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Abstract: The integration analysis of multi-type geospatial information poses challenges to existing 

spatiotemporal data organization models and analysis models based on deep learning. For earth-

quake early warning, this study proposes a novel intelligent spatiotemporal grid model based on 

GeoSOT (SGMG-EEW) for feature fusion of multi-type geospatial data. This model includes a seis-

mic grid sample model (SGSM) and a spatiotemporal grid model based on a three-dimensional 

group convolution neural network (3DGCNN-SGM). The SGSM solves the problem concerning that 

the layers of different data types cannot form an ensemble with a consistent data structure and 

transforms the grid representation of data into grid samples for deep learning. The 3DGCNN-SGM 

is the first application of group convolution in the deep learning of multi-source geographic infor-

mation data. It avoids direct superposition calculation of data between different layers, which may 

negatively affect the deep learning analysis model results. In this study, taking the atmospheric 

temperature anomaly and historical earthquake precursory data from Japan as an example, an 

earthquake early warning verification experiment was conducted based on the proposed SGMG-

EEW. Five groups of control experiments were designed, namely with the use of atmospheric tem-

perature anomaly data only, use of historical earthquake data only, a non-group convolution control 

group, a support vector machine control group, and a seismic statistical analysis control group. The 

results showed that the proposed SGSM is not only compatible with the expression of a single type 

of spatiotemporal data but can also support multiple types of spatiotemporal data, forming a deep-

learning-oriented data structure. Compared with the traditional deep learning model, the proposed 

3DGCNN-SGM is more suitable for the integration analysis of multiple types of spatiotemporal 

data. 

Keywords: GeoSOT spatiotemporal grid; data organization model; 3D group convolution; atmos-

pheric anomaly; earthquake early warning 

 

1. Introduction 

Spatiotemporal big data analysis is a hot topic in the field of geospatial information. 

Recently, deep learning has provided a solution for the pattern recognition of a single 

type of geospatial data, such as land-use classification based on optical remote sensing 

image data [1–3]. However, it is typically necessary to use multiple data types. For exam-

ple, in the analysis of earthquake precursors, the data concerning the time and space of 
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earthquakes include atmospheric anomalies and historical earthquakes. Multi-type geo-

spatial information integration analysis challenges the existing spatiotemporal data or-

ganization model and the analysis model based on deep learning. 

Before the popularization of big data, the standard methods primarily included 

earthquake warnings based on earthquake mechanisms, mechanical models, and earth-

quake precursor analysis using statistics. For example, UCERF [4], which established a 

fault model for California in the United States, is based on earthquake mechanisms. The 

attributes of each study-area raster grid cell are a series of mechanical and statistical char-

acteristics based on the fault model. However, UCERF only provides the possibility of 

earthquake occurrence on a very rough time scale (~10 years), showing the complexity of 

earthquake mechanical mechanisms. By analyzing the spatiotemporal correlation be-

tween earthquakes and their possible precursors, the relationship between them was es-

tablished and then an earthquake warning system was developed. The earliest work in 

this field was the Gutenberg–Richter (GR) law [5]. This model gives the relationship be-

tween a certain magnitude threshold and the total number of earthquakes with magni-

tudes exceeding the threshold in a specific region and time. The GR law shows a strong 

correlation between earthquakes and historical earthquakes, thus the historical earth-

quakes can be the precursors of new earthquakes in the same region. The parameter b of 

the GR law is an important statistical feature. Some follow-up studies have further de-

signed statistical features on the basis of parameter b, assigning these statistical features 

to each grid cell on the basis of raster data organization and used historical earthquakes 

to predict new earthquakes [6] or used the data of the main shock to predict possible af-

tershocks [7].  

Some researchers have also combined a model based on earthquake mechanisms 

with a model based on statistics. The representative literature in this field is Zhou et al. 

[8]. Based on historical earthquake data, the author carried out further feature engineering 

on the earthquake catalog with a dynamic model. Taking the average value of the earth-

quake time interval and earthquake magnitude as the input information, statistical ma-

chine learning methods, such as the support vector machine (SVM), can be used for earth-

quake early warning. In recent years, studies of earthquake prediction based on statistics 

have found that the geographical phenomena with strong spatiotemporal correlation with 

earthquakes include not only historical earthquakes but also geothermal anomalies [9], 

geomagnetic anomalies [10], and atmospheric anomalies [11]. However, unlike earth-

quakes and historical earthquakes, the statistical relationship between these spatiotem-

poral phenomena and earthquakes has not been established as the general formula of the 

GR law, which is not suitable for the raster data model that requires statistical character-

istics as grid attributes. The data are arranged according to a hierarchical organizational 

model based on a vector point model. Therefore, these studies primarily analyze the orig-

inal earthquake and its precursor data, and the data organization is based on the hierar-

chical organization model of the vector point. 

Research on earthquake prediction based on the traditional non-deep learning anal-

ysis model shows a highly non-linear spatiotemporal correlation between earthquake pre-

cursors and earthquakes, and a more complex analysis model can improve earthquake 

early warning reliability. Therefore, in recent years, with the emergence of deep learning 

with higher model complexity, many studies are exploring deep learning for earthquake 

prediction. In a study by Alves [12] based on historical earthquake data, some indexes, 

such as the moving average of historical earthquake times, are designed as inputs and the 

fully connected neural network (FCNN) is used for earthquake prediction. The predicted 

earthquake was accurate to the space area with a longitude–latitude span of approxi-

mately 2° and a time window with a time span of approximately one year. The difference 

between the predicted and actual magnitudes was approximately a value of one. Based 

on historical earthquakes and the GR law, various characteristics reflecting seismic me-

chanical properties, energy, and time distribution were designed as inputs in studies by 
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Asencio-Cortés et al. [13] and Reyes et al. [14], and FCNN was used for earthquake pre-

diction. The desired prediction concerned whether two cities in Chile would have an 

earthquake of a magnitude of >4.5 in a five-day time window. Devries et al. [15] did not 

use historical earthquakes but designed a series of mechanical characteristics based on the 

fault zone model as the input of the FCNN to predict aftershocks in each 5 km × 5 km sub-

region of areas where major earthquakes have occurred. The prediction accuracy index of 

the experimental results reached an AUC of 0.85. In earthquake predictions using FCNN, 

the researchers primarily studied the relationship between earthquakes and historical 

data and used a hierarchical model based on vector point objects to organize the spatio-

temporal data of earthquakes. Mosavi et al. [16] used historical earthquake data from Iran 

and a radial basis function neural network to predict the time interval of large earthquakes 

in this dataset. Asencio-Cortés et al. [17] used historical earthquake data from Japan and 

FCNN to predict whether an earthquake with a magnitude of >5 would occur within 

seven days. The results showed that the prediction accuracy of FCNN was higher than 

that of some traditional machine learning methods, such as SVM and K-nearest neighbor.  

In a study by Panakkat and Adeli [18], in addition to FCNN, the input historical 

earthquake data were organized and entered into the recurrent neural network (RNN) 

according to the time sequence to predict the maximum earthquake magnitude likely to 

occur in the next month at specific locations. The experiment revealed that RNN’s predic-

tion ability was better than FCNN’s in this case. The seismic features used by Panakkat 

and Adeli [18], Asencio-Cortés et al. [13], and Reyes et al. [14] are different. Martínez-

Á lvarez et al. [19] analyzed the importance of different features in earthquake prediction 

using FCNN and seismic data from Chile and the Iberian Peninsula. It was found that 

these features had a similar order of importance in the two different study areas and the 

feature based on the GR law was the most important. In a study by Asim and Martínez-

Á lvarez [20], historical earthquakes and RNN were used to predict whether earthquakes 

with magnitudes of >5.5 would occur within the next month in the Hindu Kush Moun-

tains and the prediction accuracy reached 71% in the test set. In Wang et al. [21], historical 

earthquake data were input into a long short-term memory (LSTM) network, that is, an 

improved RNN. Earthquake prediction was based on two simulation datasets. The above-

mentioned earthquake prediction using RNN was primarily based on the hierarchical 

model of vector point objects to organize the spatiotemporal data of earthquakes. Huang 

et al. [22] organized the historical earthquake data of the entire Taiwan Province using the 

raster model. The study area was divided into 256 × 256 square sub-regions. The accumu-

lated data of every 120 days formed a 256 × 256 raster map and the value of each raster 

grid represented the maximum magnitude of the corresponding sub-region over the past 

120 days. Convolution neural networks (CNNs) can predict whether earthquakes with 

magnitudes of >6 will occur in the Taiwan Province over the next 30 days. The R-score 

was used to evaluate the prediction accuracy and the R-score of the prediction model was 

approximately 0.3. Although far from ideal, the accuracy of the earthquake prediction (R-

score is close to 1) is significantly higher than that obtained using random input data (R-

score is 0.065). 

Compared with the use of historical earthquakes to predict new earthquakes, re-

search on earthquake prediction based on atmospheric anomalies is still in its infancy and 

primarily focuses on the statistical correlation between different types of atmospheric 

anomalies and earthquakes. Shah et al. [23] conducted a correlation analysis between 

three large earthquakes (magnitude of 6 or above) in Pakistan and Iran, and the atmos-

pheric observation data at that time. It was found that there were significant anomalies in 

different atmospheric parameters, including long-wave radiation, surface temperature, 

and nitrogen dioxide, which could be observed in a minimum of 5 days and a maximum 

of 21 days before the earthquake. However, the time difference between the anomalies 

and earthquake occurrence shows conspicuous differences in different areas. In Fujiwara 

et al. [11], 29 earthquakes with magnitudes of >4.8 in Japan and the atmospheric observa-

tion data at that time were analyzed, and it was found that these earthquakes had a strong 
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correlation with the electromagnetic wave anomalies in the five days before the earth-

quake. 

Deep learning can automatically learn and extract characteristics from the original 

data and CNN, a representative deep learning model, uses a spatial window to explore 

the spatial association information between data [24], which is suitable for grid data. In 

earthquake precursor analysis, deep learning analysis of the earthquake precursor based 

on multi-layer and multi-source spatial data is in its early stages and there is little related 

research. The deep learning frontier for multi-layer data is concentrated around tradi-

tional computer vision and remote sensing data analysis. With non-uniform multi-layer 

input gridded data, the existing methods primarily design the branch structure of the 

CNN, in which each branch network processes a layer and the results of different branches 

are summarized at the neural network’s end. Land-use classification based on multi-

source remote sensing data [25,26] is a typical challenge. Chen et al. [27] designed a CNN 

with two branches to process and integrate multispectral optical remote sensing image 

data and (light detection and ranging) LiDAR data. Xu et al. [28] designed a CNN with 

three branches to process and integrate the hyperspectral remote sensing image, digital 

elevation model, and LiDAR data for land-use classification. Ienco et al. [29] designed a 

CNN with four branches to fuse the multi-temporal remote sensing image data of Senti-

nel-1 and Sentinel-2 satellites. In Hang et al. [30], a CNN with two branches was designed 

to fuse hyperspectral and LiDAR remote sensing images, and parameter-sharing technol-

ogy was used for some parameters of the two branches, reducing the complexity of the 

model. Hong et al. [31] summarized the design ideas of branching neural networks in 

several studies and proposed that different branches of the neural network adopt different 

architectures. For example, one branch could use FCNN and the other branch could use 

CNN. 

For the branching CNN for multi-layer data integration, the data matrix and data 

unit sizes can differ on different branches and there is no direct superposition between 

layer features on different branches. However, the structure of a branching neural net-

work is complex. More data layers mean more branches and a more complex model. 

Therefore, the branch network is unsuitable for earthquake prediction involving multiple 

data types. Compared with a branching neural network, the structure of a neural network 

with only one backbone is simple and the costs of both network design and calculation 

are low. However, using a single backbone neural network for multi-layer data analysis 

requires overcoming the problems of correspondence between the different layers in data 

organization and feature integration of multi-source data in the analysis. Regarding data 

organization, for multi-layer data, the input data of CNN is block data with a unified ma-

trix structure (layer number C, image height H, image width W). The data matrix formed 

by the different layers should be consistent in the H and W dimensions. Therefore, in 

terms of data organization, the gridding of different vector layers requires the different 

layers to form a unified H and W. This creates a relationship between the upper and lower 

layers, and a single-layer data slice can then form a multi-layer data block. Concerning 

data analysis, the calculation results of different layers are superimposed in the CNN. 

When different layers represent different data types, the data of different layers have dif-

ferent meanings. Therefore, this type of direct superposition is meaningless and should 

be avoided. 

In summary, this study focuses on the deep learning of multiple spatial information 

in spatiotemporal big data, as shown in Figure 1. For earthquake warnings, this study 

proposes a seismic grid sample model (SGSM) organizing multiple single-layer data slice 

spatial information data to form a multi-layer data block with a consistent data structure 

oriented to the deep learning model. Furthermore, the study proposes a spatiotemporal 

grid model based on a three-dimensional group convolution neural network (3DGCNN-

SGM) to improve the learning effect of the integration analysis of multiple spatial infor-

mation. 
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Figure 1. Overall structure of the study. 

2. Materials and Methods 

2.1. Spatiotemporal Grid Representation Based on GeoSOT 

The geographical coordinate grid subdivision by a one-dimensional integer and two-

to-nth power (GeoSOT) [32] is a global equal longitude and latitude spherical subdividing 

grid system proposed by Cheng’s team at Peking University. This system has the ad-

vantages of multi-scale, identifiable, localizable, indexable, computable, and automatic 

spatial association, constituting a spatial grid framework for big data management and 

application. The GeoSOT grid extends the latitude and longitude space of the Earth’s sur-

face three times and then divides the whole Earth into a hierarchical grid system of the 

integer degree, integer minute, integer second, and below from global to centimeter by a 

strict recursive quadtree partition. Specifically, the first space expansion is to expand the 

whole Earth’s surface to 512° × 512°; the center of the patch coincides with the intersection 
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of the equator and the prime meridian, and then recursively quads to a 1° grid unit. The 

second space expansion is purposed to expand the 1° grid unit from 60’ to 64’ and then 

recursively quad to one grid unit. The third space expansion is purposed to expand the 1’ 

grid unit from 60” to 64” and then recursively quad to 1” grid unit. The subdivision units 

below 1” are directly divided by a quadtree partition until (1/2048)” of 32 levels. In this 

way, GeoSOT divides the longitude and latitude space of the whole Earth surface into a 

multi-level grid system covering the whole world in the direction of longitude and lati-

tude through a strict dichotomy. 

The difficulty with spatiotemporal object modeling concerns extending the spatial 

grid to express the temporal changes in spatial objects. Space and time are typically con-

sidered as two mutually orthogonal dimensions and therefore the current idea of spatio-

temporal object modeling is to add an additional model dimension to the spatial object to 

represent time. This idea corresponds to the grid model, which expands the original two-

dimensional spatial grid description to three dimensions. In the original two spatial di-

mensions, the spatial grid is used to model the spatial object at a specific time, whereas in 

the time dimension, the spatial data at different times are organized according to the time 

sequence and a certain time interval. In other words, the gridding description of spatio-

temporal objects is essentially a three-dimensional grid set. The GeoSOT divides the 

Earth’s surface space into multilevel discrete regions with similar areas and shapes, with 

no gaps and no overlaps. Each discrete region is a spatial grid and the set of spatial grids 

can describe the spatial objects occupying the corresponding positions. Spatial objects con-

tinuously changing over time can be described by a set of spatial grids for each specific 

time. Then, the spatial grid sets are organized according to the time sequence and specific 

time interval to form the grid description of the spatial objects. Thus, a single spatiotem-

poral grid constitutes the basic description unit of the GeoSOT subdividing data model 

for spatiotemporal objects. 

Let the grid system of space subdivision be ℂ = {𝐶0，𝐶1，…𝐶𝑖，…𝐶𝑛}, where 𝐶𝑖 =

𝐶𝑖0，𝐶𝑖1，…𝐶𝑖𝑗，…𝐶𝑖𝑛𝑖 represent all grids of the 𝑖-th level, and for any two grids of the 

𝑖-th level, 𝐶𝑖𝑠、𝐶𝑖𝑡(𝑠 ≠ 𝑡), all 𝐶𝑖𝑠 ∩ 𝐶𝑖𝑡 = 𝜙. Then, for the spatial object 𝑂𝑏𝑗, let 𝑂(𝑂𝑏𝑗) de-

note the real space it occupies, 𝑂𝑏𝑗𝑡𝑗 denote the space state of the object at the 𝑡𝑗 moment, 

and the corresponding subdivision level of the representation accuracy of the spatial ob-

ject at any time in the spatial grid system is 𝑟, where 𝑡𝑗 = 𝑡0, … , 𝑡𝑇. If the time difference 

between any two adjacent times (Δ𝑡) is the same, the spatiotemporal object can be ex-

pressed as 𝑛𝑟 sets of 𝑟-level spatiotemporal grids: 

{
  
 

  
 

𝐺(𝑂𝑏𝑗; 𝑟, 𝛥𝑡) =⋃𝐺𝑡𝑗(𝑂𝑏𝑗; 𝑟)

𝑇

𝑗=0

=⋃ ⋃ 𝐶
𝑟𝑖

𝑡𝑗

𝑖≤𝑛𝑟

𝐶𝑟𝑖∩𝑂(𝑂𝑏𝑗)≠∅

𝑇

𝑗=0

𝐴𝑡𝑡𝑟(𝑂𝑏𝑗; 𝑟, 𝛥𝑡) =⋃𝐴𝑡𝑡𝑟𝑡𝑗(𝑂𝑏𝑗; 𝑟)

𝑇

𝑗=0

=⋃ ⋃ 𝐴𝑡𝑡𝑟 (𝐶
𝑟𝑖

𝑡𝑗
)

𝑖≤𝑛𝑟

𝐶𝑟𝑖∩𝑂(𝑂𝑏𝑗)≠∅

𝑇

𝑗=0

 (1) 

2.2. SGSM 

This study takes the seismic precursor data, atmospheric anomaly, to elaborate on 

the spatiotemporal grid modeling method. The aim of establishing the spatiotemporal 

grid model of atmospheric anomaly data is to determine the subdividing level of GeoSOT, 

establish the spatial interpolation model, and finally establish the spatiotemporal grid 

model of atmospheric anomaly data as a data composition type of SGSM. 

2.2.1. Determination of GeoSOT Subdividing Level 

When establishing the spatial grid model of atmospheric anomaly data, according to 

the spatial distribution of meteorological stations (i.e., the spatial location information of 

atmospheric anomaly data), the appropriate analysis scale to determine the GeoSOT grid 
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level is chosen. This paper proposes the use of Delaunay triangulation (DT) [33] to model 

the meteorological stations’ spatial distribution. The DT input is the discrete point of all 

meteorological station locations and the output is a series of connected triangles. All the 

triangle vertices correspond to all the meteorological station locations individually. The 

DT reflects the spatial distribution relationship between meteorological stations and the 

side length of the triangle reflects the relative distance between meteorological stations.  

Based on DT, this study uses the average side length of DT as a measure of the dis-

tance between discrete atmospheric observation data, selects the grid level closest to the 

average side length of DT as the grid basis of the atmospheric anomaly data spatial grid 

model, and performs preliminary grid modeling of the atmospheric observation data. The 

determination process of the GeoSOT subdividing level of the seismic sample grid is 

shown in Figure 2. 

Calculate the mean side length of 

the triangulation

Improved Delaunay triangulation

Construct Delaunay triangulation

Set the threshold of triangulation 

side length

Compared with GeoSOT 

subdividing levels

Reasonable grid subdividing 

length

Effective 

observation stations

Determine the GeoSOT 

subdividing level

 

Figure 2. Determination process of GeoSOT subdividing level of seismic sample grid. 

2.2.2. Spatial Interpolation Model 

Before spatial interpolation, this study takes air temperature data from atmospheric 

observation data of meteorological stations as an example to preprocess and obtain at-

mospheric anomaly data. This paper follows the definition of atmospheric temperature 

anomaly by Professor Murai’s team at the University of Tokyo [34]; that is, if the temper-

ature changes by more than ±2 °C in 10 min at the same station, it is recorded as an 

anomaly. The total number of anomalies per day at each station was counted and the in-

teger value was the atmospheric anomaly value of the station on that day. 

In this study, the spatial interpolation of atmospheric anomalies after gridding is pro-

posed to convert the measured data of discrete points into a continuous data surface so 

that the sparse and discrete atmospheric observation data can reflect the continuous at-

mospheric conditions. In many spatial interpolation algorithms, the inverse distance 

weight (IDW) [35] is a simple and general spatial interpolation algorithm. The IDW calcu-

lates the atmospheric anomalies on the non-data points using the weighted average of 

each atmospheric anomaly observation value in the adjacent area and the weight of each 

observation value decreases with an increase in the distance between the observation and 

the prediction point. Specifically, let 𝑥0 represent the position of the point to be interpo-

lated, while 𝑢0 represents the interpolation result to be calculated, {𝑥𝑖}𝑖=1
𝑁  denotes the 

positions of 𝑁 known atmospheric anomaly observation points, and {𝑢𝑖}𝑖=1
𝑁  are known 

atmospheric anomaly values. 

𝑢0 =
∑ 𝑤(𝑥0, 𝑥𝑖)𝑢𝑖
𝑁
𝑖=1

∑ 𝑤(𝑥0, 𝑥𝑖)
𝑁
𝑖=1

 (2) 
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𝑤(𝑥0, 𝑥𝑖) =
1

𝑑(𝑥0, 𝑥𝑖)
𝑝
 (3) 

where 𝑑(𝑥0, 𝑥𝑖) denotes the distance between 𝑥0 and 𝑥𝑖, and 𝑝 is the super parameter 

of the model to adjust the weight. Based on IDW, Formulas (2) and (3), the atmospheric 

anomaly values of all spatial grids after gridding, can be calculated to establish the spatial 

grid model of atmospheric anomaly data. 

Based on the spatial grid model of atmospheric anomaly data, according to the time 

scale of atmospheric observation data, the appropriate time interval was determined to 

establish the spatiotemporal grid model of atmospheric anomaly data. Specifically, for 

each time, a space grid of 𝐻 ∗𝑊 was used to model the atmospheric anomaly data at that 

time, as shown in Figure 3. If the total time span of all data is 𝑇 and the established time 

interval is Δ𝑡, then there are 𝐶 = 𝑇/Δ𝑡 𝐻 ∗𝑊 spatial grids; that is, the spatiotemporal 

grid model of atmospheric anomaly data is a three-dimensional spatiotemporal grid of 

𝐻 ∗𝑊 ∗ 𝐶. 

 

Figure 3. Spatiotemporal grid interpolation: grid interpolation of atmospheric anomalies on 1 June 

2018. 

2.2.3. Spatiotemporal Grid Modeling and Grid Sample Construction of Seismic Precursor 

Data 

The result of the spatiotemporal grid modeling of atmospheric anomalies is the data 

matrix 𝐺(𝐴; 𝑟, 𝛥𝑡) = ⋃ 𝐺𝑡𝑗(𝐴; 𝑟)𝑇
𝑗=0 → 𝑋(𝐴) ∈ 𝑅𝐶∗𝐻∗𝑊  (𝐴 is used to represent the atmos-

pheric anomaly). In this study, historical seismic data were modeled based on the spatio-

temporal grid of atmospheric anomalies. E was used to represent historical seismic data, 

the attribute value of each grid was the seismic intensity value, and the modeling result 

of historical seismic data was 𝐺(𝐸; 𝑟, 𝛥𝑡) = ⋃ 𝐺𝑡𝑗(𝐸; 𝑟)𝑇
𝑗=0 → 𝑋(𝐸) ∈ 𝑅𝐶∗𝐻∗𝑊. The seismic 

spatiotemporal grid modeling result is 𝑋(𝑚) = {𝑋(𝐴), 𝑋(𝐸), … } (𝑚 is the number of data 

types).  

If we set the space window size of samples as 𝑤𝑠 and the time window size as 𝛥𝑡𝑠, 

the size of each grid sample is 𝑥(𝑚) ∈ 𝑅𝑚∗𝛥𝑡𝑠∗𝑤𝑠∗𝑤𝑠. In this study, the method of sample 

labeling is to calculate the maximum seismic intensity value of the last day in the grid of 

𝛥𝑡𝑠 ∗ 𝑤𝑠 ∗ 𝑤𝑠, denoted as 𝑀. It is considered that the atmospheric anomaly of the grid 

sample is associated with the maximum earthquake, that is, 𝑦1 = 𝑀, and forms a binary 
{𝑥, 𝑦1}. The sample with an earthquake is the positive grid sample (PGS), while the sample 

without an earthquake is a negative grid sample (NGS), that is, 𝑦0 = 0, and PGS also 

forms a binary {𝑥, 𝑦0}. Then, SGSM is {
 {𝑥, 𝑦0},  𝑦0 = 0 

 {𝑥, 𝑦1}, 𝑦1 = 𝑀
. 
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This study uses a method of grid sample extraction based on the sliding window; 

that is, starting from the top left of the spatiotemporal grid, every time a grid sample is 

taken out according to the window, it moves one step 𝑆 to the right and then the next 

grid sample is taken out. When moving to the far right of the current row, return to the 

far left, and move one step 𝑆 down to repeat the above process. The sliding step size 𝑆 is 

consistent with the size of the spatiotemporal grid, which minimizes the redundancy in 

the data and improves the utilization of all data. 

2.3. Spatiotemporal Grid Model Based on the Three-Dimensional Group Convolution Neural 

Network (3DGCNN-SGM) 

2.3.1. Multi-Layer Fusion Based on Group Convolution 

When feature maps come from different layers, they lack direct comparability, which 

confuses the features of different layers and then affects the neural network’s representa-

tion ability and classification results. Group convolution is an algorithm for grouping and 

stacking different characteristic graphs, which provides a new neural network architec-

ture design for multi-source data fusion [36]. 

For the original total number of 𝐶 input characteristic graphs, the group convolution 

divides these characteristic graphs into 𝑔 groups; that is, each group has 𝐶/𝑔 character-

istic graphs and the superposition of convolution results is only carried out within the 

group. Let 𝑎𝑞
𝑙  be the 𝑞-th characteristic graph of layer 𝑙 and 𝐾𝑝

𝑙  be the 𝑝-th convolution 

kernel of layer 𝑙. The input and output characteristic graphs are multiple three-dimen-

sional matrices (i.e., the set of these characteristic graphs is four-dimensional) and the con-

volution kernel is also several three-dimensional matrices. The calculation formula for the 

group convolution is as follows: 

𝑎𝑝
𝑙 (𝑖, 𝑗, 𝑡) = 𝜎(∑∑∑∑𝑎𝑞

𝑙−1

𝑤𝑣𝑢

𝐶/𝑔

𝑞=1

(𝑢, 𝑣, 𝑤)𝐾𝑝
𝑙(𝑖 − 𝑢, 𝑗 − 𝑣, 𝑡 − 𝑤)) (4) 

where, in 𝑎𝑝
𝑙 (𝑖, 𝑗, 𝑡), representing the element on the 𝑖-th row and 𝑗-th column of the char-

acteristic graph 𝑎, 𝑡 is the time dimension and ∀𝑝, 𝑙, 𝐾𝑝
𝑙 ∈ 𝜃. 

A schematic of the group convolution principle is shown in Figure 4b. 

 

(a)                                   (b) 

Figure 4. Schematic of group convolution principle. (a) Ordinary convolution. (b) Group convolu-

tion.  
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2.3.2. Architecture of 3DGCNN-SGM: 3D-GridResNet-18  

When an earthquake is expressed as a point object described by a single spatiotem-

poral grid, the corresponding problem form for establishing the association between seis-

mic precursory data and earthquakes is a classification problem in deep learning. Its input 

is SGSM and its output is the prediction of whether the central grid of the SGSM is the 

epicenter of the earthquake. To establish the spatiotemporal association, that is, to solve 

the above classification problem, this study proposes a deep CNN algorithm model, 3D-

GridResNet-18, based on SGSM and 3D-ResNet-18 [37]. The network architecture of 3D-

GridResNet-18 is shown in Figure 5. 

The special structure of 3D-ResNet-18 is the residual learning unit. In a residual 

learning unit, a neural network is divided into two branches. Let the input characteristic 

graph of this unit be 𝑎𝑙−1 and then its output is  

𝑎𝑙 = 𝐹(𝑍𝑙; 𝑎𝑙−1) + 𝑎𝑙−1 (5) 

In Equation (5), the first term 𝐹(𝑍𝑙; 𝑎𝑙−1) represents the original backbone of the neu-

ral network, that is, the building block of the convolution layer-batch normalization (BN) 

layer-activation layer and 𝑍𝑙 represents the model parameters of 3D-ResNet-18. The sec-

ond term 𝑎𝑙−1 indicates that the original input has an identity mapping; that is, the input 

data does not participate in the operation of the backbone network but is directly added 

to the operation result of the building block. The residual learning unit enables 3D-Res-

Net-18 to learn new features based on the original input features. In the worst case, it does 

not learn any new features but only uses the input to create the output directly. This struc-

ture makes it easier for the deep CNN to complete training and produces better perfor-

mance. Corresponding to Figure 5, each arc on the side of the network backbone corre-

sponds to identity mapping. The result of identity mapping is typically added before the 

activation layer of the building block; that is, the structure of the building block pointed 

by the arced arrow becomes a convolution layer-BN layer-join identity mapping-activa-

tion layer. If the building block has a pooling layer, the pooling layer is connected after 

the activation layer. 
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Figure 5. Schematic of 3D-GridResNet-18 network architecture. 

Based on 3D-ResNet-18, the corresponding improvements were made to form 3D-

GridResNet-18 for SGSM. First, the experimental data included both the atmospheric 

anomaly data and the historical earthquake data, forming two channels. Therefore, the 

convolution kernel of the first convolution layer of 3D-ResNet-18 was changed to 2 × 7 × 

7 × 7 so that it could process SGSM. In addition, the seismic intensity levels involved in 

this experiment were 0, 2–6, and a total of six levels; that is, 3D-GridResNet-18 deals with 

a six-classification problem. Therefore, the last output layer of 3D-ResNet-18 is modified 

to have six output units to predict the probability of earthquakes of any intensity. Finally, 

in the first three layers of 3D-ResNet-18, we used group convolution instead of ordinary 

convolution. 

Each rectangular box in 3D-GridResNet-18 represents a building block comprising a 

convolution layer, a BN layer, and an activation layer. For all the convolution layers in 

3D-GridResNet-18, the strategy of padding is to fill one 0 at each end of the two dimen-

sions of the feature graph, that is, padding = (1,1). In addition, none of the convolution 

layers used the bias term. These parameters are in line with the default parameters of the 

ResNet-18 framework provided by Pytorch. The total number of model parameters for 

3D-GridResNet-18 was 33052999. 
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2.4. Experiment 

2.4.1. Experimental Data and Environment 

The experiment validates the SGMG-EEW. To verify the effectiveness of the pro-

posed SGSM and 3DGCNN-SGM, five groups of control experiments were designed: a 

group using atmospheric anomaly data (AA-C) only; a group using historical earthquake 

data (HE-C) only; a non-group convolution control group (NG-C); a SVM control group 

(SVM-C); and a seismic statistical analysis control group (SSA-C). 

The data used in this experiment are atmospheric data and seismic data, the space 

span of which is all of Japan and the time span is from 1 June 2018 to 31 December 2019, 

a total of 19 months. The details of the data are presented in Table 1; the source of the 

seismic data is the epicenter data released by the Japan Meteorological Agency and a sche-

matic of the true seismic values is shown in Figure 6a. Atmospheric data are the atmos-

pheric observation results of various meteorological stations in Japan. The spatial distri-

bution of the meteorological stations is shown in Figure 6b. 

Table 1. Detailed information on atmospheric data and seismic data. 

Data Type 
Recording 

Time 

Recording Fre-

quency 

Number of 

Stations 

Recording 

Accuracy 
Data Content 

Number of 

Records 

Seismic data 
1 June 2018–31 

December 

2019 

NULL NULL 0.1 

The time of the earthquake, 

longitude and latitude of the 

epicenter, earthquake inten-

sity, maximum earthquake 

intensity, etc. 

1207 

Atmospheric 

data 

Time interval: 10 

min 
967 (valid) 0.1 

Temperature, air pressure, 

precipitation, relative hu-

midity, sunshine time, etc. 

80,624,592 

   

              (a)                                          (b) 

Figure 6. Schematic of experimental data. (a) True seismic values on 20 July 2019. (b) Spatial distri-

bution of meteorological stations in Japan. 

According to Section 2.2.1, the 13th level, the 4’ subdividing grid of GeoSOT, is se-

lected in this experiment and the plane distance of its side length is 8 km. Each unknown 

point in the spatial interpolation model (Section 2.2.2) uses the data of 12 known points 

around and the form of the distance weight is set as the inverse square weight; that is, 

𝑝 = 2  in Equation (3). The SGSM parameters are set to 𝑚 = 2，𝛥𝑡𝑠 = 10，𝑤𝑠 =
32，Δ𝑡 = 1，𝑇 = 546，𝐻 = 444， and 𝑊 = 433, 𝑆 = 32. Some PGS and NGS, the data in-

put of the deep learning analysis models, were extracted. For PGS, this experiment used 
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a 7:3 training test data partition ratio. The distribution of the grid samples is presented in 

Table 2. 

Table 2. Distribution of grid samples. 

 PGS NGS Total 

Training data 837 9000 9,837 

Test data 370 450 820 

2.4.2. Experimental Results and Analysis 

Accuracy, precision, recall, and the 𝐹1-Measure evaluation methods were adopted. 

The calculation formulas are defined as follows: 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100%,                               (6) 

𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100%,                                    (7) 

𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100%,        and                             (8) 

𝐹1 =
2∗𝑃∗𝑅

𝑃+𝑅
,                                              (9) 

where 𝐴𝑐𝑐 is the accuracy, 𝑃 is the precision, 𝑅 is the recall, 𝑇𝑃 is the number of cor-

rectly predicting positive classes to the positive classes, 𝑇𝑁 is the number of correctly 

predicting negative classes to negative classes, 𝐹𝑃 is the number of mis-predicting nega-

tive classes to positive classes, and 𝐹𝑁 is the number of mis-predicting positive classes to 

negative classes. 

For regression problems, the mean square error (𝑀𝑆𝐸) is typically used to measure 

the difference between the predicted and real values. The smaller the value of 𝑀𝑆𝐸, the 

closer the prediction is to the real value and the better the performance of the model. Its 

specific definition is as follows: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖̂ − 𝑦𝑖)

2

𝑁

𝑖=1

 (10) 

where 𝑦𝑖 is the real value, 𝑦𝑖̂ is the predicted value, and 𝑁 is the number of predictions. 

3. Results 

3.1. SGMG-EEW Training and Test Results 

The SGMG-EEW model parameter initialization adopts the fine-tune method based 

on 3D-ResNet-18. For the part in which the network architecture is consistent with 3D-

ResNet-18, the initial parameter values are set to the model parameters of Hara et al [38] 

who pretrained 3D-ResNet-18. For the part of the network architecture inconsistent with 

3D-ResNet-18, including the first convolution layer and the last fully connected layer, the 

parameter initialization method uses the Pytorch default normal distribution initialization 

based on the number of parameters. For the training algorithm Adam, this experiment 

sets its initial learning rate to 0.001 and the parameters of the Adam algorithm, namely 

𝛽1 and   𝛽2, use the recommended value of the algorithm proposer, that is, 𝛽1 = 0.9, 𝛽2 =

0.999. The number of iterations was 80 and the batch size was set to 64. In this experiment, 

the cross-entropy loss function was selected as the model strategy. The cross-entropy loss 

function is a common loss function in deep learning classification. The concrete form is as 

follows: 

𝐿(𝑦𝑖
𝑐̂ , 𝑦𝑖

𝑐) = −∑𝑦𝑖
𝑐lo g(𝑦𝑖

𝑐̂)

𝑁𝑐

𝑐=1

 (11) 
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where c is the real class of the sample and 𝑁𝑐 is the total number of real classes. 𝑦𝑖
𝑐 indi-

cates whether the label of the ith sample is class C (if yes, then 𝑦𝑖
𝑐 = 1; otherwise 𝑦𝑖

𝑐 = 0). 

𝑦𝑖
𝑐̂ denotes the model judgment of the probability that sample 𝑥𝑖 is class C. In this exper-

iment, there were six earthquake intensity levels; that is, there were six classification prob-

lems and 𝑁𝑐 = 6. 

To test the reliability of the results, different random seeds are used to establish the 

dataset, divide the training-test data set, initialize the model parameters, and estimate the 

model parameters. Ten experiments were repeated. Each experiment recorded the loss 

function curve on the training set, the confusion matrix of intensity estimation on the test 

set, the average precision, the 𝑀𝑆𝐸, and the confusion matrix of the position estimation 

on the test set and calculated their mean values and the variances of the evaluation indexes. 

Figure 7 shows the average loss function curves of the ten training processes. The 

green dotted line represents the mean value of the loss function in the ten experiments 

and the orange vertical line represents the variance of the loss function value at this point. 

At the end of the training, the value of the loss function converges to approximately 0.02 

and the 𝐴𝑐𝑐 of the training set classification in the ten experiments was higher than 99%. 

 

Figure 7. Training loss function curve of the experimental group. 

Table 3 shows the mean and variance of the confusion matrices of the models trained 

in the ten experiments on the test set, in which each row represents the actual intensity of 

the earthquake and each column represents the seismic intensity determined by the model. 

The first term of each cell is the mean of the ten predictions and the second term is the 

variance of the ten predictions. As shown in Table 3, there are two main types of errors in 

the prediction of seismic intensity: the first is predicting the actual earthquake samples as 

“no earthquake” and the second concerns that the predicted value is similar to the real 

value but somewhat different. Except for the no-earthquake class, there was little differ-

ence between the predicted value and actual value. 

Table 3. Confusion matrix of the seismic intensity classification on the test set. 

Intensity 0 2 3 4 5 6 

0 386.5 ± 8.6 3.2 ± 1.5 7.1 ± 2.8 6.9 ± 2.6 0.7 ± 0.9 0.4 ± 0.9 

2 17.4 ± 5.0 56.0 ± 4.2 1.4 ± 1.2 0.5 ± 0.8 0.1 ± 0.3 0.1 ± 0.3 

3 30.9 ± 6.1 1.1 ± 1.2 106.9 ± 9.3 3.2 ± 1.6 0.3 ± 0.6 0.0 ± 0.0 

4 36.2 ± 4.7 0.4 ± 0.7 2.4 ± 1.1 123.0 ± 8.9 1.1 ± 1.4 0.0 ± 0.0 

5 7.1 ± 2.7 0.0 ± 0.0 0.5 ± 0.7 0.4 ± 0.5 19.3 ± 2.8 0.0 ± 0.0 

6 2.4 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.3 0.0 ± 0.0 4.4 ± 1.4 
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Based on the confusion matrix, 𝑃, 𝑅, and 𝐹1 for each class can be calculated. The 

values and their variances are presented in Table 4. The results show that the precision of 

earthquake prediction is high but the recall is low. This is because, in many cases, the 

samples with earthquakes are predicted to have no earthquakes, which is consistent with 

the results of the confusion matrix. 

Table 4. Results of the seismic intensity classification evaluation indices on the test set. 

Intensity 0 2 3 4 5 6 

𝑃 0.80 ± 0.02 0.92 ± 0.04 0.91 ± 0.02 0.92 ± 0.03 0.91 ± 0.10 0.92 ± 0.19 

𝑅 0.95 ± 0.01 0.74 ± 0.05 0.75 ± 0.05 0.75 ± 0.02 0.71 ± 0.09 0.65 ± 0.10 

𝐹1 0.87 ± 0.01 0.82 ± 0.04 0.82 ± 0.03 0.83 ± 0.02 0.79 ± 0.06 0.75 ± 0.13 

The average 𝐴𝑐𝑐 of the then experiments on the test set was 84.89 ± 1.76% and 𝑀𝑆𝐸 

was 1.74 ± 0.20. The result of 𝑀𝑆𝐸 is consistent with the result of the confusion matrix in 

Table 3; that is, the model can easily predict the earthquake to the adjacent 1–2 magnitude 

range of real intensity. 

The prediction results of earthquake intensity also included the prediction results of 

the earthquake location. Therefore, based on the classification prediction of earthquake 

intensity, the prediction results are divided into earthquake and no earthquake, the 1–6 

levels in the intensity classification are merged into an earthquake, and the classification 

prediction of the earthquake location can be obtained. Table 5 shows the confusion matrix 

of earthquake location prediction in the ten experiments, in which each row represents 

whether there is an earthquake and each column represents the model’s prediction. The 

first term of each cell is the mean of the ten predictions and the second term is the variance 

of the ten predictions. From the confusion matrix, the overall 𝐴𝑐𝑐 of the earthquake loca-

tion was 86.3%. 

Table 5. Confusion matrix of the earthquake location classification on the test set. 

 No Earthquake Earthquake 

No earthquake 386.5 ± 8.65 18.3 ± 4.86 

Earthquake 94.0 ± 13.21 321.2 ± 10.00 

3.2. Control Group Using Atmospheric Anomaly Data Only 

To explore the role of multi-layer information integration in earthquake prediction, 

this study designs a control experiment based on SGSM using only atmospheric anomaly 

data and uses a 3D neural network without group convolution for earthquake prediction. 

The AA-C was repeated three times with different random dataset partitions and neural 

network initial parameters. Figure 8 shows the mean and variance of the training loss 

function curves of AA-C. The shape of the curve is very similar to that of SGMG-EEW, the 

final loss function value also converges to approximately 0.02, and the 𝐴𝑐𝑐 of the training 

set is higher than 99%. 
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Figure 8. Mean and variance of the training loss function curves of AA-C. 

Table 6 shows the confusion matrix of the seismic intensity classification of AA-C on 

the test set. The results show that there are also some cases in AA-C in which some true 

values with earthquakes are predicted as no earthquakes. 

Table 6. Confusion matrix of the seismic intensity classification on the test set. 

Intensity 0 2 3 4 5 6 

0 387.3 ± 5.7 2.0 ± 0.8 6.7 ± 1.2 4.7 ± 1.7 0.0 ± 0.0 0.7 ± 0.5 

2 20.0 ± 3.3 56.0 ± 6.5 2.0 ± 0.8 0.3 ± 0.5 0.3 ± 0.5 0.0 ± 0.0 

3 29.3 ± 7.9 1.3 ± 1.2 105.7 ± 12.4 6.0 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 

4 40.3 ± 7.6 0.3 ± 0.5 1.0 ± 0.8 119.3 ± 7.0 1.0 ± 0.8 0.0 ± 0.0 

5 8.0 ± 2.4 0.0 ± 0.0 0.0 ± 0.0 1.3 ± 0.9 19.7 ± 2.9 0.0 ± 0.0 

6 1.7 ± 0.9 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5 0.0 ± 0.0 4.7 ± 1.7 

Based on the confusion matrix, 𝑃, 𝑅, and 𝐹1 for each class can be calculated. The 

index values and their variances are listed in Table 7. The overall 𝐴𝑐𝑐 of the three exper-

iments was 84.47 ± 2.30% and 𝑀𝑆𝐸 was 1.75 ± 0.24. 

Table 7. Results of the seismic intensity classification evaluation indices on the test set. 

Intensity 0 2 3 4 5 6 

𝑃 0.80 ± 0.03 0.94 ± 0.02 0.92 ± 0.01 0.90 ± 0.01 0.94 ± 0.05 0.85 ± 0.11 

𝑅 0.97 ± 0.01 0.71 ± 0.03 0.74 ± 0.07 0.74 ± 0.03 0.68 ± 0.10 0.73 ± 0.07 

𝐹1 0.87 ± 0.02 0.81 ± 0.03 0.82 ± 0.05 0.81 ± 0.01 0.78 ± 0.06 0.77 ± 0.02 

3.3. Control Group Using Historical Earthquake Data Only 

To further explore the role of multi-layer information integration in earthquake pre-

diction, this study designed a control experiment based on SGSM using only historical 

earthquake data and used a 3D neural network without group convolution for earthquake 

prediction. The HE-C was repeated three times with different random dataset partitions 

and neural network initial parameters. Figure 9 shows the mean and variance of the train-

ing loss function curves of the HE-C. The shape of the curve is very similar to that of 

SGMG-EEW, the final loss function value also converges to approximately 0.02, and the 

𝐴𝑐𝑐 of the training set is higher than 99%. 



Remote Sens. 2021, 13, 3426 17 of 23 
 

 

 

Figure 9. Mean and variance of the training loss function curves of HE-C. 

Table 8 shows the confusion matrix of the seismic intensity classification of HE-C on 

the test set. The results show that there are also some cases in HE-C in which some true 

values with earthquakes are predicted as no earthquakes. 

Table 8. Confusion matrix of the seismic intensity classification on the test set. 

Intensity 0 2 3 4 5 6 

0 394.3 ± 3.1 2.3 ± 0.9 4.0 ± 1.6 8.0 ± 0.8 0.7 ± 0.5 0.0 ± 0.0 

2 30.7 ± 6.6 39.0 ± 6.4 1.3 ± 1.2 0.7 ± 0.5 0.0 ± 0.0 0.0 ± 0.0 

3 40.3 ± 4.0 3.7 ± 0.5 90.7 ± 1.2 4.3 ± 2.9 0.0 ± 0.0 0.0 ± 0.0 

4 50.3 ± 6.2 0.7 ± 0.5 3.0 ± 0.8 109.7 ± 12.5 1.7 ± 0.9 0.0 ± 0.0 

5 10.3 ± 2.6 0.0 ± 0.0 0.3 ± 0.5 0.3 ± 0.5 16.0 ± 2.2 0.0 ± 0.0 

6 4.0 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 3.7 ± 1.2 

Based on the confusion matrix, 𝑃, 𝑅, and 𝐹1 for each class can be calculated. The 

index values and their variances are listed in Table 9. The overall 𝐴𝑐𝑐 of the three exper-

iments on the test set was 79.67 ± 1.85% and 𝑀𝑆𝐸 was 2.32 ± 0.23. 

Table 9. Results of the seismic intensity classification evaluation indices on the test set. 

Intensity 0 2 3 4 5 6 

𝑃 0.74 ± 0.03 0.85 ± 0.02 0.91 ± 0.02 0.89 ± 0.01 0.87 ± 0.02 1.00 ± 0.00 

𝑅 0.96 ± 0.00 0.54 ± 0.07 0.65 ± 0.01 0.66 ± 0.05 0.60 ± 0.04 0.47 ± 0.13 

𝐹1 0.84 ± 0.02 0.66 ± 0.06 0.76 ± 0.01 0.76 ± 0.03 0.71 ± 0.04 0.63 ± 0.13 

3.4. Non-Group Convolution Control Group 

To verify the effect of group convolution in deep learning neural networks, this study 

designed a non-group convolution control experiment that used a 3D neural network 

without group convolution for the same training and test data. The group convolution 

used in 3D-GridResNet-18 was replaced by ordinary 3D convolution and the rest of the 

network structure was unchanged. The NG-C was repeated three times with different 

random dataset partitions and neural network initial parameters. Figure 10 shows the 

mean and variance of the training loss function curves of the NG-C. The shape of the curve 

is very similar to that of SGMG-EEW, the final loss function value also converges to ap-

proximately 0.02, and the 𝐴𝑐𝑐 of the training set is higher than 99%. 
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Figure 10. Mean and variance of the training loss function curves of NG-C. 

Table 10 shows the confusion matrix of the seismic intensity classification of NG-C 

on the test set. The results show that there are also some cases in NG-C in which some 

true values with earthquakes are predicted as no earthquakes. 

Table 10. Confusion matrix of the seismic intensity classification on the test set. 

Intensity 0 2 3 4 5 6 

0 386.0 ± 5.3 1. 7 ± 1.7 6.0 ± 0.8 6.3 ± 4.8 1.3 ± 1.9 0.0 ± 0.0 

2 21.3 ± 3.4 55.3 ± 7.1 1.3 ± 0.5 0.7 ± 0.9 0.0 ± 0.0 0.0 ± 0.0 

3 33.7 ± 8.2 1.7 ± 2.4 104.0 ± 13.1 2.7 ± 0.5 0.3 ± 0.5 0.0 ± 0.0 

4 40.7 ± 10.2 0.7 ± 0.9 3.0 ± 0.8 117.0 ± 5.1 0.7 ± 0.9 0.0 ± 0.0 

5 9.0 ± 2.9 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.5 19.7 ± 2.9 0.0 ± 0.0 

6 2.0 ± 1.4 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 4.7 ± 1.7 

Based on the confusion matrix, 𝑃, 𝑅, and 𝐹1 for each class can be calculated. The 

values of these indicators and their variances are presented in Table 11. The overall 𝐴𝑐𝑐 

of the three experiments on the test set was 83.74 ± 1.76%, which is slightly lower than 

that of SGMG-EEW (84.89 ± 1.76%), and 𝑀𝑆𝐸 is 1.89 ± 0.34, which is slightly higher than 

that of SGMG-EEW (1.74 ± 0.20). This shows that group convolution is beneficial for the 

deep learning of multi-layer data. 

Table 11. Results of the seismic intensity classification evaluation indices on the test set. 

Intensity 0 2 3 4 5 6 

𝑃 0.78 ± 0.03 0.93 ± 0.07 0.91 ± 0.02 0.92 ± 0.05 0.89 ± 0.08 1.00 ± 0.00 

𝑅 0.96 ± 0.01 0.70 ± 0.04 0.73 ± 0.08 0.73 ± 0.04 0.68 ± 0.10 0.73 ± 0.07 

𝐹1 0.86 ± 0.02 0.80 ± 0.05 0.81 ± 0.06 0.81 ± 0.02 0.77 ± 0.06 0.84 ± 0.05 

3.5. SVM Control Group 

To verify the necessity of deep learning in earthquake warnings, the fourth control 

experiment in this study used the traditional statistical machine learning model. The data 

used were the atmospheric anomaly data and historical earthquake data from Japan, and 

the model used was the SVM [39]. 

The input data of SVM-C was a one-dimensional vector quantization of a 10 × 2 × 32 

× 32 grid of each training sample of the atmospheric anomaly and historical earthquake 

data, and each training sample was a vector of 20,480 length. The division of the training 

and verification sets was consistent with the experimental group, and the maximum num-

ber of iterations of SVM-C training was set to 500. 
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Table 12 shows the confusion matrix of the seismic intensity classification of the 

SVM-C on the test set. The 𝐴𝑐𝑐 of SVM-C was significantly lower than that of deep learn-

ing methods. The results show that the correlation between seismic intensity and its pre-

cursor data is highly non-linear; thus, deep learning is necessary to establish this complex 

spatiotemporal correlation. 

Table 12. Confusion matrix of the seismic intensity classification on the test set. 

Intensity 0 2 3 4 5 6 

0 398 0 0 1 0 0 

2 71 15 0 0 0 0 

3 53 0 91 3 0 0 

4 67 0 2 97 0 0 

5 15 0 0 1 8 0 

6 7 0 0 0 0 0 

Based on the confusion matrix, 𝑃, 𝑅, and 𝐹1 for each class can be calculated. These 

values are shown in Table 13, from which we can see that the problems of missing reports 

and low recall rates of earthquake warnings are more serious in a simpler model. The 

overall 𝐴𝑐𝑐 of the SVM-C on the test set was 72.99%. 

Table 13. Results of the seismic intensity classification evaluation indices on the test set. 

Intensity 0 2 3 4 5 6 

𝑃 0.65 1.00 0.96 0.95 1.00 0.00 

𝑅 0.99 0.17 0.62 0.58 0.33 0.00 

𝐹1 0.78 0.30 0.75 0.72 0.50 0.00 

3.6. Seismic Statistical Analysis Control Group 

To verify the necessity of SGSM in earthquake warnings, the fifth control experiment 

in this study used the traditional seismic statistical analysis model. The atmospheric 

anomaly data and historical earthquake data from Japan were used, and the seismic sta-

tistical analysis method was the GR model. The SVM model was used to predict whether 

earthquakes would occur based on the stress characteristics extracted by the GR model. 

In the GR model, parameter 𝑏 is considered to reflect the stress state of the crust and is 

an important parameter in seismic statistical analysis. Using the magnitude data within a 

certain time and space range, the maximum likelihood estimation formula for parameter 

𝑏 is as follows: 

𝑏 =
log10 𝑒

𝑀̅ − 𝑀0

 (12) 

where 𝑀̅ is the mean magnitude of the seismic data used and 𝑀0 is the threshold of the 

earthquake magnitude. 

The SSA-C input data was a one-dimensional vector with a length of 20 generated by 

each 10 × 2 × 32 × 32 grid. The first ten features were 𝑏 values calculated every day for 10 

days and the last ten features were the average values of atmospheric anomalies. The di-

vision of the training and verification sets was consistent with the experimental group, 

and the maximum number of iterations of SSA-C training was set to 500. The threshold of 

seismic intensity classification was M0 = 3 , i.e., the classification result concerned 

whether each grid sample would have an earthquake of magnitude greater than three. 

Table 14 shows the confusion matrix of the seismic intensity classification of SSA-C on the 

test set. 
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Table 14. Confusion matrix of the seismic intensity classification on the test set. 

Intensity <=3 >3 

<=3 279 101 

>3 71 104 

Based on the confusion matrix, 𝑃, 𝑅, and 𝐹1 for each class can be calculated. The 

values of these indicators are shown in Table 15, from which we can see that the overall 

𝐴𝑐𝑐 of SSA-C on the test set is the lowest at only 69.01%. This result supports the necessity 

of the SGSM in earthquake warnings. 

Table 15. Results of the seismic intensity classification evaluation indices on the test set. 

Intensity <=3 >3 

𝑃 0.79 0.51 

𝑅 0.73 0.59 

𝐹1 0.76 0.55 

4. Discussion 

As shown in Figure 11, the SGMG-EEW has the highest 𝐴𝑐𝑐 (84.89 ± 1.76%). It uses 

multi-source spatiotemporal data (atmospheric anomalies and historical earthquakes) and 

group convolution, as well as strongly demonstrates the effectiveness of SGSM and 

3DGCNN-SGM. 

 

Figure 11. Model (SGMG-EEW, AA-C, HE-C, NG-C, SVM-C, and SSA-C) prediction accuracies. 

The 𝐴𝑐𝑐 of AA-C (84.47 ± 2.30%) > 𝐴𝑐𝑐 of NG-C (83.74 ± 1.76%) > 𝐴𝑐𝑐 of HE-C 

(79.67 ± 1.85%); that is, the accuracy of the classification using traditional convolution was 

between those of the two control groups using one type of data. This shows that the su-

perposition calculation of all layers in the traditional convolution is likely to negatively 

impact the classification and supports the improvement of group convolution, which is 

conducive to multi-layer data integration in deep learning. 

The 𝐴𝑐𝑐 of SVM-C was lower than that of the three control groups using deep learn-

ing (AA-C, HE-C and NG-C). The results showed that the complex spatiotemporal corre-

lation between earthquake and precursor data is probably behind the low recall rate of 

earthquake warnings. The 𝐴𝑐𝑐 of SSA-C (the control group without SGSM) was lower 

than that of the four control groups using SGSM, supporting the necessity of SGSM. In 

addition, the experimental results of SGMG-EEW, AA-C, HE-C, and NG-C show that 
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SGSM is a suitable deep learning-oriented geographic information data organization 

model. Indeed, SGSM not only supports the deep learning of traditional single-layer data 

but also the deep learning of multi-layer data. 

Figure 12 shows the earthquake prediction results of the trained SGMG-EEW on 21 

July 2019 and 22 July 2019. Notably, the data for these two days do not belong to the da-

taset and have not been trained and tested. The results show that earthquake reports are 

missing in the prediction, consistent with the higher accuracy rate and lower recall rate in 

the experiment. However, although the accuracy of the earthquake prediction on the test 

set can reach 85%, the prediction accuracy of the new data is not ideal and there is still 

room for improvement. 

  
                    (a)                                    (b) 

  
                     (c)                                    (d) 

Figure 12. Earthquake prediction results of the trained SGMG-EEW on 21 July 2019 and 22 July 2019. 

(a) Prediction on 21 July 2019. (b) Ground truth on 21 July 2019. (c) Prediction on 22 July 2019. (d) 

Ground truth on July 22, 2019. 

5. Conclusions 

This study focused on the problems of spatiotemporal association expression and 

deep learning-oriented computing in traditional layer-based data organization models 

against the background of spatiotemporal big data. A grid data organization method of 

multi-source spatiotemporal data based on GeoSOT was designed and SGMG-EEW was 

proposed. In addition, a deep learning verification experiment of the spatiotemporal cor-

relation between multi-source spatiotemporal data (atmospheric anomalies and historical 
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earthquakes) and earthquakes was conducted in Japan. The primary innovations are as 

follows. 

(1) A data organization model of a spatial datum grid (SGSM is a case) is established 

so that “data slices” can form “data blocks”; that is, different single layer spatial data types 

can form high-dimensional data vectors with a consistent data structure. This helps unify 

the deep learning of multi-source spatial information and improves the multi-source spa-

tial information aggregation efficiency. 

(2) Based on the group convolution method, 3DGCNN-SGM is proposed, reducing 

the design and calculation costs of the multi-source spatial information deep learning 

model. 

(3) The experimental results on atmospheric anomalies and historical earthquakes in 

Japan show that the proposed SGMG-EEW can improve the deep learning effect of the 

spatiotemporal association between multi-source spatiotemporal data and earthquakes. 

The accuracy of earthquake magnitude and location warning has significant room 

for improvement. Earthquake warning accuracy depends not only on the data organiza-

tion model but also on the quantity and quality of seismic and its precursory data, as well 

as the deep learning model complexity. In the future, deep learning will be further im-

proved by adding data including geographic factors such as the proximity to fault lines. 

More data types will be used in the SGSM proposed in this paper and the input dimension 

of 3DGCNN-SGM will be increased. 
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