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The survival of transplant kidneys using deceased donors (DD) is inferior to living donors
(LD). In this study, we conducted a whole-transcriptome expression analysis of 24 human
kidney biopsies paired at 30 minutes and 3 months post-transplantation using DD and LD.
The transcriptome profile was found significantly different between two time points
regardless of donor types. There were 446 differentially expressed genes (DEGs)
between DD and LD at 30 minutes and 146 DEGs at 3 months, with 25 genes common
to both time points. These DEGs reflected donor injury and acute immune responses
associated with inflammation and cell death as early as at 30 minutes, which could be a
precious window of potential intervention. DEGs at 3 months mainly represented the
changes of adaptive immunity, immunosuppressive treatment, remodeling or fibrosis via
different networks and signaling pathways. The expression levels of 20 highly DEGs involved
in kidney diseases and 10 genes dysregulated at 30 minutes were found correlated with
renal function and histology at 12 months, suggesting they could be potential biomarkers.
These genes were further validated by quantitative polymerase chain reaction (qPCR) in 24
samples analysed by microarray, as well as in a validation cohort of 33 time point unpaired
allograft biopsies. This analysis revealed that SERPINA3, SLPI and CBF were up-regulated
at 30 minutes in DD compared to LD, while FTCD and TASPN7 were up-regulated at both
time points. At 3 months, SERPINA3 was up-regulated in LD, but down-regulated in DD,
with increased VCAN and TIMP1, and decreased FOS, in both donors. Taken together,
divergent transcriptomic signatures between DD and LD, and changed by the time post-
transplantation, might contribute to different allograft survival of two type kidney donors.
Some DEGs including FTCD and TASPN7 could be novel biomarkers not only for timely
diagnosis, but also for early precise genetic intervention at donor preservation, implantation
and post-transplantation, in particular to effectively improve the quality and survival of DD.
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INTRODUCTION

Kidney transplantation is a life-change treatment for end-stage
renal failure patients. It has been reported that 1-year allograft
survival increased to around 90% in deceased donors (DD) and
95% in living donors (LD), but 10-year survival fell to 51% and
68% respectively (1, 2). Immunological and non-immunological
factors affect chronic allograft injury (CAI) and allograft survival
via different mechanistic signaling pathways (3, 4), which need to
be explored. Serum creatinine (SCr) or estimated glomerular
filtration rate and histopathological score have been widely used,
but clinical limitations also appeared in predicting early CAI (5).
Virtually no conventional methods or available biomarkers well
fit clinical requirements in timely diagnosis and personalized
therapy (6).

High throughput genomic technologies, such as microarray,
enable investigating hundreds of thousands of genes in one
sample at one time, and identifying differentially expressed
genes (DEGs) involved in allograft/recipient survival. The
microarray analysis has been used to disclose the mechanism of
CAI (7), delayed graft function (DGF) (8), rejection (9) and the
nephrotoxicity of calcineurin inhibitors (10). A meta-analysis
using 150 microarray samples from ischemia-reperfusion (IR)
kidneys identified DEGs, corrected the bias in models and species.
26 DEGs including LCN2, CCL2, HMOX1, ICAM1 and TIMP1
were associated with kidney transplantation injury (11). The
enrichment of hypoxia and complement-and-coagulation
pathways were found in DD kidneys, which might be targeted
in donors to improve allograft survival (12). An additional
multicenter prospective study reported that 13 genes from 159
renal biopsies at 3 months post-transplantation with stable renal
function could discriminate allografts at high or low risk of CAI
before irreversible histological damage occurred at 12 months
(13). Candidate genes and/or their proteins such as HAVCR1
(KIM-1) and LCN2 (NGAL) in body fluids were also associated
with kidney injury (14). The ultimate goal of these studies is to
identify and validate DEGs as potential biomarkers to predict and
diagnose CAI and improve post-transplantation care.

In this study, genomic analyses were performed in surveillance
renal biopsies at 3 months post-transplantation, as well as in paired
biopsies obtained at 30 minutes, using DD and LD, for two
purposes. Purpose 1 was to identify DEGs between two types of
donors (DD vs LD) or two time points (3 months vs 30 minutes) in
the first cohort (discovery cohort) of 24 renal biopsies by
microarray analysis. The hypothesis was that the difference
between DD and LD in terms of survival might be ascribed to
the panel of DEGs and maladjusted signaling pathways, and
changed by time post-transplantation. Purpose 2 was to validate
the DEGs previously identified and involved in kidney diseases and
explore the correlation between their expression and functional
and histological readouts at prolonged time points in 24
microarray samples and in a second cohort (validation cohort)
of 33 renal allograft biopsies (unpaired time points) by reverse
transcription quantitative polymerase chain reaction (qPCR). The
hypothesis was that selected DEGs at the early time point might be
potential biomarkers for early diagnosis and specific intervention
of CAI to offering effective personalized post-transplantation care.
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This study revealed divergent transcriptomic signatures between
DD and LD, changed by time post-transplantation, might
contribute to the different survival of two type kidney allografts.
Some of identified and validated DEGs, such as SERPINA3, SLPI,
CBF, FTCD, TASPN7, VCAN, TIMP1 and FOS, could be novel
biomarkers, which reflected initial donor injury, acute immune
responses and adaptive immunity, and associated with
inflammation, cell death, remodeling or potential fibrosis in
transplant renal biopsies.
MATERIALS AND METHODS

Study Design and Sample Collection
In Leicester, United Kingdom, 80-100 patients per year are
transplanted with kidneys: comprising 61% LD including living
related and unrelated donors; and 39% DD including donation
after brain death and donation after cardiac death. This study
was approved by the Ethics Committee, the University Hospitals
of Leicester (EDGE34225/UHL10587). From November 2008 to
October 2010, 24 renal biopsies were collected from LD and DD
paired at 30 minutes (a 30-minute biopsy missed replaced with
one collected at day 7 of involved patient) and 3 months post-
transplantation for microarray analysis, while additional 33
biopsies time point unpaired were also collected for qPCR
validation (Figure 1). With the consent of patients, surveillance
FIGURE 1 | Schematic picture illustrated the study design.
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renal biopsies were obtained under ultrasound guidance. Routine
biopsy samples were fixed in 10% neutral buffered formalin for
histopathological diagnosis, while an additional core of renal
tissue was snap-frozen in liquid nitrogen until further
research analysis.

Total RNA Extraction
Total RNAs were extracted from renal biopsies using an
RNeasy® Plus Mini Kit (Qiagen, West Sussex, UK) with
gDNAs eliminated columns. Briefly, 10-15 mg tissues were
homogenized in 350 ml of RLT Plus buffer containing
guanidine thiocyanate, 1% 2-mercaptoethanol, garnet matrix
and a ceramic sphere using a FastPrep®-24 homogenizer (MP
Biomedicals, Cambridge, UK). Total RNA integrity and quantity
were assessed by Bioanalyzer 2100 (Agilent Technologies,
Cheshire, UK). Samples with RNA integrity number exceeding
6.5 were qualified for downstream processing (7, 15).

Microarray Analysis
Whole-transcriptome profiling was performed using Illumina
HumanHT-12 v4 Expression BeadChips (Illumina, Essex,
UK), which interrogate 47,231 transcripts targeting 28,688
well-established annotated genes. Raw microarray data were
normalized by quantile normalization using the control panel
in the GenomeStudio Software v2010.3 (Illumina). The
qual i ty and intensi ty of average background were
determined in the samples of compared groups. The probes
with signal intensity below the average background signal of
120 were excluded.
Frontiers in Immunology | www.frontiersin.org 3
Reverse Transcription qPCR Validation
Total RNA was reverse-transcribed into cDNA using a Thermo
Scientific RevertAid H minus First Strand cDNA Synthesis Kit
(Fisher Scientific, Loughborough, UK). The primers were
designed to target the same transcripts of the Illumina
microarray Beadchips (Table 1). For each target gene, qPCR
was performed using 1× Maxima SYBR Green qPCR master mix
(Fisher Scientific) and 3.3 µM of forward and reverse primers.
Expression values were normalized using the geometric mean of
UBC, PGK1 and HPRT1, which were identified as stable
housekeeping genes from microarray data. To identify
potential biomarkers, 20 DEGs selected from microarray
analysis, P <0.05, fold change (FC) > 1.5, and involved in renal
injury, plus 2 previously interested genes CASP1 and CASP3,
were further validated by qPCR in 24 microarray samples and 33
biopsies (Supplemental Table 1). FC > 1.5 was chosen after
balancing a number of DEGs between compared groups that
could best describe the nature of available data, and disclose their
association with biological events referring previous
publications, as well as further qPCR validation (7, 16).

Identifying Networks, Pathways, and
Biological Functions
The Ingenuity Pathway Analysis Software v4.0 (Ingenuity®

Systems, Redwood City, CA) was used to map each DEG to its
corresponding gene object in the Ingenuity Pathways Knowledge
Base (17). P-values were calculated using a Right-Tailed Fisher’s
Exact Test, which reflected the likelihood and association
between a set of DEGs in the input dataset and a given
TABLE 1 | 20 highly DEGs selected from microarray analysis for qPCR validation.

Name Forward sequence Reverse sequence

1 SERPINA3 CTGACCTGTCAGGGATCACA TGCAGAAAGGAGGGTGATTT
2 SLPI AATGCCTGGATCCTGTTGAC AAAGGACCTGGACCACACAG
3 VCAN CAAGCATCCTGTCTCACGAA CAACGGAAGTCATGCTCAAA
4 TIMP1 CTTCTGGCATCCTGTTGTTG AGAAGGCCGTCTGTGGGT
5 GSTM1 TCGTGTGGACATTTTGGAGA GGGCTCAAATATACGGTGGA
6 CFB AAGCTGACTCGGAAGGAGGT TCCACTACTCCCCAGCTGAT
7 FGA AGCCGATCATGAAGGAACAC AAAAGCCATCCTCCCAAACT
8 FOS GAGAGCTGGTAGTTAGTAGCATGTTGA AATTCCAATAATGAACCCAATAGATTAGTTA
9 CCND1 CCTGTCCTACTACCGCCTCA CCAGGTCCACCTCCTCCT
10 DUSP1 GTACATCAAGTCCATCTGAC GGTTCTTCTAGGAGTAGACA
11 CX3CL1 TCTGCCATCTGACTGTCCTG CTGTGCTGTCTCGTCTCCAA
12 VHL AGGTCACCTTTGGCTCTTCA TGACGATGTCCAGTCTCCTG
13 CD14 CGACCATGGAGCGCGCGTCCTG GGCATGGATCTCCACCTCTA
14 ACTRT1 GCGTGGACTGGTAACAGGAT TGACACAGGCAGAGGCATAG
15 ARRDC4 TCCCACCTGTTACTCCATCC CCACATCTGCATAATTTGGTG
16 TMEM149 GAGGTGCTGGAAGAGCTGAT CTTGCCACCACCATCTCAAT
17 DBI TGGCCACTACAAACAAGCAA TGGCACAGTAACCAAATCCA
18 UNCSCL AGCTGCGGATGTTATTGGAG TGACGGTCATGAGGTAGTGC
19 DARC CTGATGGCCCTCATTAGTCC CTCCATCTGGGAAGGAATCA
20 SOST TGCTGGTACACACAGCCTTC GTCACGTAGCGGGTGAAGTG
21 CASP3 AGAACTGGACTGTGGCATTGAG GCTTGTCGGCATACTGTTTCAG
22 CASP1 GCTTTCTGCTCTTCCACACC CATCTGGCTGCTCAAATGAA
23 UBC ATTTGGGTCGCGGTTCTTG TGCCTTGACATTCTCGATGGT
24 PGK1 AAGTGAAGCTCGGAAAGCTTCTAT AGGGAAAAGATGCTTCTGGG
25 HPRT1 GCCAGACTTTGTTGGATTTGA ATTTTGCTTTTCCAGTTTCACT
2 previously validated genes (CASP3 and CASP1) and 3 unchanged genes (UBC, PGK1 and HPRT1) were also included.
July 2021 | Volume 12 | Article 657860
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process/pathway/transcription neighborhood is due to random
chance. Gene networks were algorithmically generated based on
their connectivity and assigned score to identify biological
functions and/or diseases.

Relevant Clinical End-Points
Clinical data including the age of donors and recipients, warm
and cold ischemic time, anastomosis time, DGF and rejection
were collected (18). As chosen clinical end-points SCr and Sirius
red (SR) staining were also followed up either at 1-7 days, 1, 3, 6,
12 and 24 months, or 30 minutes, 3 and 12 months. SR staining
representing extracellular matrix collagens I and III deposition
(19–21), were performed in paraffin sections using 0.1% SR in
saturated aqueous picric acid overnight. Slides were rapidly
dehydrated by consequential washing in 0.01 N HCl, 70, 80,
90, 100% ethanol and xylene, and then mounted by DPX
mountant. The field of entire renal cortex in each biopsy was
semi-quantitatively analyzed at 400 magnification using Image
Pro Software (Media Cybernetics, Bethesda, USA).

Statistical Analysis
Non-parametric Man Whitney-U test was performed using
Illumina GenomeStudio Software v2010.3. Unsupervised
hierarchical clustering analysis (HCA, Manhattan average
distance) and principal component analysis (PCA, autoscale)
were also performed using Array Track (22). Correlation
analyses between the expression level of DEGs and SCr or SR
were performed with Microsoft Excel 2007 and SPSS v20 using
the Pearson correlation coefficient. Clinical data such as SCr and
SR staining score were expressed as means ± SEMs. Significance
was assigned to P ≤ 0.05.
(B) Demographic and clinical characteristics of 33 patients for qPCR validation.

Recipient LD 30 min (n = 6) DD 30 min (n = 6)

Age at transplant (yr) 39.5±3.2 49.7±7.0
Sex (% male) 5 (83%) 4 (67%)
Donor age (yr) 45.3±5.6 50.7±6.9
HLA mismatch 2.3±0.8 3.3±1.0
Warm ischemia time (h) 0.08±0.01 0.02±0.02
Cold ischemia time (h) 5.2±1.7 12.0±1.2
Anastomasis time (h) 0.38±0.01 0.50±0.03
Delayed graft function 1/6 (17%) 2/6 (33%)
Rejection episode 1/6 (17%) 2/6 (33%)

The data were expressed as means ± SEMs or % of change.
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RESULTS

Demographics of Patients
and Clinical Data
Warm ischemic time was shorter, but cold ischemic time was
longer in DD vs LD for 12 microarray analysis and 33 qPCR
validation patients (Tables 2A, B). In addition, anastomosis time
was also longer in DD at 30-minute qPCR validation patients.
There were no significant differences in other parameters such as
DGF and rejection episodes. The immunosuppression of all
patients was consisted of tacrolimus, mycophenolate modetil
and prednisolone.

Gene Expression Analysis
All confidently detected genes were analyzed by PCA and
unsupervised HCA. Distinct separate clusters were revealed at
30 minutes and 3 months regardless of donor types (Figure 2).
Interestingly, the DD biopsy collected at day 7 clearly fell into the
gene cluster of 3 months.

The transcriptomic profile was then assessed in 5 DD vs 6 LD
biopsies at 30 minutes. 1735 probes corresponding to 1517
annotated DEGs (P < 0.05) were identified, with 446 DEGs at
FC > 1.5 (Figure 3). With a view to assessing whether different
DEGs were restored later, similar analyses were performed in 6
DD vs 6 LD biopsies at 3 months, with 11 biopsies matched to 30
minutes. 1610 probes corresponding to 1444 annotated DEGs (P
< 0.05) were identified, with 149 DEGs at FC > 1.5 (Figure 3).
The Venn diagram showed 190 commonly DEGs (DD vs LD,
P < 0.05) between two time points, which was reduced to 25
DEGs at FC > 1.5 (Figure 3), including GSTM1, SOD2, CCND1
and SLPI (Supplemental Table 2).
P value LD 3 M (n = 8) DD 3 M (n = 13) P value

NS 51.6±2.6 47.0±4.7 NS
7 (89%) 9 (69%)

NS 47.0±5.8 50.0±3.6 NS
NS 2.8±0.5 2.7±0.6 NS

P < 0.01 0.07±0.01 0.02 ± 0.02 P < 0.05
P < 0.01 5.1±1.3 12.5±0.9 P < 0.001
P < 0.01 0.47±0.05 0.52±0.04 NS

NS 0/8 (0%) 2/13 (15%) NS
NS 0/8 (0%) 0/13 (0%) NS

July 2021 | Volume 12 | Article 657860
TABLE 2 |

(A) Demographic and clinical characteristics of 12 patients for microarray analysis.

Recipient LD 30 min & 3 M (n = 6) DD 30 min & 3 M (n = 6) P value

Age at transplant (yr) 41.5±7.1 49.3±4.0 NS
Sex (% male) 3 (50%) 4 (67%)
Donor age (yr) 48.7±5.6 51.7±4.7 NS
HLA mismatch 2.8±0.9 2.5±0.4 NS
Warm ischemia time (h) 0.08±0.01 0.00±0.00 P < 0.001
Cold ischemia time (h) 3.7±0.5 8.8±1.4 P < 0.01
Anastomasis time (h) 0.49±0.09 0.53±0.09 NS
Delayed graft function 0/6 (0%) 2/6 (33%) NS
Rejection episode 2/6 (33%) 2/6 (33%) NS
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The top 10 up and down-regulated DEGs (DD vs LD and 3
months vs 30 minutes) is presented (Figure 4). DEGs changed by
time post-transplantation, with up-regulation of SERPINA3,
FGA, SLPI and SOD2 at 30 minutes (27, 8, 6 and 4 fold-
difference between DD vs LD respectively, Figure 4A), and 2-3
folds up-regulation of SLPI, GSTM1, GSTM2 and VCAN at 3
months in DD vs LD (Figure 4B). Interestingly, at 3 months, the
two types of donors exhibited different DEGs, with up-regulation
of COL3A1, MMM9 and VCAN (9, 6 and 6 fold-difference
respectively) and 10-fold down-regulation of FGA in DD
(Figure 4D). Also, at 30 minutes vs 3 months, SERPINA3 was
found up-regulated by 8 folds in LD vs DD, whereas COL1A1
and COL1A2 were found upregulated by 8 to 10 folds, and FOSB,
FOS, ATF3, EGR1, DUSP1, JUN and ZFP36 were downregulated
by 8 to 74 folds in both donors (Figures 4C, D).

Functional Annotation, Network, and
Pathway Analysis
Functional annotation analysis revealed many up-regulated
acute phase response genes at 30 minutes (DD vs LD)
A B

FIGURE 2 | Heat map of raw data analysis of microarray, unsupervised hierarchical clustering and principal component analysis. (A) 899 significant DEGs (P < 0.05
and FC > 1.5) in 24 microarray analyzed samples were included in the heat map for unsupervised hierarchical clustering analysis illustrated as Euclidean + Average of
non-normalized data. (B) Samples from biopsies at 30 minutes (dots in pink for DD and blue for LD) and 3 months (dots in black for DD and green for LD) were
located into two clearly separated areas demonstrating clear differences in the overall gene profile between two different time points post-transplantation, rather than
two donor types, expect one day 7 sample. The bigger was the dot size, the closer was the dot to the reader.
FIGURE 3 | Venn diagrams of DEGs. There were 1517 DEGs (DD vs LD) at
30 minutes and 1444 genes at 3 months when P < 0.05, with 190 genes in
common over two time point, while the number of genes was reduced 446 or
149 at each respective time points when P < 0.05 and FC > 1.5, with only 25
genes in common.
July 2021 | Volume 12 | Article 657860

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Transcriptomic Signatures in Kidney Allografts
A B

C D

FIGURE 4 | The list of DEGs. Top 10 up and down-regulated genes (DD vs LD, P < 0.05, FC > 1.5) at 30 minutes and 3 months were shown (A, B). In addition,
top 10 up and down-regulated genes (3 months vs 30 minutes, P < 0.05 and FC > 1.5) in LD and DD (C, D) respectively were also demonstrated.
Frontiers in Immunology | www.frontiersin.org July 2021 | Volume 12 | Article 6578606
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including AGT, CFB, TIMP1 and TNFSF10, except SERPINA3,
SLPI, SOD2, GSTM1 and FGA described above, were found
associated with the cell death including kidney cell apoptosis,
proximal tubular toxicity and renal tubule injury (Figure 5A).
Some of these dysregulated genes including SLPI, TIMP1 and
GSTM1 also seen at 3 months are involved in oxidative stress,
inflammation, tubular injury and cell proliferation (Table 3). In
addition, adaptive immune response genes in DD or LD kidneys
(3 months vs 30 minutes) were also revealed, for instance up-
regulated CASP1, CCL5, CX3CR1, VWF, TIMP1 and LCN2
apart from COL3A1 and VCAN; and down-regulated AGT,
EGF, CDKN1A and PLG apart from FGA, FOS, FOSB and
DUSP1 described above, are associated with immune responses,
cell death including apoptosis and necrosis, cell proliferation and
tissue remodeling (Figure 5B).
Frontiers in Immunology | www.frontiersin.org 7
The example network of DEGs was illustrated including SLPI,
GSTM1, GSTM2, CD14, CD163, VCAN and CCND1 at 3
months (DD vs LD, Figure 6), as well as the signaling pathway
of GSTM1/GSTM2/SLPI-JNK-AKT-ERK-NF-ĸB-VCAN. An
additional schematic picture demonstrated signaling pathways
of acute phase response DEGs at 30 minutes, such as TNF-a/IL-
1-JNK1/2-P38/MARK-NF-ĸB/c-FOS-SOD2/CFB, IL-6-PI3K/
AKT-mTOR/STAT3-FGA/SERPINA3, and RAS-MEK1/2-
ERK1/2-NF-IL6-SERPINA1 in the nucleus, cytoplasm and
extracellular space including plasma (Figure 7).

qPCR Validation
To validate microarray analysis, 25 genes (Table 1) were
quantified by qPCR in the discovery cohort of samples
analyzed by microarray. Excellent correlations were shown
A

B

FIGURE 5 | Functional annotation of DEGs in acute phase response and adaptive immunity by Ingenuity Pathway Analysis. (A, B) P-values were calculated using a
Right-Tailed Fisher’s Exact Test to reflect the association between DEGs and a given process.
July 2021 | Volume 12 | Article 657860
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TABLE 3 | Significantly dysregulated genes in 33 additional biopsies validated by qPCR among 20 DEGs relevant to renal diseases.

Genes Change Comparison P value

SERPINA3 up CAD vs LD at 30 minutes 0.041*
SERPINA3 down 3 months vs 30 minutes in CAD 0.022*
VCAN up 3 months vs 30 minutes in LD 0.028*
VCAN up 3 months vs 30 minutes in CAD 0.081#

TIMP1 up 3 months vs 30 minutes in LD 0.031**
TIMP1 up 3 months vs 30 minutes in CAD 0.092#

VHL up 3 months vs 30 minutes in LD 0.052#

CD14 up 3 months vs 30 minutes in LD 0.058#

CFB up 3 months vs 30 minutes in LD 0.075#

UNCSCL up 3 months vs 30 minutes in LD 0.079#

CCND1 down CAD vs LD at 30 minutes 0.088#

UBC down 3 months vs 30 minutes in LD 0.062#

GSTM1 down 3 months vs 30 minutes in LD 0.097#

FOS down 3 months vs 30 minutes in LD 0.001**
FOS down 3 months vs 30 minutes in CAD 0.002**
Frontiers in Immunology | www.frontiersin.org
 8
 July 2021 | Volume 12 | Article
**P < 0.01; *P < 0.05; #0.05 < P < 0.1.
FIGURE 6 | This schematic figure demonstrated an example of complicated key network links in DEGs between DD and LD at 3 months generated by function
annotation using Ingenuity Pathway Analysis, as well as certain signaling pathways, with red or green color highlighted up or down-regulated genes.
657860
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between both detection platforms with correlation coefficient R2

range from 0.70 to 0.94 for most DEGs, for example R2 = 0.974,
0.885 and 0.780 for SERPINA3, TIMP1 and CCND1 respectively
at 30 minutes, R2 = 0.938, 0.775 and 0.832 for SLPI, VCAN, VHL
respectively at 3 months, and R2 = 0.748 for CASP1 at both time
points. The most P-values were significant, except a few genes at
borderlines or not confidently detected.
Frontiers in Immunology | www.frontiersin.org 9
These 25 genes were also quantified by qPCR in a validation
cohort of 33 additional biopsies to identify potential biomarkers.
In DD, up-regulated SERPINA3 and SLPI, and marginally
down-regulated CCND1 were shown at 30 minutes (Table 3),
with up-regulated TIMP1, down-regulated SERPINA3 and
FOS, marginally up-regulated VCAN at 3 months. At
3 months, up-regulated TIMP1 and VCAN, and down-regulated
FIGURE 7 | This schematic picture illustrated an example of acute phase response signaling pathways in the different compartment of cells such as the nucleus,
cytoplasm and extra cellular space produced by Ingenuity Pathway Analysis, with red or green color highlighted up or down-regulated genes.
July 2021 | Volume 12 | Article 657860
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FOS were revealed in LD, with marginally increased SLPI, CD14,
CFB, VHL and UNC5CL (Table 3).

Renal Function and Histological Changes
The patients enrolled in microarray-based gene expression
analysis were followed up for 24 months, with relatively stable
renal function (Figure 8A), no graft loss, although one patient
who had received a DD kidney died due to sepsis-cardiac arrest.
No significant differences in SCr (obtained from the clinical
database of the University Hospitals of Leicester NHS Trust)
between two types of donors were shown at any time points, with
a consistent better trend in LD (vs DD) at 2-7 days, 1, 6, 12 and
24 months, except pre-transplantation, 1 day and 3 months.
Renal fibrosis assessed by SR staining in 24 microarray and
additional 33 biopsies, mainly located in tubulointerstitial areas
and scattered in glomerular areas, was increased in DD at 3 and
Frontiers in Immunology | www.frontiersin.org 10
12 months compared with 30 min, without significant difference
in LD (Figure 8B).

Correlation Between DEGs
and Clinical Outcomes
To assess whether DEGs at 30 minutes or 3 months could be
potential biomarkers to predict allograft survival, the correlations
between the expression level of these DEGs, SCr and SR staining
were analyzed at the same and extended time points. Using the
microarray signal intensity of DD and LD at 30minutes, a list of top
120 genes was identified significantly correlated with SCr and/or SR
staining. For instance, SERPINA3 was found negatively correlated
with SCr at 1-7 days, and TNFSF10 was found positively correlated
with SCr at 1, 3, 6 and 12 months (Figures 9A, B). The expression
levels of 10 DEGs (highly expressed and involved in renal
physiopathology based on GO terms or previous publications)
A B

FIGURE 8 | Dynamic change of renal function and Sirius Red staining in 12 patients (6 LD and 6 DD) over a prolonged period up to 2-year post-transplant.
(A) The data of SCr were collected at pre-transplantation, day1-7 daily, 1, 3, 6, 9, 12 and 24 months post-transplantation. (B) The change of Sirius Red staining
at 30 minutes, 3 and 12 months. The staining was mainly located in tubulointerstitial areas, which was significantly increased at 3 and 12 months compared with
30 minutes in DD, without significant difference between time points in LD. *P < 0.05; **P < 0.01.
July 2021 | Volume 12 | Article 657860

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Transcriptomic Signatures in Kidney Allografts
GSTM1, COQ2, CCND1, CFB, FTCD, UNC5CL, SERPINA3,
RAI14, TSPAN7 and SOD2 were correlated with both SCr and
SR staining at 12 months (Supplemental Table 2). Moreover, at 3
months TSPAN7, BTG3 or COQ2 expression was correlated with
SCr, while FAU, UMOD, TSPO, IMPDH2, ADSS, RAF1, ARG2,
AGTR1 or PDE6D expression was correlated with SR staining. In
addition, other DEGs PTPN6, CNNM3, CSTF3, CHURC1, UCRC,
COX7B, FXYD5, CD74, MRPL42P5, SENP2, TMEM129,
EIF2AK1, FAM165B, C6ORF66 and ATP5J were also found in
four patients with a rejection compared to those without.

Above 10 DEGs correlated with both SCr and SR staining
were further validated by qPCR in the second cohort of 33
Frontiers in Immunology | www.frontiersin.org 11
biopsies. In DD (vs LD), there were four up-regulated genes
FTCD, SERPINA3, TASPN7 and CFB (P < 0.05) at 30 minutes,
with a trend of increased SOD2 and decreased CCND1, while
raised FTCD and TSPAN7 (P < 0.001) were also seen at
3 months, with marginally up-regulated CCND1 and SOD2.

The correlation between the 10 DEGs and SCr or SR at 12
months in the second cohort of 33 biopsies was further
analyzed respectively using Pearson correlation coefficient.
CFB (R=-0.669, P=0.034) and COQ2 (R=-0.649, P=0.042) at
30 minutes were significantly correlated with SR at 12 months,
while UNC5CL (R=0.553, P=0.098) at 30 minutes was marginally
correlated with SCr at 12 months. Other genes at 3 months such as
A

B

FIGURE 9 | Correlations between microarray analysis detected DEGs and renal function in the first cohort of 24 biopsies. (A) Negative correlations between
SERPINA 3 and SCr at early time points from day 1 to 7; (B) Positive correlations between TNFSF10 and SCr at later time points from 1, 3, 6 to 12 months.
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COQ2 (R=0.482, P=0.059) or SERPINA3 (R=0.405, P=0.095)
were also marginally correlated with SCr or SR at 12 months
respectively (Figure 10).

In addition, some DEGs such as SERPINA3, SLPI, VCAN,
FOS and SOD2 revealed in this study by microarray analysis,
validated by qPCR and associated with kidney injury, were also
reported by a previous publication (14) (Supplemental Table 3).
DISCUSSION

An increasingly severe shortage of kidney donors leads to the
expansion of donor pools by including DD for transplantation.
However, the survival of transplant kidneys using DD is not as
good as LD. In this study, the microarray analysis of renal
Frontiers in Immunology | www.frontiersin.org 12
allograft biopsies showed divergent transcriptomic signatures
between LD and DD, which shifted from acute immune
responses at 30 minutes to tissue injury/repair and remodeling/
fibrosis at 3 months and might contribute to different long-term
survival. DEGs might be attributed to initial donor conditions,
innate and adaptive immune responses, persistent inflammation
associated with immunosuppressants. Some DEGs including
SERPINA3, SLPI, CBF, FTCD, TASPN7, VCAN, TIMP1 and
FOS might be novel biomarkers to facilitate timely diagnosis and
early therapeutic intervention in donor kidney preservation,
implantation or post-transplantation, in particular, effectively
improve the donor quality and allograft survival of DD.

Clearly different gene clusters revealed in allograft biopsies
between two time points regardless of donor types indicates time
post-transplantation playing crucial roles. DEGs affected by time
FIGURE 10 | Correlations between qPCR validated DEGs at 30 minutes or 3 months and SCr or SR at 12 months in the second cohort of 33 renal biopsies. The
significant positive or marginal negative correlations were shown between COQ at 3 months or UNC5CL at 3 minutes and SCr at 12 months, as well as COQ, CFB
or SERPINA3 at 30 minutes and SR at 12 months, respectively.
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post-transplantation might mask initial differences of cold or
warm ischemic time in donors, as donation trauma and acute
immune responses were overwhelming in implantation. The
dramatic changes were eased off, which was reflected by 3
times more DEGs at 30 minutes than 3 months.

We then prioritized to analyze howDEGs (DD vs LD) associated
with allograft survival. The functional annotation revealed up-
regulated acute response genes SERPINA3, FGA and SLPI,
together with inflammation and nephrotoxicity associated genes
SOD2, GSTM1, VCAN and TIMP1, but down-regulated repair
related genes FGA, CCND1 and FOS in DD at 30 minutes. More
fibrotic genes COL3A1, TIMP4 andMMP9 were raised in DD, with
increased TIMP1, VCAN, COL1A1 and COL1A2 in both donors at
3 months. The dynamic change of these DEGs well reflected donor
initial injury and recipient adaptive immunity via different networks
and signaling pathways such as TNF-a/IL-1-JNK1/2-P38/MARK-
NF-ĸB/c-FOS-SOD2/CFB and GSTM1/GSTM2/SLPI-JNK-AKT-
ERK-NF-ĸB-VCAN. These results were consistent with a study
using 59 protocol kidney biopsies that showed immune pathway
activation, fibrotic gene expression and cell proliferation-repair-
remodeling at 1, 3 and 12 months respectively (7). 40% DEGs and
50% pathways initially activated were persisted to 3 months, while
pro-fibrotic genes were expressed before observed microscopic
interstitial fibrosis, suggesting that DEGs might be early biomarkers.

FGA protein is crucial in coagulation, inflammation and tissue
regeneration. Soluble fibrinogen-like protein 2 (sFGL2) increased
in the circulation of allograft rejection patients, contributed to the
apoptosis of cultured tubular epithelial cells (TECs), which is
detrimental in early injury, but also initiates remodeling (23, 24).
Increased sFGL2 in the recovery stage of auto-transplanted porcine
kidneys was associated with inflammatory cell apoptosis and
decreased inflammation (25). However, reduced FGA in the
plasma of FGA+/- mice protected IR kidneys against TEC death
and inflammation, with increased CCND1 and proliferation (26).
Taken together, down-regulated FGA and CCND1 in DD at 3
months might affect allograft recovery.

SOD2 encoding mitochondrial enzyme protects against IR
injury and inflammation (27). SOD2 was found decreased in the
urine of aged-mice with increased oxidative stress, apoptosis
tubulointerstitial fibrosis and proteinuria (28). GSTM1 protects
against xenobiotic compounds and toxicity caused by
immunosuppressants in renal transplant recipients. Up-regulated
GSTM1 was protective to increased oxidative stress in chronic
kidney disease (29). However, GSTM1 was also linked to high
rejection risks and unfavorable to long-term allograft outcomes (30,
31). In this study, highly expressed SOD2 and GSTM1 in DD at 30
minutes and 3 months might reflect initial donor injury, as well as
self-defense.

Strong positive correlations between two detection methods
were shown for most detected DEGs, and potential biomarkers
were also identified and validated by qPCR. Up-regulated
SERPINA3 and SLPI were shown in DD at 30 minutes with
SLPI remained high at 3 months, and raised both in LD at 3
months. SERPINA3 is a secreted acute phase protein associated
with inflammatory diseases, a potential pharmacological target
(32, 33). Elevated serum SERPINA3 in mice increased the
Frontiers in Immunology | www.frontiersin.org 13
transendothelial permeability of retina associated with diabetic
retinopathy (34). Urine SERPINA3 was positively correlated
with the activity of lupus nephritis, with SERPINA3 located in
endothelial cells and TECs (35), and predicted renal
inflammation and fibrosis, especially early transition of AKI to
CKD (36). SLPI protein, an inhibiting proteolytic enzyme,
participates in mucosa anti-microbial defense by mediating the
production of anti-inflammatory cytokines, IL-10 and TGF-b
(37). Up-regulated SLPI in epithelial cells plays active roles in
defending airways upon inflammation (38). SLPI expressed in
TECs of heathy renal biopsies and elevated in serum of uremic
patients (39) to regulate proteolytic activity in inflammatory sites
(40). SLPI in plasma and urine were increased in AKI post-
transplantation, aortic aneurysm repair and cardiac surgery (41–
43). SERPINA3 and SLPI, therefore, might be ideal biomarkers
of kidney injury.

TIMP1 and VCANwere up-regulated in both DD and LD at 3
months, with reduced FOS. TIMP1 associated with renal IR
injury (11), together with matrix metalloproteinases (MMPs),
plays important roles in the progression of CAI (44). Urinary/
serum TIMP1/MMPs was/were active in acute tubulointerstitial
injury/inflammation (45). VCAN, an indicator of AKI post-
transplantation and ongoing parenchymal injury, predicts
allograft loss (14). FOS, a transcription factor, involves in
MAPK signaling pathway (46). FOS protein has been described
as stimulating central opioid receptors, activated renal
sympathetic nerves and enhanced IR-induced AKI in mice
(47). c-FOS and VEGF play synergistic roles in inflammation
and angiogenesis in the peritoneal membrane upon
inflammation and lead to ultrafiltration failure (48). The
selective inhibitor of c-FOS/activator protein-1 (AP-1, a redox-
sensitive transcription factor) inhibited proinflammatory
cytokines and improved the survival of lipopolysaccharide-
induced AKI (49).

Of note, in the top 10 down-regulated gene list, 7 genes FOSB,
FOS, ATF3, EGR1, DUSP1, JUN and ZFP36 were down-
regulated in both LD and DD at 3 months. All of them are
transcription factors, and immediate early genes in the mouse
mononuclear phagocyte system, while they co-expressed with
cytokines and chemokines indicates disaggregated cells (50).
Hydrogen peroxide-induced apoptosis in mesangial cells via
JNK/c-FOS/c-JUN/AP-1 pathway (51). ATF3, a rapidly
induced transcription factor by IR, strongly represses the
transcription of inflammatory cytokines, plays essential roles in
anti-apoptosis, anti-migration and anti-inflammation (52). EGR-
1 is urea-inducible early gene transcription factor in renal inner
medullary collecting ducts (53). Biological effects of these genes
on CAI are worthy to explore.

Finally, the expression level of 10 DEGs at 30 minutes were
found positively corrected with both renal function and histology
at 12 months and were validated in 33 additional biopsies to
identify more biomarkers. Up-regulated SERPINA3, FTCD,
TSPAN7 and CFB were confirmed in both DD and LD at 30
minutes. FTCD, a liver-specific enzyme integrating Golgi
complex with vimentin filament cytoskeleton, is linked to
autoimmune hepatitis and glutamate formiminotransferase
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deficiency (54, 55). FTCD appears to be the molecular “glue”
crosslinking vimentin filaments into fibers (56). TSPAN7 plays a
role in cell and membrane compartmentalization and regulates
the trafficking and function of its partner proteins (57),
associated with cancer metastasis-suppressive interactions (58–
60). It has been hard to find a direct link between FTCD or
TSPAN7 and kidney diseases so far. CFB is involved in the
complement alternative pathway and atypical hemolytic uremic
syndrome (aHUS) (61). Recurrence risk and kidney allograft
outcome in recipients with aHUS were associated with
thrombotic microangiopathy and de novo CFB mutation (62,
63). CBF was highly expressed in DD at 30 minutes and fell at 3
months, but increased in LD, implying that CBF, similar to
SERPINA3, might be adjusted at different stages to limit damage
and encourage remodeling.

Nevertheless, there are certain limitations in this study. A
small size of 24 biopsies were used for microarray analysis, but
DEGs were revealed between DD and LD at as early as 30
minutes after implantation (a precious therapeutic window), and
some of these DEGs were persistent at 3 month. In addition,
selected DEGs were also further validated by qPCR in the 24
microarray analyzed samples and additional 33 time point
unpaired renal biopsies, and were correlated with renal
function and renal fibrosis at extended time points up to 24
months. CASP1 and CASP3, intensively investigated in our
previous studies, were not on the list of DEGs, but their
importance in transplant-related injuries cannot be excluded as
FC > 1.5 and P < 0.05 were selected.

The preliminary data from this study need to be cross-validated
in large clinic cohorts with long-term follow-up, or in subgroups
with/without DGF and/or rejection. There was no clinical
difference in terms of DGF and rejection between LD and DD,
but DEGs such as PTPN6, CNNM3, CSTF3, CHURC1 and UCRC
were revealed in four patients with a rejection compared to without
rejection. To validate these DEGs as biomarkers, analyzing
samples collected from a large cohort of patients who received
either LD or DD kidneys and showed clear allograft dysfunction,
rejection or loss would be ideal dataset to explore associations
between DEGs measured before 3 months post-transplantation
and adverse outcomes or long-term survival. It has been reported
that other DEGs detected by microarray such as HuMig and
MIP-3b were abundant in patients with acute rejection (64), CD20
was associated with B cell infiltration and acute rejection (9), and
KRT15 and HOXB7 at 6 months were linked to chronic rejection
at 12 months (Supplemental Table 3) (65).

The microarray analysis used cDNA synthesized based on
total RNA extracted from kidney homogenates might average
DEGs in different cells/cell types due to their heterogeneity in
kidneys (66). Laser captured microdissection and single cell
sequence may be solutions. The relations between DEGs,
upstream regulating miRNAs, corresponding proteins and
downstream biological events were difficult to fully dissect.
Current translational human studies require concurrent
genomic, proteomic and metabolomic analysis in small tissues
(67). The real time central molecular assessment of kidney
transplant biopsies based on Molecular Microscope Diagnostic
Frontiers in Immunology | www.frontiersin.org 14
System classifier algorithms offers a useful new dimension in
biopsy interpretation (68), although mining DEGs in
bioinformatics data and transferring to clinical applications are
still challenging.

Moreover, a great potential of gene therapy using RNAi has been
demonstrated in translational medicine. Registered clinical trials of
siRNAs (www.ClinicalTrials.gov) rapidly increased, only I5NP
targeting p53 has been validated in kidney injury. siRNA target
caspase-3 was renoprotective in our previous studies used a serial of
biological models including TECs andmouse IR kidneys (69, 70). In
particular, local and systemic administrating serum stabilized
caspase-3 siRNA effectively silenced caspase-3, favorably changed
serum cytokines, reduced apoptosis and inflammation, and
protected cold static or normothermic machine preserved and
auto-transplant porcine kidneys (71, 72). Therefore, siRNA
therapy is promising in preservation/resuscitation donors and
reducing declined rate of DD (73), and in implantation and post-
transplantation to effectively prolong allograft survival.

In conclusion, the transcriptional profile of allograft biopsies
is different between 30 minutes and 3 months, with more DEGs
between DD and LD at 30 minutes reflected donor injury and
recipient innate immunity. Consistent DEGs at 3 months mainly
represented adaptive immunity, remodeling or fibrosis. Some
DEGs such as SERPINA3, SLPI, CBF, FTCD, TSPAN7, VCAN,
TIMP1 and FOS might be novel biomarkers for not only timely
diagnosis, but also facilitating precise genetic intervention in
donor preservation, implantation and the early stage of post-
transplantation, monitoring CAI progression and therapeutic
responses, and effectively improving the donor quality and
allograft survival of DD.
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Supplementary Table 1 | Details of 20 selected DEGs (P < 0.05, FC > 1.5)
relevant to kidney diseases. FC, fold change. Grey color highlighted DEGs either
commonly expressed in two time points or correlated with both SCr and SR staining.

Supplementary Table 2 | 25 DEGs (No.1-25) between DD & LD in common at
30 min and 3 months, and 10 DEGs (No.2, 3, 19 and 26-32) at 30 minutes
correlated with both SCr and SR staining for further qPCR detection to identify
biomarkers. SCr, serum creatinine; SR, Sirius red staining.

Supplementary Table 3 | DEGs revealed by microarray analysis and associated
with kidney injury or allograft rejection from this study and previous publications.
There were some commonly DEGs (underline) between studies.
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