in the previous paragraph. To

be specific, Ŵ is also an n × n symmetric matrix with M zero eigenvalues

and n − M positive (or negative) ones that satisfies P T Ŵ = 0. Then Ŵ

is used as a preconditioner in a conjugate gradient method which calculates

approximations to the required vector of coefficients λ∗. The basic idea for

generating Ŵ arises from the fact that radial basis functions of the form

φ(r) =

 r2(m+1)−d if d is odd and d < 2(m+ 1)

r2(m+1)−d log r if d is even and d < 2(m+ 1)

 , (2.1.25)

which are known as “polyharmonic splines”, are related to the Dirac δ(·)
distribution. Indeed, a multiple of this distribution occurs if them-th iterated

Laplacian operator ∇m is applied to φ(‖ x ‖), x ∈ Rd. Therefore, Ŵ is

constructed from discrete approximations of the iterated Laplacian.

We will also consider preconditioned conjugate gradient methods, but

we use a different choice of preconditioner, which arises from the algorithm

developed by Beatson, Goodsell and Powell (1995).
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Summarising, we have seen that interpolation by radial basis functions

leads to a linear system of equations with a conditionally definite submatrix,

the system being nonsingular as long as the set of data points X is not in

the zero set of a nonzero polynomial of degree at most m. Further useful

properties of these interpolants will be established in the next section.

2.2 Semi-inner products

We have mentioned already that we intend to use the conditional definite-

ness of Φ, or more generally Θ, to define a certain semi-inner product. To

introduce it we present a beautiful result by Duchon (1977). Duchon’s treat-

ment is somewhat abstract, using sophisticated techniques from distribution

theory. We follow an alternative approach introduced by Powell (1992).

One of the most popular radial basis function in two dimensions is the

thin plate spline basis function φ(r) = r2 log r for r > 0 and φ(0) = 0, with

an added linear polynomial, which gives the form

s∗(x) =
n∑
j=1

λ∗j ‖ x− x j ‖2
2 log ‖ x− x j ‖2 + linear polynomial, x ∈ R2.

(2.2.1)

The additional constraints (2.1.12) can be written as

n∑
j=1

λ∗j = 0 and
n∑
j=1

λ∗j x j = 0. (2.2.2)

The points x i, i = 1, . . . , n, must not lie in the zero set of a nonzero linear

polynomial. In other words, they must not be collinear.

One reason for the success of thin plate spline interpolation is that s∗ is

the solution of an optimal recovery problem (Duchon, 1977). Specifically, s∗

provides the least possible value of the semi-inner product (s∗, s∗) subject to
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the interpolation conditions (1.1.1), where for functions f and g with square

integrable second derivatives the semi-inner product (f, g) has the value

(f, g) =
1

8π

∫ ∫
R2

∂2f(x, y)

∂x2

∂2g(x, y)

∂x2
+ 2

∂2f(x, y)

∂x ∂y

∂2g(x, y)

∂x ∂y

+
∂2f(x, y)

∂y2

∂2g(x, y)

∂y2
dx dy, (2.2.3)

which vanishes if either f or g are linear polynomials, x and y being the

components of x ∈ R2. The thin plate spline s∗ has square integrable second

derivatives, since for large ‖x ‖2 the moduli of the second derivatives of s∗ are

bounded above by a multiple of ‖ x ‖−2
2 , which can be shown be expanding

the second derivatives of the function 1
2
‖ x− x j‖2

2 log ‖ x− x j‖2
2 in inverse

powers of ‖ x ‖2, using the identity

‖ x− x j‖2
2 =‖x ‖2

2

[
1−

2xTx j
‖x ‖2

2

+
‖ x j ‖2

2

‖x ‖2
2

]
(2.2.4)

and the constraints (2.2.2). Indeed, we obtain expansions of the second

derivatives of s∗ in inverse powers of ‖ x ‖2, where constant terms, terms

increasing in modulus or terms decreasing in modulus slower than ‖ x ‖−2
2

cancel due to the additional constraints (2.2.2).

Minimizing (s∗, s∗) for the semi-inner product (2.2.3), subject to the inter-

polation conditions (1.1.1), means that the interpolant minimizes the bend-

ing energy of the surface, which can be regarded as the “smoothest” surface

through the data.

We find a useful form of (f, g), by applying integration by parts to the

integral (2.2.3). There are no contributions from the boundary conditions at

infinity. Therefore integrating the second derivatives of f twice and differen-

tiating the second derivatives of g twice provides the formula

(f, g) =
1

8π

∫ ∫
R2
f(x)∇4g(x) dx dy, (2.2.5)
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where ∇4 = ( ∂2

∂x2
+ ∂2

∂y2
)2.

To prove the optimal recovery property, we consider ∇4θ(x) where θ(x) =

φ(‖x ‖2) = ‖x ‖2
2 log ‖x ‖2, x ∈ R2.

Lemma 2.2.1. The function θ(x) = ‖x ‖2
2 log ‖x ‖2, x ∈ R2, has the deriva-

tives

∇2θ(x) = 4 + 4 log ‖x ‖2 and ∇4θ(x) = 8πδ(x), x ∈ R2, (2.2.6)

where δ(x), x ∈ R2, is the delta function.

Proof: When r > 0, the radial symmetry of θ, setting r = ‖x ‖2, supplies the

derivatives

∇2θ(x) =

(
r−1 d

dr
+

d2

dr2

)
(r2 log r)

= r−1(2r log r + r) + (2 log r + 3)

= 4 + 4 log r (2.2.7)

and

∇4θ(x) =

(
r−1 d

dr
+

d2

dr2

)
(4 + 4 log r) = 4r−2 − 4r−2 = 0. (2.2.8)

Therefore it remains to establish the behaviour of ∇4θ(x) at x = 0.

Let f : R2 → R be a four times continuously differentiable function that

has the properties f(x) ≡ 1 for ‖x ‖2 ≤ 2 and f(x) ≡ 0 for ‖x ‖2 ≥ 3. Such

functions are known to exist and are called bump functions. We consider

the semi-inner product (f, θ), and can restrict the range of integration to the

square [−3, 3]× [−3, 3]. The zero boundary conditions of f make integration

by parts straightforward and, since ∇4θ(x) = 0, x 6= 0, and f(0) = 1, we

deduce

(f, θ) =
1

8π

∫ ∫
R2
∇4θ(x) dx. (2.2.9)
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The second derivatives of f vanish for ‖x ‖2 < 2, since f(x) ≡ 1 in this

region. Therefore, letting θ̂ be a smooth function that is free of singularities

and that coincides with θ for ‖ x ‖2 ≥ 1, it satisfies (f, θ) = (f, θ̂), which

gives the equation∫ ∫
R2
∇4θ(x) dx = 8π(f, θ) = 8π(f, θ̂) =

∫ ∫
R2
∇4θ̂(x) dx. (2.2.10)

Now letD be the disc {x :‖x ‖2 ≤ 2}. Since∇4θ̂(x) = ∇4θ(x) = 0, ‖x ‖2 ≥ 1,

we can restrict the range of integration to D. We chose θ̂ such that ∇4θ̂(x)

is continuous. Thus the divergence theorem provides the identity∫ ∫
D
∇4θ̂(x) dx =

∫ ∫
D
∇2(∇2θ̂(x)) dx

=
∮
nT∇(∇2θ̂(x))ds, (2.2.11)

where
∮

denotes the integral around the perimeter of D and where n is the

outward pointing normal x / ‖ x ‖2. When ‖ x ‖2 ≥ 1, which includes the

perimeter of D, we have the identity ∇2θ̂(x) = ∇2θ(x) = 4 + 4 log ‖ x ‖2,

which implies ∇(∇2θ̂(x)) = 4x / ‖ x ‖2
2. Thus the integrand nT∇(∇2θ̂(x))

takes the value (x /‖x ‖2)T (4x /‖x ‖2
2) = 2, since the radius of D is 2. The

length of the perimeter of D is 4π. Thus∫ ∫
R2
∇4θ(x)dx = 8π, (2.2.12)

which gives the required result ∇4θ(x) = 8πδ(x). 2

We express the optimal recovery property as a theorem.

Theorem 2.2.2. (Optimal recovery) Let s∗(x), x ∈ R2, be the thin

plate spline that interpolates the data fi at the points x i, i = 1, . . . , n, and

let t(x), x ∈ R2, be any function different from s∗ with square integrable
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second derivatives that also satisfies the interpolation equations t(x i) = fi,

i = 1, . . . , n. Then the strict inequality

(s∗, s∗) < (t, t) (2.2.13)

holds. Thus s∗ is the unique function with square integrable second derivatives

that minimizes the semi-inner product subject to the interpolation conditions

(1.1.1).

Proof: We let g be the function t − s∗ which vanishes at the interpolation

points x i, i = 1, . . . , n. A lower bound on (t, t) is provided by the inequality

(t, t) = (g+s∗, g+s∗) = (g, g)+2(g, s∗)+(s∗, s∗) ≥ 2(g, s∗)+(s∗, s∗). (2.2.14)

Therefore it is sufficient to deduce that (g, s∗) is zero and that, if (t, t) =

(s∗, s∗), it follows from (g, g) = 0 that g ≡ 0 and thus t = s∗.

Treating the semi-inner product (g, s∗) by integration by parts, there are

no contributions from the boundary conditions at infinity, due to the decay of

the second and the third derivatives of s∗(x) as ‖x ‖2 →∞. We have already

mentioned that the moduli of the second derivatives of s∗ can be bounded

above by a multiple of ‖x ‖−2
2 for large ‖x ‖2, while the third derivatives of

s∗ are of magnitude ‖ x ‖−3
2 for large ‖ x ‖2. Thus, following Powell (1992),

we deduce the formula

(g, s∗) =
1

8π

∫ ∫
R2
g(x)∇4s∗(x) dx dy

=
1

8π

∫ ∫
R2
g(x)

n∑
i=1

λ∗i∇4φ (‖x− x i‖2) dx dy

=
∫ ∫

R2
g(x)

n∑
i=1

λ∗i δ(x− x i) dx dy

=
n∑
i=1

λ∗i g(x i) = 0, (2.2.15)
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since g vanishes at the interpolation points.

The semi-inner product

(g, g) =
1

8π

∫ ∫
R2

[
∂2g(x, y)

∂x2

]2

+ 2

[
∂2g(x, y)

∂x ∂y

]2

+

[
∂2g(x, y)

∂y2

]2

dx dy

(2.2.16)

vanishes only if g is a linear polynomial. On the other hand, g is zero at x i,

i = 1, . . . , n, which are not collinear. Thus, if (g, g) = 0, it follows that g is

identically zero and hence s∗ and t coincide. 2

We are now regarding x i, i = 1, . . . , n as fixed. With φ(r) = r2 log r,

r > 0, and φ(0) = 0, let S be the n-dimensional linear space that contains

functions of the form

s(x) =
n∑
j=1

λj φ
(
‖ x− x j‖2

)
+ p(x), x ∈ R2, (2.2.17)

whose coefficients satisfy
n∑
j=1

λj = 0 and
n∑
j=1

λj x j = 0, (2.2.18)

where p(x), x ∈ R2, is a linear polynomial. The results of Theorem 2.2.2

show that, because s∗ has the form (2.2.1), it is the unique element in S

that interpolates the data fi, i = 1, . . . , n. The semi-inner product de-

fined by (2.2.3) exists on this space S of thin plate splines, since thin plate

splines have square integrable second derivatives. Further, if t(x) =
∑n
j=1 νj

φ(‖ x− x j‖2) + q(x) is another function in S, then, by integration by parts

analogous to (2.2.15), the semi-inner product has the value

(s, t) =
n∑
i=1

νi s(x i) =
n∑
j=1

λj t(x j)

=
n∑
j=1

λj

[
n∑
i=1

νi φ(‖ x j − x i ‖2) + q(x j)

]

=
n∑
j=1

n∑
i=1

λj νi φ(‖ x j − x i ‖2) = λTΦν , (2.2.19)
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where λ = (λ1, . . . , λn)T and ν = (ν1, . . . , νn)T .

Unfortunately, other explicit forms of semi-inner products that are mini-

mized by the other radial basis function interpolants are not known generally.

We refer the reader to Schaback (1999). However, let θ : Rd → R be any con-

ditionally definite function of order m and let X = {x 1, . . . , xn} ⊂ Rd be a

fixed set that does not lie in the zero set of a nonzero polynomial of degree at

most m. Then, guided by the above paragraph, we define an n-dimensional

linear space Sθ which contains functions of the form

s(x) =
n∑
j=1

λj θ(x− x j) + p(x), x ∈ Rd, (2.2.20)

where p ∈ Πm(Rd), and where the coefficients λj, j = 1, . . . , n, are required

to satisfy the constraints

n∑
j=1

λj q(x j) = 0, ∀ q ∈ Πm(Rd). (2.2.21)

On Sθ we define the semi-inner product that is introduced by Schaback

(1993). Specifically, letting t(x) =
∑n
i=1 νi θ(x−x i)+q(x), x ∈ Rd, be another

function in Sθ, the semi-inner product between s and t is the bilinear form

(s, t)θ = σθ
n∑
j=1

λj t(x j) = σθ
n∑
i=1

νi s(x i)

= σθ
n∑
j=1

n∑
i=1

λj νi θ(x j − x i) = σθ λ
TΘ ν, (2.2.22)

where σθ is chosen to be +1 if θ is conditionally positive definite and σθ = −1

if θ is conditionally negative definite. The semi-inner product vanishes if s or

t lie in Πm(Rd), because then λ or ν is zero. A simple rule for the semi-inner

product is that it is the sum of the coefficients of one function times the

function values at the data points of the other function, with a change of

sign in the conditionally negative case.
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Forming (s, s)θ gives σθ
∑n
i,j=1 λiλjθ(x i−x j), which is nonnegative by the

choice of σθ. Thus Sθ has the semi-norm

‖ s ‖θ = (s, s)
1/2
θ , s ∈ Sθ. (2.2.23)

This semi-norm has a fundamental property, taken from Schaback (1993),

which can be compared to the optimal recovery property of thin plate splines.

We define a larger space Ŝθ by letting ŝ be in Ŝθ if it can be written in the

form

ŝ(x) =
n̂∑
j=1

λ̂j θ(x− x̂ j) + p(x), x ∈ Rd, (2.2.24)

where p ∈ Πm(Rd) and where the parameters are subject to the usual con-

straints
n̂∑
j=1

λ̂j q(x̂ j) = 0, ∀ q ∈ Πm(Rd). (2.2.25)

Here θ is as before, but n̂ can be any finite number and much larger than n

and the set {x̂ i : i = 1, . . . , n̂} can consist of any points in Rd. This freedom

in the set implies that the dimension of Ŝθ is infinite, but each n̂ is finite.

Further, the original space Sθ is an n-dimensional subspace of Ŝθ.

We let ŝ and ť be the functions (2.2.24) and ť(x) =
∑ň
j=1 ν̌jθ(x−x̌ j)+q(x),

x ∈ Rd, respectively, where ň can be different from n̂ and the points x̌ i,

i = 1, . . . , ň, can be any points in Rd. We let the set {x̃ i : i = 1, . . . , ñ}
be the union of the two sets {x̂ i : i = 1, . . . , n̂} and {x̌ i : i = 1, . . . , ň}.
We define λ̃i to equal λ̂j if x̃ i = x̂ j for some j ∈ [1, n̂] and to equal zero

otherwise. The coefficient ν̃i equals ν̌j if x̃ i = x̌ j for some j ∈ [1, ň] and

is zero otherwise. We then can write ŝ(x) =
∑ñ
j=1 λ̃j θ(x − x̃ j) + p(x) and

ť(x) =
∑ñ
j=1 ν̃jθ(x − x̃ j) + q(x), x ∈ Rd. Now the analogue of expression

(2.2.22) is

(ŝ, ť )θ = σθ
ñ∑
j=1

λ̃j ť(x̃ j) = σθ
ñ∑
i=1

ν̃i ŝ(x̃ i)



CHAPTER 2. RADIAL BASIS FUNCTIONS 28

= σθ
ñ∑
j=1

ñ∑
i=1

λ̃j ν̃i θ(x̃ j − x̃ i). (2.2.26)

The fundamental property that corresponds to the optimal recovery prop-

erty for thin plate splines is that, if ŝ is any function in Ŝθ that interpolates

the data fi, i = 1, . . . , n, then (ŝ, ŝ)θ is never less then (s∗, s∗)θ. It is proved

as follows.

An element ŝ ∈ Ŝθ interpolates the data fi, i = 1, . . . , n if and only if

it can be written in the form ŝ = s∗ + ť, where s∗ ∈ Sθ is the required

interpolant and where ť ∈ Ŝθ satisfies ť(x i) = 0, i = 1, . . . , n. By introducing

zero coefficients if necessary, we let ť have centres at the points {x̃ i : i =

1, . . . , ñ} = {x i : i = 1, . . . , n} ∪ {x̂ i : i = 1, . . . , n̂}. We consider the

semi-inner product

(s∗, ť )θ = σθ
ñ∑
i=1

λ̃∗i ť(x̃ i), (2.2.27)

where λ̃∗i equals λ∗j if x̃ i = x j for some j ∈ [1, n], but otherwise λ̃∗i is defined

to be zero. Thus λ̃∗i is nonzero only if x̃ i is one of the given interpolation

points x j, j = 1, . . . , n, and in this case ť(x̃ i) is zero. Thus expression (2.2.27)

vanishes, which gives the required bound

(ŝ, ŝ)θ = (s∗ + ť, s∗ + ť)θ = (s∗, s∗)θ + (ť, ť)θ ≥ (s∗, s∗)θ. (2.2.28)

Equality occurs when (ť, ť)θ = σθ
∑ñ
i,j=1 ν̃i ν̃j θ(x̃ j − x̃ i) is zero. In this

case ν̃i = 0, i = 1, . . . , ñ, since θ is conditionally definite, and hence ť is a

polynomial of degree at most m. It follows from ť(x i) = 0, i = 1, . . . , n, and

from the polynomial unisolvency of the set X = {x i : i = 1, . . . , n} that ť is

identically zero. Therefore s∗ is the unique interpolant in Ŝθ that minimizes

(s∗, s∗)θ.

We are going to consider iterative methods that construct a sequence of

approximations in the space Sθ. The sequence should converge to the desired
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interpolant s∗ ∈ Sθ. The next chapter describes one such algorithm. It makes

good use of the native semi-inner product defined above.



Chapter 3

Algorithm A

Algorithm A was developed by Beatson, Goodsell and Powell in 1995 af-

ter experimenting with several ideas, which included multigrid techniques.

The version presented here is based on the implementation that is described

by Powell (1997), which was highly successful in numerical experiments.

Particular choices of the ordering of the interpolation points, the sets Lk,
k = 1, . . . , n− q, which we introduce in the following section, and a stopping

condition are specified there. Here a more general description is given. The

technique was first developed for thin plate splines in two dimensions, but

we present it for a general conditionally definite function θ from Rd to R.

3.1 Description

Suppose that

s(x) =
n∑
j=1

λj θ(x− x j) + p(x), x ∈ Rd, (3.1.1)

is an approximation to the required interpolant s∗. If the residuals fi−s(x i),
i = 1, . . . , n, are small enough, the calculation terminates. Otherwise, an

30
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iteration of Algorithm A revises the coefficients λj, j = 1, . . . , n, and the

polynomial part p by adding suitable corrections to s.

Each iteration is divided into three steps. Step 1 is composed of n − q
stages, where q is a prescribed integer less than n and greater than the

dimension of Πm(Rd) which has the value M =
(
d+m
d

)
. A typical value for q

is 30. For k = 1, . . . , n− q, the principal task of the k-th stage is to provide

a new value for λk. Once we have adjusted λk, we do not want it to be

altered by any subsequent calculations. Thus the corrections that are added

to s in the k-th stage are functions with centres only at the interpolation

points x k, . . . , xn, since otherwise some of the already revised coefficients λ j,

j = 1, . . . , k − 1, would be changed.

The second step of each iteration adjusts λ j, j = n − q + 1, . . . , n, and

p by adding a correction which has centres only at the last q data points

xn−q+1, . . . , xn. This does not alter any of the coefficients revised in Step

1. The method is analogous to forward substitution, since, once the value

of λk, k = 1, . . . , n, has been revised, we accept it for the remainder of the

iteration. The corrections of Step 1 and Step 2 are separated, because they

are calculated in fundamentally different ways.

Step 3 checks whether the residuals fj−s(x j), j = 1, . . . , n, are sufficiently

close to zero, where s denotes the current approximation. If this is the case,

termination occurs. Otherwise another iteration is performed.

We now consider the corrections in detail. In the k-th stage of Step 1, we

want to calculate a new value for λk. Suppose that the first k−1 coefficients

are correct, i.e. that λi = λ∗i , i = 1, . . . , k − 1. The function s∗ − s then has

centres only at the last n − k + 1 data points x k, . . . , xn. Therefore, if we

add to s the interpolant σ of the residuals fi− s(x i), i = k . . . , n, we achieve

s = s∗. Thus the required correction to λk is the coefficient of θ(x − x k) in
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σ. For each integer j = k, . . . , n, we let

χ̂kj(x) =
n∑
i=k

λ̂kji θ(x− x i) +
M∑
i=1

ckji pi(x), x ∈ Rd, (3.1.2)

be the function in Sθ defined by the Lagrange conditions χ̂kj(x i) = δij,

i = k, . . . , n. Then σ can be written as

σ(x) =
n∑
j=k

[
fj − s(x j)

]
χ̂kj(x)

=
n∑
j=k

n∑
i=k

λ̂kji
[
fj − s(x j)

]
θ(x− x i) + polynomial, x ∈ Rd. (3.1.3)

Thus the coefficient of θ(x− x k) in σ is the sum
∑n
j=k λ̂kjk[fj − s(x j)]. Now,

by a remark following equation (2.1.21) about the symmetry of Λ, we know

that λ̂kjk equals λ̂kkj. Hence only the coefficients λ̂kkj, j = k, . . . , n, of χ̂kk

are needed to calculate the coefficient of θ(x− x k) in σ.

Unfortunately, it is too costly to calculate all the coefficients λ̂kkj, j =

k, . . . , n, when n is large. Therefore we choose, for each integer k in [1, n−q],
a set Lk ⊂ {k, . . . , n} of size |Lk| = q which contains k. The function χ̂kk is

then approximated by

χ̂k(x) =
∑
i∈Lk

λ̂ki θ(x− x i) +
M∑
i=1

ĉki pi(x), x ∈ Rd, (3.1.4)

which is the solution of the interpolation equations

χ̂k(x i) = δik, i ∈ Lk. (3.1.5)

As usual, the coefficients of χ̂k are required to satisfy the constraints

∑
i∈Lk

λ̂ki q(x i) = 0, ∀ q ∈ Πm(Rd), (3.1.6)
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so that χ̂k is in Sθ for k = 1, . . . , n − q. All the coefficients {λ̂kj : j ∈ Lk},
k = 1, . . . , n−q, are calculated explicitly before the iterations of the algorithm

are begun. The k-th stage replaces λk by λk + µk, where µk is the number

µk =
∑
j∈Lk

λ̂kj
[
fj − s (x j)

]
. (3.1.7)

If the residuals fj − s(x j), j ∈ Lk, are available, µk can be found in only

O(q) operations.

To revise λk, any function in Sθ with centres only at the interpolation

points x k, . . . , xn and coefficient µk in front of θ(x− x k) can be added to s.

Now χ̂k is available and we ensure that λ̂kk is nonzero for k = 1, . . . , n− q by

requiring the set Lk to have the property that the points {x j : j ∈ Lk, j 6= k}
do not lie in the zero set of a nonzero polynomial of degree at most m.

Therefore, χ̂k is not an element of Πm(Rd), so the semi-inner product (χ̂k, χ̂k)θ

is strictly positive. Further, since the semi-inner product is σθ times the sum

of the products of the coefficients of one function with the function values of

the other function, equations (2.2.22), (3.1.4) and (3.1.5) provide the value

(χ̂k, χ̂k)θ = σθ λ̂kk > 0. (3.1.8)

In the case of thin plate splines in two dimensions, for example, the points

{x j : j ∈ Lk, j 6= k} are not allowed to be collinear. This can be achieved

by ordering the points x i, i = 1, . . . , n, initially so that the last three are

not collinear. Then for k = 1, . . . , n− q, we include not only k but also the

indices n− 2, n− 1, n in the set Lk. Algorithm A uses the function

µk

λ̂kk
χ̂k(x), x ∈ Rd, (3.1.9)

which has µk as coefficient in front of θ(x−x k), as the correction to s(x), x ∈
Rd. We will see later that this choice gives excellent convergence properties.
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Examples of graphs of the functions χ̂k, k = 1, 100, 600, 800 for n = 900

for θ(x) = φ(‖ x ‖2) =‖ x ‖2 in two dimensions are displayed in Figure 3.1.

The sets Lk are chosen to contain the indices of the q data points in {x j :

j ≥ k} which are closest to x k, including x k itself. For k = 1, L1 contains

the indices of the q data points nearest to x1 and χ̂1 is very similar to the

Lagrange function χ1 defined by χ1(x i) = δ1i, i = 1, . . . , n. For larger values

of k the choice of indices is restricted by the condition Lk ⊂ {k, . . . , n},
which causes the function χ̂k to become broader with increasing values of

k. We will see later that, for good performance of Algorithm A, we do not

require |χ̂k(x i)| to be small for i ∈ {1, . . . , n}\Lk, but it is important for the

semi-inner products (χ̂k, χ̂j)θ to be small for j 6= k. If, instead of restricting

the size of Lk, we let Lk = {k, . . . , n}, then χ̂k = χ̂kk, k = 1, . . . , n − q.

In this case, λi = λ∗i , i = 1, . . . , n, holds at the end of the first iteration.

Further, the semi-inner product (χ̂kk, χ̂jj)θ is zero for n − q ≥ j > k ≥ 1,

since χ̂jj has centres at x j, . . . , xn and χ̂kk vanishes there. By a similar

argument, χ̂kk, k = 1, . . . , n − q, is orthogonal to all functions with centres

only at xn−q+1, . . . , xn, with respect to the semi-inner product (2.2.22). It

will be proved in Theorem 3.2.3 in Section 3.2 that convergence occurs in

one iteration, if these orthogonality conditions hold.

In Step 2, the interpolant σ of the residuals fj−s(x j), j = n−q+1, . . . , n,

is calculated, where s denotes the current approximation, and σ is added as

the correction to s. We know from a condition on Ln−q that the points

{x i : i = n− q + 1, . . . , n} are polynomially unisolvent and thus σ is defined

uniquely. At the end of each iteration, s satisfies s(x i) = fi = s∗(x i),

i = n− q + 1, . . . , n, and it remains in Sθ.

A more detailed description of the above outline of Algorithm A is given

below. We let ` denote the iteration number. The `-th iteration generates a
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Figure 3.1: Examples of the functions χ̂k.
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new approximation s(`+1) from s(`), where s(1) ≡ 0 initially. The steps are as

follows.

Step 0 Set ` = 1 and s(`) = s
(`)
0 ≡ 0.

Step 1 For k = 1, . . . , n− q, replace s
(`)
k−1 by s

(`)
k according to the rule

s
(`)
k = s

(`)
k−1 +

1

λ̂kk

∑
j∈Lk

λ̂kj
[
fj − s(`)

k−1(x j)
]
χ̂k. (3.1.10)

Step 2 Generate s(`+1) by adding to s
(`)
n−q the solution σ(`) ∈ Sθ of the

interpolation equations

σ(`)(x j) = fj − s(`)
n−q(x j), j = n− q + 1, . . . , n. (3.1.11)

Step 3 Terminate if the residuals fj−s(`+1)(x j), j = 1, . . . , n, are sufficiently

close to zero. Otherwise, increase ` by one, set s
(`)
0 = s(`) and return to

Step 1.

Note that the correction term of Step 1 is taken from equations (3.1.7)

and (3.1.9) with s = s
(`)
k−1, k = 1, . . . , n− q.

Experiments with thin plate splines in two dimensions gave very good

results ( Faul and Powell, 1998, Powell, 1997). Some numerical tests with

multiquadric and linear functions in two dimensions and with thin plate

splines and linear functions in three dimensions have been tried recently.

The results are reported in Chapter 7 and are highly successful.

The description of Algorithm A is complete. The next section gives a

proof of convergence.
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3.2 Convergence analysis

The analysis of convergence for Algorithm A was thought to be difficult.

Attempts were made to establish properties of the n × n matrix, RA say,

such that the vector of residuals fi − s(`+1)(x i), i = 1, . . . , n, at the end

of the `-th iteration, ` = 1, 2, . . ., is RA times the vector of residuals fi −
s(`)(x i), i = 1, . . . , n, at the beginning of the iteration. The spectral radius

of RA is considered briefly by Beatson, Goodsell and Powell (1995), because

convergence occurs if it is less than one. The iteration matrix RA will be

derived in Section 3.4.

Here we present a different approach, however, which led to success fol-

lowing Faul and Powell (1998). The proof of convergence depends mainly on

the following lemma.

Lemma 3.2.1 Let s(`) and s
(`)
k , ` = 1, 2, . . ., k = 0, . . . , n − q, be calculated

by the algorithm of Section 3.1. Then, after each stage in Step 1 of every

iteration, the semi-inner product (s∗ − s(`)
k , s

∗ − s(`)
k )θ has a value less than

or equal to (s∗− s(`)
k−1, s

∗− s(`)
k−1)θ for k = 1, . . . , n− q and also the inequality

(s∗ − s(`+1), s∗ − s(`+1))θ ≤ (s∗ − s(`)
n−q, s

∗ − s(`)
n−q)θ holds.

Proof: For k = 1, . . . , n − q, the k-th stage of Step 1 calculates s
(`)
k accord-

ing to rule (3.1.10), which gives (s∗ − s(`)
k , s

∗ − s(`)
k )θ = (s∗ − s(`)

k−1 − ρk χ̂k,
s∗ − s(`)

k−1 − ρk χ̂k)θ, where

ρk =
1

λ̂kk

∑
j∈Lk

λ̂kj
[
fj − s(`)

k−1(x j)
]
. (3.2.1)

Now it is elementary that the quadratic (s∗− s(`)
k−1− ρ χ̂k, s∗− s

(`)
k−1− ρ χ̂k)θ,

ρ ∈ R, is least when ρ has the value

ρ =
(s∗ − s(`)

k−1, χ̂k)θ
(χ̂k, χ̂k)θ

, (3.2.2)
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and fortunately this number is just ρk. Indeed, the identity (χ̂k, χ̂k)θ = σθλ̂kk

is noted in equation (3.1.8). Further, definition (2.2.22) and equation (1.1.1)

imply the formula

(s∗ − s(`)
k−1, χ̂k)θ = σθ

∑
i∈Lk

λ̂ki
[
s∗(x i)− s

(`)
k−1(x i)

]
= σθ

∑
j∈Lk

λ̂kj
[
fj − s(`)

k−1(x j)
]
. (3.2.3)

Thus these stages of Step 1 provide the monotonicity of (s∗− s(`)
k , s

∗− s(`)
k )θ,

k = 0, . . . , n− q.
It remains to consider Step 2 of an iteration, where the solution σ(`) of

the equations (3.1.11) is added to s
(`)
n−q to form s(`+1). Now σ(`) lies in the

subspace Tθ of Sθ which consists of functions of the form

τ(x) =
n∑

j=n−q+1

τj θ(x− x j) + polynomial, x ∈ Rd. (3.2.4)

Using the definition of the semi-inner product (2.2.22) as before, and the

interpolation equations (1.1.1) and (3.1.11), we find that σ(`) has the property

(s∗ − s(`)
n−q − σ(`), τ)θ = σθ

n∑
j=n−q+1

τj
[
s∗(x j)− s

(`)
n−q(x j)− σ(`)(x j)

]
= 0,

(3.2.5)

for any element τ in Tθ. Therefore σ(`) is the element of Tθ that minimizes

(s∗ − s(`)
n−q − τ, s∗ − s

(`)
n−q − τ)θ, τ ∈ Tθ, and hence (s∗ − s(`+1), s∗ − s(`+1))θ ≤

(s∗ − s(`)
n−q, s

∗ − s(`)
n−q)θ holds. The proof is complete. 2

The proof of Lemma 3.2.1 shows that the k-th stage, k = 1, . . . , n− q of

Step 1 projects the difference s∗− s(`)
k−1 onto the subspace of Sθ consisting of

all functions orthogonal to χ̂k. Step 2 projects the difference s∗ − s(`)
n−q onto

the subspace orthogonal to Tθ. Some other projection methods are examined

by Beatson, Light and Billings (1999). We now turn to the main theorem of

this section.
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Theorem 3.2.2 Let Algorithm A specified in Section 3.1 generate the se-

quence of functions s(`), ` = 1, 2, . . .. Then s(`) converges to s∗ in the linear

space Sθ as ` tends to infinity.

Proof: Since Sθ is a finite dimensional space, all norms are equivalent. For

our purposes we choose

‖ s ‖max = max{|s(x i)| : i = 1, . . . , n}, s ∈ Sθ, (3.2.6)

as a norm on Sθ. This is well defined, since interpolation by conditionally

definite functions is unique. Hence, if ‖s∗− s(`)‖max tends to zero as `→∞,

then s(`) converges to s∗ in Sθ. Thus it is sufficient to prove that s(`)(x i)

tends to s∗(x i) for i = 1, . . . , n.

Since (s∗ − s(`)
k , s

∗ − s(`)
k )θ is monotonically decreasing by Lemma 3.2.1,

and since it is bounded below by zero, it converges to a limit. Hence the

difference between (s∗−s(`)
k , s

∗−s(`)
k ) and (s∗−s(`)

k−1, s
∗−s(`)

k−1) tends to zero.

Because the method gives ρk the value (3.2.2), it provides the identity

(s∗ − s(`)
k , s

∗ − s(`)
k )θ = (s∗ − s(`)

k−1 − ρkχ̂k, s∗ − s
(`)
k−1 − ρkχ̂k)θ

= (s∗ − s(`)
k−1, s

∗ − s(`)
k−1)θ −

(s∗ − s(`)
k−1, χ̂k)

2
θ

(χ̂k, χ̂k)θ
. (3.2.7)

It follows that (s∗ − s(`)
k−1, χ̂k)θ tends to zero as `→∞ for k = 1, . . . , n− q.

At the beginning of the `-th iteration, s(`) = s
(`)
0 and thus, due to the

`-th iteration, (s∗ − s(`), χ̂1)θ converges to zero as ` tends to infinity. At

the beginning of the second stage of Step 1 of the `-th iteration, the current

approximation is the function s(`) + (χ̂1, χ̂1)−1
θ (s∗ − s(`), χ̂1)θ χ̂1, so we find

the property

lim
`→∞

(s∗ − s(`) − (s∗ − s(`), χ̂1)θ χ̂1

(χ̂1, χ̂1)θ
, χ̂2)θ = 0. (3.2.8)
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It follows from (s∗ − s(`), χ̂1)θ → 0 that (s∗ − s(`), χ̂2)θ also tends to zero.

Proceeding in the same manner, one can deduce that (s∗−s(`), χ̂k)θ converges

to zero as ` tends to infinity for every integer k in [1, n− q].
Now the definition of the semi-inner product (2.2.22) gives the condition

(s∗ − s(`), χ̂k)θ = σθ
∑
j∈Lk

λ̂kj
[
s∗(x j)− s(`)(x j)

]
, (3.2.9)

so we can write the conclusion of the last paragraph in the form

lim
`→∞


n∑
j=k

λ̂kj [s∗(x j)− s(`)(x j)]

 = 0, k = 1, . . . , n− q, (3.2.10)

where λ̂kj is defined to be zero for j 6∈ Lk. We consider the equations (3.2.10)

in reverse order, remembering s(`)(x j) = s∗(x j), j = n − q + 1, . . . , n, and

λ̂kk 6= 0. It follows by induction on k that s∗(x k)− s(`)(x k) tends to zero as

`→∞ for k = n− q, n− q − 1, . . . , 1. Thus the required convergence of s(`)

to s∗ in the linear space Sθ is obtained. 2

The following theorem considers a special case, where convergence is

achieved within one iteration.

Theorem 3.2.3 If all χ̂k, k = 1, . . . , n− q, are orthogonal to each other and

to all functions in Tθ with respect to the semi-inner product (2.2.22), then

s(2) = s∗ occurs at the end of the first iteration of Algorithm A.

Proof: Since the functions χ̂k, k = 1, . . . , n − q, are orthogonal to each

other and to all functions in Tθ and since Tθ has dimension q, the functions

χ̂k, k = 1, . . . , n − q, together with a basis of Tθ, form a basis of Sθ. The

required interpolant s∗ can therefore be written uniquely in the form s∗ =∑n−q
j=1 α

∗
j χ̂j + τ ∗, where τ ∗ ∈ Tθ. It will be shown by induction on k that the

identity

s∗ − s(1)
k =

n−q∑
j=k+1

α∗j χ̂j + τ ∗ (3.2.11)
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holds for k = 1, . . . , n − q. Firstly, equation (3.2.11) is true for k = 0, since

s
(1)
0 ≡ 0. Suppose equation (3.2.11) holds for some integer k ∈ [1, n− q − 1].

The (k+1)-th stage adds a multiple of χ̂k+1 to s∗−s(1)
k and projects s∗−s(1)

k

onto the subspace orthogonal to χ̂k+1. It follows that the coefficients α∗j , j =

k + 2, . . . , n− q, are left unchanged and that the new coefficient multiplying

χ̂k+1 in s∗ − s(1)
k+1 is zero. Thus (3.2.11) holds, if k is increased by one.

Equation (3.2.11) for k = n − q gives the identity s∗ − s(1)
n−q = τ ∗. Now

Step 2 of the first iteration of Algorithm A adds the solution σ(1) ∈ Tθ of the

interpolation equations σ(1)(x i) = s∗(x i) − s
(1)
n−q(x i), i = n − q + 1, . . . , n,

as correction to s
(1)
n−q. It follows by the uniqueness of interpolation with

conditionally definite functions that σ(1) = τ ∗. This yields s(2) = s
(1)
n−q+σ

(1) =

s∗ and the theorem is proved. 2

The important role of the semi-inner product in the convergence analysis

inspired the line search technique described in Section 5.1. The next section,

however, presents Algorithm A in a different light.

3.3 A different view of Algorithm A

Having established the convergence of Algorithm A via minimization of the

semi-inner product, we will see in this section that Algorithm A is equivalent

to an iterative technique to solve a certain system of linear equations with a

symmetric and positive definite matrix. We take a closer look at this system

of equations. We show how it can be derived from the original system (2.1.19)

and how this approach is related to other known methods. It is then easy to

derive the iteration matrix RA that is mentioned at the beginning of Section

3.2. The analysis of this section leads to an alternative proof of convergence

and to the development of the technique that will be described in Section
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5.2.

First we choose further functions χ̂n−q+1, . . . , χ̂n−M as follows such that

χ̂1, . . . , χ̂n−M are linearly independent in Sθ. By a condition on Ln−q, we

know that the last q points xn−q+1, . . . , xn are not in the zero set of a nonzero

polynomial of degree at most m. Reordering the points if necessary, we

may assume that the last M data points xn−M+1, . . . , xn are polynomially

unisolvent. For k = n−q+1, . . . , n−M we define Lk to be the set {k, . . . , n}
and

χ̂k(x) =
∑
j∈Lk

λ̂kj θ(x− x j) +
M∑
j=1

ĉkj pj(x), x ∈ Rd, (3.3.1)

to be the unique function in Tθ which satisfies the interpolation equations

χ̂k(x i) = δik for i ∈ Lk. This definition is analogous to (3.1.4) and (3.1.5).

Thus the function χ̂k, k = n − q + 1, . . . , n −M , vanishes at the last n − k
data points. Further, the semi-inner product (χ̂k, χ̂i)θ is zero for n −M ≥
k > i > n− q, because the least index in the first sum in (3.3.1) is j = k and

all of the values χ̂i(x j), j = k, . . . , n, are zero, and because the semi-inner

product is the sum of coefficients of one function times function values of

the other. The polynomial unisolvency of xn−M+1, . . . , xn ensures that χ̂k,

k = n−q+1, . . . , n−M , is not a polynomial, and hence (χ̂k, χ̂k)θ = σθλ̂kk > 0.

For k = 1, . . . , n−M , we define χ̃k to be the function

χ̃k(x) =
1√
σθλ̂kk

χ̂k(x), x ∈ Rd, (3.3.2)

which is well-defined since σθλ̂kk > 0. This normalisation causes (χ̃k, χ̃k)θ to

take the value one. We require the following lemma.

Lemma 3.3.1 Every function s(x) =
∑n
j=1 λj θ(x − x j) + p(x) ∈ Sθ can be

expressed uniquely in the form

s(x) =
n−M∑
k=1

αk χ̃k(x) + r(x), x ∈ Rd, (3.3.3)
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where r is a polynomial of degree at most m. Formulae for αk and the

polynomial r ∈ Πm(Rd) are given in the proof. (Thus the functions χ̃k, k =

1, . . . , n −M , and a basis of Πm(Rd) form a basis of Sθ.) If χ̂k, k = 1, . . . ,

n− q, are orthogonal to each other and to every function in Tθ with respect

to the semi-inner product (2.2.22), then αk = (s, χ̃k)θ, k = 1, . . . , n−M .

Proof: For j = 1, . . . , n, let Mj be the set of all indices k such that j is an

element of Lk. Since Lk ⊂ {k, . . . , n} and since it contains k, it follows that

Mj ⊂ {1, . . . , j}, j = 1, . . . , n, and that j ∈Mj, j = 1, . . . , n−M . Now the

definitions (3.1.4), (3.3.1) and (3.3.2) imply

n−M∑
k=1

αk χ̃k(x) =
n−M∑
k=1

αk
1√
σθλ̂kk

∑
j∈Lk

λ̂kj θ(x− x j) + polynomial, x ∈ Rd.

(3.3.4)

Rearranging the summation, we see that the coefficient of θ(x − x j), j =

1, . . . , n−M , is ∑
k∈Mj

αk
1√
σθλ̂kk

λ̂kj, (3.3.5)

which has to equal λj. Thus, using j ∈ Mj, j = 1, . . . , n−M , and λ̂jj 6= 0,

we deduce

αj =
σθ√
σθλ̂jj

λj − ∑
k∈Mj
k 6=j

αk
1√
σθλ̂kk

λ̂kj

 , (3.3.6)

which defines the coefficients αj uniquely for j = 1, . . . , n−M in a recursive

way, since Mj ⊂ {1, . . . , j}.
Now the coefficients of the basis functions θ(x − x j), j = 1, . . . , n −M ,

of the function t = s − ∑n−M
k=1 αk χ̃k vanish. Thus t has centres only at

the last M data points xn−M+1, . . . , xn. Let r be the unique polynomial in

Πm(Rd) that interpolates t at these points. By the uniqueness of interpolation
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with conditionally definite functions over Rd, t = r has to hold. Therefore

s =
∑n−M
k=1 αkχ̃k + r is valid.

If χ̂k, k = 1, . . . , n−q, are orthogonal to each other and to every function

in Tθ, then all the functions χ̂k, k = 1, . . . , n −M are mutually orthogonal.

It follows that (χ̃j, χ̃k)θ = δjk and

(s, χ̃k)θ =
n−M∑
j=1

αj(χ̃j, χ̃k)θ = αk, k = 1, . . . , n−M. (3.3.7)

Therefore the last assertion is true, which completes the proof. 2

Restricting our attention to the subspace Tθ of Sθ, we see that χ̃k, k =

n − q + 1, . . . , n −M , together with a basis of Πm(Rd), form a basis of Tθ.

Any element t ∈ Tθ can be written as

t =
n−M∑

k=n−q+1

(t, χ̃k)θ χ̃k + r, (3.3.8)

where r is the unique polynomial in Πm(Rd) interpolating t at the last M

data points, since χ̃n−q+1, . . . , χ̃n−M are orthonormal and vanish at the last

M data points.

The following theorem establishes that Algorithm A is equivalent to an

iterative technique for solving the system of linear equations that is given in

the theorem.

Theorem 3.3.2 (Gauss–Seidel iteration) Let s∗ =
∑n−M
k=1 α∗k χ̃k+r∗ be the

desired interpolant, and let s(`) =
∑n−M
k=1 α

(`)
k χ̃k+r

(`) be the estimate generated

by Algorithm A at the beginning of the `-th iteration, starting with s(1) ≡ 0.

Then every iteration adjusts the vector of coefficients α(`) = (α
(`)
1 , . . . , α

(`)
n−M)T

in a way that is analogous to performing one Gauss–Seidel iteration to solve
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the linear system
(χ̃1, χ̃1)θ · · · (χ̃1, χ̃n−M)θ

...
. . .

...

(χ̃1, χ̃n−M)θ · · · (χ̃n−M , χ̃n−M)θ

α∗ =


(s∗, χ̃1)θ

...

(s∗, χ̃n−M)θ

 , (3.3.9)

starting with α(1) = 0, where α∗ = (α∗1, . . . , α
∗
n−M)T . This means that α

(`+1)
k

is given by

α
(`+1)
k =

(s∗, χ̃k)θ −
k−1∑
j=1

α
(`+1)
j (χ̃j, χ̃k)θ −

n−M∑
j=k+1

α
(`)
j (χ̃j, χ̃k)θ

 , (3.3.10)

using (χ̃k, χ̃k)θ = 1, k = 1, . . . , n−M .

Proof: The k-th stage, k = 1, . . . , n − q, of Step 1 of Algorithm A changes

the current approximation by a multiple of χ̃k, which gives

s
(`)
k =

k∑
j=1

α
(`+1)
j χ̃j +

n−M∑
j=k+1

α
(`)
j χ̃j + r(`). (3.3.11)

Specifically, the k-th stage, k = 1, . . . , n − q, is equivalent to updating the

coefficient α
(`)
k , which multiplies χ̃k, to give α

(`+1)
k by adding to s

(`)
k−1 the term

(σθλ̂kk)
−1(s∗ − s(`)

k−1, χ̂k)θ χ̂k = (s∗ − s(`)
k−1, χ̃k)θ χ̃k, (3.3.12)

where the left hand side is derived from equations (3.1.10) and (3.2.3). The

coefficients α
(`)
j , j > k, and α

(`+1)
j , j < k, and the polynomial part r(`)

are left unchanged. Further, using (3.3.11) with k replaced by k − 1 and

(χ̃k, χ̃k)θ = 1, we deduce, for k = 1, . . . , n− q,

α
(`+1)
k = α

(`)
k + (s∗ − s(`)

k−1, χ̃k)θ

= (s∗, χ̃k)θ −
k−1∑
j=1

α
(`+1)
j (χ̃j, χ̃k)θ −

n−M∑
j=k+1

α
(`)
j (χ̃j, χ̃k)θ, (3.3.13)
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which establishes equation (3.3.10) for k ≤ n− q.
Step 2 of Algorithm A adds to s

(`)
n−q the element σ(`) ∈ Tθ that is defined

by the interpolation equations (3.1.11). Now, by equation (3.3.8) and since

σ(`) ∈ Tθ, we have the formula

σ(`) =
n−M∑

k=n−q+1

(σ(`), χ̃k)θ χ̃k + q(`) =
n−M∑

k=n−q+1

(s∗ − s(`)
n−q, χ̃k)θ χ̃k + q(`), (3.3.14)

where q(`) is the unique polynomial in Πm(Rd) that interpolates σ(`)(x i) =

s∗(x i)− s
(`)
n−q(x i), i = n−M + 1, . . . , n. The second identity depends on the

fact that σ(`)(x i) = s∗(x i)− s
(`)
n−q(x i), i = n− q + 1, . . . , n. Therefore α

(`+1)
k ,

k = n − q + 1, . . . , n −M , can be calculated by adding (s∗ − s(`)
n−q, χ̃k)θ to

α
(`)
k . Thus, using s

(`)
n−q =

∑n−q
j=1 α

(`+1)
j χ̃j +

∑n−M
j=n−q+1 α

(`)
j χ̃j + r(`), we find, for

k = n− q + 1, . . . , n−M ,

α
(`+1)
k = α

(`)
k + (s∗ − s(`)

n−q, χ̃k)θ

= (s∗, χ̃k)θ −
n−q∑
j=1

α
(`+1)
j (χ̃j, χ̃k)θ −

n−M∑
j=n−q+1

j 6=k

α
(`)
j (χ̃j, χ̃k)θ

= (s∗, χ̃k)θ −
k−1∑
j=1

α
(`+1)
j (χ̃j, χ̃k)θ −

n−M∑
j=k+1

α
(`)
j (χ̃j, χ̃k)θ, (3.3.15)

where the last identity depends on (χ̃j, χ̃k)θ = 0 for integers j 6= k in

[n− q + 1, n−M ].

The last lines of equations (3.3.13) and (3.3.15) describe a Gauss–Seidel

iteration for solving the system (3.3.9), since (χ̃k, χ̃k)θ = 1, k = 1, . . . , n−M .

The assertion of the theorem is proved. 2

Next we derive the system of equations (3.3.9) from the original sys-

tem (2.1.19). Let V be the n × (n − M) matrix whose (i, j)-th entry is

(σθλ̂jj)
−1/2λ̂ji if i ∈ Lj and zero otherwise. Thus the j-th column of V con-

tains the vector of coefficients of χ̃j. The matrix V is sparse, since at most
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q elements in each column are non-zero. It is also lower triangular, since

Lj ⊂ {j, . . . , n}. Lemma 3.3.1 provides the formula

λ = V α, (3.3.16)

where α = (α1, . . . , αn−M)T and λ = (λ1, . . . , λn)T . Remembering that P is

the n×M matrix, whose i-th row is (p1(x i) · · · pM(x i)) for a basis p1, . . . , pM

of Πm(Rd), the matrix V also has the property V TP = 0. Indeed, for any

polynomial p ∈ Πm(Rd), the sum

n∑
i=1

Vij p(x i) = (σθλ̂jj)
−1/2

∑
i∈Lj

λ̂ji p(x i) = 0 (3.3.17)

due to the conditions (3.1.6) on the coefficients of the approximate Lagrange

functions. Thus, multiplying the interpolation equation

Θλ∗ + Pc∗ = f, (3.3.18)

which is the first part of formula (2.1.19), by σθ V
T from the left and inserting

λ∗ = V α∗, we obtain

σθ V
TΘV α∗ = σθ V

Tf. (3.3.19)

This is exactly the system of equations (3.3.9) shown in Theorem 3.3.2, be-

cause

(χ̃k, χ̃l) = σθ
∑
i∈Lk

∑
j∈Ll

λ̂ki√
σθλ̂kk

λ̂lj√
σθλ̂ll

θ(x i − x j)

= σθ
n∑
i=1

n∑
j=1

Vik θ(x i − x j)Vjl, 1 ≤ k, l ≤ n−M, (3.3.20)

and because (s∗, χ̃k)θ = σθ
∑
j∈Lk(σθ λ̂kk)

−1/2λ̂kj s
∗(x j) = σθ

∑n
j=1 Vjk fj.

The matrix Θ in (3.3.18) is preconditioned from the left with σθV
T and

from the right with V such that the original system of equations (3.3.18) is
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replaced by the modified system (3.3.19) in order to obtain better convergence

properties when (3.3.19) is solved by an iterative method. In general, one

tries to choose preconditioners such that the modified matrix is close to the

identity matrix. Indeed, if the functions χ̂k, k = 1, . . . , n−q, were orthogonal

to each other and to all functions in Tθ with respect to the semi-inner product

(2.2.22), then σθV
TΘV would be the (n −M) × (n −M) identity matrix.

Thus convergence would occur within one iteration, as proven in Theorem

3.2.3 in the previous section.

Since at most q elements in each column of V are non-zero and since V

has only n−M columns, the product V TΘV can be formed in of order (2n−
M)(n−M)q operations. The following lemma states some other important

properties of σθV
TΘV .

Lemma 3.3.3 The matrix σθV
TΘV is symmetric and positive definite.

Proof: Since Θ is symmetric, the matrix V TΘV is obviously symmetric. If α

is any non-zero vector in Rn−M , we let λ ∈ Rn be the vector given by (3.3.16),

and with this choice σθ α
TV TΘV α = σθ λ

TΘλ. Now λ is non-zero, since the

columns of V are linearly independent, because V is lower triangular and its

diagonal elements Vii = σθ

√
σθλ̂ii are nonzero. The property V TP = 0 pro-

vides P Tλ = 0. Thus σθ λ
TΘλ is positive due to the conditional definiteness

of Θ. It follows that σθ α
TV TΘV α is also positive, which completes the proof

of the positive definiteness of σθV
TΘV . 2

This lemma provides an alternative proof of convergence of Algorithm A.

Indeed, the approximations generated by Gauss–Seidel iterations applied to

a symmetric and positive definite system of equations converge to the unique

solution (Iserles, 1996), which proves that the coefficients α
(`)
k converge to

α∗k as ` → ∞. Further, by the construction of s(`), we know that s∗ − s(`)
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vanishes at the last q data points for ` ≥ 2. Hence for i = n − q + 1, . . . , n

and ` ≥ 2,

s∗(x i)− s(`)(x i) =
n−M∑
k=1

(α∗k − α
(`)
k )χ̃k(x i) + r∗(x i)− r(`)(x i) = 0. (3.3.21)

We can choose the basis p1, . . . , pM of Πm(Rd) such that pi(xn−M+j) = δij,

i, j ∈ [1,M ], and then (3.3.21) implies

r∗ − r(`) =
M∑
i=1

n−M∑
k=1

(α
(`)
k − α∗k) χ̃k(xn−M+i) pi. (3.3.22)

It follows from the convergence of α
(`)
k to α∗k, k = 1, . . . , n − M , that r(`)

converges to r∗ as ` tends to infinity, which completes the alternative proof.

Some other algorithms employ different n × (n − M) matrices V such

that σθ V
TΘV is positive definite. Powell (1996), for example, considers thin

plate spline interpolation in two dimensions, where M = 3 and σθ = 1. He

generates V by deleting the first three columns of an n × n orthogonal ma-

trix, Ω say, where Ω has the property that the n × 3 matrix ΩTP is upper

triangular. Thus the columns of V are linearly independent and span the

null space of P T , which implies λ∗ = V α∗ for some vector α∗ ∈ Rn−M . The

condition that ΩTP is upper triangular allows Ω to be a product of at most

3 Householder rotations or 3n− 6 Givens rotations, which has the advantage

that ΩTΦ Ω can be formed in O(n2) operations, and V TΦV is just the bot-

tom right (n−3)× (n−3) submatrix of ΩTΦ Ω. Powell also recommends the

solution of the resulting positive definite system by calculating the Cholesky

factorisation of V TΦV when n is small as proposed by Sibson and Stone

(1991). When n is large, however, it is more efficient to use conjugate gradi-

ents, which receives attention in Section 5.2. Chapter 4 considers a method

that solves (3.3.9) by Jacobi iterations, in order to avoid the cost of updating

the current approximation on every stage.
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3.4 The iteration matrix of Algorithm A

In this section we determine the n×n iteration matrix RA by which the vector

of residuals fi − s(`−1)(x i), i = 1, . . . , n, at the beginning of the (` − 1)-th

iteration, ` = 2, 3, . . ., is multiplied to give the vector of residuals fi−s(`)(x i),

i = 1, . . . , n, at the end of the iteration. The previous analysis makes this

task straightforward.

Inserting equation (3.3.22) into the identity

s∗ − s(`) =
n−M∑
k=1

(α∗k − α
(`)
k )χ̃k + r∗ − r(`) (3.4.1)

gives

s∗ − s(`) =
n−M∑
k=1

(α∗k − α
(`)
k ) χ̃k −

M∑
i=1

n−M∑
k=1

(α∗k − α
(`)
k ) χ̃k(xn−M+i) pi, (3.4.2)

where we retain the basis p1, . . . , pM of Πm(Rd) such that pi(xn−M+j) = δij.

We let X be the n × (n −M) matrix with entries Xij = χ̃j(x i), we let X̂
be the M × (n −M) matrix whose rows are the last M rows of X , and we

let s(`) = (s(`)(x 1), . . . , s(`)(xn))T . Then, remembering s∗(x i) = fi, it follows

from equation (3.4.2) that the vector of residuals f − s(`) can be expressed

as

f − s(`) =
(
X − P X̂

)
(α∗ − α(`)), (3.4.3)

where P is still the n×M matrix whose i-th row is (p1(x i) · · · pM(x i)).

The vector α(`) is calculated using Gauss–Seidel iterations to solve the

system (3.3.19). Hence, letting σθV
TΘV = L+U , where L is lower triangular

and U is strictly upper triangular, we obtain the formula

α∗ − α(`) = −L−1U(α∗ − α(`−1)). (3.4.4)
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Thus the vector of residuals can be written as

f − s(`) =
(
X − P X̂

) (
−L−1U

)
(α∗ − α(`−1)). (3.4.5)

Equation (3.3.6) in the proof of Lemma 3.3.1 shows that, given any func-

tion s(x) =
∑n−M
k=1 αkχ̃k(x) + r(x) =

∑n
j=1 λjθ(x− x j) + p(x) in Sθ, then the

coefficients αk, k = 1, . . . , n−M , are uniquely determined by the coefficients

λj, j = 1, . . . , n −M . These on the other hand are uniquely determined by

the function values s(x i), i = 1, . . . , n. Therefore there exists an (n−M)×n
matrix, Y say, such that

α = Ys, (3.4.6)

where α = (α1, . . . , αn−M)T and s = (s(x 1), . . . , s(xn))T .

Equations (3.4.5) and (3.4.6) allow us, for ` ≥ 2, to derive a formula

which relates the vector of residuals f −s(`) at the end of one iteration to the

vector of residuals f − s(`−1) at the beginning of the iteration. The relation

is the expression

f − s(`) =
(
X − P X̂

) (
−L−1U

)
Y (f − s(`−1)). (3.4.7)

Therefore the matrix (X − P X̂ )(−L−1U)Y is the iteration matrix RA. Fur-

ther, we deduce

f − s(`) =
(
X − P X̂

)
(α∗ − α(`))

=
(
X − P X̂

) (
−L−1U

)`−1
(α∗ − α(1))

=
(
X − P X̂

) (
−L−1U

)`−1
Y (f − s(1)). (3.4.8)

It follows that the speed of convergence depends on the spectral radius of

the (n −M) × (n −M) matrix L−1U . Examples of the size of this spectral

radius for different numerical experiments are given in Chapter 7.
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3.5 Algorithm A as a linear operator

Algorithm A takes an element of Sθ, s
∗ − s(`), and generates, using linear

operations, a new element s∗ − s(`+1). Thus Algorithm A can be viewed

as a linear operator form Sθ to Sθ. We employ the same notation for this

operator as for the iteration matrix RA introduced in the previous section,

because they are related by the one-to-one relation between s ∈ Sθ and the

vector of function values s = (s(x 1), . . . , s(xn))T . Specifically, we let RAs,

s ∈ Sθ, be the function in Sθ whose values at the interpolation points are the

components of the vector RAs. Therefore we write

s∗ − s(`+1) = RA(s∗ − s(`)). (3.5.1)

The following theorem establishes several useful properties of RA.

Theorem 3.5.1 The operator RA : Sθ → Sθ annihilates polynomials of

degree at most m. Further, it is a contraction mapping with respect to the

semi-norm (2.2.23), which means that the condition

‖ RAs ‖θ ≤‖ s ‖θ (3.5.2)

holds for all s ∈ Sθ, with equality only if s ∈ Πm(Rd). For any nonzero

s ∈ Sθ, RAs does not equal s. Also the inequality

(s, RAs)θ < (s, s)θ (3.5.3)

is achieved for all s ∈ Sθ, s 6∈ Πm(Rd).

Proof: Let s be any polynomial of degree at most m. Then the coefficients

αk, k = 1, . . . , n − M of the representation s =
∑n−M
k=1 αkχ̃k + r vanish.

Equation (3.4.6) then yields Ys = 0. Now the matrix RA is the product



CHAPTER 3. ALGORITHM A 53

(X −P X̂ )(−L−1U)Y . Hence RAs = 0, which proves the first assertion of the

theorem.

We know by Lemma 3.2.1 with ` = 1 that ‖ s∗ − s(1)
k ‖θ ≤‖ s∗ − s

(1)
k−1 ‖θ,

k = 1, . . . , n − q, and that ‖ s∗ − s(2) ‖θ ≤‖ s∗ − s
(1)
n−q ‖θ. It follows from

equation (3.5.1) that

‖ s∗ − s(2) ‖θ =‖ RA(s∗ − s(1)) ‖θ ≤‖ s∗ − s(1) ‖θ. (3.5.4)

Therefore, because s∗ can be any function in Sθ and because s(1) is zero,

inequality (3.5.2) is satisfied. Suppose now that we have equality. Then,

for k = 1, . . . , n − q, the difference between ‖ s∗ − s(1)
k−1 ‖θ and ‖ s∗ − s(1)

k ‖θ
is zero. It follows from the proof of Theorem 3.2.2 that all stages leave the

current approximation unchanged and hence s∗ = s∗−s(1)
k , k = 0, 1, . . . , n−q.

Therefore equations (3.2.7) and (3.2.9) yield

(s∗, χ̂k)θ = σθ
∑
j∈Lk

λ̂kj s
∗(x j) = 0, k = 1, . . . , n− q. (3.5.5)

Also the difference between ‖ s∗ − s(2) ‖θ and ‖ s∗ − s(1)
n−q ‖θ is zero, which

implies that ‖ σ(1) ‖θ vanishes, where σ(1) interpolates the data s∗(x i) −
s

(1)
n−q(x i) = s∗(x i), i = n− q + 1, . . . , n. Thus σ(1) is a polynomial of degree

at most m, say p, and s∗(x i) = p(x i), i = n − q + 1, . . . , n. Now the sum∑
j∈Lk λ̂kj p(x j) vanishes due to (3.1.6). Hence, using (3.5.5), we can write

∑
j∈Lk

λ̂kj
(
s∗(x j)− p(x j)

)
= 0. (3.5.6)

We consider equations (3.5.6) in reverse order, remembering s∗(x i) = p(x i),

i = n − q + 1, . . . , n, and λ̂kk 6= 0 and that Lk is a subset of {k, . . . , n}
containing k. It follows by induction on k that s∗(x k) = p(x k) for k =

n − q, n − q − 1, . . . , 1, which yields s∗ = p. Hence condition (3.5.2) is

satisfied as an equality only if s∗ = s ∈ Πm(Rd).
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If s is not a polynomial of degree at most m, then RAs 6= s, since in-

equality (3.5.2) is strict in this case. If, on the other hand, s ∈ Πm(Rd), then

RAs = 0. Hence RAs 6= s for all nonzero functions s ∈ Sθ.
The Cauchy–Schwarz inequality and condition (3.5.2) provide

(s, RAs)θ ≤‖ s ‖θ ‖ RAs ‖θ ≤‖ s ‖2
θ = (s, s)θ, (3.5.7)

and we have found already that the second inequality is strict if s ∈ Sθ is

not a polynomial of degree at most m. Therefore the last assertion of the

theorem is also true. 2

These properties of the operator RA are important to the work of Chapter

6, where Krylov subspace methods are considered. In the next chapter we

turn to another algorithm that was developed from Algorithm A by not

updating the vector of residuals at intermediate stages.



Chapter 4

Algorithm B

Establishing convergence for Algorithm A was a major step forward, but

unfortunately every iteration requires much computation. Specifically, since,

for k = 1, . . . , n − q, the k-th stage of Step 1 of Algorithm A employs the

residuals fj − s(`)
k−1 (x j), j ∈ Lk, and since the residuals fj − s(`)

n−q(x j), j =

n−q+1, . . . , n, are interpolated in Step 2, the approximation s to the required

interpolant s∗ is updated frequently. Then the above residuals are calculated

whenever they are required. Unfortunately the work of evaluating s ∈ Sθ

at some point x ∈ Rd is usually O(n), unless the support of θ is sufficiently

small. Therefore techniques, known as fast multipole methods (Beatson and

Newsam, 1992, Powell, 1993, Beatson and Light, 1997, Beatson, Cherrie

and Mouat, 1999) were developed to reduce the cost of radial basis function

evaluation. These methods use truncated Laurent series or Taylor series

expansions to generate s(x), s ∈ Sθ, x ∈ Rd, to within a given precision ε.

The cost to calculate all the Laurent coefficients of any s is only O(n log n).

Then O(log n) operations are needed to estimate s(x) for any x ∈ Rd. Still,

wherever possible the evaluation of residuals should be avoided, since this

55
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feature dominates the processing time. Therefore the idea of Algorithm B

is to try to solve the system (3.3.9) by Jacobi iteration. It is usually more

efficient than Algorithm A. Further, it converges in the majority of cases,

but we will present some numerical experiments where this does not happen.

A useful extension to Algorithm B that forces convergence is proposed and

studied in Section 5.1 and Chapter 6.

In the following sections we give a description of Algorithm B, then anal-

yse it and derive the iteration matrix. We conclude the chapter by viewing

Algorithm B as a linear operator acting on the space Sθ.

4.1 Description

The concept of Algorithm B is to use fj − s(`)(x j) instead of fj − s(`)
k−1(x j)

in formula (3.1.10) for the k-th stage, k = 1, . . . , n − q, of Step 1, and

also instead of fj − s(`)
n−q(x j) in formula (3.1.11) of Step 2 of Algorithm A.

Therefore the residuals do not need to be updated until the end of each

iteration. Specifically, Algorithm B revises the approximations s(`) in the

following way.

Step 0 Set ` = 1 and s(`) ≡ 0.

Step 1 For k = 1, . . . , n− q, calculate the term

ρ
(`)
k =

1

λ̂kk

∑
j∈Lk

λ̂kj
[
fj − s(`)(x j)

]
. (4.1.1)

Step 2 Calculate the solution σ(`) ∈ Tθ of the interpolation equations

σ(`)(x j) = fj − s(`)(x j), j = n− q + 1, . . . , n. (4.1.2)
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Step 3 Define s(`+1) by the formula

s(`+1) = s(`) +
n−q∑
k=1

ρ
(`)
k χ̂k + σ(`). (4.1.3)

Step 4 Terminate if the residuals fj−s(`+1)(x j), j = 1, . . . , n, are sufficiently

close to zero. Otherwise, increase ` by one and return to Step 1.

Using equation (3.2.3) with s
(`)
k−1 replaced by s(`), we deduce from (4.1.1) and

(4.1.3) that

s(`+1) = s(`) +
n−q∑
k=1

1

λ̂kk

∑
j∈Lk

λ̂kj
[
fj − s(`) (x j)

]
χ̂k + σ(`)

= s(`) +
n−q∑
k=1

(σθλ̂kk)
−1(s∗ − s(`), χ̂k)θ χ̂k + σ(`)

= s(`) +
n−q∑
k=1

(s∗ − s(`), χ̃k)θ χ̃k + σ(`), (4.1.4)

remembering χ̃k = (σθλ̂kk)
−1/2χ̂k. As before, s∗ denotes the desired inter-

polant that is defined by the interpolation equations (1.1.1). Moreover, as in

(3.3.8), σ(`) can be expressed as

σ(`) =
n−M∑

k=n−q+1

(σ(`), χ̃k)θ χ̃k + q(`) =
n−M∑

k=n−q+1

(s∗ − s(`), χ̃k)θ χ̃k + q(`), (4.1.5)

where q(`) is the unique polynomial of degree at most m which satisfies

q(`)(x i) = σ(`)(x i) = s∗(x i) − s(`)(x i), i = n −M + 1, . . . , n. As before, we

reorder the points if necessary so that the points xn−M+1, . . . , xn are poly-

nomially unisolvent. The second identity of expression (4.1.5) depends on

equations (4.1.2) and (1.1.1) and on the fact that χ̃k, k = n−q+1, . . . , n−M ,

has centres only at the points x k, . . . , xn. Equations (4.1.4) and (4.1.5) yield

s(`+1) = s(`) +
n−M∑
k=1

(s∗ − s(`), χ̃k)θ χ̃k + q(`). (4.1.6)
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The description of Algorithm B is complete. Next we consider some of its

properties.

4.2 Analysis and the iteration matrix of

Algorithm B

The following theorem is the analogue of Theorem 3.3.2. for Algorithm A.

Theorem 4.2.1 (Jacobi iteration) Let s∗ =
∑n−M
k=1 α∗k χ̃k+r∗ be the desired

interpolant, and let s(`) =
∑n−M
k=1 α

(`)
k χ̃k + r(`) be the estimate generated by

Algorithm B at the beginning of the `-th iteration, starting with s(1) ≡ 0.

Then every iteration adjusts the vector of coefficients α(`) = (α
(`)
1 , . . . , α

(`)
n−M)T

in a way that is analogous to performing one Jacobi iteration to solve the

linear system (3.3.9), starting with α(1) = 0. This means that α
(`+1)
k is given

by

α
(`+1)
k =

(s∗, χ̃k)θ −
n−M∑

j=1,j 6=k
α

(`)
j (χ̃j, χ̃k)θ

 , k = 1, . . . , n−M. (4.2.7)

Proof: It follows directly from equation (4.1.6) that, for k = 1, . . . , n−M ,

α
(`+1)
k = α

(`)
k + (s∗ − s(`), χ̃k)θ

= α
(`)
k + (s∗, χ̃k)θ −

n−M∑
j=1

α
(`)
j (χ̃j, χ̃k)θ

= (s∗, χ̃k)θ −
n−M∑

j=1,j 6=k
α

(`)
j (χ̃j, χ̃k)θ, (4.2.8)

where we use the identity (χ̃k, χ̃k)θ = 1. 2
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maximum absolute value spectral
n q

of off-diagonal elements radius

10 0.7302 33

20 0.6896 9.7

30 0.6528 6.0
400

50 0.6287 3.3

10 0.7614 70

20 0.7134 24

30 0.6987 14
900

50 0.6576 7.6

Table 4.1: Maximum value of the off-diagonal elements and the spectral

radius of In−M − σθV TΘV for θ(x) =‖ x ‖2
2 log ‖ x ‖2, x ∈ R2.

We recall from equation (3.3.20) that the systems (3.3.9) and (3.3.19) are

the same. Therefore, since the diagonal entries of σθV
TΘV take the value one

due to the normalisation of the approximated Lagrange functions, it follows

from Theorem 4.2.1 that

α∗ − α(`+1) = (In−M − σθV TΘV )(α∗ − α(`)), (4.2.9)

where In−M is the (n −M) × (n −M) identity matrix. Hence convergence

depends on how near σθV
TΘV is to the identity matrix. The smaller the

off-diagonal elements are, the better the orthogonality properties and the

better the performance of the algorithm, but if the off-diagonal elements are

too large, divergence might occur.

It was very difficult to find an example to show failure of Algorithm B. If,

however, the points x 1, . . . , xn ∈ R2 are equally spaced on one eighth of two

concentric circles, half of the points being on each circle and the radii of the
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circles being 1 and 1 + 10−5, then Algorithm B with θ(x) =‖x ‖2
2 log ‖x ‖2,

x ∈ R2, fails to converge. Table 4.1 gives the maximum absolute value of

the off-diagonal elements and the spectral radius of In−M −σθV TΘV for this

experiment for various choices of n and q.

The following theorem considers the situation when the functions χ̂k,

k = 1, . . . , n− q, are orthogonal to each other and to all functions in Tθ.

Theorem 4.2.2 If all functions χ̂k, k = 1, . . . , n − q, are orthogonal to

each other and to all functions in Tθ with respect to the semi-inner product

(2.2.22), then Algorithm B achieves convergence in at most 2 iterations.

Proof: If the functions χ̂k, k = 1, . . . , n− q, are orthogonal to each other and

to every function in Tθ, then σθV
TΘV = In−M and it follows from (4.2.9)

with ` = 1 that α(2) = α∗. Thus s∗ and s(2) differ only by a polynomial of

degree at most m. Then, using (1.1.1), (4.1.1) with ` = 2 gives ρ
(2)
k = 0,

k = 1, . . . , n− q, due to the constraints (3.1.6), while (4.1.2) with ` = 2 gives

σ(2) = s∗ − s(2). Hence s(3) equals s∗ by (4.1.3) with ` = 2 and the method

converges in at most two iterations. 2

Returning to the case where χ̂k, k = 1, . . . , n − q, are not necessarily

orthogonal to each other and to functions in Tθ, we let s(`) =
∑n−M
k=1 α

(`)
k χ̃k +

r(`) and analyse the convergence properties of the polynomial part r(`) of s(`).

Recalling (4.1.6), the difference between r(`+1) and r(`) is q(`). Hence, for

i = n−M + 1, . . . , n, we have

r(`+1)(x i)− r(`)(x i) = q(`)(x i) = s∗(x i)− s(`)(x i) (4.2.10)

=
n−M∑
k=1

(α∗k − α
(`)
k ) χ̃k(x i) + r∗(x i)− r(`)(x i),

remembering that q(`) is the unique polynomial of degree at most m inter-

polating s∗ − s(`) at xn−M+1, . . . , xn. Therefore, choosing p1, . . . , pM as the
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basis of Πm(Rd) such that pi(xn−M+j) = δij for integers i, j ∈ [1,M ], we can

write

r∗ − r(`+1) =
M∑
i=1

n−M∑
k=1

(α
(`)
k − α∗k) χ̃k(xn−M+i) pi. (4.2.11)

Thus, if α(`) converges to α∗, then r(`+1) converges to r∗.

The previous results facilitate the derivation of the matrix, RB say, such

that, for ` = 1, 2, 3, . . ., the vector of residuals s∗ − s(`+1) at the end of the

`-th iteration is RB acting on the vector of residuals s∗−s(`) at the beginning

of the iteration. The analysis is very similar to the derivation of the iteration

matrix for Algorithm A in Section 3.4.

Using equation (4.2.11), we obtain

s∗ − s(`+1) =
n−M∑
k=1

(α∗k − α
(`+1)
k ) χ̃k + r∗ − r(`+1) (4.2.12)

=
n−M∑
k=1

(α∗k − α
(`+1)
k ) χ̃k −

M∑
i=1

n−M∑
k=1

(α∗k − α
(`)
k ) χ̃k(xn−M+i) pi.

Employing the matrices X and X̂ defined in Section 3.4, and remembering

that P is the n×M matrix whose i-th row is (p1(x i) · · · pM(x i)), it follows

from equation (4.2.12) that

f − s(`+1) = X (α∗ − α(`+1))− P X̂ (α∗ − α(`)), (4.2.13)

where s(`+1) = (s(`+1)(x 1), . . . , s(`+1)(xn))T .

Now, remembering equation (4.2.9) and the matrix Y introduced in (3.4.6),

we deduce

f − s(`+1) =
(
X
(
In−M − σθV TΘV

)
− P X̂

)
Y (f − s(`)). (4.2.14)

Therefore the matrix (X (In−M − σθV TΘV )− P X̂ )Y is the iteration matrix

RB. Further, employing (4.2.9) and the identity α(1) = 0, we derive

f − s(`+1) =
(
X
(
In−M − σθV TΘV

)
− P X̂

)
(α∗ − α(`)) (4.2.15)
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=
(
X
(
In−M − σθV TΘV

)
− P X̂

) (
In−M − σθV TΘV

)`−1
α∗

=
(
X
(
In−M − σθV TΘV

)
− P X̂

) (
In−M − σθV TΘV

)`−1
Y f.

Hence the spectral radius of the (n−M)×(n−M) matrix In−M−σθV TΘV

determines the convergence properties, some examples being given in Table

4.1. Chapter 7 presents some more numerical examples of the value of this

spectral radius. The changes made to Algorithm A, which gave rise to Algo-

rithm B, led to divergence in certain cases as shown in Table 4.1. If, however,

the functions χ̂k, k = 1, . . . , n− q, are sufficiently close to being orthogonal,

then Algorithm B converges and is usually a highly efficient alternative to

Algorithm A.

4.3 Algorithm B as a linear operator

Algorithm B can also be viewed as a linear operator acting on Sθ, since it

takes the element s∗−s(`) of Sθ and generates a new element s∗−s(`+1), using

linear operations. Again our notation for this operator is the same as for the

iteration matrix RB derived in the previous section. Indeed, RBs, s ∈ Sθ, is

the function in Sθ whose values at the data points are the components of the

vector RBs, so we write

s∗ − s(`+1) = RB(s∗ − s(`)). (4.3.1)

Therefore, equation (4.1.6) provides the explicit expression

RBs = s−
n−M∑
k=1

(s, χ̃k)θ χ̃k − p, (4.3.2)

where, in order to satisfy equations (4.1.2) and (4.1.5), p is the unique poly-

nomial of degree at most m that interpolates s(x i), i = n −M + 1, . . . , n.

The following theorem establishes some useful properties of the operator RB.
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Theorem 4.3.1 The operator RB from Sθ to Sθ defined by (4.3.2) annihilates

polynomials of degree at most m. Further, it is self-adjoint with respect to

the semi-inner product (2.2.22). The strict inequality

(s, RBs)θ < (s, s)θ (4.3.3)

is achieved for all s ∈ Sθ, s 6∈ Πm(Rd). Also RBs 6= s holds for all nonzero

functions s ∈ Sθ.

Proof: Let s ∈ Πm(Rd). Then the sum in (4.3.2) is zero, since the semi-inner

product vanishes if one of the arguments lies in Πm(Rd). On the other hand,

p = s, since p(x i) = s(x i), i = n−M + 1, . . . , n, and since the last M data

points are polynomially unisolvent. Hence it follows that RBs = 0.

Let s, t ∈ Sθ. We write RBt = t−∑n−M
k=1 (t, χ̃k)θχ̃k−r, where r ∈ Πm(Rd).

Using expression (4.3.2), we then deduce

(RBs, t)θ = (s, t)θ −
n−M∑
k=1

(s, χ̃k)θ(t, χ̃k)θ − (p, t)θ (4.3.4)

= (s, t)θ −
n−M∑
k=1

(s, χ̃k)θ(t, χ̃k)θ − (s, r)θ = (s, RBt)θ,

since (p, t)θ = (s, r)θ = 0 due to p, r ∈ Πm(Rd). Thus the self-adjointness of

RB is established.

Next we derive from equation (4.3.2)

(s, RBs)θ = (s, s)θ −
n−M∑
k=1

(s, χ̃k)
2
θ ≤ (s, s)θ. (4.3.5)

Consider the equality case. Then (s, χ̃k)θ vanishes for all k = 1, . . . , n−M ,

since all terms of the sum are nonnegative. By Lemma 3.3.1, the functions

χ̃k, k = 1, . . . , n − M , form, together with a basis of Πm(Rd), a basis for

Sθ. It follows that s is orthogonal to all functions in Sθ and hence s is a
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polynomial of degree at most m. Thus inequality (4.3.5) is strict for all

s ∈ Sθ, s 6∈ Πm(Rd).

It follows directly from (4.3.3) that RBs 6= s for any s ∈ Sθ which is

not a polynomial of degree at most m. On the other hand, RBp = 0 for all

p ∈ Πm(Rd). Hence RBs 6= s for all nonzero s ∈ Sθ and the proof of the

theorem is complete. 2

The self-adjointness of the operator RB is highly useful when the Krylov

subspace method described in Chapter 6 is applied. Algorithm B has the

advantage over Algorithm A that it needs a smaller number of operations

per iteration, but it has the disadvantage that it diverges in certain cases as

seen in Table 4.1, while convergence has been established for Algorithm A.

In the first section of the next chapter and in Chapter 6 we will present the

useful techniques that enforce convergence for Algorithm B.



Chapter 5

Other methods

The last two chapters described two algorithms and their properties in de-

tail. This chapter presents two more techniques which were developed from

insights gained from the analysis of Algorithm A. The convergence analysis

in Section 3.2 shows the important role of the minimization of the semi-inner

product. The first section of this chapter takes this concept further and

introduces a line search. It is demonstrated in Section 3.3 that Algorithm

A is equivalent to solving the positive definite system of equations given by

(3.3.19) using Gauss–Seidel iteration. The second technique described in this

chapter is a conjugate gradient method for solving (3.3.19). This method is

more efficient than the Gauss–Seidel iteration for large n−M (Iserles, 1996).

We describe a different implementation of the conjugate gradient technique

using the matrix W = V V T following Powell (1996), where V is defined after

the proof of Theorem 3.3.2 in Section 3.3. We establish some properties of

W , in order to justify further the preconditioning of Θ by σθV
T from the left

and by V from the right.

65
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5.1 Line search

It is shown in Section 3.2 that the key to understanding the convergence of

Algorithm A is that the sequence (s∗−s(`), s∗−s(`))θ decreases monotonically.

Therefore, instead of letting the new approximation at the end of the `-th

iteration be s(`) + t(`), we define

s(`+1) = s(`) + ω(`)t(`), (5.1.1)

where ω(`) is chosen to minimize (s∗ − s(`) − ω t(`), s∗ − s(`) − ω t(`))θ, ω ∈ R.

When (t(`), t(`))θ > 0, this choice gives ω(`) the value

ω(`) =
(s∗ − s(`), t(`))θ

(t(`), t(`))θ
, (5.1.2)

and can be regarded as a line search along t(`).

The semi-inner product (t(`), t(`))θ is zero if and only if t(`) ∈ Πm(Rd).

Therefore, attention has to be paid to the case when t(`) is some polynomial

of degree at most m, because then (s∗ − s(`) − ω t(`), s∗ − s(`) − ω t(`))θ takes

the value (s∗ − s(`), s∗ − s(`))θ for all ω ∈ R. Therefore we will only consider

algorithms where

t(`) ∈ Πm(Rd) implies s∗ = s(`) + t(`). (5.1.3)

For Algorithms A and B we deduce from equations (3.5.1) and (4.3.1) that

s
(`+1)
A = s

(`)
A + (I −RA)(s∗ − s(`)

A ),

s
(`+1)
B = s

(`)
B + (I −RB)(s∗ − s(`)

B ), (5.1.4)

where the subscript denotes the algorithm which generates the sequence.

Specifically, if Algorithm A is the underlying algorithm, then t(`) =

(I−RA)(s∗−s(`)) and thus s∗ = s(`) + t(`) +RA(s∗−s(`)), but if Algorithm B
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is used, then t(`) = (I−RB)(s∗−s(`)) and hence s∗ = s(`) +t(`) +RB(s∗−s(`)).

If t(`) ∈ Πm(Rd), then

(s∗ − s(`) − t(`), s∗ − s(`))θ = (s∗ − s(`), s∗ − s(`))θ, (5.1.5)

since the semi-inner product vanishes on Πm(Rd). Now for Algorithm A,

s∗− s(`)− t(`) = RA(s∗− s(`)) and for Algorithm B, s∗− s(`)− t(`) = RB(s∗−
s(`)). It follows in both cases from equations (3.5.3), (4.3.3) and (5.1.5) that

s∗− s(`) ∈ Πm(Rd). By Theorems 3.5.1 and 4.3.1, both operators RA and RB

annihilate polynomials of degree at most m and therefore s∗ = s(`) + t(`), if

t(`) ∈ Πm(Rd).

We avoid the zero dominator in formula (5.1.2) by including the following

stopping criterion. If there exists ω ∈ R such that

max{|s∗(x i)− s(`)(x i)− ω t(`)(x i)| : i = 1, . . . , n} ≤ TOL, (5.1.6)

where TOL is the specified accuracy, then the final approximation s(`+1) is

set to s(`) + ω t(`) and the algorithm terminates, the scalar ω being chosen

as follows. For all i = 1, . . . , n such that t(`)(x i) = 0, it is checked that the

inequality |s∗(x i) − s(`)(x i)| ≤ TOL holds. If this test is successful, then

we seek the borders of the interval [a, b] in which ω should lie. Let j be the

least integer such that t(`)(x j) 6= 0. It is not possible that t(`)(x i) = 0 for all

i = 1, . . . , n, because this implies by (5.1.3) s(`)(x i) = s∗(x i), i = 1, . . . , n,

and the method would have terminated on the previous iteration. We let a

be the smaller and b be the larger of the two ratios

s∗(x j)− s(`)(x j)− TOL

t(`)(x j)
and

s∗(x j)− s(`)(x j) + TOL

t(`)(x j)
. (5.1.7)

Similarly, for i = j+ 1, . . . , n such that t(`)(x i) 6= 0, we calculate the interval

[â, b̂], where â is the smaller and b̂ is the larger of the two ratios

s∗(x i)− s(`)(x i)− TOL

t(`)(x i)
and

s∗(x i)− s(`)(x i) + TOL

t(`)(x i)
. (5.1.8)
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We then replace the interval [a, b] by the intersection of [a, b] with [â, b̂], if it

exists. Otherwise there is no ω ∈ R such that (5.1.6) holds, so the technique

sets ω(`) to the value (5.1.2) and lets s(`+1) be the function (5.1.1). When

there exists a final interval [a, b], the scalar ω is set to its midpoint, i.e.

(a+ b)/2.

If the specified accuracy TOL is greater than zero, then this may allow

termination when s∗ 6= s(`) + t(`). If, however, s∗ = s(`) + t(`), then the

technique calculates the intersection of the intervals with boundaries 1 −
TOL/t(`)(x j) and 1 + TOL/t(`)(x j) for j = 1, . . . , n such that t(`)(x j) 6= 0,

where the upper boundary is the larger of the two values. The midpoint of

the intersection is 1 and thus ω is set to 1 and the algorithm terminates with

s(`+1) = s(`) + t(`) = s∗.

The numerical experiments of Chapter 7 show that Algorithm B may

diverge. The following theorem, however, proves that the given line search

enforces convergence.

Theorem 5.1.1 The algorithm described in this section with TOL > 0, which

generates a sequence of estimates s(`), ` = 1, 2, . . ., following rules (5.1.1) and

(5.1.2), starting with s1 ≡ 0 and letting t(`) = (I−RB) (s∗−s(`)), achieves the

stopping criterion (5.1.6) for some ω ∈ R after a finite number of iterations.

Proof: Suppose the algorithm fails to terminate. Each choice of ω = ω(`)

minimizes (s∗− s(`)− ωt(`), s∗− s(`)− ωt(`))θ, ω ∈ R. Therefore the sequence

(s∗ − s(`), s∗ − s(`))θ, ` = 1, 2, . . ., is infinite and is monotonically decreasing.

It is also bounded below by zero and thus converges to a limit as ` tends

to infinity. This implies that the difference between two elements in the

sequence tends to zero as `→∞. The definitions of s(`+1) in (5.1.1) and ω(`)



CHAPTER 5. OTHER METHODS 69

in (5.1.2) provide the formula

(s∗ − s(`), s∗ − s(`))θ − (s∗ − s(`+1), s∗ − s(`+1))θ =
(s∗ − s(`), t(`))2

θ

(t(`), t(`))θ
, (5.1.9)

for this expression that tends to zero as ` tends to infinity.

Using the definition t(`) = (I − RB) (s∗ − s(`)) and equation (4.3.2) with

s = s∗ − s(`), the square root of the numerator in (5.1.9) can be written as

(s∗ − s(`), t(`))θ =
(
s∗ − s(`), (I −RB) (s∗ − s(`))

)
θ

=
n−M∑
k=1

(s∗ − s(`), χ̃k)
2
θ. (5.1.10)

The denominator on the other hand is

(t(`), t(`))θ =
(
(I −RB) (s∗ − s(`)), (I −RB) (s∗ − s(`))

)
θ

=
n−M∑
i,j=1

(s∗ − s(`), χ̃i)θ (s∗ − s(`), χ̃j)θ (χ̃i, χ̃j)θ

≤ C
n−M∑
i=1

(s∗ − s(`), χ̃i)
2
θ, (5.1.11)

where C is a positive number that is independent of `. It follows that ex-

pression (5.1.9) is bounded below by C−1∑n−M
k=1 (s∗ − s(`), χ̃k)

2
θ. Therefore,

for k = 1, . . . , n−M , we deduce

(s∗ − s(`), χ̃k)θ → 0 as `→∞. (5.1.12)

Let p(`) be the unique polynomial of degree at most m that interpolates

s∗ − s(`) at xn−M+1, . . . , xn. Since the semi-inner product vanishes on the

space Πm(Rd), (s∗ − s(`) − p(`), χ̃k)θ equals (s∗ − s(`), χ̃k)θ, k = 1, . . . , n−M .

Hence (s∗ − s(`) − p(`), χ̃k)θ also tends to zero as ` tends to infinity.
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Now the definition (2.2.22) of the semi-inner product and equation (3.3.2)

give the condition

(s∗ − s(`) − p(`), χ̃k)θ = σθ(σθλ̂kk)
−1/2

∑
j∈Lk

λ̂kj
[
s∗(x j)− s(`)(x j)− p(`)(x j)

]
,

(5.1.13)

so we can write the conclusion of the last paragraph in the form

lim
`→∞


n∑
j=k

λ̂kj [s∗(x j)− s(`)(x j)− p(`)(x j)]

 = 0, k = 1, . . . , n−M,

(5.1.14)

where λ̂kj is defined to be zero for j 6∈ Lk and where we drop the constant,

nonzero factor σθ(σθλ̂kk)
−1/2. As in the proof of convergence for Algorithm

A in Section 3.2, we consider the equations (5.1.14) in reverse order, remem-

bering the identity

s∗(x j)− s(`)(x j)− p(`)(x j) = 0, j = n−M + 1, . . . , n, (5.1.15)

and that each λ̂kk is nonzero. It follows by induction on k that

lim
`→∞

{
s∗(x k)− s(`)(x k)− p(`)(x k)

}
= 0, k = n−M,n−M − 1, . . . , 1.

(5.1.16)

On the other hand, using equation (4.3.2) with s = s∗− s(`), we find that

the definition t(`) = (I−RB) (s∗−s(`)) yields t(`) =
∑n−M
k=1 (s∗−s(`), χ̃k)θ χ̃k +

p(`), since p(`)(x i) = s∗(x i)− s(`)(x i), i = n−M + 1, . . . , n. Thus

lim
`→∞

{
t(`)(x i)− p(`)(x i)

}
= lim

`→∞

{
n−M∑
k=1

(s∗ − s(`), χ̃k)θ χ̃k(x i)

}
= 0, (5.1.17)

the last identity being due to the property (5.1.12). Equations (5.1.15),

(5.1.16) and (5.1.17) imply

lim
`→∞

max
{
|s∗(x i)− s(`)(x i)− t(`)(x i) : i=1, . . . , n

}
= 0. (5.1.18)
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Therefore, for sufficiently large `, the choice ω = 1 satisfies the stopping

criterion (5.1.6). It follows that the theorem is true 2

The Krylov subspace method presented in Chapter 6 extends the idea of

line searches even further. There the search directions are modified so that

they are mutually orthogonal with respect to the semi-inner product (2.2.22).

The self-adjointness of operator RB makes this construction easy, but more

effort is needed when using operator RA.

Each iteration of Algorithm B with a line search requires far fewer opera-

tions than an iteration of Algorithm A, and we have proved the convergence

for both methods. Thus, if q is suitably large, Algorithm B with an added

line search is usually much more efficient than Algorithm A. The next section

considers another version of these algorithms.

5.2 Conjugate gradients

By now we have encountered several iterative techniques in our efforts to

calculate the solution

s∗(x) =
n∑
j=1

λ∗j θ(x− x j) + p∗(x)

=
n−M∑
k=1

α∗k χ̃k(x) + r∗(x), x ∈ Rd, (5.2.1)

of the interpolation equations (1.1.1). The method described in this section

was developed from the results presented in Sections 3.3 and 4.2. There

we noted that Algorithms A and B calculate approximations to the vector

of coefficients α∗ = (α∗1, . . . , α
∗
n−M)T by applying Gauss–Seidel and Jacobi

iterations respectively to the system of equations

σθ V
TΘV α∗ = σθV

Tf, (5.2.2)
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where the n × (n −M) matrix V is specified in Section 3.3. By the inter-

polation conditions, r∗ is the unique polynomial of degree at most m which

interpolates s∗ −∑n−M
k=1 α∗kχ̃k at the last M data points, where as before we

assume a reordering if necessary such that xn−M+1, . . . , xn are polynomially

unisolvent. The vector λ∗ = (λ∗1, . . . , λ
∗
n)T of radial basis function coefficients

is given by λ∗ = V α∗. The polynomial p∗ can be calculated by adding to r∗,

for k = 1, . . . , n−M , the polynomial part of χ̃k multiplied by α∗k.

It was shown in Lemma 3.3.3 that the (n−M)×(n−M) matrix σθV
TΘV is

positive definite, since Θ is conditionally definite. It follows that the solution

α∗ of the system (5.2.2) can be calculated by the conjugate gradient method.

The details of this approach are as follows.

Let F be the quadratic function

F (α) = σθ α
TV Tf − σθ 1

2
αTV TΘV α, α ∈ Rn−M , (5.2.3)

which is concave and bounded above. The conjugate gradient method finds

the unique maximizer of F , because equation (5.2.2) is equivalent to the

condition ∇F (α∗) = 0.

We let α(1) = 0 initially and α(`) denotes the estimate of α∗ at the begin-

ning of the `-th iteration. Termination occurs if the gradient vector

γ(`) = ∇F (α(`)) = σθ V
Tf − σθ V TΘV α(`) (5.2.4)

is zero. Then α(`) is the maximizer of F and it is returned as the solution

of system (5.2.2). Otherwise, a search direction β(`) is chosen. For ` = 1,

β(1) is chosen to be the steepest ascent direction γ(1) = σθV
Tf . The idea of

the conjugate gradient method is to construct a sequence of search directions

that are conjugate with respect to σθV
TΘV , which means

σθ β
(i)TV TΘV β(j) = 0, i 6= j. (5.2.5)
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This property with line searches ensures that the conjugate gradient method

finds α∗ after at most n−M iterations (Fletcher, 1987), except for the effects

of computer rounding errors. The exact choice of β(`) is described below.

We let α(`+1) be the vector

α(`+1) = α(`) +$(`)β(`), (5.2.6)

where $(`) is chosen to maximize

F (α(`) +$β(`)) = F (α(`)) +$β(`)Tγ(`) − σθ 1
2
$2 β(`)TV TΘV β(`), $ ∈ R.

(5.2.7)

Remembering σ2
θ = 1, we deduce the value

$(`) = σθ
β(`)Tγ(`)

β(`)TV TΘV β(`)
. (5.2.8)

Therefore we obtain the relation

F (α(`+1)) = F (α(`)) + σθ
1
2

(β(`)Tγ(`))2

β(`)TV TΘV β(`)
, (5.2.9)

which is a strict increase if β(`)Tγ(`) 6= 0, since σθV
TΘV is positive definite.

Thus we are moving towards the extremum. The new gradient

γ(`+1) = γ(`) − σθ$(`) V TΘV β(`) (5.2.10)

is orthogonal to β(`) by this choice of $(`).

In practice, the technique terminates if ‖γ(`)‖2 is sufficiently small. Oth-

erwise, the method causes the search directions to be conjugate with respect

to the matrix σθV
TΘV by applying the formula

β(`) = γ(`) −
β(`−1)TV TΘV γ(`)

β(`−1)TV TΘV β(`−1)
β(`−1), (5.2.11)
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for ` ≥ 2 and γ(`) 6= 0.

The description of the basic algorithm is now complete, but the product

W = V V T allows a different implementation, which is important to tech-

niques such as those developed by Dyn et al. (1983, 1986).

Instead of α(`), β(`) and γ(`) in Rn−M , we work with the vectors λ(`) =

V α(`), µ(`) = V β(`) and ν(`) = V γ(`) in Rn. The previous choice α(1) = 0 gives

the values λ(1) = 0 and

ν(1) = V γ(1) = σθWf, (5.2.12)

since γ(1) = σθV
Tf , for the beginning of the first iteration. Further the

gradient (5.2.4) is zero if and only if

ν(`) = V γ(`) = σθWf − σθWΘλ(`) (5.2.13)

is zero, where the last expression follows from (5.2.4). Therefore in practice

the iterations are usually stopped when ‖ ν(`) ‖2 is sufficiently small, and

then we let λ(`) be the calculated estimate of λ∗. Alternatively, when the

search direction for the first iteration is required, it is

µ(1) = V β(1) = σθWf. (5.2.14)

Further, for ` ≥ 2, equation (5.2.11) implies that we should pick the vector

µ(`) = ν(`) −
µ(`−1)TΘν(`)

µ(`−1)TΘµ(`−1)
µ(`−1) (5.2.15)

as the new search direction. Substituting formula (5.2.4) into the numerator

of expression (5.2.8), we see that the step length of the `-th iteration has the

value

$(`) =
fTµ(`) − λ(`)TΘµ(`)

µ(`)TΘµ(`)
. (5.2.16)
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Finally, by analogy with equations (5.2.6) and (5.2.10), the iteration calcu-

lates

λ(`+1) = λ(`) +$(`)µ(`) and ν(`+1) = ν(`) − σθ$(`) WΘµ(`). (5.2.17)

In the following paragraph we consider another choice for W . By the def-

inition of the semi-inner product (2.2.22), (s∗, s∗)θ equals σθ
∑n
j=1 λ

∗
js
∗(x j) =

σθf
Tλ∗, using the interpolation equations (1.1.1). Thus, employing expres-

sion (2.1.21), we deduce

(s∗, s∗)θ = σθ f
TΛf. (5.2.18)

If W satisfies fTWf = (s∗, s∗)θ for all f ∈ Rn, then W = σθ Λ. Further, if

W = σθ Λ, then the first search direction is, using σ2
θ = 1, µ(1) = σθWf =

Λf = λ∗ by (2.1.21) and the algorithm terminates within one iteration. One

of the key ideas of the highly useful method of Dyn et al (1986) in the case

of thin plate splines in two dimensions (σθ = 1, m = 3) is to use the relation

(5.2.18) to generate a choice of W that is a reasonable approximation to

Λ and to use it in the conjugate gradient method. The aim is to find an

approximation such that

(s∗, s∗) ≈ fTWf. (5.2.19)

Dyn et al (1986) estimate the integral (s∗, s∗), defined by (2.2.3), by a quadra-

ture rule with positive coefficients using a triangulation with vertices at the

data points. The values of the second derivatives required are approximated

on each triangle by a linear combination of the data fi, i = 1, . . . , n, which

vanishes, if the relevant data can be interpolated by a linear polynomial. Due

to the squares of second derivatives in (s∗, s∗) and the positive coefficients of

the quadrature rule, this estimate of fTΛf is nonnegative and its dependence

on f takes the form fTWf for a particular symmetric n× n matrix W that
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can be calculated. If we ensure that at least one of the approximations of the

second derivatives is nonzero whenever f does not lie in the column space of

P , then this estimate is zero if and only if all the data can be interpolated

by a constant or linear polynomial. Hence W has n − 3 positive and three

zero eigenvalues. Now the element Wij is nonzero only if at least one of the

second derivative approximations involves both fi and fj. Therefore, since

each approximation is usually derived from a local cluster of interpolation

points, W is generally sparse. These properties make this choice of W highly

useful. In general, every symmetric n×n matrix W with n−M positive and

M zero eigenvalues satisfying WP = 0 is suitable for the conjugate gradient

method (Powell, 1996).

The following theorem gives some of the properties of our choice W =

V V T , which suggest that σθV
T and V are very suitable as left and right

preconditioners of Θ.

Theorem 5.2.1 The matrix W = V V T satisfies WP = 0. It is positive semi-

definite with n −M positive and M zero eigenvalues (exactly as the matrix

σθΛ). If the functions χ̂k, k = 1, . . . , n− q, are orthogonal to each other and

to every function in Tθ with respect to the semi-inner product (2.2.22), then

the estimate fTWf for (s∗, s∗)θ is exact for every f ∈ Rn.

Proof: It follows from equation (3.3.17) that V TP = 0 and therefore WP =

V V TP = 0. The matrix V also has maximal rank n −M , since it is lower

triangular and its diagonal elements Vii = σθ

√
σθλ̂ii are nonzero. Hence, since

W = V V T , it follows that W has n−M positive and M zero eigenvalues.

Lemma 3.3.1 states that if χ̂k, k = 1, . . . , n − q, are orthogonal to each

other and to every function in Tθ, then s∗ =
∑n−M
k=1 α∗kχ̃k + r∗ with α∗k =
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(s∗, χ̃k)θ. Hence in this case, using σ2
θ = 1,

fTWf = (σθV
Tf)T (σθV

Tf) =
n−M∑
k=1

(s∗, χ̃k)
2
θ =

n−M∑
k=1

(s∗, (s∗, χ̃k)θχ̃k)θ

= (s∗,
n−M∑
k=1

α∗kχ̃k)θ = (s∗, s∗ − r∗)θ = (s∗, s∗)θ, (5.2.20)

where the second equation is derived from the fact that the k-th row of V T

contains the vector of coefficients of χ̃k, k = 1, . . . , n − M , and the last

equation follows, since the semi-inner product vanishes on the space Πm(Rd).

Therefore the last statement of the theorem is also true. 2

The conjugate gradient method described here is actually equivalent to

the Krylov subspace method of the next chapter applied to Algorithm B.

Therefore it will receive further attention in Section 6.4.



Chapter 6

Krylov subspace methods

The technique described in this chapter is the culmination of the work that

is presented in this thesis. The idea of line searches, given in Section 5.1, will

be extended by constructing search directions that are mutually orthogonal

with respect to the semi-inner product (2.2.22). The estimate s(`+1) at the

end of the `-th iteration is then the best approximation to s∗ from a certain

`-dimensional subspace of Sθ. We will see that this property ensures conver-

gence within at most n−M + 1 iterations. In practice, this method is very

successful. The number of iterations needed to achieve an accuracy of say

10−8 is usually far less than n−M + 1, the actual number being below ten

in most cases.

A description of the method is given in the first section, followed by

a section where we analyse the properties of the technique. In the third

section we describe how the mutually orthogonal search directions are chosen.

Then it is shown in Section 6.4 that the Krylov subspace method applied to

Algorithm B is equivalent to the conjugate gradient method of Section 5.2.

78
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6.1 Description

An algorithm to which the Krylov subspace method can be applied lets the

new approximation at the end of the `-th iteration be

s(`) + L(s∗ − s(`)), (6.1.1)

where L is a linear operator from Sθ to Sθ which has the following properties

s∈Sθ and s 6=0 ⇒ Ls 6=0 (nonsingularity)

s∈Πm(Rd) ⇒ Ls=s (polynomial reproduction)

s∈Sθ and s /∈Πm(Rd) ⇒ (s, Ls)θ>0 (ellipticity)


.

(6.1.2)

An additional requirement is that Ls, s ∈ Sθ, depends only on values of s at

the data points x 1, . . . , xn.

Employing equation (5.1.4), if Algorithm A is considered, we let L =

I−RA, whereas if Algorithm B is the underlying algorithm, we let L = I−RB.

It follows directly from the results of Theorem 3.5.1 and Theorem 4.3.1 that

both operators I − RA and I − RB satisfy the requirements (6.1.2). In

particular, (I − RA)s 6= 0 and (I − RB)s 6= 0 for s ∈ Sθ, s 6= 0, follows from

RAs 6= s and RBs 6= s. The polynomial reproduction property is ensured by

RAp = 0 and RBp = 0 for all p ∈ Πm(Rd). The ellipticity of I − RA and

I −RB follows from (s, RAs)θ < (s, s)θ and (s, RBs)θ < (s, s)θ for all s ∈ Sθ,
s 6∈ Πm(Rd). Both Algorithms A and B employ only function values at the

data points. Thus the Krylov subspace method can be applied to both of

these algorithms.

We denote the current approximation at the beginning of the `-th iter-

ation by s(`). First s(1) is set to be identically zero. If fi = s∗(x i) = 0 for

i = 1, . . . , n, which implies s∗ ≡ 0, the algorithm terminates. In the `-th it-

eration, ` ≥ 1, a search direction t(`) is generated in the following way. First
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u(`) = L(s∗ − s(`)) is calculated. There is no problem in forming Ls∗, since

we only need to know the function values s∗(x j) = fj, j = 1, . . . , n. If ` = 1

or if, for ` > 1, (u(`), t(j))θ = 0 holds for j = 1, . . . , ` − 1, t(`) is chosen to

be u(`). Otherwise t(`) is set to a linear combination of u(`) and all previous

search directions t(j), j = 1, . . . , `− 1, with a nonzero contribution from u(`),

such that t(`) satisfies

(t(`), t(j))θ = 0, j = 1, . . . , `− 1. (6.1.3)

This defines t(`) uniquely up to a polynomial of degree at most m apart

from a scaling factor. In Section 6.3 we will see in detail, how the mutual

orthogonality of the search directions is achieved.

As in Section 5.1, we take care of the difficulty arising from a search

direction that is a polynomial of degree at most m by including the following

stopping criterion. If there exists ω ∈ R such that

max{|s∗(x i)− s(`)(x i)− ω t(`)(x i)| : i = 1, . . . , n} ≤ TOL, (6.1.4)

where TOL is the specified accuracy, then the final approximation s(`+1) is

set to s(`) +ω t(`) and the algorithm terminates. We will see in Theorem 6.2.1

of the next section that such an ω exists if t(`) lies in Πm(Rd). The choice of

the scalar ω is described in Section 5.1.

Otherwise, if inequality (6.1.4) does not hold for any ω ∈ R, the technique

finds ω(`) by minimizing

(s∗ − s(`) − ω t(`), s∗ − s(`) − ω t(`))θ, ω ∈ R. (6.1.5)

Thus ω(`) takes the value

ω(`) =
(s∗ − s(`), t(`))θ

(t(`), t(`))θ
. (6.1.6)
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The possibility (t(`), t(`))θ = 0 does not occur here, since in this case t(`) ∈
Πm(Rd), so the stopping criterion (6.1.4) would cause termination. The scalar

ω(`) is nonzero, because it is shown in Theorem 6.2.1 below that if (s∗ −
s(`), t(`))θ = 0, then termination occurs. The Krylov subspace technique lets

the new approximation s(`+1) be s(`) + ω(`)t(`). The choice (6.1.6) of ω(`)

causes s∗ − s(`+1) to be orthogonal to t(`) with respect to the semi-inner

product (2.2.22).

This concludes the description of the Krylov subspace method. The next

section presents the properties which provide its success and gives an analysis

of convergence.

6.2 Analysis

We are going to justify the term “Krylov subspace method”. Let L` be the

Krylov subspace of Sθ which is the span of the functions Ljs∗, j = 1, . . . , `.

Thus L1 ⊂ L2 ⊂ L3 ⊂ · · · holds. It can be seen by induction that both

t(`) and s(`+1) are in L`, the argument being as follows. For ` = 1, we have

t(1) = u(1) = L(s∗−s(1)) = Ls∗ ∈ L1 and s(2) = s(1) +ω(1)t(1) = ω(1)Ls∗ ∈ L1,

since s(1) ≡ 0. For ` > 1, t(`) is a linear combination of L(s∗ − s(`)) and

the previous search directions. Now Ls∗ ∈ L1 ⊂ L`, Ls
(`) ∈ L`, since s(`) ∈

L`−1, and the previous search directions t(j) ∈ Lj ⊂ L`, j = 1, . . . , ` − 1.

Thus t(`) is an element of L` and the same follows for s(`+1) = s(`) + ω(`)t(`).

Other properties of the Krylov subspace technique are stated in the following

theorem.

Theorem 6.2.1 For ` ≥ 1, let the algorithm specified in Section 6.1 generate

the approximations s(1), . . . , s(`) by line searches along mutually orthogonal

search directions t(1), . . . , t(`). Then the following statements are true.
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(a) If (t(`), t(`))θ = 0, then (s∗ − s(`), t(`))θ = 0. If (s∗ − s(`), t(`))θ = 0, then

there exists ω ∈ R such that inequality (6.1.4) holds, so the algorithm

terminates.

If the algorithm does not terminate in the `-th iteration, then

(b) the subspace L` of Sθ is spanned by t(1), . . . , t(`), and

(c) the difference s∗−s(`+1) is orthogonal to every element in L` with respect

to the semi-inner product (2.2.22). (Thus s(`+1) is the function s that

minimizes (s∗ − s, s∗ − s)θ, s ∈ L`.)

Proof: The theorem is proved by induction on `. For ` = 1, we suppose

(t(1), t(1))θ = 0 in statement (a). Thus t(1) ∈ Πm(Rd) and hence (s∗ −
s(1), t(1))θ = 0. If (s∗ − s(1), t(1))θ = 0, then (s∗, Ls∗)θ = 0 follows, since

s(1) ≡ 0 and since t(1) = Ls∗. Further, the ellipticity of L implies that s∗ is

a polynomial of degree at most m. Then t(1) equals s∗, since L reproduces

polynomials of degree at most m. We do not have t(1)(x i) = s∗(x i) = 0 for

i = 1, . . . , n, because this would imply s∗ ≡ 0 and the algorithm would have

terminated before the first iteration. In this case, the technique described

in Section 5.1 calculates the intersection of the intervals with boundaries

1− TOL/s∗(x j) and 1 + TOL/s∗(x j) for j = 1, . . . , n such that s∗(x j) 6= 0,

where the upper boundary is the larger of the two values. The scalar ω is

then chosen to be the midpoint of the final interval. Hence ω is chosen to be

1, inequality (6.1.4) holds for ` = 1, and the algorithm terminates.

Alternatively, if there is no termination for ` = 1, then the space L1 is

spanned by Ls∗, and the first search direction t(1) is chosen to be Ls∗. Thus

statement (b) is true for ` = 1. Turning to statement (c), if the algorithm

does not terminate, then the semi-inner product (s∗ − s(2), t(1))θ is zero by

the choice of ω(1). Thus s∗ − s(2) is orthogonal to all elements in L1.
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We now suppose that statements (a), (b) and (c) hold for any positive

integer ` and deduce that they remain true if ` is increased by one.

Considering statement (a), if (t(`+1), t(`+1))θ = 0, then t(`+1) ∈ Πm(Rd)

and thus (s∗− s(`+1), t(`+1))θ = 0. Now t(`+1) is a linear combination of u(`+1)

and t(j), j = 1, . . . , `, with a nonzero contribution from u(`+1). Therefore, if

(s∗− s(`+1), t(`+1))θ = 0, then the difference s∗− s(`+1) is orthogonal to u(`+1),

since s∗ − s(`+1) is orthogonal to all elements in L`, including t(1), . . . , t(`).

Further, u(`+1) equals L(s∗−s(`+1)) and thus (s∗−s(`+1), L(s∗−s(`+1)))θ = 0,

so the ellipticity property (6.1.2) of L implies that s∗− s(`+1) is a polynomial

of degree at most m, say p. Since L reproduces polynomials, u(`+1) = L(s∗−
s(`+1)) = s∗ − s(`+1) = p follows, and (u(`+1), t(j))θ = 0 holds for j = 1, . . . , `,

because u(`+1) is a polynomial. Therefore t(`+1) is chosen to be u(`+1) = p.

It is not possible for t(`+1)(x i) = p(x i) = s∗(x i) − s(`+1)(x i) = 0 to occur

for i = 1, . . . , n, because then the algorithm would have terminated in the

previous iteration. Hence the technique described in Section 5.1 sets the

scalar ω to the midpoint 1 of the intersections of the intervals with boundaries

1−TOL/p(x j) and 1+TOL/p(x j) for j = 1, . . . , n such that p(x j) 6= 0. Thus

inequality (6.1.4) is achieved and the algorithm terminates, so statement (a)

is true.

Statement (b) and the inductive hypothesis imply that the subspace

L`, which is defined to be spanned by Ljs∗, j = 1, . . . , `, is spanned by

t(1), . . . , t(`). Therefore it is necessary to prove that L`+1s∗ is a linear com-

bination of t(`+1) and elements of L`. Now t(`+1) is a linear combination of

u(`+1) and t(1), . . . , t(`) ∈ L` with a nonzero contribution from u(`+1). We have

u(`+1) ∈ L`+1, since u(`+1) = L(s∗− s(`+1)), Ls∗ ∈ L1 and Ls(`+1) ∈ L`+1, due

to s(`+1) ∈ L`. If u(`+1) were in L`, then (s∗ − s(`+1), u(`+1))θ = 0 would hold,

since s∗− s(`+1) is orthogonal to all elements in L`. We have seen in the pre-



CHAPTER 6. KRYLOV SUBSPACE METHODS 84

vious paragraph, however, that convergence occurs in this case. Hence, if the

algorithm does not terminate, then u(`+1) lies in L`+1, but not in L`. Thus

t(`+1) is a linear combination of L`+1s∗ and elements of L`, where the term

involving L`+1s∗ does not vanish. The assertion of statement (b) follows.

To prove statement (c), it is sufficient to prove that (s∗− s(`+2), t(j))θ = 0

holds for j = 1, . . . , `+1, since L`+1 is spanned by t(1), . . . , t(`+1). When the al-

gorithm does not terminate, the choice of ω(`+1) ensures (s∗−s(`+2), t(`+1))θ =

0. For j = 1, . . . , `, we have the identity (s∗−s(`+2), t(j))θ = (s∗−s(`+1), t(j))θ−
ω(`+1)(t(`+1), t(j))θ. The first term is zero, because s∗ − s(`+1) is orthogonal

to all elements in L`, and the second term vanishes, since t(`+1) was chosen

to be orthogonal to all previous search directions. Thus statement (c) also

remains true if ` is increased by one, which concludes the proof. 2

The Krylov subspace technique can be viewed as a conjugate direction

method for minimizing the quadratic form (s∗−s, s∗−s)θ, the variables being

the coefficients of the basis functions subject to the constraints (2.1.12) and

the coefficients of the polynomial of degree at most m. The expression con-

jugate is equivalent to orthogonality with respect to the semi-inner product

(2.2.22). By statement (c) of Theorem 6.2.1, the approximant s(`+1) gives

indeed the least value of the semi-inner product (s∗−s, s∗−s)θ for all s ∈ L`.
Further, the application of the operator L can be viewed as a preconditioner.

We now prove that the given method terminates in exact arithmetic.

The search directions t(`), ` = 1, 2, . . ., are mutually orthogonal to each other

with respect to the semi-inner product (2.2.22). If the algorithm does not

terminate within ` iterations, then statement (a) of Theorem 6.2.1 shows that

(t(j), t(j))θ 6= 0, j = 1, . . . , `, so t(`) is not in Πm(Rd). In order to establish the

linear independence of the search directions so far, we let ρj, j = 1, . . . , `, be

coefficients such that s =
∑`
j=1 ρjt

(j) + p is the zero element of Sθ, where p is
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a suitable polynomial of degree at most m. The mutual orthogonality of the

search directions yields

(s, s)θ =
∑̀
j=1

ρ2
j(t

(j), t(j))θ = 0. (6.2.1)

Since t(j) 6∈ Πm(Rd), we have (t(j), t(j))θ > 0 and hence every ρj is zero.

It follows from s ≡ 0 and the polynomial unisolvency that p is the zero

polynomial. Thus t(1), . . . , t(`) and basis elements p1, . . . , pM of Πm(Rd) are

`+M linearly independent elements of Sθ, which implies `+M ≤ dim(Sθ) = n

for any integer ` such that termination does not occur in the `-th iteration.

Thus termination must occur on an iteration whose number is at most n −
M + 1. We present this result as the main theorem of this chapter.

Theorem 6.2.2 Let the technique specified in Section 6.1 generate the se-

quence of functions s(`), ` = 1, 2, . . ., using a nonsingular linear operator L

which is elliptic and reproduces Πm(Rd). Then inequality (6.1.4) holds for

some ` ≤ n−M + 1, so the algorithm terminates within at most n−M + 1

iterations.

As we will see in Chapter 7 which considers numerical experiments, the

number of iterations in practice is generally far less than n − M + 1. To

achieve an accuracy of TOL = 10−8, for example, the number of iterations

needed is less then ten in most cases for large enough q, when we apply the

Krylov subspace technique to Algorithms A and B.

6.3 The choice of search directions

This section will describe in detail how mutually orthogonal search directions

are chosen. The section is divided into two parts. First we consider a general
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nonsingular, elliptic operator L : Sθ → Sθ which reproduces polynomials of

degree at most m. Next, we examine the case where L enjoys the additional

property of self-adjointness.

6.3.1 The general choice of search directions

Starting with s(1) ≡ 0, the first search direction is t(1) = Ls∗. Suppose the

approximations s(1), . . . , s(k) to s∗ and the search directions t(1), . . . , t(k−1)

have already been constructed for k ≥ 2 such that the search directions are

mutually orthogonal with respect to the semi-inner product (2.2.22), and

suppose termination did not occur in the (k − 1)-th iteration.

The next search direction t(k) is then generated in the following way. First

u(k) = L(s∗ − s(k)) is calculated. If (u(k), t(j))θ = 0 holds for j = 1, . . . , k− 1,

then t(k) is set to u(k). Otherwise we let u
(k)
0 = u(k). For every integer j in

[1, k − 1], we calculate

u
(k)
j = u

(k)
j−1 + ρjt

(j), (6.3.1)

where ρj is chosen to minimize

(u
(k)
j−1 + ρ t(j) − s∗ + s(k), u

(k)
j−1 + ρ t(j) − s∗ + s(k))θ, ρ ∈ R. (6.3.2)

This gives ρj the value

ρj =
(s∗ − s(k) − u(k)

j−1, t
(j))θ

(t(j), t(j))θ
, (6.3.3)

the denominator (t(j), t(j))θ being nonzero, because, if t(j) is a polynomial of

degree at most m, convergence would have occurred already. In other words,

we conduct a line search along t(j) for j = 1, . . . , k − 1 such that u
(k)
j lies as

near as possible to the difference s∗−s(k). The choice (6.3.3) of ρj causes the
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difference between u
(k)
j and s∗ − s(k) to be orthogonal to t(j). Further, u

(k)
k−1

satisfies

(u
(k)
k−1 − s∗ + s(k), t(j))θ = 0, j = 1, . . . , k − 1, (6.3.4)

because the directions t(1), . . . , t(k−1) are mutually orthogonal. Also

(s∗ − s(k), t(j))θ, j = 1, . . . , k − 1, vanishes by statement (c) of Theorem

6.2.1 with ` = k− 1, since t(1), . . . , t(k−1) ∈ Lk−1. Thus (u
(k)
k−1, t

(j))θ = 0 holds

for j = 1, . . . , k − 1. Next the new search direction is defined by t(k) = u
(k)
k−1

and it enjoys the required orthogonality properties.

As can be seen in Chapter 7, the Krylov subspace technique applied to

Algorithm A, where L = I − RA, results in a very low number of iterations,

but the operational cost per iteration is very high. In the next section we

describe how the search directions are chosen if L is also self-adjoint. We will

find that the self-adjointness property is very useful.

6.3.2 The choice of search directions for a self-adjoint

operator

Constructing mutually orthogonal search directions, when using a linear op-

erator L with the properties (6.1.2) and the self-adjointness property

(s, Lt)θ = (Ls, t)θ, s, t ∈ Sθ, (6.3.5)

is straightforward. The search direction t(1) is chosen to be Ls∗. Suppose the

approximations s(1), . . . , s(k) and the mutually orthogonal search directions

t(1), . . . , t(k−1) have already been constructed for k ≥ 2, and suppose the

algorithm did not terminate in the (k − 1)-th iteration. It is enough to let

t(k) = u(k) − (u(k), t(k−1))θ
(t(k−1), t(k−1))θ

t(k−1), (6.3.6)
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where u(k) = L(s∗−s(k)). We see that (t(k), t(k−1))θ = 0 holds, so it remains to

prove that (t(k), t(j))θ = 0 is achieved for j = 1, . . . , k−2. Since (t(k−1), t(j))θ =

0 holds for j = 1, . . . , k − 2, the self-adjointness described by (6.3.5), the

definition u(k) = L(s∗ − s(k)) and equation (6.3.6) yield

(t(k), t(j))θ =

(
L(s∗ − s(k))− (u(k), t(k−1))θ

(t(k−1), t(k−1))θ
t(k−1), t(j)

)
θ

= (s∗ − s(k), Lt(j))θ, j = 1, . . . , k − 2. (6.3.7)

The search direction t(j), j = 1, . . . , k − 2, lies in Lj ⊂ Lk−2, which implies

Lt(j) ∈ Lk−1. By statement (c) of Theorem 6.2.1 with ` = k − 1, s∗ − s(k) is

orthogonal to every element in Lk−1. Hence the semi-inner product in (6.3.7)

is zero, so the search direction t(k) has the required orthogonality properties.

This construction of search directions is used when the Krylov subspace

method is applied to Algorithm B, since by Theorem 4.3.1 RB and thus I−RB

is self-adjoint. The next section considers the Krylov subspace technique

applied to Algorithm B more closely.

6.4 The Krylov subspace technique applied

to Algorithm B

This section shows that the Krylov subspace method applied to Algorithm

B with operator L = I −RB is equivalent to the conjugate gradient method

of Section 5.2. The radial basis function coefficients of s(`), t(`) and u(`) in

the Krylov subspace method are given explicitly in the expressions

s(`)(x) =
n∑
i=1

λ
(`)
i θ(x− x i) + polynomial,

t(`)(x) =
n∑
i=1

µ
(`)
i θ(x− x i) + polynomial,
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u(`)(x) =
n∑
i=1

ν
(`)
i θ(x− x i) + polynomial. (6.4.1)

Equations (5.2.12), (5.2.13), (5.2.14), (5.2.15) and (5.2.17) on the other hand

give initial values and formulae for the re-estimation of the radial basis func-

tion coefficients in the conjugate gradient method.

Theorem 6.4.1 The Krylov subspace method applied to Algorithm B (L =

I−RB) revises the vectors λ(`) = (λ
(`)
1 , . . . , λ(`)

n )T , µ(`) = (µ
(`)
1 , . . . , µ(`)

n )T and

ν(`) = (ν
(`)
1 , . . . , ν(`)

n )T of s(`), t(`) and u(`) in the same way as the conjugate

gradient method of Section 5.2.

Proof: Firstly, since s(1) ≡ 0, both methods pick λ(1) = 0 initially. Then the

Krylov subspace technique lets the first search direction be the function

t(1)(x) = u(1)(x) = (I −RB)s∗(x) =
n−M∑
k=1

(s∗, χ̃k)θχ̃k(x) + polynomial

=
n−M∑
k=1

∑
i∈Lk

∑
j∈Lk

λ̂kiλ̂kj

λ̂kk
s∗(x j)θ(x− x i) + polynomial

=
n∑
i=1

n∑
j=1

σθWijfj θ(x− x i) + polynomial, (6.4.2)

using (4.3.2), (3.3.1) and (3.3.2). The last identity depends on the interpola-

tion equations (1.1.1) and on the fact that Wij equals
∑n−M
k=1 (λ̂kiλ̂kj)/(σθλ̂kk),

defining λ̂kl to be zero for l 6∈ Lk, l = 1, . . . , n. Hence µ(1) = ν(1) = σθWf

holds. Comparing this with (5.2.12) and (5.2.14), it follows that both tech-

niques start with the same initial vectors.

We are now going to show that the `-th iterations of both methods gen-

erate identical vectors ν(`), µ(`) and λ(`+1) given µ(`−1) and λ(`). First the

Krylov subspace method calculates

u(`)(x) = (I −RB)(s∗ − s(`))(x) =
n−M∑
k=1

(s∗ − s(`), χ̃k)θχ̃k(x) + polynomial
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=
n−M∑
k=1

∑
i∈Lk

∑
j∈Lk

λ̂kiλ̂kj

λ̂kk

(
s∗(x j)− s(`)(x j)

)
θ(x− x i) + polynomial

=
n∑
i=1

n∑
j=1

σθWij

(
fj − s(`)(x j)

)
θ(x− x i) + polynomial. (6.4.3)

Thus ν(`) is the matrix σθW times the vector whose components are fj −
s(`)(x j), j = 1, . . . , n. We can neglect the polynomial part of s(`) because

Theorem 5.2.1 states that W satisfies WP = 0. The values of s(`) at the data

points without the polynomial part are the components of the vector Θλ(`),

so

ν(`) = σθWf − σθWΘλ(`), (6.4.4)

which is just expression (5.2.13).

Theorem 4.3.1 states that RB is self-adjoint, so I−RB is also self-adjoint.

Thus, when the Krylov subspace technique is applied to Algorithm B, the

search directions are chosen according to (6.3.6). Using the definition of the

semi-inner product (2.2.22), we deduce for the Krylov subspace technique

µ(`) = ν(`) − (u(`), t(`−1))θ
(t(`−1), t(`−1))θ

µ(`−1) = ν(`) −
ν(`)TΘµ(`−1)

µ(`−1)TΘµ(`−1)
µ(`−1), (6.4.5)

which agrees with equation (5.2.15). Hence both methods calculate ν(`) and

µ(`) in the same way.

Further, the Krylov subspace method chooses the step length (6.1.6),

which we write in the form

ω(`) =
(s∗, t(`))θ − (s(`), t(`))θ

(t(`), t(`))θ
=
fTµ(`) − λ(`)TΘµ(`)

µ(`)TΘµ(`)
. (6.4.6)

This is exactly the value of $(`) given by equation (5.2.16). Thus the step

lengths $(`) and ω(`) are the same in both methods. Since s(`+1) = s(`) +

ω(`)t(`), the identity λ(`+1) = λ(`) + $(`)µ(`) follows, which is the first part
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of equation (5.2.17). Using this recurrence relation for λ(`+1) and equation

(6.4.4) with ` increased by one, we deduce that the Krylov subspace method

sets

ν(`+1) = σθWf − σθWΘ(λ(`) +$(`)µ(`)) = ν(`) − σθ$(`)WΘµ(`), (6.4.7)

which is the second part of equation (5.2.17). The proof is complete. 2

The only two differences between the two techniques are that (1) the

conjugate gradient method stops if ‖ ν(`) ‖2 is sufficiently small, while the

Krylov subspace method terminates if (6.1.4) holds for a suitable step length

ω, and (2) the Krylov subspace method automatically revises the polynomial

term on every iteration, while the conjugate gradient method calculates the

polynomial term after a good approximation to the vector of radial basis

function coefficients has been found.

The numerical experiments in the next chapter show that the Krylov

subspace technique applied to Algorithm B is very successful, having a small

number of iterations and requiring little time per iteration.



Chapter 7

Numerical examples

This chapter will compare the performances of four algorithms in numerical

experiments, namely Algorithms A and B as described in Chapters 3 and

4 and Algorithms A and B with the Krylov subspace method of Chapter 6

added. All four methods are tested in two and in three dimensions and we

consider two choices of radial basis functions, namely the thin plate spline

basis function θ(x) = φ(‖x ‖2) =‖x ‖2
2 log ‖x ‖2 and the linear basis function

θ(x) = φ(‖ x ‖2) =‖ x ‖2, x ∈ Rd. It will become clear that the Krylov

subspace technique is highly successful.

7.1 Two dimensions

We consider four kinds of distributions of the interpolation points x i, i =

1, . . . , n, in two dimensions, which are taken from Faul and Powell (1998). In

Problem I the points are equally spaced on the unit circle {x ∈ R2 : ‖x ‖2 =

1}. The points of Problem II form a square grid in R2 that covers the unit

square [0, 1]×[0, 1]. In Problem III the data points are chosen randomly from

92
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the uniform distribution on the unit disc {x ∈ R2 : ‖x ‖2 ≤ 1}. Problem IV

was found by seeking a case where the convergence of Algorithm A is very

slow. Here the points are equally spaced on one eighth of two concentric

circles, half of the points being on each circle, and the radii of the circles

being 1 and 1 + 10−5. These distributions are displayed in Figure 7.1.

In all problems, the right hand sides fi, i = 1, . . . , n, are independent

random numbers from the uniform distribution on [−1, 1]. The calculation is

terminated when all the moduli of the residuals fi−s(`)(x i), i = 1, . . . , n, are

less than 10−8, where s(`) denotes the approximation to s∗ at the beginning

of the `-th iteration. The values of n and q that are employed are stated in

Tables 7.1 to 7.9. The calculations are performed in double precision Fortran

on a Sparc 10 workstation.

Tables 7.1 and 7.2 give the average time in seconds for the preliminary

work when thin plate splines, φ(r) = r2 log r, and the linear basis function,

φ(r) = r, r =‖x ‖2, are used, respectively. This includes ordering the data

points, constructing the sets Lk and calculating the coefficients λ̂kj, j ∈ Lk,
k = 1, . . . , n−q. To ensure non-collinearity for thin plates splines, we reorder

the data points if necessary such that the last three points xn−2, xn−1 and xn

are the data points with greatest and least x-coordinate and the data point

whose perpendicular distance from the infinite straight line through these

two points is the greatest. Then every set Lk, k = 1, . . . , n − q, contains

these three special points. Apart from these three points, it contains the

data point x k and the q − 4 data points in {x i : n − 2 > i > k} that are

nearest to x k. In the case of the linear basis function, the set Lk contains x k

and the q − 1 data points in {x i : i > k} nearest to x k. We use a procedure

described by Goodsell (2000) to construct sets of nearest neighbours. In

these experiments the data points were ordered so that, if the data points are
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Problem I Problem II

Problem III Problem IV

Figure 7.1: Distribution of the data points in the test problems.



CHAPTER 7. NUMERICAL EXAMPLES 95

q

n 10 20 30 50

400 0.22 0.68 1.54 4.62

900 0.50 1.59 3.59 11.29

Table 7.1: Average time for preliminary work for φ(r) = r2 log r.

q

n 10 20 30 50

400 0.17 0.48 1.12 3.74

900 0.37 1.19 2.60 9.04

Table 7.2: Average time for preliminary work for φ(r) = r.

removed in sequence from the beginning of the set X = {x 1, . . . , xn}, then

the remaining points provide good coverage of the original set. Therefore,

for j = 1, . . . , n− q, a point which has the minimum distance to its nearest

neighbour is removed next from the set of the remaining data points. Any

ties are broken at random. This can be done efficiently in two dimensions

by Dirichlet tessellations, but more work is required for higher dimensions.

This ordering was chosen when Algorithm A was first developed and has

been retained since.

It was noted by Faul and Powell (1998) and in Theorem 3.2.3 that con-

vergence would occur in one iteration of Algorithm A, if the functions χ̂k,

k = 1, . . . , n − q, were orthogonal to each other and to every function in Tθ

(we recall that Tθ contains the functions in Sθ with centres at xn−q+1, . . . , xn)

with respect to the semi-inner product (2.2.22). In this case, Algorithm B

converges in at most two iterations as shown in Theorem 4.2.2. Therefore
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n q I II III IV

10 0.0373 0.3174 0.2941 0.7302

20 0.0009 0.0797 0.0886 0.6896

30 0.0003 0.0651 0.0585 0.6528
400

50 0.0001 0.0193 0.0149 0.6287

10 0.0377 0.2789 0.3684 0.7614

20 0.0011 0.0890 0.0941 0.7134

30 0.0004 0.0716 0.0376 0.6987
900

50 0.0001 0.0127 0.0144 0.6576

Table 7.3: Values of expression (7.1.1) for φ(r) = r2 log r.

we expect a correlation between performance and deviations from these or-

thogonality properties.

Table 7.3 indicates the size of these deviations for the thin plate spline

basis function θ(x) = φ(‖x ‖2) =‖x ‖2
2 log ‖x ‖2, x ∈ Rd. Each entry in Table

7.3 states the quantity

max {|(χ̃i, χ̃j)| : 1 ≤ i < j ≤ n−M} , (7.1.1)

which is at most one due to the identities (χ̃i, χ̃i) = 1, i = 1, . . . , n−M , and

the Cauchy–Schwarz inequality. We see that this quantity is the maximum

modulus of the off-diagonal elements of the matrix of the system (3.3.9).

We recall from Sections 3.4 and 4.2 that Algorithms A and B are equivalent

to solving that system of equations by Gauss–Seidel and Jacobi iteration

respectively. The convergence of Gauss–Seidel and Jacobi depends on the

spectral radii of the matrices L−1U and In−M−σθV TΘV specified in Sections

3.4 and 4.2, where L is lower triangular and U is strictly upper triangular
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n q I II III IV

10 6.7× 10−3 0.49 0.51 0.99

20 1.7× 10−4 0.15 5.5× 10−2 0.94

30 4.0× 10−5 7.8× 10−2 1.5× 10−2 0.88400

50 6.1× 10−6 9.3× 10−3 6.2× 10−3 0.81

10 8.5× 10−3 0.45 0.59 0.999

20 2.0× 10−4 9.4× 10−2 9.2× 10−2 0.99

30 4.9× 10−5 2.6× 10−2 2.3× 10−2 0.96900

50 9.5× 10−6 1.4× 10−2 1.0× 10−2 0.89

Table 7.4: The spectral radius of L−1U for φ(r) = r2 log r.

n q I II III IV

10 5.3× 10−2 0.85 1.9 33

20 5.8× 10−3 0.46 0.27 9.7

30 2.5× 10−3 0.27 0.13 6.0400

50 9.0× 10−4 0.10 7.2× 10−2 3.3

10 6.4× 10−2 3.0 2.6 70

20 6.5× 10−3 0.40 0.35 24

30 2.9× 10−3 0.19 0.16 14900

50 1.1× 10−3 0.12 9.0× 10−2 7.6

Table 7.5: The spectral radius of In−M − σθV TΘV for φ(r) = r2 log r.
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average time
n q I II III IV

per iteration

10 4/4 28/14 29/18 ?(9.0× 10−4)/64 0.77/0.77

20 3/3 10/7 7/7 294/32 1.40/1.41

30 3/3 8/6 5/5 145/24 2.05/2.14400

50 2/2 5/5 4/4 85/16 3.47/3.67

10 5/5 24/15 36/20 ?(5.2× 10−2)/111 3.89/4.11

20 3/3 8/7 8/7 ?(5.9× 10−7)/53 7.09/7.17

30 3/3 6/5 6/5 443/39 10.34/10.46900

50 2/2 5/5 5/4 155/28 18.51/19.37

Table 7.6: Iteration counts of Algorithm A for φ(r) = r2 log r.

and where L + U = σθV
TΘV . These spectral radii are given in Tables 7.4

and 7.5.

Each pair of numbers in Tables 7.6, 7.7, 7.8 and 7.9 gives the number

of iterations needed to achieve the accuracy of 10−8 and the average time

per iteration in seconds, without/with the Krylov subspace method for thin

plate splines, φ(r) = r2 log r, and for the linear basis function, φ(r) = r,

respectively. In the cases marked with ? the calculations were stopped after

1000 iterations, and the maximum modulus of the final residuals fi−s(`)(x i),

i = 1, . . . , n, is given in brackets. The cases where divergence occurred are

denoted by div.

As expected, the number of iterations is small when the normalised func-

tions χ̃i, i = 1, . . . , n−M , have good orthogonality properties. Indeed, when

φ(r) = r2 log r is employed, the algorithms perform well when expression

(7.1.1) is less than 0.1, this condition being satisfied for q ≥ 20 in Problems
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average time
n q I II III IV

per iteration

10 8/7 112/27 div/33 div/70 0.10/0.12

20 5/5 24/14 16/12 div/56 0.10/0.12

30 4/4 15/10 11/8 div/42 0.11/0.12400

50 4/4 10/8 9/7 div/29 0.12/0.14

10 8/7 div/28 div/42 div/87 0.52/0.57

20 5/5 21/12 18/13 div/68 0.52/0.58

30 4/4 13/10 12/10 div/61 0.54/0.61900

50 4/4 10/8 9/8 div/51 0.56/0.63

Table 7.7: Iteration counts of Algorithm B for φ(r) = r2 log r.

I, II and III. Expression (7.1.1) exceeds 0.2, however, for q = 10 and n = 400

in Problem III, for q = 10 and n = 900 in Problems II and III and for every q

in Problem IV. Then Algorithm B diverges and also the rate of convergence

of Algorithm A is slow. That bad behaviour was found before the results of

Table 7.8 and 7.9 were computed, so the excellent performance for the linear

radial basis function φ(r) = r was unexpected. The advantage of the linear

basis function is that precautions are not taken to ensure that the points

{x j : j ∈ Lk, j 6= k} are not collinear.

The results also show that the introduction of the Krylov subspace method

is highly useful, especially for Problem IV when φ(r) = r2 log r. We see, how-

ever, that the theoretical termination of the Krylov subspace method within

at most n−M + 1 iterations is irrelevant to practical computation. Indeed,

convergence occurs in practice after far fewer iterations.

The number of operations per iteration is much smaller when the linear
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average time
n q I II III IV

per iteration

10 4/4 16/9 13/8 3/3 1.18/1.18

20 3/3 6/6 6/5 3/3 2.17/2.17

30 3/3 5/5 5/4 3/3 3.16/3.17400

50 3/3 4/4 4/4 3/3 5.14/5.26

10 3/3 9/9 9/8 4/4 6.01/6.01

20 3/3 6/5 5/5 4/4 11.03/11.05

30 3/3 5/5 5/4 4/4 16.09/16.10900

50 3/3 4/4 4/4 4/3 26.34/27.01

Table 7.8: Iteration counts of Algorithm A for φ(r) = r.

average time
n q I II III IV

per iteration

10 5/5 53/15 26/13 5/5 0.17/0.18

20 4/4 11/9 9/8 5/4 0.17/0.18

30 4/4 9/9 7/6 5/4 0.19/0.19400

50 4/4 7/7 6/5 5/4 0.20/0.20

10 6/5 47/15 45/14 6/5 0.87/0.93

20 4/4 13/9 11/8 5/4 0.88/0.94

30 4/4 9/7 9/7 5/4 0.90/0.97900

50 4/4 8/7 7/7 5/4 0.92/0.98

Table 7.9: Iteration counts of Algorithm B for φ(r) = r.
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operator RB is used instead of RA, because function values have to be cal-

culated less often. Indeed, RA requires the residuals fj − s(`)
k−1 (x j), j ∈ Lk,

for k = 1, . . . , n − q and the residuals fj − s(`)
n−q(x j), j = n − q + 1, . . . , n,

while RB requires only the residuals fj − s(`)(x j), j = 1, . . . , n. The average

time per iteration illustrates this difference in efficiency. Thus Algorithm B

combined with the Krylov subspace technique is a very good choice of an

iterative technique for radial basis function interpolation.

7.2 Three dimensions

In three dimensions only one distribution of the data points x i ∈ R3, i =

1, . . . , n, is considered. The data points are randomly distributed in the unit

ball {x ∈ R3 : ‖ x ‖2 ≤ 1}. The function values fi, i = 1, . . . , n, are in-

dependent random numbers from the uniform distribution on [−1, 1]. The

different values of n and q are stated in Tables 7.10 to 7.12. The calcula-

tion is terminated either when all the moduli of the residuals fi − s(`)(x i),

i = 1, . . . , n, are less than 10−8 or after 1000 iterations, where s(`) denotes

the current approximation to s∗. The latter case is denoted by ? and the

maximum modulus of the residuals at termination is given in brackets. If

divergence occurred, it is denoted by div as before.

Table 7.10 shows the average time for the preliminary work when the thin

plate spline basis function φ(r) = r2 log r and the linear basis function φ(r) =

r are employed. This includes constructing the sets Lk, k = 1, . . . , n− q, and

determining the coefficients λ̂kj, j ∈ Lk, k = 1, . . . , n− q. In the case of the

linear basis function, Lk, k = 1, . . . , n − q, contains the data point x k itself

and the q−1 data points in {x i : i > k} nearest to x k. For thin plate splines

we ensure non-planarity by reordering the data points if necessary so that
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n q φ(r) = r2 log r φ(r) = r

10 0.241 0.138
20 0.790 0.483

400 30 1.76 1.17
50 5.29 3.86
70 11.4 8.77

10 0.640 0.453
20 1.98 1.28

900 30 4.33 2.92
50 13.1 9.66
70 29.1 22.7

10 2.10 1.60
20 5.05 3.54

2000 30 10.6 7.35
50 31.3 23.3
70 69.4 54.7

10 3.90 3.20
20 8.59 6.23

3000 30 16.9 12.1
50 48.4 36.4
70 107 84.6

10 9.17 8.14
20 17.4 13.3

5000 30 31.1 23.7
50 84.8 65.0
70 185 148

Table 7.10: Average time for preliminary work in R3.
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the last four points xn−3, xn−2, xn−1 and xn are the points with the least

and the greatest x-coordinate, the point whose perpendicular distance from

the infinite straight line through these two points is greatest and the point

whose perpendicular distance from the plane through these three points is

greatest. Every set Lk, k = 1, . . . , n − q, contains these four points. The

remaining q − 4 points are chosen to be the nearest neighbours of x k in

{x i : n − 4 ≥ i ≥ k}, including x k itself. It is more time consuming to

construct the sets Lk, k = 1, . . . , n − q, in three dimensions than in two

dimensions. Here a standard search for nearest neighbours was used.

Each pair of numbers in Tables 7.11 and 7.12 gives the number of it-

erations needed to achieve the accuracy of 10−8, and the average time per

iteration. Four iterative methods were used, namely Algorithms A and B

without and with the Krylov subspace technique. We see that the number

of iterations needed to achieve the specified accuracy is larger for thin plate

splines than for the linear radial basis function, which might be due to the

inclusion of the last four points in each set Lk, k = 1, . . . , n− q, in the thin

plate spline case.

If Algorithm A is used, q = 30 is large enough to ensure convergence

within 20 iterations and q = 50 is large enough such that convergence occurs

within 10 iterations. For Algorithm B, q = 50 is usually necessary to ensure

convergence at all and then the number of iterations needed to achieve the

specified accuracy is much larger, but the average time per iteration is much

smaller than in the case of Algorithm A. If the Krylov subspace method

is included, then q = 50 is large enough to ensure convergence within 20

iterations if thin plate splines are used, while for the linear basis function

q = 30 already achieves this. Thus the Krylov subspace method should

always be added. As in the two-dimensional case, Algorithm B requires fewer
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Algorithm A Algorithm A Algorithm B Algorithm B
n q

without Krylov with Krylov without Krylov with Krylov

10 107/0.904 42/0.914 div/0.107 79/0.109
20 18/1.67 13/1.68 div/0.110 25/0.111

400 30 12/2.45 9/2.47 78/0.121 17/0.119
50 7/4.40 7/4.45 17/0.129 12/0.130
70 6/6.42 6/6.43 12/0.139 9/0.140

10 465/4.63 79/4.65 div/0.552 154/0.564
20 23/8.41 11/8.53 div/0.558 32/0.568

900 30 14/12.4 11/12.5 div/0.579 15/0.590
50 9/22.8 8/23.2 30/0.601 14/0.627
70 7/33.1 7/33.5 16/0.641 12/0.650

10 722/22.8 118/23.0 div/2.74 242/2.80
20 33/42.0 20/42.4 div/2.76 42/2.83

2000 30 16/61.1 12/62.0 div/2.80 17/2.86
50 10/117 9/119 52/2.85 15/2.90
70 8/165 7/167 26/2.90 13/3.03

10 ?(4.2× 10−7)/50.6 169/52.9 div/6.14 341/6.27
20 36/94.1 23/95.3 div/6.16 48/6.16

3000 30 16/137 13/139 div/6.24 19/6.53
50 9/264 9/266 78/6.31 17/6.64
70 8/373 7/375 31/6.40 13/6.65

10 ?(6.4× 10−3)/144 249/144 div/17.1 527/17.7
20 48/263 27/268 div/17.4 57/17.8

5000 30 20/385 15/388 div/17.4 31/17.8
50 10/739 9/745 402/17.5 18/17.8
70 9/1006 8/1057 44/17.8 15/17.9

Table 7.11: Iteration counts and times for φ(r) = r2 log r.
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Algorithm A Algorithm A Algorithm B Algorithm B
n q

without Krylov with Krylov without Krylov with Krylov

10 21/1.33 15/1.34 div/0.181 25/0.184
20 11/2.46 9/2.47 380/0.182 16/0.186

400 30 7/3.60 7/3.63 27/0.192 12/0.196
50 6/5.90 6/6.30 11/0.202 9/0.205
70 5/9.05 5/9.00 9/0.211 7/0.213

10 30/6.78 20/6.79 div/0.927 33/0.934
20 15/12.6 11/12.6 div/0.937 19/0.937

900 30 10/18.4 9/18.4 95/0.950 15/0.952
50 7/32.0 6/32.7 16/0.974 11/0.975
70 6/46.8 5/46.8 11/0.997 9/0.997

10 41/33.5 23/35.2 div/4.60 41/4.60
20 16/61.9 14/62.0 div/4.61 23/4.61

2000 30 10/90.9 9/91.0 div/4.66 17/4.68
50 7/163 7/163 20/4.71 11/4.71
70 6/231 6/232 13/4.77 9/4.86

10 66/75.5 28/75.5 div/10.3 48/10.6
20 18/139 13/141 div/10.3 25/10.6

3000 30 11/203 10/213 div/10.4 19/10.6
50 7/370 7/378 26/10.5 13/10.6
70 6/522 6/529 15/10.6 10/10.7

10 82/212 32/212 div/28.8 55/29.7
20 23/389 14/394 div/28.9 27/29.9

5000 30 13/573 11/578 div/29.0 20/30.0
50 8/1048 7/1065 35/29.1 14/30.1
70 6/1484 6/1550 19/29.2 10/30.1

Table 7.12: Iteration counts and times for φ(r) = r.
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operations per iteration than Algorithm A. This is illustrated by the iteration

times. Hence Algorithm B combined with the Krylov subspace technique is

the best choice.

7.3 Final remarks

We have found that Algorithm B with the Krylov subspace technique is the

best choice of the iterative methods presented here. Unfortunately, however,

the average time for the preliminary work is high compared to the average

time per iteration for the algorithm.

The preliminary work includes constructing the sets Lk, k = 1, . . . , n− q.
Goodsell (2000) presents a fast procedure for this task in two dimensions,

but efficient ways to compute Lk, k = 1, . . . , n − q, in higher dimensions

have to be found. For the experiments presented in the previous section,

the construction of the sets Lk, k = 1, . . . , n − q, required O(nq(n − q))

operations. There exist better algorithms for this task using tree structures.

The coefficients λ̂kj, j ∈ Lk, k = 1, . . . , n − q, are calculated before the

first iteration by solving the interpolation problem on Lk by direct methods,

which require O(q3) operations for every set Lk. Thus this work involves

O(q3(n− q)) operations. It might be better to generate the coefficients λ̂kj,

j ∈ Lk, k = 1, . . . , n − q, by an updating procedure. Thus one might take

advantage of the fact that, if the n × n matrix Λ introduced in (2.1.20) is

known for an interpolation problem on n points, then adding a point and

extending the matrix Λ for this new interpolation problem can be done in

O(n2) operations.

Experiments with random orderings of the data points (retaining the last

three or four points in the case of thin plate spline interpolation) have been
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Figure 7.2: Residuals on a square grid after 11 iterations when Algorithm A

with the multiquadric as basis function was used.

tried. No significant changes to the iteration counts were found. Therefore

the work of ordering the data points may not be necessary.

Some preliminary numerical experiments with multiquadric functions in

two dimensions have been attempted, and they were very successful. Figure

7.2 displays the residuals when Algorithm A with the multiquadric as basis

functions was applied to Problem II. It only took 11 iterations to achieve an

accuracy of 10−9. With multiquadrics the success of the iterative method

depends on the choice of the undetermined positive constant c. If c is set to
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the minimal nearest neighbour distance, the algorithms perform very well,

but the user might want to choose a larger constant depending on the inter-

polation problem. Therefore the multiquadric radial basis function was not

included in the main stream of numerical experiments.

It is hoped that the importance of the semi-inner product that has been

shown will assist future research on choosing the functions χ̂k, k = 1, . . . , n−
q, for the algorithms. A different choice of functions might have better or-

thogonality properties. It will be interesting to see how all the given algo-

rithms will perform with radial basis functions that are different from thin

plate splines and the linear basis function.



Chapter 8

Conclusions

Since their inception (Hardy, 1971), radial basis functions have succeeded in

many areas of science, including geophysics, signal processing, meteorology,

orthopaedics, pattern recognition and computational fluid dynamics (Hardy,

1990). Unfortunately, a drawback is that the direct computation of the co-

efficients of a radial basis function interpolant to n data may require O(n3)

operations. It has been shown, however, that radial basis functions have a key

property which makes the construction of fast iterative techniques successful.

It is that they have a native vector space equipped with a semi-inner product.

This key feature is the essential ingredient of the convergence analysis of the

first algorithm presented here, Algorithm A. Every step either reduces the

semi-norm of the difference between the required interpolant and the cur-

rent approximation or leaves it unchanged. Indeed, Algorithm A constructs

a set of linearly independent functions with good orthogonality properties,

and then every step changes the current approximation by a multiple of one

of these functions, such that the new semi-norm is minimized. To put Al-

gorithm A into a well-known mathematical context, we have shown that it

109
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is equivalent to solving a certain symmetric and positive definite system of

equations by Gauss–Seidel iteration. This system was derived from the orig-

inal system of interpolation equations by preconditioning it from the left and

from the right by certain matrices. The transformed matrix contains the

semi-inner products between the chosen basis functions. Thus good orthog-

onality properties are important to the speed of convergence.

Iterations that apply the Jacobi method are an alternative to the Gauss–

Seidel technique, which brings us to Algorithm B. Unfortunately, divergence

occurs in certain cases when Algorithm B is used, but this can be avoided by

including a line search at the end of each iteration such that the semi-norm

of the difference between the required interpolant and the current approxi-

mation is reduced.

The symmetric and positive definite system of equations can also be

solved by the conjugate gradient method. Dyn et al. (1983) suggest a dif-

ferent and very successful choice of preconditioners for this interpolation

problem.

We have demonstrated that the conjugate gradient method described here

is equivalent to the Krylov subspace technique applied to Algorithm B. The

Krylov subspace technique builds up a subspace of radial basis functions,

the current approximation being the best approximation from this subspace.

Each iteration enlarges this subspace by adding a radial basis function which

is orthogonal to the current subspace with respect to the semi-inner product

(2.2.22). The numerical experiments show that the Krylov subspace method

applied to Algorithm B is very successful, giving a low number of iterations,

while at the same time requiring a low number of operations per iteration.

Therefore we recommend this method to compute radial basis function in-

terpolants, but some further research should be conducted to make the pre-



CHAPTER 8. CONCLUSIONS 111

liminary calculations more efficient.

It is hoped that interpolation to hundreds of thousands of data will be-

come a routine calculation. Thus the range of applications which can take

advantage of the smoothness and accuracy properties of interpolation with

radial basis functions will be increased.
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List of symbols

R the real numbers,

Rd the d-dimensional space of real numbers,

Πm(Rd) all polynomials in d variables of total degree at most m,

S the linear space of thin plate splines,

(· , ·) the semi-inner product on S,

‖ · ‖ the semi-norm on S arising from the semi-inner product (·, ·)
Sθ the linear space spanned by functions which are translates of a

conditionally definite function θ, and Πm(Rd) for a suitable

integer m,

(· , ·)θ the semi-inner product on Sθ,

‖ · ‖θ the semi-norm on Sθ arising from the semi-inner product (·, ·)θ,
σθ takes the value +1 if θ is conditionally positive definite, and −1

if θ is conditionally negative definite,

Tθ subspace of Sθ consisting of functions with centres at the last q

data points xn−q+1 . . . , xn,

I identity map on Sθ,

Ik k × k identity matrix,

δij Kronecker delta.
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