
Neural Diagrammatic Reasoning

Duo Wang

Churchill College

This dissertation is submitted on August, 2020 for the degree of Doctor of Philosophy

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome
of work done in collaboration except as declared in the Preface and specified in the text. It
is not substantially the same as any that I have submitted, or am concurrently submitting,
for a degree or diploma or other qualification at the University of Cambridge or any other
University or similar institution except as declared in the Preface and specified in the text.
I further state that no substantial part of my dissertation has already been submitted, or
is being concurrently submitted, for any such degree, diploma or other qualification at the
University of Cambridge or any other University or similar institution except as declared
in the Preface and specified in the text. This dissertation does not exceed the prescribed
limit of 60 000 words.

Duo Wang
August, 2020

Abstract

Diagrams have been shown to be effective tools for humans to represent and reason about
complex concepts. They have been widely used to represent concepts in science teaching, to
communicate workflow in industries and to measure human fluid intelligence. Mechanised
reasoning systems typically encode diagrams into symbolic representations that can be
easily processed with rule-based expert systems. This relies on human experts to define the
framework of diagram-to-symbol mapping and the set of rules to reason with the symbols.
This means the reasoning systems cannot be easily adapted to other diagrams without
a new set of human-defined representation mapping and reasoning rules. Moreover such
systems are not able to cope with diagram inputs as raw and possibly noisy images. The
need for human input and the lack of robustness to noise significantly limit the applications
of mechanised diagrammatic reasoning systems.

A key research question then arises: can we develop human-like reasoning systems that
learn to reason robustly without predefined reasoning rules? To answer this question, I
propose Neural Diagrammatic Reasoning, a new family of diagrammatic reasoning
systems which does not have the drawbacks of mechanised reasoning systems. The new
systems are based on deep neural networks, a recently popular machine learning method
that achieved human-level performance on a range of perception tasks such as object
detection, speech recognition and natural language processing. The proposed systems are
able to learn both diagram to symbol mapping and implicit reasoning rules only from data,
with no prior human input about symbols and rules in the reasoning tasks. Specifically I
developed EulerNet, a novel neural network model that solves Euler diagram syllogism
tasks with 99.5% accuracy. Experiments show that EulerNet learns useful representations
of the diagrams and tasks, and is robust to noise and deformation in the input data. I
also developed MXGNet, a novel multiplex graph neural architecture that solves Raven
Progressive Matrices (RPM) tasks. MXGNet achieves state-of-the-art accuracies on two
popular RPM datasets. In addition, I developed Discrete-AIR, an unsupervised learning
architecture that learns semi-symbolic representations of diagrams without any labels.
Lastly I designed a novel inductive bias module that can be readily used in today’s deep
neural networks to improve their generalisation capability on relational reasoning tasks.

Neural Diagrammatic Reasoning
Duo Wang

Acknowledgements

This dissertation is never possible with the support from many people that I would like
to acknowledge and thank. First of all I would like to acknowledge my two supervisors,
Pietro Lio and Mateja Jamnik. They have provided me with ideas and inspirations
for my research, and gave me the mental support much needed to get through the
PhD journey. Next I would like to thank Cecilia Mascolo and Sean Holden for
advising me for the first and second year of PhD. I would also like to thank many
collaborators who provide me with inspirations and directions. They are (not ordered)
Zhongzhao Teng, Yiren Zhao, Petar Velickovic, Jin Zhu, Filippo Spiga, Rui
Zhang, Junwei Yang, Rolleen Colleens, Robert Mullins, John Suckling. I would
also like to acknowledgeChristopher Summerfield, Zoe Kourtzi, Guy Williams and
everyone from the AI group in the Department of Computer Science and Technology,
University of Cambridge, for providing suggestions and ideas on my research. Finally
I would like my friends and family who provided me the support much needed for this
journey. I would especially like to thank my parents Xiaohong Wang and Hongwei
Gao, for raising me to who I am today, and Tao Dou, for the endless care and love.

Contents

1 Introduction 15
1.1 Related works . 18
1.2 Main Contributions . 20

1.2.1 Investigating Euler Diagram Syllogisms with Deep Neural Networks 20
1.2.2 Abstract Diagrammatic Reasoning with Multiplex Graph Networks 20
1.2.3 Unsupervised Diagram Summarisation with Deep Generative Models 21
1.2.4 Generalisable Neural Network for Relational Reasoning 21

1.3 Publications . 22

2 Background 25
2.1 Notational framework . 25
2.2 Diagrammatic Reasoning . 26

2.2.1 Euler Diagrams and Syllogisms . 26
2.2.2 Raven Progressive Matrices . 27

2.3 Artificial Neural Networks . 30
2.4 Convolutional Neural Network . 31
2.5 Selected improvements on training DNNs 33

2.5.1 Batch Normalisation . 33
2.5.2 Residual Networks . 34
2.5.3 Adam optimiser . 35
2.5.4 Variational Auto-Encoders . 35

2.6 Graph Neural Networks . 36
2.6.1 Node classification . 36
2.6.2 Graph classification and regression 37

3 Investigating Euler Diagram Syllogism with Deep Neural Networks 39
3.1 EulerNet Architecture . 40

3.1.1 EulerNet for categorical output . 40
3.1.2 EulerNet for diagram generation . 42

3.2 Evaluation . 43

3.2.1 Syllogism reasoning performance 43
3.2.2 Robustness evaluation . 45
3.2.3 Decoding neural representations . 45
3.2.4 Extracting rules from reasoning networks 47
3.2.5 Ablation studies . 49

3.3 Discussion . 49
3.3.1 Applicability to other types of diagrams 50
3.3.2 Comparison with logical symbolic reasoner 50
3.3.3 Limitations of the syllogism dataset 51

4 Abstract Diagrammatic Reasoning with Multiplex Graph Networks 53
4.1 MXGNet Architecture . 56

4.1.1 Object-Level Representation . 57
4.1.2 Multiplex Graph Network . 59
4.1.3 Reasoning network . 60
4.1.4 Training . 61

4.2 Experiments . 61
4.2.1 Search Space Reduction . 61
4.2.2 RPM task performances . 62
4.2.3 Generalisation evaluation for PGM 63
4.2.4 Ablation study . 64

4.3 Discussion . 65

5 Unsupervised Diagram Summarisation with Deep Generative Models 67
5.1 Attend Infer Repeat . 69
5.2 Discrete-AIR . 70

5.2.1 Sampling discrete variable . 71
5.2.2 Generative model . 71
5.2.3 Inference . 73
5.2.4 Learning . 74

5.3 Evaluation . 75
5.3.1 Multi-Sprites . 76
5.3.2 Multi-MNIST . 78

5.4 Discrete-AIR for extracting interpretable scene graphs 80
5.5 Discussion . 82

6 Generalisable Neural Network for Relational Reasoning 85
6.1 Related works on o.o.d generalisation . 87
6.2 Low-dimensional comparators . 87

6.2.1 Comparator in low-dimensional manifolds 88
6.2.2 Architecture: Maximum of a set . 89
6.2.3 Architecture: Visual object comparison 90
6.2.4 Architecture: visual reasoning for Raven Progressive Matrices . . . 90
6.2.5 Algorithmic alignment and o.o.d generalisation 92

6.3 Evaluation . 93
6.3.1 Maximum of a set . 93
6.3.2 Visual object comparison . 93
6.3.3 Visual reasoning for Raven Progressive Matrices 94
6.3.4 Why low dimension? . 94
6.3.5 Algorithmic alignment . 97
6.3.6 Ablation Studies . 97

6.4 Discussion . 98

7 Conclusion 101
7.1 Main contributions . 101
7.2 Future directions . 102

7.2.1 Interpretability . 102
7.2.2 Generalisation . 103
7.2.3 Integration of neural and symbolic systems 103
7.2.4 Generative Modelling for more tasks 104

Bibliography 105

A EulerNet 117
A.1 Architecture Configurations . 117
A.2 Hyper-Parameters . 118

B MXGNet 119
B.1 Architecture . 119

B.1.1 Object-Level Representation Architecture 119
B.1.2 Graph networks . 121

B.2 Training details . 122
B.3 More details on search space reduction . 122
B.4 Ablation study . 123

C Discrete AIR 125
C.1 Details of architecture and training . 125

C.1.1 Architecture . 125
C.1.2 Training . 126

C.2 Building Multi-Sprites dataset . 126
C.3 Analysis of failures . 126
C.4 Some more reconstructions . 127

D Generalisable Relational Reasoning 131
D.1 Maximum of a set: architecture configurations 131
D.2 Visual object comparison: dataset generation 131
D.3 Visual object comparison: architecture configurations 132
D.4 PGM architecture configurations . 133
D.5 Training details . 134
D.6 Additional plots . 134

Chapter 1

Introduction

Diagrams have been used since ancient times to represent, convey, and reason with abstract
concepts, ranging from proving odd natural sums (Figure 1.1a), representing ontologi-
cal relationships (Figure 1.1b) and illustrating pulley system designs (Figure 1.1c). A
well-known proverb says that “a diagram is worth ten thousand words”. Indeed, the effec-
tiveness of diagrams in representing and conveying abstract concepts has been theoretically
argued [63] and experimentally shown [87]. The human brain is naturally designed to
efficiently capture information presented in visual forms. In fact, a type of diagrammatic
reasoning, “Raven Progressive Matrices” or RPM [79], is one of the most popular ap-
proaches to measuring human fluid intelligence. Solving diagrammatic reasoning tasks
like RPM requires the same type of intelligence needed for numerous daily and industrial
scenarios, such as assembling IKEA furniture from pieces; determining potential actions of
vehicles in front of yours based on traffic lights and road signs and turning signals; and
planning a software project with workflow diagrams.

For an AI system to achieve Artificial General Intelligence [28], it must possess the
same form of intelligence required to solve a range of diagrammatic reasoning tasks such
as RPM. Reasoning is defined as the process of applying logic to infer conclusions from
premises (deductive), infer rules from observations (inductive), and infer hidden variables
given rules and conclusions (abductive). Many approaches have been proposed for different
types of diagrams. For example, Jamnik et al. [51] developed DIAMOND for automating
diagrammatic proofs of arithmetic theorems. Barwise et al. [6] used blocks-world to teach
and reason in first order logic with Hyperproof. Kortenkamp et al. [61] developed Cin-
derella for geometric theorem proving. Stapleton et al. [93] developed Edith for automated
Euler diagram theorem proving. Urbas et al. [99] extended Edith to spider diagrams and
developed Speedith. However, most of the proposed approaches are mechanised reasoning
systems. In these systems, mechanising reasoning with diagrams usually relies on methods
of encoding diagrams as symbolic representations that can be easily processed with a

15

(a) Odd natural sum (b) Euler diagram syllogism

(c) Pulley systems

Figure 1.1: Examples of using diagrams to more effectively convey abstract concepts. (a)
shows the diagrammatic proof of the odd naturals sum theorem. (b) shows an Euler
diagram (a type of diagram that represents sets and their relationships, properly introduced
in Section 2.2.1)that represent the syllogism “All men is mortal, Socrates is a man, therefore
Socrates is mortal”. (c) shows a pulley system diagram typically used to represent a pulley
system designed for weight lifting.

rule-based program. Figure 1.2 shows an example of Venn diagrams represented as a set
of symbols used in rule-based system processing. Such methods rely on human experts
to define the framework of diagram-to-symbol mapping and the set of rules to reason
with the symbols. This means these systems can hardly generalise beyond the defined
input domain, as rules in the new domain must be manually defined by human experts.
Moreover, these systems are not able to cope with noisy input, unless the noise model is
already known and integrated into the diagram-to-symbol mapping. The need for human
labour when adapting to new diagrams, the inability to generalise beyond defined input
domains, and the lack of robustness to noise limit the applications of such systems.

16

Figure 1.2: Example of encoding a Venn diagram into symbols. For most systems, the
user inputs the symbols (left) and the diagrams (right) are generated from the symbols.
Here, L(d) is the set of contour labels, Z(d) is the set of zones (S1, S2), that are inside of
contour S1 and outside of contour S2. Z∗(d) is the set of shaded zones.

In this dissertation, I propose Neural Diagrammatic Reasoning, a new family of
neural diagrammatic reasoning systems that does not have the drawbacks of existing
mechanised reasoning systems. Neural Diagrammatic Reasoning systems are based on
deep neural networks (DNNs), a recently popular machine learning method that achieves
human-level performance on object detection, speech recognition, and natural language
processing. DNNs have stacked layers of artificial neurons that can learn an arbitrary
function f , which maps data x to target y as y = f(x). A detailed review of DNNs is given
in Section 2.3. By learning from data, DNNs require few pre-defined rules from human
experts. DNNs generalise well on identically and independently distributed (i.i.d) data [122]
and are robust to noise [83]. Given these advantages, a DNN is a good candidate for
learning diagrammatic reasoning. However, DNNs have mostly been applied on perception
tasks such as object recognition, with limited applications on diagrammatic reasoning
tasks (except for several concurrent works on visual reasoning, which will be discussed in
Section 1.1). This thesis discusses how DNNs can be used both for learning diagram-to-
representation mappings, and reasoning mechanisms with the learned representations. I
propose EulerNet, which learns to solve Euler Diagram Syllogisms, and MXGNet, which
learns to solve Raven Progressive Matrices Reasoning (details in Section 2.2). To reduce
the need for labelled training data, I also develop models that learn to extract symbolic
representations from diagrams in an unsupervised manner, meaning no data labelling is
required. Lastly, as EulerNet and MXGNet exhibit poor out-of-distribution generalisation
performance, I develop models that can generalise beyond their training distributions,
allowing reasoning systems to be applied to unseen data domains. Next, I briefly review
a few related works that are concurrent with the works in this dissertation. Lastly, I
briefly summarise each of these contributions, which are discussed in detail in subsequent

17

chapters. Figure 1.3 shows a concept map of the four chapters in this dissertation. In this
dissertation I aim to keep the discussion focused and concise, and therefore leave some
technical details (e.g., hyper-parameters, training hardware and software environment) to
the Appendices.

Figure 1.3: A concept map of the chapters in this dissertation. Chapter 3 and Chapter
4 develop new reasoning network architectures tackling different types of diagrammatic
reasoning problems. Both architectures have similar front-end perception modules for
perceiving the diagrams. Chapter 5 develops an unsupervised learning method for dia-
grammatic summarisation, which can be used for pre-training the perception modules.
Chapter 6 develops a novel inductive bias that improves the generalisation of the reasoning
networks.

1.1 Related works

In this section I discuss a few exemplary related lines of works that push the boundary
for DNN-based reasoning systems. These works are mostly concurrent with the work
discussed in this dissertation.

Visual Question Answering: The most popular visual reasoning task for machine
learning is the Visual Question Answering (VQA) task. This task asks a question about an
image, such as “what is the colour of the fruit in the person’s hand?”. While many different

18

VQA tasks are proposed (e.g., [81, 2, 54, 46]), most of them contain more factual questions
such as “what is the colour of . . . ?” and “where is the object . . . ?”. Among these tasks,
CLEVR [54], a synthetic VQA task that focuses specifically on reasoning, is most relevant
to this dissertation. CLEVR seeks to reduce the implicit dataset bias often associated
with factual questions by only asking questions that focus on visual-spatial reasoning.
Since the invention of CLEVR, many methods have been developed to tackle this task.
Among them, Relation Networks [85] explicitly compute pairwise relations between grid
feature locations to better suit the relational comparisons involved in the reasoning. Neural
Module Networks [44] train a DNN to translate the question asked into a sequence of
either pre-defined or trainable modules that process the image to arrive at the answer.
This idea is picked up by Symbolic-VQA [114], which adds object-level representations
and more symbolic program execution modules to achieve improved performance. While
the object representation module in Symbolic-VQA is pre-trained on an object detection
task, the Neural Symbolic Concept Learner [72] jointly learns the object representation
and symbolic program generation in a curriculum learning setting.

Raven Progressive Matrices: Besides the Euler diagram syllogism task proposed
in this thesis, Raven Progressive Matrices tasks, such as PGM [5] and RAVEN [120], are
the only diagrammatic reasoning tasks developed for DNN training. Raven Progressive
Matrices are introduced in details in Section 2.2.2. Several methods have been proposed
to solve RPM tasks. Barrett et al. [5] proposed the Wild Relation Network, which is
an adaptation of the Relation Network [85] for RPM tasks. Jahrens et al. [50] further
extend Relation Network to Multi-Layer Relation Networks by introducing hierarchical
relation learning. Zhang et al. [120] adapt the perceptual contrast theory from psychology
to develop CoPI-Net. Van et al. [101] show that encouraging disentangled representations
improves model performance on RPM tasks.

Learning Physics Interaction: There is another line of work not explicitly branded
as “visual reasoning”, but which implicitly learn to reason with relations expressed as
physics laws. For example, Kipf et al. [58] develop NRI, a graph autoencoder that learns
simple physical forces (such as spring and gravity force) between particles. Kipf et al [59]
later adapt this idea to model more general relations between object representations in a
given environment. Janner et al [53] developed O2P2, which learns physical interactions
between objects in videos.

19

1.2 Main Contributions

1.2.1 Investigating Euler Diagram Syllogisms with Deep Neural

Networks

In Chapter 3 and [106], I introduce EulerNet, a DNN-based diagrammatic reasoning
system that solves Euler diagram syllogism questions, such as the example in Figure 1.1b.
EulerNet learns to solve syllogisms represented as Euler diagrams. It takes two Euler
diagrams representing the premises in a syllogism as input, and outputs either a categorical
(subset, intersection, or disjoint) or diagrammatic conclusion (generating an Euler diagram
representing the conclusion) to the syllogism. EulerNet can achieve 99.5% accuracy in
generating syllogism conclusions. I analyse the learned representations of the diagrams,
and show that meaningful information can be extracted from such neural representations.
Furthermore, I show that EulerNet is robust to noise and deformation of the Euler diagrams,
with just a 0.4% decrease in accuracy. EulerNet is the first Euler diagram reasoning system
that learns diagram-to-representation mapping (instead of needing manually defined
mappings) and implicit reasoning rules (instead of needing manually-defined reasoning
rules) without requiring any human-defined symbols and rules.

1.2.2 Abstract Diagrammatic Reasoning with Multiplex Graph

Networks

EulerNet, while effective, cannot scale to an arbitrary number of contours in the diagrams
due to the fixed-length vector representations produced. To remedy this, in Chapter 4
and [109], I introduce MXGNet, a Multi-Layer Graph Network (Graph Neural Networks
are introduced in detail in Section 2.6) that tackle Raven Progressive Matrices (RPM)
reasoning tasks (introduced in Section 2.2.2). MXGNet combines three powerful concepts,
namely, object-level representation, graph neural networks and multiplex graphs, to solve
visual reasoning tasks. MXGNet first extracts object-level representations for each element
in all diagrams in an RPM task, then forms a multi-layer multiplex graph capturing
multiple relations between objects across different diagram panels. MXGNet summarises
the multiple graphs extracted from the diagrams in the RPM task, and uses the summarised
information to pick the most probable answer from the given candidates. MXGNet is
tested on two comprehensive datasets for RPM reasoning, namely PGM and RAVEN. On
both datasets, MXGNet outperforms the state-of-the-art models by a considerable margin,
achieving 89.6% accuracy on the PGM dataset and 83.91% accuracy on the RAVEN dataset
(correct at the time of paper submission). MXGNet shows that object-level representation
with graph-based relational learning is a more suitable approach for learning and reasoning
with diagrams of multiple elements and parallel relations.

20

1.2.3 Unsupervised Diagram Summarisation with Deep Genera-

tive Models

Supervised Training of EulerNet and MXGNet yields good results, but requires a large
amount of labelled data. In Chapter 5 and [108, 107], I introduce unsupervised learning
methods for extracting symbolic representations from diagrams. I developed Discrete
Attend-Infer-Repeat (Discrete-AIR), a Recurrent Auto-Encoder with structured latent
distributions containing discrete categorical distributions, continuous attribute distribu-
tions, and factorised spatial attention. While inspired by the original Attend-Infer-Repeat
model [21] (details in Section 5.1) and retaining AIR model’s capability in identifying
objects in an image, Discrete-AIR provides direct interpretability of the latent codes. It is
shown that for efficient inference in the case of Multi-MNIST [21] and a multiple-objects
version of the the dSprites [74] dataset, the Discrete-AIR model, in contrast to other
Variational Auto-Encoders with long latent vectors, needs just one categorical latent
variable and one attribute variable (for Multi-MNIST only), together with spatial attention
variables. I perform an analysis to show that the learned categorical distributions achieve
87.0% and 94.5% category correspondence rates for Multi-MNIST and for Multi-Sprites.
The symbolic representations extracted by Discrete-AIR are directly interpretable, and
can be fed into traditional mechanised reasoning systems for rule-based reasoning. Thus, it
provides a potential method for amalgamating neural perception modules with mechanised
reasoning modules.

As Discrete-AIR extracts semi-symbolic representations for categories and attributes of
an entity, it can be readily used to build a network of relations between entities. Relations
between entities can be encoded as edges of a graph, while entities are encoded as nodes
of a graph. The edge encoding can be initialised in an interpretable way based on the
symbolically represented nodes. In this way, Discrete-AIR provides a potential way of
applying standard graph neural network methods on the extracted graph to solve the
reasoning tasks.

1.2.4 Generalisable Neural Network for Relational Reasoning

MXGNet, while achieving state-of-the-art (SOTA) results, has poor out-of-distribution
generalisation performances. To remedy this, in Chapter 6 and [110], I discuss the lack of
out-of-distribution (o.o.d) generalisation capability of the two models described in [106,
109] and concurrent models on visual reasoning, such as [5, 50]. I develop a neuroscience-
inspired inductive-biased module that can be readily amalgamated with current neural
network architectures to improve o.o.d generalisation performance on relational reasoning
tasks. This module learns to project high-dimensional object representations to low-

21

dimensional manifolds for more efficient and generalisable relational comparisons. It is
shown that neural networks with this inductive bias achieve considerably better o.o.d
generalisation performance for a range of relational reasoning tasks. For the “maximum of a
set” task (finding the maximum values in a set of real valued numbers), the proposed model
reduces Mean Square Errors of previous SOTA models by approximately 300-fold. For the
“visual object comparison” task (comparing two object’s attributes such as size and colour),
the proposed model achieves 13.96 to 14.53% increased accuracy over baseline models.
For the “Raven Progressive Matrices” task, the proposed model achieved 7.0% increased
generalisation accuracy over previous SOTA models. Finally, I analyse the proposed
inductive bias module to understand the importance of lower dimension projection, and
propose an augmentation to the algorithmic alignment theory to better measure algorithmic
alignment with generalisation. The proposed low-dimensional comparators are shown to be
effective in improving o.o.d generalisation for a range of relational reasoning architectures,
and can be readily adapted for any other relational reasoning tasks.

1.3 Publications

Here I provide a list of publications resulting from this dissertation. To clarify the
roles of different authors, I am the first author of all publications listed and provide
the majority of ideas, texts, figures and experiments in these publications. Pietro Lio
and Mateja Jamnik had important roles in advising, guiding, suggesting modifications
and proof-reading all listed publications. I host most of the codes in my github page:
https://github.com/thematrixduo.

1. Duo Wang, Mateja Jamnik, and Pietro Liò. Investigating diagrammatic reasoning
with deep neural networks. In Peter Chapman, Gem Stapleton, Amirouche Moktefi,
Sarah Perez-Kriz, and Francesco Bellucci, editors, International Conference on
Theory and Application of Diagrams, LNCS 10871, pages 390–398. Springer, 2018.
URL https://link.springer.com/chapter/10.1007/978-3-319-91376-6_36

2. Duo Wang, Mateja Jamnik, and Pietro Lio. Unsupervised and interpretable scene
discovery with discrete-attend-infer-repeat. International Conference of Machine
Learning, Self-Supervised Learning Workshop, 2019. URL https://drive.google.

com/file/d/0B4M2lUVyJzS4d29IN2pyUDR5ME8zV0RzdlJtZGdzM2xLV2Vv/view

3. Duo Wang, Mateja Jamnik, and Pietro Lio. Unsupervised extraction of interpretable
graph representations from multiple-object scenes. International Conference of
Machine Learning, Learning and Reasoning with Graph-Structured Representations
Workshop, 2019. URL https://graphreason.github.io/papers/20.pdf

22

https://github.com/thematrixduo
https://link.springer.com/chapter/10.1007/978-3-319-91376-6_36
https://drive.google.com/file/d/0B4M2lUVyJzS4d29IN2pyUDR5ME8zV0RzdlJtZGdzM2xLV2Vv/view
https://drive.google.com/file/d/0B4M2lUVyJzS4d29IN2pyUDR5ME8zV0RzdlJtZGdzM2xLV2Vv/view
https://graphreason.github.io/papers/20.pdf

4. Duo Wang, Mateja Jamnik, and Pietro Lio. Abstract diagrammatic reasoning with
multiplex graph networks. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=ByxQB1BKwH

5. Duo Wang, Mateja Jamnik, and Pietro Lio. Generalisable relational reasoning
with comparators in low-dimensional manifolds. Arxiv Preprint, 2020. URL https:

//arxiv.org/abs/2006.08698

23

https://openreview.net/forum?id=ByxQB1BKwH
https://arxiv.org/abs/2006.08698
https://arxiv.org/abs/2006.08698

24

Chapter 2

Background

The main contributions of this dissertation, as outlined in Section 1.2, are about applying
Deep Neural Networks on Diagrammatic Reasoning tasks. In this chapter I give a brief
review of diagrammatic reasoning, with focuses on Euler diagram syllogisms and Raven
Progressive Matrices. I also review Deep Neural Networks, and relevant variants including
Convolutional Neural Networks (CNN), Graph Neural Networks (GNN) and deep generative
models. Before that, I will first establish a common notational framework used throughout
this dissertation.

2.1 Notational framework

I aim to keep the notation use in this dissertation clear and consistent. Below is a list of
notations used that are largely consistent with notations used by [31].

a A scalar (integer or real)
a A vector
A A matrix
A A tensor
In Identity matrix with n rows and n columns
I Identity matrix with dimensionality implied by context
e(i) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0] with a 1 at position i

diag(a) A square, diagonal matrix with diagonal entries given by a
A A set
R The set of real numbers

{0, 1, . . . , n} The set of all integers between 0 and n
[a, b] The real interval including a and b
(a, b] The real interval excluding a but including b

25

a||b The concatenation of a and b
log x Natural logarithm of x
||x||p Lp norm of x
||x|| L2 norm of x

Var(f(x)) Variance of f(x) under P (x)

DKL(P‖Q) Kullback-Leibler divergence of P and Q
N (x;µ,Σ) Gaussian distribution over x with mean µ and covariance Σ

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

2.2 Diagrammatic Reasoning

Diagrammatic reasoning concerns logical reasoning with entities represented in a diagram-
matic fashion. Entities in diagrams can be abstract representations of concepts and things
such as the class of mortal beings in existential diagrams, a function unit in workflow
diagrams, or market shares of a particular company in a Pie Chart. While there are various
types of different diagrammatic systems, in this section I will introduce the two diagram
types that are used in this dissertation. They are Euler diagrams and Raven Progressive
Matrices.

2.2.1 Euler Diagrams and Syllogisms

Euler diagrams [22, 38] are simple, yet effective diagrammatic representations for reasoning
about set relationships. We will use a colour-coded modification of the Gergonne’s system
of Euler diagrams [27] for its simplicity and visual clarity. In this system, minimal regions
are assumed to be non-empty (i.e., the Gergonne system of Euler diagrams assumes
existential import, which means empty sets cannot be represented by contours), and
shading is not used. I assign a distinct colour to each contour instead of alphabet labels
to denote classes. Colour coding facilitates the training of neural networks by reducing
the need to associate Alphabet labels with circled regions. There can be four different
relationships between two sets A and B, which are:

• A ⊃ B

• A ⊂ B

• A ∩B 6= ∅

• A ∩B = ∅

While in theory the fifth relationship A = B is also possible, it is not considered in
this work because colour-coded contours will completely overlap and thereby diminish

26

visual clarity. While this limits the expressiveness of the diagrams, this is needed so as to
simply the task for hypothesis testing. Future versions of the dataset can extend to the
complete Euler diagrams system with symbol annotations. It is possible to fix this by using
contour labels, which will be left for future investigation. Figure 2.1 illustrates how these
4 different set relationships can be represented by 4 different categories of colour-coded
Euler diagrams (two sets denoted by Red and Green).

Figure 2.1: Euler diagrams representing 4 possible relationships between non-empty sets
G (Green) and R (Red). (1)G ⊂ R. (2) G ⊃ R. (3) A ∩B 6= ∅. (4) A ∩B = ∅.

Figure 2.2: Euler diagrams representing the syllogism “All Green are Red, all Blue are
Green, therefore all Blue are Red ”.

Euler diagrams are very effective in representing syllogisms. A syllogism consists of
two premises that entail a conclusion. Figure 2.2 illustrates how the colour-coded Euler
diagrams represent the syllogism “All Green are Red, all Blue are Green, therefore all
Blue are Red ”. In this dissertation, I do not enforce the fixed-size contour constraint,
which means that contours representing the same class can have varying sizes in different
diagrams. As this Euler diagram system does not represent partial information, for certain
premises there is not a single directly implied conclusion diagram, but several diagrams
that are self-consistent [91, 88] with the given premises. An example would be for premises
“All B are A, some C are B”, consistent conclusions include “some C are A” and “all C are
A”.

2.2.2 Raven Progressive Matrices

In this section I describe Raven Progressive Matrices (RPM) in the context of the PGM
dataset [5] and the RAVEN dataset [120]. RPM is a popular human fluid intelligence test,
and has been recently used for measuring a machine’s abstract reasoning capability [5].
MXGNet, discussed in Chapter 4, is the SOTA model (correct at the time of publication)

27

(a) (b)

Figure 2.3: Two examples in PGM dataset. (a) task contains a ’Progression’ relation of
the number of objects across diagrams in columns while (b) contains an ’XOR’ relation of
position of objects across diagrams in rows.

on the two RPM datasets. RPM tasks usually have 8 context diagrams and 8 answer
candidates. The context diagrams are laid out in a 3× 3 matrix C where c1,1, . . . c3,2 are
context diagrams and c3,3 is a blank diagram to be filled with 1 of the 8 answer candidates
A = {a1, . . . ,a8}. One or more relations are present in rows or/and columns of the matrix.
Figure 2.3a and 2.3b show two examples from the PGM dataset (Image courtesy [5]). The
first example contains a ’Progression’ relation of the number of objects across diagrams in
columns. The second example contains an ’XOR’ relation of the position of objects across
diagrams in rows. With the correct answer filled in, the third row and column must satisfy
all relations present in the first 2 rows and columns (in the RAVEN dataset, relations
are only present in rows). In addition to labels of correct candidate choice, both datasets
also provide labels of meta-targets for auxiliary training. The meta-target of a task is a
multi-hot vector encoding tuples of (r, o, a) where r is the type of a relation present, o is

28

the object type and a is the attribute. For example, the meta-target for Figure 2.3b (a)
encodes (XOR,Shape, Position). The RAVEN dataset also provides additional structured
labels of entity layouts (e.g., the number, types and position of entities) in the diagrams.
However, we found that structured labels do not improve results, and therefore did not
use them in our experiments.

(a) (b)

Figure 2.4: Two examples in the PGM dataset containing background line objects. (a)
contains OR relation of the lines in the columns of the matrix. The correct answer is H.
(b) contains both a OR relation of the lines and a PROGRESSION relation in the number
of octagons in the columns of the matrix. The correct answer is H.

In addition to shape objects, diagrams in the PGM dataset can also contain background
line objects that appear at fixed locations. Figure 2.4a and 2.4b show two examples of
PGM tasks containing line objects.

29

Figure 2.5: Computational model of a Single Artificial Neuron.

2.3 Artificial Neural Networks

Artificial Neural Network (ANN) is an information processing paradigm that is inspired
by biological neural systems. In general, an ANN consists of layers of artificial neurons
connected in a graph, most often in an acyclic directed form. However, in some types of
ANN the connection can be cyclic and undirected. Artificial Neurons are the fundamental
computation units in ANN. Figure 2.5 illustrates the computational architecture of an
Artificial Neuron. Inputs, denoted as xi; i ∈ 1 . . . n, are first multiplied with the weight
wij where i corresponds to input index and j corresponds to the jth neuron. The weighted
inputs are then summed as:

sj =
n∑
i=1

wijxi (2.1)

The sum sj is then added with a bias θj and passed through a non-linear activation
function ϕ to produce the final output of the neuron:

oj = ϕ(sj + θj) (2.2)

ϕ can be any non-linear function such as Sigmoid function 1
1+e−x

and Rectified Linear Unit
max(x, 0). A single Artificial Neuron has very limited computational capability. However,
when many of them (usually at least in thousands) are connected together to form an
ANN, very complex functions can be approximately represented by this ANN.

Before the application of back-propagation algorithms, only single layers linear percep-
trons can be constructed. A back propagation algorithm, first applied to neural network
training by Rumelhart et al [84], applies chain rules of differentiation to back propagate
errors from higher layers to lower layers in order to correct weights assigned to lower layer
inputs. This algorithm allows researchers to construct multilayer ANN with nonlinear

30

activation that can represent much more complex functions. The back-propagation algo-
rithm computes a partial derivative (or gradient) of error functions with respect to the
weights of each connections. Once the gradient for each weight is obtained, Stochastic
Gradient Descent (SGD) can be applied to change weights in the direction that improves
the objective function. The update of weights in steps is detailed in Equations 2.3 and 2.4.

wli,j = wli,j − α
∂E

∂wli,j
E = errorfunction (2.3)

∂E

∂wli,j
= aljδ

l+1
i , δli = wliδ

l+1
i ϕ′(zli) (2.4)

where wli,j is weights, α is learning rate, ∂E
∂wli,j

is the partial derivative of the error function

with respect to weights. alj is input, zli is activation output, ϕ′(zli) denotes the derivative
of the non-linear neuron activation function, and δl is error at layer l. Errors are back-
propagated by computing errors at lower layers with respect to higher layer errors. After
a large number of training iterations, the weights could reach local minima or maxima
that minimise training errors. ANN can subsequently be used to predict an output label
or value for test data.

ANN is used in most of today’s DNN architectures for processing feature vectors either
presented directly as input or extracted via some feature extraction methods (such as
using Convolutional Neural Networks). All proposed architectures in this dissertation use
ANN as part of the models, mostly for processing extracted feature vectors.

2.4 Convolutional Neural Network

A Convolutional Neural Network (CNN) is an ANN architecture inspired by studying
the animal visual cortex. Hubel et al [45], in their seminal work on cat’s primary visual
cortex, identified orientation-sensitive simple cells with overlapping local receptive fields
and complex cells performing down-sampling-like operations. Fukushima et al [24] first
adopted this research and developed the first generation of CNN named “Neocognitron”.
Neocognitron has 2 types of layers, namely, Simple-layer corresponding to simple cells
and Complex-layer corresponding to complex cells. Simple-layer applies a convolution
kernel to input images or feature maps to produce 2-dimensional convolution. Figure 2.6
illustrates a convolution operation. This operation can be mathematically described in
Equation 2.5.

y(i, j) =

K1∑
p=−K1

K2∑
p=−K2

G(p, q)x(i− p, j − q) (2.5)

31

where G(p, q) is a 2-D convolution kernel, x is the input, y is the output and K1 and K2

are widths of kernel G(p, q). For each layer, the same convolution kernel with invariant
weights is applied across the input 2-dimensional feature map (output map of the previous
layer). The convoluted feature map is then fed into C-layer, which downsamples the
feature map by averaging operations. Neocognitron is essentially a network of multiple
stacked Simple Cell layers and Complex Cell layers, as illustrated in Figure 2.7.

Figure 2.6: Illustration of Convolution Operation. I denotes image and K denotes
convolution kernel.

Figure 2.7: Illustration of Network Architecture of Neocognitron [24]

Neocognitron was not widely used due to difficulty in training and sub-optimal design
of convolutional filters. Lecun et al [65] build upon this idea by both incorporating a
back-propagation training algorithm and designing better structured filters and network
architecture. Figure 2.8 shows the LeNet-5 Architecture by Lecun et al [65]. Layers labelled
“C” are convolutional layers while layers labelled “S” are sub-sampling layers. At each layer
there is a number of parallel feature maps, corresponding to distinct convolution kernels
used. In this way, multiple features, such as edge, blob and corners, can be extracted
at the same layer. At the top of LeNet-5 there are 2 fully connected layers that are

32

essentially the general model of an ANN. Lower “C” and “S” layers extract features while
higher fully connected layers extract meanings from features. After training with standard
back-propagation, LeNet-5 achieved 0.95% error rate on the MNIST dataset.

Figure 2.8: LeNet-5 [65] Convolutional Neural Network Architecture used for
Handwritten Character Recognition

CNN models have three main advantages over ANN models. Firstly, CNN is spatial-
invariant compared to ANN. Features can be anywhere on the input image. By applying
the same convolution kernel over all locations in the image, the locations of a feature do not
affects its detection. Secondly, CNN is more suitable for vision tasks because CNN takes
into account spatial locality. For the vanilla ANN, swapping two pixels will not have any
effect on training pixels because their spatial locations are not considered while training.
A CNN, by applying kernels, can more accurately capture such spatial locality between
neighbour pixels. Thirdly, a CNN has much less training cost per layer because only
weights of a few convolution kernels need to be modified. However, for densely-connected
ANN, all connection weights need to be updated at each training step.

In this dissertation, CNNs are used as the perception modules that precedes the
different reasoning modules introduced in each chapters.

2.5 Selected improvements on training DNNs

While there is a vast amount of improvements in training Deep Neural Networks, I discuss
three techniques that prove to be universally useful and are used in this dissertation. They
are Batch Normalisation, Residual Networks and Adam SGD optimiser.

2.5.1 Batch Normalisation

Batch Normalisation [48] (BN) was originally proposed to tackle the Covariate Shift problem
in DNN training. Covariate Shift means that during DNN training, weights are pushed in a
direction that will change the intermediate layer statistics. However, it was recently shown
that BN’s usefulness in accelerating and stabilising training is not because of its effect on
reducing Covariate Shift, but because it smooths the optimisation landscape [86]. Batch

33

Normalisation is essentially a normalisation layer with learnable affine transformation
parameters. Denoting a batch of outputs of a NN layer as B = {x1, . . . ,xM}, a BN layer
first computes batch mean µB and variance σ2

B:

µB =
1

M

M∑
i=1

xi σ2
B =

1

M

M∑
i=1

(xi − µB)2 (2.6)

Then the BN layer normalises B to give {yi, . . . ,yM} as:

x̄i =
xi − µB√
σ2
B + ε

yi = γx̄i + β (2.7)

Here γ and β are learnable affine transformation parameters. These extra degrees of
freedom allow the BN layer to transform the batch distribution as the best fit for the
particular tasks. During the test stage, instead of using test batch statistics, it is more
common to use the moving average training statistics as they are less spurious.

2.5.2 Residual Networks

While it is intuitive to think that deeper neural networks, with a larger amount of trainable
parameters, have more processing power and should achieve improved accuracies, this is
not the case in reality [39]. As the neural network gets deeper, both training and testing
performance degrades. This is a strange behaviour because if deeper networks are not
helping in improving performance, the NN can simply let selected layers become identity
layers, so that the NN effectively becomes a shallower network. He et al [39] build on this
idea to introduce Residual Networks, which simply allow skip connections that are usually
the identity function:

f(x) = g(x) + x (2.8)

Here g(x) is a NN layer or a block of NN layers. The skipp connections allow information
to skip g(x) to reach deeper layers in NN. If g(x) does not help in decreasing loss, it
will be forced into small value ranges such that f(x) effectively becomes an identity
layer. Residual Networks allow training of much deeper networks without degrading
performances. Deeper networks are considered to be more capable due to the larger
number of trainable parameters. He et al [39] trained a 152-layer Residual Network which
achieved state-of-the-art performance on ImageNet dataset.

Residual Networks are used in Chapter 4 and Chapter 6 as perception module that
precedes the subsequent reasoning networks. In Chapter 4 the reasoning network also uses
a residual architecture.

34

2.5.3 Adam optimiser

The simplest Stochastic Gradient Descent Method (SGD), as described in Equation 2.3,
suffers from slow convergence and the possibility of getting stuck in saddle points or poor
local minima, as the gradient is close to zero and there is no way to escape. Many different
techniques have been explored to improve upon SGD. The the most successful one is
Adam, which adds adaptive learning rates for weights and momentum. Let gt = ∂E

∂w
be the

gradient with respect to w at time t, Adam maintains moving averages of momentums as:

mt+1 = β1mt + (1− β1)gt vt+1 = β2vt + (1− β2)g2t (2.9)

where β1 and β2 are mixing constants controlling the amount of intake of gradients into the
moving average. The default values of the mixing constants are β1 = 0.9 and β2 = 0.999

(chosen empirically), which heavily biases the averages towards zero early on, so the
following bias correction is applied:

m̄t =
mt

1− β1
v̄t =

vt
1− β2

(2.10)

Adam then updates weights adaptively based on m̄t and v̄t as:

wt+1 = w − α m̄t√
v̄t + ε

(2.11)

where α is the learning rate, and ε is a small constant to prevent division by zero. Dividing
by
√
v̄t for more variant gradients (larger g2t and thus larger accumulated vt) will make

the update smaller. Adam optimiser is widely used to train models for all range of tasks,
and are shown to accelerate training universally.

Due to the effectiveness of Adam optimiser, it is used for NN training throughout this
dissertation.

2.5.4 Variational Auto-Encoders

In this section I briefly describe Variational Auto-Encoders (VAE) [57], a generative
model used in Chapter 5 and Chapter 6. The core idea of variation inference is to use
an approximate distribution qφ(z|x) to approximate the true latent posterior distribution
p(z|x), and to optimise a Evidence Lower Bound Objective (ELBO) which is a lower
bound to p(x):

log p(x) > L(x, θ, φ) = Eqφ(z|x)[log pθ(x, z)− log qφ(z|x)] (2.12)

here pθ(x|z), the data generating distribution, can be considered as the decoder of an
Auto-Encoder while qφ(z|x) can be considered as the encoder of an Auto-Encoder. This

35

equation can be re-arranged into:

L(x, θ, φ) = −DKL(qφ(z|x)‖p(z)) + Eqφ(z|x)[log pθ(x|z)] (2.13)

DKL(p(z), q(z)) =
∑
z∈Z

p(z) log
p(z)

q(z)
(2.14)

Here DKL denotes KL divergence between two probability distributions (Equation 2.14).
In this case the KL divergence between the approximating distribution qφ(z|x) and prior
distribution p(z) is measured. The second term on the RHS measures data likelihood from
z sampled from distribution qφ(z|x). The first KL term penalises deviation of qφ(z|x) from
p(z) while the second term is a reconstruction loss penalising less accurately generated
image reconstructions.

2.6 Graph Neural Networks

While Graph Structured Data and Graph Neural Networks (GNNs) are not the focus
of this dissertation, I employed GNNs as tools to model relations between objects in an
image. Therefore, I briefly introduce GNs in this section.

I start by first defining a graph G = (V , E) where V denotes the set of vertices in
the graph and E denotes the set of edges. For each node vi ∈ V there is an associated
feature xi ∈X. There are two popular tasks for graph structured data, which are node
classification and graph classification. I will briefly discuss both tasks next.

2.6.1 Node classification

In a node classification task, a GNN takes as input the following: node featuresX ∈ RN×F

with N nodes and feature embedding size F , and an adjacency matrix A ∈ RN×N where
the entry Ai,j denotes an edge ei,j ∈ E connecting node vi to vj. For most datasets the
graphs are undirected and unweighted, which means A is a binary symmetric matrix.
For transductive learning, part of the nodes are labelled with a category, and the goal is
to classify other unlabelled nodes. For inductive learning, the training graphs are fully
labelled while the test graphs are unseen and unlabelled. A popular node classification
task is citation networks [89] where nodes are papers and edges indicate citations between
papers. The labels are fields to which the paper belongs.

While there are many variants of GNN developed for node classification tasks, I only
discuss a GNN family used in this dissertation that includes the majority architectures,
namely Message Passing Neural Networks (MPNN). In a MPNN, nodes aggregate messages

36

passed by neighbour nodes such that the processing of the node features takes the
neighbourhood information into account. Formally, a GNN layer in an MPNN can be
defined as:

ml
j = F l(hl−1j)

eli = AGGREGATEj∈N(i)(a
l
ijm

l
j)

hli = σ(COMBINE(eli, F
l(hl−1i)))

(2.15)

here ml
j are messages of node j (neighbours of node i according to Adjacency matrix) at

layer l. F l is an MLP layer processing the feature hl−1j from the previous layer. eli are the
aggregated features from all neighbours of node i, weighted by an attention parameter alij .
AGGREGATE can be any type of pooling function such as mean or max pooling. eli are
then combined with the features of node i with COMBINE function, which is typically a
summation or MLP. σ is the activation function of the GNN layer. Variants of MPNN
differ in different stages of the information processing pipeline. For example, Graph
Convolutional Network [60] have alij as a constant equal to the inverse of node degrees of i
and j, while Graph Attention Networks [103] have alij learnt based on features of node i
and j.

2.6.2 Graph classification and regression

In Graph classification tasks, the target is to classify a whole graph instead of individual
nodes. For example, a protein molecule can be formulated as a graph of atoms, and the
goal is to either classify the protein molecule (e.g., toxic or non-toxic) for classification
tasks or to predict some continuous properties (e.g., binding affinity) for regression tasks.
Formally, a GNN takes as input node feature X ∈ RN×F with N nodes and feature
embedding of size F , and an adjacency matrix A ∈ RN×N , and output a single label vector
o ∈ RK where K is the label size.

Many GNNs developed for graph classification and regression tasks are also in the
MPNN family. The difference is that GNNs for graph-level tasks include coarsening
and pooling layers that summarise learnt node features. Most approaches fall into two
categories. In the first approach, the GNNs (e.g., [19, 16]) use a global pooling to aggregate
node features either at each layer or at the final layer. Formally, the GNNs make predictions
as:

o = fout(POOL(hli|l ∈ L, i ∈ N)) (2.16)

where L denotes the set of layers to be pooled, POOL is a pooling function and fout is a final
MLP processing the pooled features. In the second approach, the GNNs (e.g. [10, 115])
aggregate node representations into clusters which coarsen the graph in a hierarchical
manner. The coarsening layer takes a set of nodes V and the adjacency matrix A, and

37

combine nodes in clusters into new nodes in a reduced set of nodes Vr. A popular coarsening
method is GraClus [17]. Pooling approaches (e.g., [115]) can be used to aggregate node
features in the cluster into the features of the nodes in the coarsened graph.

38

Chapter 3

Investigating Euler Diagram Syllogism
with Deep Neural Networks

Euler diagrams, introduced in Section 2.2.1, are simple, yet widely-used, diagrams for
ontological reasoning. While several mechanised rule-based reasoning systems [93, 98]
have been developed for Euler diagram reasoning, they all reason with symbolic represen-
tations of Euler diagrams, rather than raw diagram images. In this chapter, I test the
following hypothesis: if DNN-based reasoning systems can be trained to reason with raw
Euler diagrams with robustness and interpretability. To test this hypothesis, I design and
build EulerNet, a DNN-based diagrammatic reasoning system that performs syllogism
reasoning with Euler diagrams. Recall that a syllogism, as introduced in Section 2.2.1,
has the structure (MajorPremise,MinorPremise)→ Conclusion. EulerNet takes two Euler
diagrams representing the premises as input. Contours in each Euler diagram represent
sets and overlapping between contours indicates set relationships. EulerNet can generate
a categorical conclusion (subset, intersection, or disjointedness) about the relationship
between the sets with 99.5% accuracy. EulerNet can also learn to generate Euler diagrams
that represent the set relationships without using any additional drawing tools. I further
test EulerNet’s robustness by adding significant noise and random deformation to input
diagrams. Experiments show that EulerNet is very robust to noisy input, with just a 0.4%
decrease in accuracy.

EulerNet, while learning to perform the reasoning task, simultaneously learns interme-
diate feature representations of the input diagrams and the reasoning problem. Additional
experiments are performed to show that the learned representations encode essential
information of diagrams and reasoning tasks. Firstly, I showed via a t-SNE [69] plot that
the feature representations of same-category Euler diagrams and same-category syllogisms
are clustered together in the feature space. This means EulerNet correctly learns which
diagrams are more similar to each other. Secondly, I manipulated neural codes produced

39

by the reasoning network for conclusion diagram generation, and discovered that certain
elements control essential statistics in the generated diagram, such as the area of contour
intersection and the size of contour. Lastly, I showed that the reasoning network can be
cast as a rule-based system, similar to what is currently used in automated reasoning
systems, with only 0.7% loss in accuracy.

In the rest of this chapter I first present EulerNet in Section 3.1. Next, I evaluate
EulerNet in Section 3.2, and finally discuss these results in Section 3.3.

3.1 EulerNet Architecture

3.1.1 EulerNet for categorical output

I built a system, EulerNet, which is a neural network trained to solve syllogisms represented
with Euler diagrams. EulerNet takes two Euler diagrams (see detailed discussion of Euler
diagrams in Section 2.2.1) representing the premises of the syllogism as input, and outputs
a categorical conclusion (subset, intersection or disjointedness) for the syllogism. Figure 3.1
shows the architecture of EulerNet. The first input diagram shows a relationship between
a set Red and a set Green. The second diagram shows a relationship between sets Green
and Blue. There are four possible categories for a categorical conclusion output from
EulerNet, namely:

Figure 3.1: Overview of the EulerNet neural network architecture for Euler diagram
syllogism reasoning. Siamese Networks are two convolutional networks that share the
same weights. The Reasoning network takes diagram feature embeddings and output the
predicted conclusion.

1. Red is a subset of Blue.

2. Blue is a subset of Red.

40

3. Red intersects Blue.

4. Red is disjoint from Blue.

In the case of indeterminacy, when no single logical conclusion can be drawn (e.g., All
Green are Red, some Green are Blue), the neural network outputs all conclusions that are
consistent (not contradicting) with the premises. Neural networks are trained with pairs of
premise diagrams and labels that encode correct conclusions into a binary (0 or 1) vector
of length 4, with 4 positions in the vector representing each conclusion category in the
order of A ⊃ B, A ⊂ B, A ∩ B 6= ∅ and A ∩ B = ∅. For example, vector [0100] encodes
A ⊂ B. While developed on the classical syllogism, EulerNet can be applied to diagram
tasks with an arbitrary number of contours in the diagram and an arbitrary number of
diagrams in the task. I also applied EulerNet on tasks where there are 3 contours in
each diagram. Namely, the first diagram contains Red, Green, and Blue contours, while
the second diagram contains Green, Blue, and Yellow contours. The task is to infer
consistent relationships between classes Red and Yellow. In Section 3.2.1, I show that, for
the 3-contour task, the decrease in reasoning accuracy is negligible.

EulerNet is composed of two modules. The first module is a Siamese convolutional
network that recognises the diagrams and encodes them into high-level neural feature
representations. Siamese networks share the same weights so each diagram is processed
in the same way. This network has a similar function to the visual cortex in the human
brain [113], which transforms visual stimuli into neural code. The convolutional network
consists of 7 convolutional layers extracting increasingly abstract features from the input
diagrams. The second module is a reasoning network that performs inferences on the
neural presentations of diagrams. This reasoning network extracts useful information
from the neural representations in order to achieve accurate inferences. The reasoning
network consists of fully-connected layers that densely process the neural representations.
The reasoning network outputs the probability for each categorical conclusion. EulerNet
can be trained to minimise error rates in reasoning with standard Stochastic Gradient
Descent (SGD) and a back-propagation algorithm [65]. Formally, the training objective is
to minimise the loss function, as in Equation 3.1:

L(D,T) = −
∑

(d,t)∈(D,T)

∑
i

ti log f(d) + (1− ti)(1− log f(d)) (3.1)

Where D are input premise diagrams, T are labels, (d, t) is a training sample of the
problem set, ti is the ith element in the label vector, and f(d) represents EulerNet as a
function of d.

41

Figure 3.2: Diagram generation module for EulerNet. The neural code from the last fully
connected layer in the reasoning network is fed into the diagram generator network. This
generator is trained in combination with a discriminator that tries to distinguish between
real and correct images from generated images, and thereby enables the generator to
improve.

3.1.2 EulerNet for diagram generation

Instead of generating a categorical conclusion, EulerNet can also generate diagrammatic
conclusions of a syllogism, as in diagram 3 in Figure 2.2 (page 27). This allows EulerNet
to perform complete diagrammatic inferences. Diagrams can be generated from the neural
representations of the syllogism problem without any human intervention or established
drawing tools. This is accomplished by concatenating an image generator network to
EulerNet. Figure 3.2 illustrates the architecture of EulerNet for diagram generation. This
generator network uses latent neural code vectors extracted from the last layer of EulerNet
to generate Euler diagrams that are consistent with the given premises. The latent neural
code vectors encode consistent conclusions for the reasoning task. The generator network
then uses several deconvolutional layers [118] to transform this neural representation to an
Euler diagram consistent with the given premises.

The generator network is trained with the Generative Adversarial Network (GAN) [30]
training objective, which recently became popular for generating high definition and sharp
images. GAN consists of a generator network and a discriminator network that are jointly
trained in a minimax game. The generator tries to generate images as real and accurate as
possible, while the discriminator tries to distinguish between the generated and the correct
images. The GAN training objective can be mathematically formulated as in Equation 3.2:

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (3.2)

Where G is the generator, D is the discriminator, x is a correct data sample, and z

is the latent code vector. This can be viewed as a minimax game between G, which

42

First Premise
A ⊃ B A ⊂ B A ∩B 6= ∅ A ∩B = ∅

B ⊃ C

A ⊂ C A ⊂ C
A ⊃ C
A ∩ C 6= ∅
A ∩ C = ∅

A ⊃ C
A ∩ C 6= ∅
A ∩ C = ∅

A ∩ C = ∅

Second
Premise

B ⊂ C

A ⊂ C
A ⊃ C
A ∩ C 6= ∅
A ∩ C = ∅

A ⊂ C A ⊃ C
A ⊂ C
A ∩ C 6= ∅

A ⊂ C
A ∩ C 6= ∅
A ∩ C = ∅

B ∩ C 6= ∅

A ⊃ C
A ∩ C 6= ∅

A ⊂ C
A ∩ C 6= ∅
A ∩ C = ∅

A ⊂ C A ⊂ C
A ⊃ C
A ∩ C 6= ∅
A ∩ C = ∅

B ∩ C = ∅

A ⊃ C
A ∩ C 6= ∅
A ∩ C = ∅

A ∩ C = ∅ A ⊃ C
A ∩ C 6= ∅
A ∩ C = ∅

A ⊂ C
A ⊃ C
A ∩ C 6= ∅
A ∩ C = ∅

Table 3.1: Logic table for syllogism inference. Each cell contains all consistent conclusions
from the given first and second premises.

tries to minimise the objective, and D which tries to maximise it. During training, the
parameters of the generator and the discriminator are updated alternatively to converge
towards a dynamic equilibrium. The generator converges after 50000 iterations, and is
able to generate an accurate and clear Euler diagram conclusion consistent with the given
premises.

3.2 Evaluation

3.2.1 Syllogism reasoning performance

EulerNet is trained with syllogism problems generated from an Euler diagram syllogism
task generator. This generator first generates two random logical relationships for the
first two premises, and then generates two Euler diagrams representing the two logical
relationships with random size and position, as long as the logical relationships are not
violated. Subsequently, the task generator generates consistent conclusions from a manually
constructed logic table, as shown in Table 3.1, that maps any two premises to a set of
consistent conclusions. Columns of the truth table correspond to the first premise; rows
correspond to the second premise. The entries in the table are sets of classes containing
corresponding conclusions.

43

(a) p1 (b) p2 (c) c (d) p1 (e) p2 (f) c

Figure 3.3: Two examples of the EulerNet generated diagrams. p1 and p2 are premises
and c are EulerNet generated conclusion diagrams.

For each consistent conclusion, corresponding Euler diagrams will also be generated
with random size and position. In total, 96000 Euler syllogism reasoning problems are
generated for neural network training. For the 3-contour dataset, the diagrams and
conclusions are generated in the same fashion. The truth table is larger as each premise
contains relationships between 3 classes, giving 43 possible cases.

During training, I followed the standard procedure of dividing the dataset into 3 sets,
namely the training set, the validation set and the test set with a split ratio of 8:1 :1. I
trained EulerNet with the training dataset, tuned its performance with reported scores on
the validation dataset, and finally, I evaluated the final performance on the test dataset. I
report here the percentage accuracy, which is defined as the number of syllogism problems
correctly solved over the total number of problems. EulerNet is able to achieve a nearly
perfect accuracy of 99.5% on the 2-contour Euler syllogism tasks, and 99.4% accuracy on
the 3-contour tasks. In order to understand the performance results further, I separate
test results for conclusive syllogism groups (a single logical conclusion) and inconclusive
groups (multiple consistent conclusions). I found that EulerNet achieves 100% accuracy
for conclusive groups, which could indicate that conclusive syllogisms are relatively simpler
than the inconclusive ones.

EulerNet, with an added diagram generator can create high quality Euler diagrams
from neural representations mostly without image artefacts. Figure 3.3 shows two examples
of Euler conclusion diagrams generated by EulerNet for the 2-contour task. For the first
example, only the correct Euler diagram is generated. For the second example, which
is inconclusive, an Euler diagram consistent with the premises is generated. Figure 3.4
shows two examples of generated diagrams (both examples are inconclusive so consistent
conclusions are generated) for the 3-contour task. This shows that EulerNet learns neural
representations that encode essential information of the syllogism reasoning problem. Such
neural representations can be interpreted by a diagram generator network to create a
diagrammatic conclusion.

44

(a) p1 (b) p2 (c) c (d) p1 (e) p2 (f) c

Figure 3.4: Two examples of the EulerNet generated diagrams for the reasoning task with
3 contours per diagram. p1 and p2 are premises and c are EulerNet generated conclusion
diagrams.

Figure 3.5: An example of Euler diagrams with injected random noise and deformation.

3.2.2 Robustness evaluation

One of the advantages of a DNN-based system is its robustness to noisy input. To test if
EulerNet has this advantage, I add random noise and deformation to the input diagrams
and measure EulerNet’s decrease in performance. Figure 3.5 shows an example of Euler
diagrams with injected random noise and deformation. In practice, I add Gaussian Noise
sampled from N (0, 0.003) and random vertical sinusoidal deformation with amplitude
uniformly randomly sampled between 0 to 8 pixels and angular frequency sampled between
0 to 4. With such noise and deformation, EulerNet can still achieve 99.1% test accuracy,
with only a 0.4% decrease in accuracy. Thus, EulerNet is shown to be very robust to noisy
input.

3.2.3 Decoding neural representations

It is interesting to further understand what exactly is learned in the neural representation
of diagrams. Firstly, I applied t-SNE visualisation [69], a technique that enables visualising
high-dimensional data in a 2-dimensional format, on neural representations of input premise
diagrams. The t-SNE technique can efficiently compute 2-dimensional distances that are
relatively proportional to distances between points in high dimensional space. With t-SNE
I am able to visualise distances between feature representations of diagrams. Figure 3.6

45

Figure 3.6: t-SNE plot of neural representations (output of Siamese Convolutional Net-
works) of input premise diagrams. In the legend, ⊃ and ⊂ denotes superset and subset,
A ∩B = ∅ denotes intersection and A ∩B 6= ∅ denotes disjoint sets. Units in the plot are
distances computed proportionally to the differences in feature presentation vectors of
diagrams.

shows the t-SNE plot of neural representations of input premise diagrams, including
diagrams showing relationships between the first set A and the second set B, and also
between the second set B and the third set C. In the plot, one can observe that neural
representations of diagrams with the same logical relationships are clustered together. This
illustrates that the learned neural representations indeed encode the logic relationships in
the diagrams. In Figure 3.7, I also plotted the neural representations extracted from the
reasoning network in EulerNet, which should encode the syllogism reasoning problems as a
whole. It can be observed again that the same syllogism problems are clustered together.

Besides the t-SNE plot, I would also like to investigate if elements in the neural
representation vector encode functionally disentangled information, meaning that a single
or a small group of dimensions in the representation vector solely encodes certain statistics
of the image (e.g., contour size) without being entangled with other elements.

I manually varied elements of the neural vector that are extracted from the reasoning
network and fed them into the generator network for diagram generation. I observed that
indeed some elements do encode meaningful information of the generated diagrams. For
example, I identified that the magnitude of Element 10 in the vector is correlated with the

46

Figure 3.7: t-SNE plot of neural representations of the syllogism reasoning problems
as a whole. In the legend, ⊃ and ⊂ denote superset and subset, A ∩ B = ∅ denotes
intersection, and A∩B 6= ∅ denotes disjoint sets. Units in the plot are distances computed
proportionally to the differences in feature presentation vectors of diagrams.

area of intersection between two circles, as illustrated in Figure 3.8 (a). I also observed
that element 41 is correlated with the size of the inner Euler circle in the subset case, as
illustrated in Figure 3.8 (b).

3.2.4 Extracting rules from reasoning networks

While EulerNet performs well on the diagrammatic reasoning tasks, it is not clear how
the reasoning network processes the neural representations of each premise diagram. I
introduce a method to transform a reasoning network into a rule-based system similar to
what is widely used in automated reasoning. The method makes the reasoning network
small and sparse without significant loss of accuracy. In this way, the parameters of the
reasoning network can be distilled into a very small number, and then transformed into a
rule-based program with a relatively small number of rules. I make the reasoning network
small by reducing the number of layers and neurons in each layer with a loss in accuracy
smaller than 0.5%. In this way, the reasoning is reduced to a network with 1 hidden
layer and 1 output layer, each consisting of 4 neurons. The network parameters are then
sparsified by adding an L-1 Norm regularisation term to the loss function in Equation 3.1.

47

(a)

(b)

Figure 3.8: (a) Varying Element 10 affects the area of intersection between two circles. (b)
Varying Element 41 affects the size of inner circle in the subset case. The diagrams, from
left to right, correspond to varying codes from value -0.5 to 0.5.

L-1 regularisation term is mathematically formulated as in Equation 3.3:

||w||1 =
∑
i

|wi| (3.3)

where wi is the ith parameter, and |w| is an absolute value of w. I force all weights with
absolute values below a certain threshold ε to 0 to leave only parameters important to the
reasoning task.

Figure 3.9 shows a heatmap plot of the sparsified weights of the reasoning network.
With 128-dimensional neural representation of input premise diagrams, there are two
weight matrices of 128 × 4 size mapping neural representations to the first layer in the
reasoning network. There is also a 4× 4 weight matrix connecting the first layer to the
second layer. With ε value of 0.02, a reasoning network with only 53 effective parameters is
obtained. The sparsified reasoning network can be more easily re-formulated as a rule-based
system where each neural layer is simply a weighted sum with bias (implemented as matrix
multiplication/addition) with a ReLU function ReLU(x) = max(x, 0). This rule-based
system, while simple, can still achieve 98.8% accuracy. However, the full interpretability
of this rule-based system depends on the fully interpretable diagram feature embedding
produced by the perception module.

48

(a) p1 weights (b) p2 weights (c) reasoning
weights

Figure 3.9: Visualising weights of the small and sparsified reasoning network. (a) and
(b) are 128× 4 weight matrices mapping neural representations to the first layer of the
reasoner network. Weight values are indicated with colour, with green indicating values
closer to 0. Note that most of the weight in the sparsified weight matrices are 0. (c) is
a 4 × 4 weight matrix connecting the first layer (4 hidden units) to the second layer(4
output units).

3.2.5 Ablation studies

In this section, I perform ablation studies on components of EulerNet to identify parts of
the model that affect the performance the most. I have performed the following ablation
experiments:

1. I changed the reasoning network to a linear layer. Test accuracy dropped to 62.0%,
showing that the Euler syllogism task cannot be solved as a simple linear classification
problem, and a higher-order complex neural network is essential for improving the
performance.

2. I changed the Siamese CNN from a 7-layer network to 3-layer network. Test accuracy
dropped to 87.0%. This shows that deep neural networks are needed for learning a
better representation of the input diagrams.

3. I remove the perception CNN module, and directly feed symbolic representations (in
the form of encoding vectors) to the reasoning network. The test accuracy is 99.9%,
showing that the Siamese CNN learns neural representations of similar quality to
the symbolic representations.

3.3 Discussion

In this section I will first concisely discuss the pros and cons of EulerNet, and then expand
on some of the points.
Pros:

• EulerNet has the ability to learn from the data rather than relying on manually-
defined rules. Thus it can be more easily adapted to other types of diagrams. This
is discussed in detail in Section 3.3.1.

49

• EulerNet, compared against traditional mechanised reasoning systems, does not re-
quire the definition of a diagram-to-symbol mapping system. EulerNet can implicitly
learn such mapping. This is further discussed in Section 3.3.2.

• EulerNet is robust to noisy and deformed input diagrams, with only small decrease
in accuracy. This has been shown in Section 3.2.2.

Cons:

• EulerNet encodes input diagrams into a fixed length vector, which is not scalable to
diagrams with arbitrary numbers of entities. A solution is proposed in Chapter 4.

• EulerNet requires large amount of labelled data for training. However, this can
be ameliorated with unsupervised pre-training on vastly available unlabelled data,
which will be discussed in Chapter 5.

• EulerNet is currently only trained on a dataset with 16 distinct conclusion categories.
It is possible that EulerNet simply learns a mapping between input classes to
conclusion category. This is further discussed in Section 3.3.3

3.3.1 Applicability to other types of diagrams

While I showed that DNNs can perform diagrammatic reasoning and learn useful repre-
sentations on the relatively simple Gergonne’s system of Euler diagram syllogism solving,
DNNs are not limited to a particular type of diagram. DNNs provide a universal method
for encoding all types of diagrams into neural codes that can subsequently be analysed.
While simple diagrams like Euler diagrams can be conveniently formalised symbolically
into sets of zones, labels, and shadings, there are many types of diagrams that are more
difficult to formalise, such as the diagram reasoning tasks like Raven Progressive Matrices.
DNNs can be applied to learn representations of such diagrams, which enable us to analyse
aspects of those representations. In the next Chapter (Chapter 4), I will discuss applying
DNNs to the much more complex Raven Progressive Matrices task, and introduce MXGNet,
an architecture I developed that achieves state-of-the-art accuracy on two RPM datasets
(true at the time of publication).

3.3.2 Comparison with logical symbolic reasoner

While EulerNet achieves 99.5% accuracy, it is still not on-par with a symbolic logic reasoner
which is 100% accurate. However, conceptually logical symbolic reasoners only reason
with the symbols that represent diagrams, while EulerNet reasons directly with the raw
diagram input. The strengths of DNN are its ability to capture feature representations for
any type of diagram (as discussed in Section 3.3.1), the reduced need for human expert

50

inputs, and its robustness to noise. Such DNN-based diagrammatic reasoning systems
make the most sense when applied to types of diagrams that have not been formalised, or
are too complex to be formalised, like reasoning with natural images where objects in the
image have logical meanings.

One of the obvious drawbacks of DNN-based systems is their need for labelled data.
Labelling data can be a tedious and labour-intensive process. In Chapter 5, I discuss
an unsupervised learning method that allows diagram-to-representation mapping to be
learned without any labels. Moreover, the mapping outputs symbolic representation,
which can be directly used for rule-based reasoning, thus providing a potential way of
amalgamating DNN with mechanised reasoning systems.

3.3.3 Limitations of the syllogism dataset

The proposed dataset, while containing non-repeating 2-contour Euler syllogism diagram
tasks, is limited in that there are only 16 distinct outcomes due to the definition of syllogism
tasks. It is possible that EulerNet learns a table-mapping mechanism for mapping the 2
input diagram types to the conclusion. For future work, it is possible to generate Euler
diagram inference tasks that contain an arbitrary number of input diagrams, and test if
EulerNet can be modified to perform chained inference on this dataset. Such test will show
if EulerNet can really learns to perform logic-based inference rather than just input-type
classification.

51

52

Chapter 4

Abstract Diagrammatic Reasoning with
Multiplex Graph Networks

Diagrams, while frequently used to facilitate reasoning like Euler diagrams, are also often
used for measuring human’s fluid intelligence. Many tests have been proposed to measure
human fluid intelligence, and most of them are diagrammatic tests. The most popular test
in the visual domain is the Raven Progressive Matrices (RPM) test [79]. In the RPM test,
the participants are asked to view a sequence of contextual diagrams, usually given as a
3× 3 matrix of diagrams with the bottom-right diagram left blank. Participants should
infer abstract logic rules in rows or columns of the diagram matrix, and pick correctly
from a set of candidate answers to fill in the blank. Figure 4.1a shows an example of an
RPM task containing the XOR rule across diagrams in rows. For more detailed discussions
and examples of RPM tasks, please refer to Section 2.2.2.

EulerNet (Chapter 3) works well for Euler diagrams in which there are fixed numbers
of contours. However, in RPM task, there can be an arbitrary number of objects in the
diagrams. EulerNet encodes each diagram into a fixed-length embedding vector, which are
thereby not scalable to diagrams with an arbitrary number of objects. In this chapter, I
test the hypothesis: if scalable neural architectures can be developed for reasoning with
input diagrams with varying number of entities. For this purpose, I propose MXGNet, an
end-to-end scalable architecture that treats each individual object as a node and formulates
graphs of objects in the RPM diagrams. Developing a DNN-based reasoning system for
RPM task makes two contributions. Firstly, applying a traditional mechanised reasoning
system on RPM tasks is a complex endeavour that requires tremendous human efforts in
designing the diagram-to-symbol mapping and defining the set of rules for reasoning. In
fact, such a system [76] has only been applied to the simplest case of RPM, where there
can only be a single object existing in each diagram. Instead, a DNN-based system can
learn to solve much more complex tasks without human expert inputs. Secondly, for DNN

53

(a)

(b)

Figure 4.1: (a) shows an example of an RPM task containing the XOR rule across diagrams
in rows and the overview of MXGNet architecture. Here, Fρ is the object representation
module, Eγ is the edge embedding module, Gφ is the graph summarisation module and
Rθ is the reasoning network. (b) shows the multi-layer graph formed from objects in the
first row of diagrams in the example shown in (a). Edges can capture relations such as if
two objects in different diagrams have the same spatial positions.

to achieve Artificial General Intelligence, it needs to possess the same abstract reasoning
capability as humans(e.g., higher-level planning). Measuring DNN-based system’s perfor-
mance on human IQ tests provides an indicator of how far today’s state-of-the-art DNN
architectures are from achieving a certain level of General Intelligence beyond perception
tasks. It is also an indication of whether DNN, thought by many to just be advanced curve
fitting [78], can actually learn chains of reasoning needed to solve many higher-level tasks.

54

The first attempt to solve complex RPM tasks with more than one object in diagrams
was by Barrett et al [5]. In their work, they published a large and comprehensive RPM-
style dataset named Procedurally Generated Matrices ‘PGM’, and proposed the Wild
Relation Network (WReN), a state-of-the-art neural network for RPM-style tasks. While
WReN outperforms other state-of-the-art vision models such as Residual Network [39],
the performance is still far from deep neural networks’ performance on other vision or
natural language processing tasks. Recently, there has been a focus on object-level rep-
resentations ([114, 43, 47, 73, 96, 119]) for visual reasoning tasks, which enable the use
of inductive-biased architectures such as symbolic programs and scene graphs to directly
capture relations between objects. Here relations denotes a similarity metric between
attributes of a pair of objects. For RPM-style tasks, symbolic programs are less suitable
as these programs are generated from given questions in the Visual-Question Answering
setting (discussed in Section 1.1). In RPM-style tasks there are no explicit questions.
Encoding RPM tasks into graphs is a more natural choice. However, previous works on
scene graphs ([96, 119]) model a single image as graphs, which is not suitable for RPM
tasks as there are many different layers of relations across different subsets of diagrams in
a single task.

In this chapter, I introduce MXGNet, a multi-layer multiplex graph neural net ar-
chitecture for abstract diagram reasoning. Figure 4.1a shows an overview of MXGNet
architecture. Here “multi-layer” means the graphs are built across different diagram panels,
where each diagram is a layer. ‘Multiplex’ means that the edges of the graphs are composed
of sub-edges that encode multiple relations between different element attributes, such as
colour, shape, and position. Multiplex networks are discussed in details in [55]. For RPM
tasks, MXGNet encodes subsets of diagram panels into multi-layer multiplex graphs, and
combines summarisation of several graphs to predict the correct candidate answer. With
a hierarchical summarisation scheme, each graph is summarised into feature embeddings
representing relationships in the subset. These relation embeddings are then combined to
predict the correct answer.

For the PGM dataset [5], MXGNet outperforms WReN, the previous state-of-the-art
model, by a considerable margin. For “neutral” data split, in which training and test
datasets are sampled i.i.d, MXGNet achieves 89.6% test accuracy, 12.7% higher than
WReN’s 76.9%. For other splits where training and test data distributions differ, MXGNet
consistently performs better, but with smaller margins. For the RAVEN dataset ([120]),
MXGNet, without any auxiliary training with additional labels, achieves 83.91% test
accuracy, outperforming the 59.56% accuracy by the best model with auxiliary training
for the RAVEN dataset. I also show that MXGNet is robust to the variations in forms of

55

object-level representations. Both variants of MXGNet achieve higher test accuracies than
existing best models for the two datasets.

Next, I will describe MXGNet in detail. In Section 4.2 I will present experimental
results of MXGNet on the PGM and RAVEN datasets.

4.1 MXGNet Architecture

MXGNet is comprised of three main components: an object-level representation module,
a graph processing module, and a reasoning module. Figure 4.1a shows an overview of the
MXGNet architecture. The object-level representation module Fρ, as the name suggests,
extracts representations of objects in the diagrams as nodes in a graph. Recall that, as
introduced in Section 2.2.2, RPM tasks consist of context diagrams C and answer candidate
diagrams A. For each diagram di ⊂ C ∪A, a set of nodes vi,j; i = 1 . . . L, j = 1 . . . N

is extracted where L is the number of layers and N is the number of nodes per layer. I
experimented with both fixed and dynamically learned N values. I also experimented
with an additional ‘background’ encoder that encodes background lines (examples in
Figure 2.4) into a single vector, which can be considered as a single node. The multiplex
graph module Gφ, for a subset of diagrams, learns the multiplex edges capturing multiple
parallel relations between nodes in a multi-layer graph where each layer corresponds to
one diagram in the subset, as illustrated in Figure 4.1b. In MXGNet, I consider a subset
of cardinality 3 for 3× 3 diagram matrices. While prior knowledge of RPM rules existing
in rows and/or columns of the matrix allows one to naturally treat rows and columns in
RPM as subsets, this prior knowledge does not generalise to other types of visual reasoning
problems. Considering all possible diagram combinations as subsets is computationally
expensive. To tackle this, I developed a relatively quick pre-training method to greatly
reduce the search space of subsets, as described below.

Search Space Reduction: I can consider each diagram as node vdi in a graph, where
relations between adjacent diagrams are embedded as edges edij. Note here I am consider-
ing the graph of ’diagrams’, which is different from the graph of ’objects’ in the graph
processing modules. Each subset of 3 diagrams in this case can be considered as a subset
of 2 edges. I here make weak assumptions that edges exist between adjacent diagrams
(including vertical, horizontal, and diagonal directions) and edges in the same subset
must be adjacent (defined as two edges linking the same node), which are often used in
other visual reasoning problems. Subsets of edges are denoted as {edij, edjk}. 3 neural nets
are used to embed nodes, edges, and subsets. CNNs are used to embed diagram nodes
into feature vectors, and MLPs to embed edges based on node embeddings as well as

56

subsets based on edge embeddings. While it is possible to include graph architectures
for better accuracy, I found that simple combinations of CNNs and MLPs train faster
while still achieving the search space reduction results. This architecture first embeds
nodes, then embeds edges based on node embedding, and finally embeds subsets based on
edge embedding. The subset embeddings are summed and passed through a reasoning
network to predict answer probability, similar to WReN ([5]). For the exact configuration
of the architecture used, refer to Appendix B.1. For each subset{edij, edjk} , I define a
gating variable gijk, which controls how much each subset contributes to the final result.
In practice, I use a tanh function, which allows a subset to contribute both positively and
negatively to the final summed embeddings. In training, an L1 regularisation constraint is
used on the gating variables to suppress gijk of non-contributing subsets close to zero. This
architecture can quickly discover rows and columns as contributing subsets, while leaving
gating variables of other subsets not activated. The experiment results are described
in Section 4.2.1. While this method was developed for discovering reasoning rules for
RPM tasks, it can be readily applied to any other multi-frame reasoning task for search
space reduction. In the rest of this Chapter, I hard-gate subsets by rounding the gat-
ing variables, thereby reducing subset space to only treat rows and columns as valid subsets.

The first 2 rows and columns are treated as contextual subsets Crow
i and Ccol

i where i
are row or column indices. For the last row and column, where the answers should be filled
in, each of the 8 answer candidates are filled in to make 8 row subsets Arow

i ; i ∈ 1, . . . , 8

and 8 column subsets Acol
i ; i ∈ 1, . . . , 8.

The graph module then summarises the graph of objects in a subset into embeddings
representing relations present in the subset. The reasoning module Rθ takes embeddings
from context rows/columns and last rows/columns with different candidate answers filled
in, and produces normalised probability of each answer being true. It also predicts meta-
target for auxiliary training using context rows/columns. Next, I describe each module in
detail.

4.1.1 Object-Level Representation

In the PGM dataset, there are two types of objects, namely “shapes” and “background
lines”. While it is a natural choice to use object-level representation on shapes as they
vary in many attributes such as position and size, it is less efficient on background lines,
since they only vary in colour intensity. In this section, I first describe the object-level
representation applied to ‘shape’ objects, and then discuss the object-level representation
of ’lines’ and an alternative background encoder that performs better.

57

Figure 4.2: Illustration of multiplex edge embeddings and cross-gating function. Each
edge contains a set of different sub-connections (coloured differently). Multiplex edges
connecting nodes in previous layers to nodes in the last layer are aggregated according to
their originating layers. We denote the aggregated feature vectors from these nodes as
aggregated embedding. Aggregated embeddings are then passed to a gating function G,
which outputs gating variables that regulate information coming from each part of the
aggregated embeddings.

In MXGNet, I experiment with two types of object-level representations for ‘shapes’,
namely CNN grid features and representation obtained with spatial attention. For CNN
grid features, each spatial location in the final CNN feature map is used as the object
feature vector. Thus, for each feature map of width W and height H, N = W × H

object representations are extracted. This type of representation is used widely, such as in
Relation Networks [85] and VQ-VAE [100]. For representations obtained with attention,
spatial attention is used to attend to locations of objects, and extract representations
for each object attended. This is similar to objection detection models such as faster
R-CNN [82], which use a Region Proposal Network to propose bounding boxes of objects
in the input image. For each attended location, a presence variable zpres is predicted by the
attention module indicating whether an object exists in the location. Thus the total number
of objects N can vary depending on the sum of zpres variables. Since object-level rep-
resentation is not the main innovation of this work, I leave exact details for Appendix B.1.1.

For background ‘line’ objects, which do not vary in position and size, spatial attention
is not needed. I experimented with a recurrent encoder with Long-Short Term Memory [42]
on the output feature map of CNN, outputting M number of feature vectors. However, in
the experiment, I found that this performs less well than just feature map embeddings
produced by the feed-forward conv-net encoder.

58

4.1.2 Multiplex Graph Network

Multiplex Edge Embedding: The object-level representation module outputs a set
of representations {vi,j; i ∈ 1, . . . , L, j ∈ 1, . . . , N} for ‘shape’ objects, where L is the
number of layers (cardinality of a subset of diagrams) and N is the number of nodes per
layer. MXGNet uses a multiplex edge-embedding network Eγ to generate edge embeddings
encoding multiple parallel relation embeddings:

et(i,j),(l,k) = Et
γ(P

t(vi,j,vl,k)); i 6= l, t = 1 . . . T (4.1)

Here P t is a projection layer projecting concatenated node embeddings to T different em-
beddings. Et is a small neural network processing tth projection to produce the tth sub-layer
of edge embeddings. Here, edges are restricted to be inter-layer only, as intra-layer edges
are found to have no effect on improving performance but increase computational costs.
Figure 4.2 illustrates these multiplex edge embeddings between nodes of different layers. I
hypothesise that different layers of the edge embeddings encode similarities/differences in
different feature spaces. Such embeddings of similarities/differences are useful in comparing
nodes for subsequent reasoning tasks. For example, for Progessive relation of object
sizes, part of theembeddings encoding size differences can be utilised to check if nodes in
later layers are larger in size. This is similar to the ‘Mixture of Experts’ layers [20, 90]
introduced in Neural Machine Translation tasks. However, in this work, I developed a
new cross-multiplexing gating function at the node message aggregation stage, which is
described below.

Graph Summarisation: After edge embeddings are generated, the graph module then
summarises the graph into a feature embedding representing relations present in the subset
of diagrams. Information in the graph is aggregated to nodes of the last layer corresponding
to the third diagram in a row or column because, in RPM tasks, the relations are in the
form Diagram3 = Function(Diagram1, Diagram2). All edges connecting nodes in a
particular layer vi,j; i 6= L, to a node vL,k in the last layer L are aggregated by a function
Fag composed of four different types of set operations, namely max, min, sum, and mean:

qi,k = Fag(e(i,1),(L,k) . . . e(i,N),(L,k));Fag(x) = Concat(max(x),min(x), sum(x),mean(x))

(4.2)
These multiple aggregation functions are used together because different sub-tasks in
reasoning may require different types of summarisation. For example, counting the number
of objects is better suited for sum, while checking if there is an object with the same size
is better suited for max.

59

The aggregated node information from each layer is then combined with a cross-
multiplexing gating function. It is named ’cross-multiplexing’ because each embedding in
the set is ’multiplexing’ other embeddings in the set with gating variables that regulate
which stream of information passes through. This gating function accepts a set of
summarised node embeddings {q1,k . . . qL−1,k} as input, and outputs gating variables for
each layer of node embeddings in the set:

g1,k . . .gL−1,k = G(q1,k . . . qL−1,k); gi,k = {g1i,k . . . gTi,k} (4.3)

In practice, G is implemented as an MLP with multi-head outputs for different embeddings
and Sigmoid activation, which constrains the gating variable g within the range of 0 to
1. The node embeddings of different layers are then multiplied with the gating variables,
concatenated and passed through a small MLP to produce the final node embeddings:
qk = MLP (concat({qi,k × gi,k|i = 1 . . . L − 1})). Node embeddings and background
embeddings are then concatenated and processed by a residual neural block to produce
the final relation feature embedding r of the diagram subset.

4.1.3 Reasoning network

The reasoning network takes relation feature embeddings r from all graphs and infers the
correct answer based on these relation embeddings. I denote the relation embeddings for
context rows as rcri ; i = 1, 2 and context columns as rcci ; i = 1, 2. The last row and column
filled with each answer candidate ai are denoted rari ; i = 1, . . . , 8 and raci ; i = 1, . . . , 8.
For the RAVEN dataset, only row relation embeddings rcr and rar are used, as discussed
in Section 2.2.2. The reasoning network Rθ is a multi-layer residual neural net with a
Softmax output activation that processes concatenated relation embeddings and outputs
class probabilities for each answer candidate.

Figure 4.3 shows the reasoning network configuration for RPM tasks. I experimented
with the approach introduced in [5], which computes scores for each answer candidate
and finally normalises the scores. I found this approach leads to severe overfitting on the
RAVEN dataset, and therefore used a simpler approach to just concatenate all relation
embeddings and process them with a neural net. In practice, I used two residual blocks of
size 128 and 256, and a final, fully connected layer with 8 units corresponding to 8 answer
candidates. The output is normalised with a Softmax layer. Meta-targets (encoding
meta-information of the tasks such as types of objects and relations present in the task) are
also used as auxiliary labels in some experiments. In PGM datasets, there are 12 different
meta-targets, while in RAVEN there are 9 (details in Section 2.2.2). For meta-target
prediction, all relation information is contained in the context rows and columns of the

60

RPM task. Therefore, I apply a meta-predicting network Rmeta with Sigmoid output
activation to all context rows and columns to obtain probabilities of each meta-target
category:

pmeta = Rmeta(r
cr
1 + rcr2 + rcc1 + rcc2) (4.4)

Figure 4.3: The architecture overview of the reasoning module. ’RelEmbed’ are relation
embeddings, ’Concat’ is the concatenation layer. ’ResBlock’ is a Residual Convolutional
Block. ’FC’ is a fully connected layer.

4.1.4 Training

The full pipeline of MXGNet is end-to-end trainable with any gradient descent optimiser.
In practice, I used the RAdam optimiser [68] for its fast convergence and robustness to
learning rate differences. The loss function for the PGM dataset is the same as used
in WReN [5]: L = Lans + βLmeta−target where β balances the training between answer
prediction and meta-target prediction. For the RAVEN dataset, while the loss function can
include auxiliary meta-target and structured labels as L = Lans + αLstruct + βLmeta−target,
I found that both auxiliary targets do not improve performance, and thus set α and β to
0.

4.2 Experiments

4.2.1 Search Space Reduction

The Search Space Reduction model is applied on both the PGM and RAVEN datasets to
reduce the subset space. The gating variable, with a possible range of [0, 1], shows the
contribution of subsets to the final prediction. After 10 epochs, only gating variables of
rows and columns subsets for PGM and of rows for RAVEN have absolute values larger

61

than 0.5. The gating variables for the three rows are 0.884, 0.812 and 0.832. The gating
variables for the three columns are 0.901, 0.845 and 0.854. All other gating variables are
below the threshold value of 0.5. Interestingly all activated (absolute value > 0.5) gating
variables are positive. This is possibly because it is easier for the neural net to learn an
aggregation function than a comparator function. Exact experiment statistics can be
found in Appendix B.3.

4.2.2 RPM task performances

In this section, I compare all variants of MXGNet against the state-of-the-art models
(SOTA results correct at the time of paper submission). for the PGM and the RAVEN
datasets. For the PGM dataset, MXGNet is tested against results of WReN [5] in the
auxiliary training setting with β value of 10. In addition, MXGNet is also compared to
VAE-WReN [94]’s result without auxiliary training. For the RAVEN dataset, MXGNet
is compared to the WReN and ResNet model’s performance as reported in the original
paper [120]. I evaluated MXGNet with different object-level representations (Section 4.1.1)
on the test data in the ‘neutral’ split of the PGM dataset.

Table 4.1a shows test accuracies of model variants compared with WReN and VAE-
WReN for the case without auxiliary training (β = 0) and with auxiliary training (β = 10)
for the PGM dataset. Both model variants of MXGNet outperform other models by
a considerable margin, showing that the multi-layer graph is indeed a more suitable
way to capture relations in the reasoning task. Model variants using grid features from
the CNN feature maps slightly outperform models using spatial-attention-based object
representations, both with and without auxiliary training settings. This is possibly
because the increased number of parameters for the spatial attention variant leads to
over-fitting, as the training losses of both model variants are very close. In the subsequent
experiments for PGM, I use model variants with CNN grid features to report performances.

Table 4.1b shows test accuracies of model variants compared with WReN, which is the
best performing ResNet model for the RAVEN dataset. WReN surprisingly only achieves
14.69% accuracy as tested by [120]. I include results of the ResNet model with and without
Dynamic Residual Trees [120], which utilise additional structure labels of relations. I
found that, for the RAVEN dataset, auxiliary training of MXGNet with meta-target or
structure labels (see Section 4.1.4) does not improve performance. Therefore, I report
test accuracies of models trained only with the target-prediction objective. Both variants
of MXGNet significantly outperform the ResNet models. Models with spatial attention
object-level representations under-perform simpler CNN features slightly, most probably
due to overfitting, as the observed training losses of spatial attention models are lower

62

than CNN feature models. It is notable that MXGNet performance is very close to human
performance, with an only 0.5% lower accuracy.

Model WReN VAE-WReN ARNe MXGNet
[5] [94] [37] CNN Sp-Attn

acc. (%)β = 10 76.9 N/A 88.2 89.6 88.8
acc. (%)β = 0 62.6 64.2 N/A 66.7 66.1

(a) PGM

Model WReN ResNet ResNet+DRT MXGNet Human
[120] [120] [120] CNN Sp-Attn [120]

acc. (%) 14.69 53.43 59.56 83.91 82.61 84.41

(b) RAVEN

Table 4.1: (a) shows results comparing MXGNet model variants against WReN for the
PGM dataset. ARNe’s result with β = 0 is N/A because authors did not report this result
and there is no avaiable code for reproduction. (b) shows results comparing MXGNet model
variants against ResNet models for the RAVEN dataset. The object-level representation
has two variations which are (o1) CNN features and (o2) Spatial Attention features
(Section 4.1.1).

4.2.3 Generalisation evaluation for PGM

In the PGM dataset, other than the neutral data regime in which the test dataset’s
sampling space is the same as the training dataset, there are also other data regimes that
restrict the sampling space of training or test data to evaluate the generalisation capability
of a neural network. Table 4.2 shows validation and test accuracies of MXGNet for all
data regimes with and without auxiliary training. For the ‘interpolation’ regime, in the
training dataset, when attribute a = colour and a = size, the values of a are restricted
to even-indexed values in the spectrum of a values. This tests how well a model can
‘interpolate’ for missing values. For the ‘Extrapolation’ regime, in the training dataset,
the value of a is restricted to the lower half of the value spectrum. This tests how well a
model can ‘extrapolate’ outside of the value range in the training dataset. Other regimes
with “H.O.” in their names are data splits where particular relation tuples are held out
during training. For example, in “H.O. shape-color” split, the training dataset does not
contain any relations in colours of the shape objects, while the test dataset contains only
relations in colours of the shape objects. For the exact details please refer to [5].

In addition, differences between validation and test accuracies are also presented to
show how well models can generalise. MXGNet models consistently perform better than
WReN for all regimes tested. MXGNet outperforms WReN on all data splits except the
H.O. shape-color data split with no auxiliary training (i.e., β = 0). These results show

63

that MXGNet has a better capability of generalising outside of the training space.

Model Regime β = 0 β = 10
Val.(%) test% Diff. Val.(%) test% Diff.

WReN

Neutral 63.0 62.6 -0.4 77.2 76.9 -0.3
Interpolation 79.0 64.4 -14.6 92.3 67.4 -24.9
Extrapolation 69.3 17.2 -52.1 93.6 15.5 -79.1

H.O. Attribute Pairs 46.7 27.2 -19.5 73.4 51.7 -21.7
H.O. Triple Pairs 63.9 41.9 -22.0 74.5 56.3 -18.2

H.O. Triples 63.4 19.0 -44.4 80.0 20.1 -59.9
H.O. line-type 59.5 14.4 -45.1 78.1 16.4 -61.7

H.O. shape-color 69.3 17.2 -52.1 93.6 15.5 -78.1

MXGNet

Neutral 67.1 66.7 -0.4 89.9 89.6 -0.3
Interpolation 74.2 65.4 -8.8 91.5 84.6 -6.9
Extrapolation 69.1 18.9 -50.2 94.3 18.4 -75.9

H.O. Attribute Pairs 68.3 33.6 -34.7 81.9 69.3 -12.6
H.O. Triple Pairs 67.1 43.3 -23.8 78.1 64.2 -13.9

H.O. Triples 63.7 19.9 -43.8 80.5 20.2 -60.3
H.O. line-type 60.1 16.7 -43.4 85.2 16.8 -61.5

H.O. shape-color 68.5 16.6 -51.9 89.2 15.6 -73.6

Table 4.2: Generalisation performance comparing MXGNet model variants against WReN.
‘Diff.’ is the difference between the test and the validation performances.

4.2.4 Ablation study

I performed ablation study experiments to test how much the multiplex edges affect
performance. I tested two model variants, one without any graph modules, and the other
with graphs using vanilla edge embeddings produced by MLPs, on the PGM dataset. I
found that, without graph modules, the model only achieved 83.2% test accuracy. While
this is lower than MXGNet’s 89.6%, it is still higher than WReN’s 76.9%. This is possibly
because the search space reduction, by trimming away non-contributing subsets, allows the
model to learn more efficiently. The graph model with vanilla edge embeddings achieves
88.3% accuracy, only slightly lower than MXGNet with multiplex edge embeddings. This
shows that, while a general graph neural network is a suitable model for capturing relations
between objects, the multiplex edge embedding does so more efficiently by allowing parallel
relation multiplexing.

Additionally, I performed an ablation study on the reasoning network. As shown
in Figure 4.3, the original reasoning module consists of two residual blocks with a final
output layer. Reducing the number of residual blocks to 1 decreases the PGM neutral
split accuracy from 89.6% to 85.3%. Increasing the number of residual blocks by 1 does
not increase the accuracy; thus it is not considered due to increased computational cost.

64

4.3 Discussion

I presented MXGNet, a new graph-based approach to diagrammatic reasoning problems
in the style of Raven Progressive Matrices (RPM). MXGNet combines three powerful
ideas, namely, object-level representation, graph neural networks and multiplex graphs, to
capture relations present in the reasoning task.
Pros of MXGNet include:

• Experiments show that MXGNet performs better than previous models on two RPM
datasets. The results validate the research aim of this dissertation to prove that
neural diagrammatic reasoning systems can learn complex diagrammatic reasoning
tasks and achieve human-level performances.

• MXGNet can deal with input diagrams with an arbitrary number of entities (within
a limit)

• MXGNet generalises better than previous methods for out-of-distribution dataset.

Cons of MXGNet include:

• A large amount of labelled data are required for training.

• While it is shown that MXGNet has better generalisation performance, the perfor-
mance on some data splits, such as “extrapolation”, is still only slightly above random
chance (12.5% as there are 8 answer candidates). To improve the generalisation
performance of DNN on reasoning tasks, I developed a DNN module that can be
integrated into many architectures for improving o.o.d generalisation performance
on reasoning tasks. This module is discussed in Chapter 6.

One important direction for future work is to make MXGNet interpretable, and thereby
extract logic rules from MXGNet. Currently, the learned representations in MXGNet are
still entangled, providing little in the way of understanding its mechanism of reasoning.
Rule extraction can provide people with a better understanding of the reasoning problem,
and may allow neural networks to work seamlessly with more programmable traditional
logic engines. While extracting rules may hurt performance (as discussed in Section 3.3.2)
for i.i.d training and test datasets, it may actually improve performance on o.o.d data, as
extracted rules may better capture the underlying data structure while removing spurious
correlations in the training dataset.

While the multi-layer multiplex graph neural network is designed for RPM style
reasoning tasks, it can be readily extended to other diagrammatic reasoning tasks where
relations are present between multiple elements across different diagrams. One example

65

of a real-world application scenario is robots assembling parts of an object into a whole,
such as building a LEGO model from LEGO blocks. MXGNet provides a suitable way of
capturing relations between parts, such as ways of piecing and locking two parts together.
I leave this to future works.

66

Chapter 5

Unsupervised Diagram Summarisation
with Deep Generative Models

While EulerNet (Chapter 3) and MXGNet (Chapter 4) achieved good, human-level perfor-
mance on diagrammatic reasoning tasks, they require a considerable amount of labelled
data to achieve this performance. In contrast, humans can learn to reason well with Euler
diagrams or Raven Progressive Matrices with only hundreds of examples [87, 120]. It
is argued (e.g., by Zador et al [116]) that humans can learn from only a few examples
because the brain has already done a large amount of unsupervised learning by seeing,
exploring, and interacting with the world. For the majority of tasks done by both humans
and machines, unlabelled data is more accessible and in a larger amount than labelled data.
Many leading researchers such as Geoffrey Hinton [62] and Yann Lecun [104] argue that
unsupervised learning has an important role in the future of AI in enabling ML systems
to learn with much less data.

Diagrammatic reasoning and more broadly visual reasoning tasks can also benefit from
unsupervised learning. Such tasks require identifying and learning a useful representation of
elements in the visual input, which can be accomplished in an unsupervised way. Objects in
the visual input can be conveniently encoded into a representation containing its category,
attributes and spatial positions and orientations. For example, an object can be of category
vehicle, with attributes such as red colour and 4 doors, and positioned at the bottom
right of the scene in a specific orientation. Humans, when recognising objects or trying to
draw them, are believed to have attentional templates [11] of different categories of ob-
jects in mind that are augmented by different attributes and selected spatially via attention.

Machine approaches to unsupervised representation learning often use generative models
such as Variational Auto-Encoders (VAE) [57], which use an inference network to infer
latent codes corresponding to the representation, and a generator network to reconstruct

67

data given the representation. Recurrent versions of VAE such as the Attend-Infer-Repeat
(AIR) model by Eslami et al [21] have been developed to decompose a scene into multiple
objects, where each is represented by latent code z = (zwhat, zwhere, zpres). While this
latent code disentangles spatial information zwhere and object presence zpres, for most
of the tasks, the object representation zwhat is an entangled real-valued vector that is
thus difficult to interpret. While AIR does propose the possibility of using discrete latent
code as zwhat, it only experimented with the discrete code with specifically-designed
graphics engine as decoder. In this chapter, I test the hypothesis of whether if it is
possible to learn good and interpretable neuro-symbolic representations of diagrams for
downstream reasoning tasks without supervision. Here, I propose Discrete-AIR, an end-to-
end trainable autoencoder that structures latent representation zwhat into zcat, representing
the category of objects and zattr representing attributes of objects. Figure 5.1 illustrates
how a scene of different shapes can be separately identified as different categories with
varying attributes. This decomposition is similar to InfoGAN by Chen et al. [14], which also
decomposes representation into style and shape using a modified Generative Adversarial
Network [30]. However, there are two main differences. Firstly, while InfoGAN uses a
mutual information objective in addition to a GAN objective to encourage disentangled
coding, Discrete-AIR only uses the Variational Lower Bound (ELBO) objectives (See
Section 2.5.4) and encourages disentanglement through the inductive-bias structure of
latent code. Secondly, while InfoGAN is only applied to images containing single objects,
Discrete-AIR is developed for scenes with multiple objects.

Figure 5.1: Illustration of encoding scenes into category and attribute latent code. From
a scene containing three different shapes, Discrete-AIR separately identifies each of the
shapes (with a different coloured bounding box). It also estimates spatial x-axis and y-axis
locations, and the orientation of the shape.

The decomposition of latent codes into categorical variable zcat and attribute variables
zattr has two immediate benefits. Firstly, the decomposition gives direct interpretability
of the latent codes, as zcat captures discrete latent variables like the categories of the
objects (e.g., dog or cat) while zattr captures continuous latent variables like colour and
size. This disentanglement property is further illustrated in Section 5.3. Secondly, the
decomposition generates semi-symbolic latent variables, which can be directly integrated
with rule-based systems. A simple example is using an arithmetic operator to directly cal-

68

culate the sum of all numbers present in the image based on the digit category variables zcat.

Related to this work are other approaches that decompose scenes into different cat-
egories. Neural Expectation Maximisation (NEM) by Greff et al [33] implemented an
Expectation-Maximization algorithm with an end-to-end trainable neural network. NEM is
able to perceptually group pixels of an image into different clusters. However, it only learns
a clustering model, rather than a generative model that allows controllable generation
similar to using zcat and zwhere in Discrete-AIR. Ganin et al [25] train a neural network to
synthesise programs that can be fed into a graphics engine to generate scenes. While it
learns an inference model for the generative model, a graphics engine that can provide
learning gradients is pre-defined and not learned. In contrast, Discrete-AIR jointly learns
an inference model and a generative model from scratch.

In Section 5.3, I show that Discrete-AIR can decompose scenes into a set of disentangled
and interpretable latent codes for two multi-object datasets, namely the Multi-MNIST
dataset, as used in the original AIR model [21], and a multi-object dataset in a similar
style as the dSprites dataset [74]. By disentangling discrete variables from continuous
variables, I show that unsupervised training of the Discrete-AIR model is able to effectively
capture the categories of objects in the scene for the Multi-MNIST and Multi-Sprites
datasets. This can be viewed as a form of disentanglement achieved via enforcing structural
constraints on the latent distribution.

5.1 Attend Infer Repeat

The Attend-Infer-Repeat (AIR) model, introduced by Eslami et al [21], is a recurrent
version of Variational Auto-Encoder (VAE) [57], which decomposes a scene into multiple
objects represented by the latent code zi = (ziwhat, z

i
where, z

i
pres) at each recurrent time step

i. Among them, zipres is a binary discrete variable encoding whether an object is inferred
in current step i. If zipres is 0, the inference will be stopped. The sequence of zipres for all i
can be concatenated into a vector of n ones and a final zero. Therefore, n is a variable
representing the number of objects in the scene. ziwhere is a spatial attention parameter used
to locate a target object in the image, and ziwhat is the latent code of the target object. In
AIR an amortised variational approximation qφ(z|x), as computed in Equation 5.1, is used
to approximate true posterior p(z|x) by minimising KL divergence KL[qφ(z|x)||p(z|x)].
In AIR implementation, zwhat and zwhere are parametrised as Gaussian distributions with

69

diagonal covariance N (µ,Σ).

qφ(z|x) = q(zn+1
pres|z1:n, x)

n∏
i=1

qφ(zi, zipres = 1|x, z1:i−1) (5.1)

Where zi is the latent code at ith generation steps. In the generative model of AIR, the
number of objects n can be sampled from a prior such as geometric prior, and then form
the sequence of zipres. Next, ziwhat and ziwhere are sampled from N (0, I). An object oi is
generated by processing ziwhat through a decoder. oi is then written to the canvas, gated by
zipres, and with scaling and translation specified by ziwhere using Spatial Transformer [49],
a powerful spatial attention module. Spatial Transformer uses attention mechanism to
extract local regions from input images, or write to local regions in the canvas for image
generation. The generative model can be summarised in Equation 5.2 and 5.3, where fdec
is the decoder, ST is the spatial transformer and � is the element-wise product.

pθ(x|z) = N (x|y, σxI) (5.2)

y =
n∑
i=1

ST (fdec(z
i
what), z

i
where)� zipres (5.3)

Inference and generative models of AIR are jointly optimised by maximising the lower bound
L(qφ, pθ) = Eqφ [log pθ(x,z,n)

qφ(z,n|x)
]. While the sampling operation of z is not differentiable (which

is a requirement for gradient-based training), there are various ways to circumvent this.
For the continuous latent codes, the re-parametrisation trick for VAE [57] is applied, which
lets parameters estimated from the inference model deterministically modify a sampled
distribution, thereby allowing back-propagation through the deterministic function. For
discrete latent codes, AIR uses the NVIL likelihood ratio estimator introduced by Mnih et
al [77] to produce an unbiased estimate of the gradient for discrete latent variables.

5.2 Discrete-AIR

While the AIR model can encode objects in a scene into latent code zwhat, it is still
entangled and therefore not interpretable. In Discrete-AIR, I introduce structure into the
latent distribution to encourage disentanglement. The latent variable zwhat is decomposed
into zcat and zattr, where zcat is a discrete latent variable that captures the category of
the object, while zattr is a combination of continuous and discrete latent variables that
capture attributes of the object. Note that no objective function or regularisation is used
to encourage zcat to capture category and zattr to capture attributes. Rather, the model is
allowed to automatically learn the best way of using these discrete and latent variables

70

through the process of likelihood maximisation.

5.2.1 Sampling discrete variable

In Discrete-AIR, binary discrete variables are treated as scalars of 0/1 values and multi-
class categorical discrete variables are treated as one-hot vectors. As sampling from a
discrete distribution is non-differentiable, I model discrete latent variables with Gumbel
Softmax [70, 52], a continuous approximation to the discrete distribution from which an
approximate one-hot discrete vector y can be sampled:

yi =
exp(log ai+gi

τ
)∑k

j=1 exp(
log aj+gj

τ
)

; i = 1, . . . , k (5.4)

here, ai is a parametrisation of the distribution, gi is Gumbel noise sampled from the Gum-
bel distribution Gumbel(0, 1), and τ is a temperature parameter controlling smoothness
of the distribution. The added Gumbel noise is important in making yi a probabilistic
distribution instead of a deterministic function. As τ → 0, the distribution converges to a
discrete distribution. For binary discrete variables such as zpres, I use Gumbel Sigmoid,
which is essentially Gumbel Softmax with the Softmax function replaced with the Sigmoid
function:

y =
exp(log a+g

τ
)

1 + exp(log a+g
τ

)
(5.5)

In contrast to the NVIL estimator [77] used in the original AIR model, I found that
Gumbel Softmax/Sigmoid is more stable during training, experiencing no model collapse
during all the training experiments.

5.2.2 Generative model

The probabilistic generative model is shown in Figure 5.2. From zcat, an high-level object
template Tzcat of this object category is generated. This template represents a prototype
of the object category. This template is then modified by attributes zattr into an image of
object o that is subsequently drawn onto the canvas using spatial write attention. zicat,
ziattr, ziwhere, and zipres, jointly as zi, are estimated from the inference model for each time
step i of inference.

I replace the decoder function fdec(z
i
what) from the original AIR model with a new

function fdec(zicat, ziattr) parametrised by the category variables zcat and zattr. There are
various candidate functions for combining zcat and zattr. I have experimented with three
different variations, which are:

71

Figure 5.2: VAE decoder (Generative model) of Discrete-AIR.

• Additive: fdec(zicat, ziattr) = f(ft(z
i
cat) + fa(z

i
attr)) where ft(zicat) generates a tem-

plate, while fa(ziattr) generates an additive modification of template. Here f is
implemented as transposed convolution networks for generating images. + means
element-wise addition of vectors.

• Multiplicative: fdec(zicat, ziattr) = f(ft(z
i
cat) � fa(ziattr)) where ft(zicat) generates

a template, while fa(ziattr) generates a multiplicative modification of template. �
means element-wise multiplication.

• Convolutional: fdec(zicat, ziattr) = f(ft(conv)(z
i
cat)∗fa(filter)(ziattr)) where ft(conv)(zicat)

generates a template, while fa(filter)(ziattr) generates a set of convolution kernels that
can be convolved with a template to modify it. Here ∗ means convolution operation.

In the experiments, I found that the choice of combining functions has only a small
effect on the model performance. I found that the additive combining function performs
slightly better, thus, I use this function in all of the presented experiments.

In the original AIR model, the spatial transformation operation specified by attention
variable zwhere only contains translation and scaling. Affine transformations such as
rotation and shearing are accounted for in the latent variable in an entangled way. In
Discrete-AIR, I explicitly introduce additional spatial transformer networks that account
for rotation and skewing, thereby allowing zattr to have a reduced number of variables.
The spatial attention for the generative decoder is thus factorised as in Equation 5.6,

T d = T d
stT

d
r T

d
k = (5.6)sx 0 tx

0 sy ty

0 0 1

cos(ω) sin(−ω) 0

sin(ω) cos(ω) 0

0 0 1

1 + kxky kx 0

ky 1 0

0 0 1

where T d

st is the combined transformation matrix of translation and scaling used in
the original AIR model, Tr is the transformation matrix for rotation and Tk is the
transformation matrix for skewing. In the matrix, sx and sy are for scaling, tx and ty are
horizontal and vertical translations, ω is an angle of rotation, and kx and ky are parameters

72

for shearing in the horizontal and vertical axes.

5.2.3 Inference

Figure 5.3: Overview of Discrete-AIR architecture. Blue parts are neural-network trainable
modules and the yellow parts are sampling processes. Here, zt is the latent code at time
step t and ht is the RNN hidden states at time step t. ct−1 is the canvas from the previous
step that is compared with the input image for difference. ct is the canvas generated at
the current step.

Figure 5.3 shows an overview of the Discrete-AIR architecture. At inference step t, a
difference image between input image D and previous canvas Ct−1 is fed together with
previous latent code zt−1 into a Recurrent Neural Network (RNN), implemented as Long
Short-Term Memory (LSTM) [42] to generate parameters of the distribution for zwhere
and zpres. The Spatial Attention module then attends to parts of the image and applies
transformation according to zwhere. I enforce the encoding transformation T e to be the
inverse of decoding transformation T d, which means T eT d = I. This constraint forces the
model to match attended objects in the scene with the invariant template specified by
zcat. In practice, I compute T e as the product of inverses of the transformation matrices
composing T d:

T e = T d−1 = T d
k

−1
T d
r

−1
T d
st

−1 (5.7)

The transformed image is then processed by an encoder to estimate parameters of
distributions for zcat and zattr. zcat are sampled from Gumbel Softmax as discussed in
Section 5.2.1. zattr can be sampled from any distribution that is suitable for the paradigm
of tasks. For tasks presented, continuous variables such as the colour intensity or part
deformation of an object can be sampled from a multi-variate Gaussian distribution using

73

the re-parameterisation trick [57], which allows a gradient to pass through the originally
un-differentiable sampling function. The generative model described in Section 5.2.2 then
samples zcat and zattr from the distributions in order to generate an object that will be
written to canvas Ct using the spatial attention module.

5.2.4 Learning

Similar to the original AIR model, I train Discrete-AIR model end-to-end by maximising
the lower bound on the marginal likelihood of data:

log pθ(x) ≤ L(θ, φ) = Eqφ
[

log
pθ(x, z, n)

qφ(z, n|x)

]
(5.8)

While in the original AIR model, one cannot further arrange this equation due to
undifferentiable discrete variable sampling process used. For Discrete-AIR, by using
Gumbel-Softmax as a repameterised sampling process, Equation 5.8 can be rearranged as:

L(θ, φ) = Eqφ
[

log pθ(x|z, n)
]
−DKL(qφ(z, n|x)||p(z, n)) (5.9)

where pθ(x|z, n) is data likelihood and DKL is Kullback-Leibler (KL) divergence. This is
the same as implemented in the original VAE [57]. Computing ∂L

∂θ
, the loss derivative with

respect to parameters of the generative model, is relatively straightforward as it is fully
differentiable. With a sampled batch of latent codes z = (zcat, zattr, zwhere, zpres) ∼ q(·|x),
the partial derivative ∂

∂θ
pθ(]vx|z, n) can be directly computed.

When computing ∂L
∂φ
, the re-parameterisation trick [57] can be used to re-parametrise

the sampling of both, continuous and discrete latent variables as a deterministic function
in the form h(ωi, εi). ωi are the parameters of the distributions for z at time step i, and εi

is random noise at time step i. In this way, the chain rule can be used to compute the
gradient with respect to φ as:

∂L
∂φ

=
∂L
∂h
× ∂h

∂ωi
× ∂ωi

∂φ
(5.10)

For the experiments, I parametrise continuous variables as multivariate Gaussian
distributions with a diagonal covariance matrix. Thus h(ωi, εi) = µi + σi ∗ εi. For discrete
variables, I use Gumbel Softmax as introduced in Section 5.2.1, which is itself a re-
parametrised differentiable sampling function. For the KL-divergence term, assuming all
latent variables z are conditionally independent, I can factorise q(z|x) as

∏
i q(zi|x) and

thereby separate the KL-terms, as discussed in [18]. While this simplistic assumption may
not capture the correlations between different latent dimensions, it has the effect of further
encouraging disentanglement. I use Gaussian priors for all continuous variables. While
KL divergence between two Gumbel-Softmax distributions is not available in closed form,

74

I approximate with a Monte-Carlo estimation of KL divergence with a categorical prior
for zcat, similar to [52]. For zpres, I used a geometric prior and computed a Monte-Carlo
estimation of KL divergence [70].

5.3 Evaluation

I evaluate Discrete-AIR on two multi-object datasets, namely the Multi-MNIST dataset as
used in the original AIR model [21] and a multi-object shape dataset comprised of simple
shapes similar to the dSprites dataset [74], a dataset of 2D shapes developed for studying
disentangling latent representations. I perform experiments to show that Discrete-AIR,
while retaining the original strength of the AIR model in discovering the number of objects
in a scene, can additionally categorise each discovered object. In order to evaluate how
accurately Discrete-AIR can categorise each object, I compute the correspondence rate
between the best permutation of category assignments from the Discrete-AIR model and
the true labels of the dataset.

To explain the metric used, I will first define a few notations. For each input image xi,
Discrete-AIR generates a corresponding category latent code zicat and the presence variable
zipres. From this I can form a set of predicted object categories Oi = {oi1, . . . , oin} for n
predicted objects, where oik is the kth object category. For each image there is also a set of
true labels of existing objects T i = {ti1, ..tim}. Due to the non-identifiability problem of
unsupervised learning where a simple permutation of a best cluster assignment produces the
same optimal result, the category assignments produced by Discrete-AIR do not necessarily
correspond to the labels. For example, an image patch of digit 1 could fall into Category 4.
I thus permute the category assignments and use the permutation that corresponds best
with the true label as the category assignment. For example, for the predicted category
set {1, 4, 2, 2, 3} and true label set {4, 0, 1, 1, 5}, the following permutation of category
can be used for the predicted category set (1→ 4, 4→ 0, 2→ 1, 3→ 5) to achieve best
correspondence. To put it more formally, I define a function fp(C, p) where C is a set or
array of sets, and p is an index permutation function to map elements in C. For the entire
dataset, there is an array of predicted category set O and an array of true label set T .
Correspondence rate is defined as in(O, T)/size(T), where in(O, T) gives the number of
true labels t in T that are correctly identified in O. size(T) gives the total number of
labels. Thus the best correspondence rate is computed as:

Rcorr = max
p∈P

in(O, T)

size(T)
(5.11)

where P is the set of all possible permutations of predicted categories. This score ranges
from 0 to 1, and the score of a random category assignment should have the expected
score of 1/k where k is the number of categories.

75

I train Discrete-AIR with the ELBO objective as presented in Equation 5.8. I use
the Adam optimiser [56] to optimise the model with batch size of 64 and learning rate of
0.0001. For Gumbel Softmax, I also applied temperature annealing [52] of tau to start
with a smoother distribution and gradually approximate to discrete distribution. For more
details about training, please see Appendix C.1.

5.3.1 Multi-Sprites

To evaluate Discrete-AIR, I built a multi-object dataset named “Multi=Sprites” in a
similar style to the dSprites dataset [74]. This dataset consists of 90000 images of pixel
size 64 × 64. In each image there are 0 to 3 objects with shapes in the categories of
square, triangle, and ellipse. The objects’ spatial locations, orientations and sizes are all
sampled randomly from uniform distributions. Details about constructing this dataset can
be found in Appendix C.2. Figure 5.4 illustrates the application of Discrete-AIR on the
Multi-Sprites dataset. Figure 5.4a shows samples of input data from the dataset with each
object detected and categorised (with differently coloured bounding box). The number at
the top-left corner shows the estimated number of objects in the scene. Figure 5.4b shows
reconstructed images by the Discrete-AIR model. Figure 5.4c shows the fully interpretable
latent code of each object in the scene. For this dataset, I used a discrete variable of 3
categories for zcat, together with spatial attention variables zwhere. I did not include zattr
for this dataset because the attributes of each object, including location, orientation, and
size, can all be controlled by zwhere. I did not include shear transformation T d

k in the
spatial attention as the dataset generation process does not have a shear transformation.
For more details about the architecture, please see Appendix C.1.

For quantitative evaluation of Discrete-AIR I use three metrics, namely, Reconstruction
Error in the form of Mean Squared Error (MSE), count accuracy of the number of objects
in the scene and categorical correspondence rate. I also compare Discrete-AIR with AIR
for the first two metrics. Table 5.1 shows the performance for these three objectives. Mean
performance across 10 independent runs is reported. Discrete-AIR has slightly better count
accuracy than AIR, and is able to categorise objects with a mean category correspondence
rate of 0.945. The best achieved correspondence rate is 0.967 Discrete-AIR does have
increased reconstruction MSE compared to the AIR model. However Discrete-AIR only
uses a category latent variable of dimension 3, while the original AIR model uses 50 latent
variables.

I also plot count accuracy during training for both Discrete-AIR and AIR in Figure 5.5.
One can observe that both models converge towards similar accuracies, but the Discrete-
AIR model has slightly better convergence speed and stability at the start of training.

Discrete-AIR can generate a scene with a given number of objects in a fully controlled
way. I can specify categories of objects with zcat and their spatial attributes with zattr.

76

(a) Data

(b) Reconstruction

(c) Latent codes

Figure 5.4: Input data from the Multi-Sprites dataset and reconstruction from the Discrete-
AIR model. The coloured bounding boxes show each detected object. The number at
the top-left corner shows the count of the number of objects in the image. Latent codes
representing the scene, including object categories, sizes, spatial locations, and orientation
are also presented.

Model MSE count acc. category corr.

Discrete-AIR 0.096 0.985 0.945
AIR 0.074 0.981 N/A

Table 5.1: Quantitative evaluation of Discrete-AIR and comparison with the AIR model
for the Multi-Sprites dataset.

Figure 5.6 shows a sampled generation process. Note that while the training data contains
up to 3 objects, Discrete-AIR can generate an arbitrary number of objects in the generative
model. I generate 4 objects in the sequence "square, ellipse, square, triangle" with specified
locations, orientation, and size.

77

Figure 5.5: Plot of count accuracy for AIR and Discrete-AIR during training for Multi-
Sprites dataset.

5.3.2 Multi-MNIST

I also evaluated Discrete-AIR on the Multi-MNIST dataset used by the original AIR
model [21]. The dataset consists of 60000 images of size 50 × 50 pixels. Each image
contains 0 to 2 digits sampled randomly from the MNIST dataset [65]. They are placed at
random spatial positions. The dataset is publicly available in the ’observations’ python
package1. For this dataset, I choose a categorical variable with 10 categories as zcat and 1
continuous variable with Normal distribution as zattr because this gives the best category
correspondence rate performance. I choose to combine transformation matrices Tr and Tk
into one because this gives slightly better results. Figure 5.7 shows sampled input data
from the dataset and reconstruction by Discrete-AIR. Figure 5.7c also shows interpretable
latent codes for each digit in the image. From this figure, it can be clearly observed that
Discrete-AIR learns to match templates of category zcat with modifiable attributes zattr
to input data. For example, in the second image of input data, the digit ’8’ is written
in a drastically different style from most other ’8s’ in the dataset. However, as it can be
observed in the reconstruction, Discrete-AIR is able to match a template of digit ’8’ with
modified attributes such as slantedness and stroke thickness.

I performed the same quantitative analysis from the Multi-Sprites dataset. Results are
1https://github.com/edwardlib/observations

78

https://github.com/edwardlib/observations

(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3

Figure 5.6: Generation of images of shapes by Discrete-AIR for the sequence “square,
ellipse, square, triangle”. Overlaps are due to randomised positioning for each generated
object.

shown in Table 5.2. For correspondence rate measurements, I only use 10% subsampled
data because permuting 10 digits requires 9! steps for evaluating across the dataset, which
is too slow for the entire dataset. While the count accuracies of Discrete-AIR and the
AIR model are very close, Discrete-AIR is able to categorise the digits in the image with
a mean correspondence rate of 0.871. The best achieved correspondence rate is 0.913. I
also plotted the count accuracy during training history, as shown in Figure 5.8. It can be
observed that Discrete-AIR’s increase rate of count accuracy is very close to that of the
AIR model.

Model MSE count acc. category corr.

Discrete-AIR 0.134 0.984 0.871
AIR 0.107 0.985 N/A

Table 5.2: Quantitative evaluation of Discrete-AIR and comparison with the AIR model
for Multi-MNIST dataset.

Similar to the case of Multi-Sprites dataset, Discrete-AIR is able to generate images
in a fully controlled way with given categories of digits zcat, attribute variable zattr and

79

(a) Data

(b) Reconstruction

(c) Latent codes

Figure 5.7: Input data from the Multi-MNIST dataset and reconstruction from the Discrete-
AIR model. The coloured bounding boxes show each detected object. The number at
the top-left corner shows the count of the number of objects in the image. Latent codes
representing the scene, including digit categories, attribute variable value, sizes, and spatial
locations are also presented.

spatial variable zwhere. Figure 5.9 shows a sampled generated image. Two digits are
generated in subsequent images with attribute variable increasing from top to bottom.
In the first sequence, digits ’5’ and ’2’ are generated while in the second sequence digits
’3’ and ’9’ are generated. It can be seen that the learned attribute variable zattr encodes
attributes that cannot be encoded by affine transformation spatial variable zwhere. For
example, increasing zattr increases the size of the hook space in digit ’5’, the hook space in
digit ’2’, and the hook curve in digit ’9’.

5.4 Discrete-AIR for extracting interpretable scene graphs

Many real-world tasks, such as inferring physical relationships between objects in an image,
and visual-spatial reasoning (e.g., inferring ways of piecing together two components in

80

Figure 5.8: Plot of count accuracy for AIR and Discrete-AIR during training for the
Multi-MNIST dataset.

(a) t = 0 (b) t = 1 (c) t = 0 (d) t = 1

Figure 5.9: Generation of Multi-MNIST images by Discrete-AIR for the sequence “5, 2”
and “3, 9”.

a furniture assembly task), require identifying and learning a useful representation of
elements in the scene and representations of relations between elements. The elements

81

in the scene are essentially nodes in a graph and the relationships between elements are
edges. While there are many proposed methods [60, 103, 7] in processing such graphs,
there are few methods for extracting graph representations from raw input images. In this
section I discuss how Discrete-AIR can be utilised for extracting scene graphs of input
images with interpretable edge embedding initialisation.

The output of Discrete-AIR is a list of object-level embeddings z = (zcat, zattr, zwhere, zpres).
A graph representation can be extracted by first instantiating nodes for embeddings with
zpres = 1 and subsequently instantiating embeddings of edges by computing distances
between sub-variables (zcat, zattr, zwhere, zpres). For spatial variables zwhere we can compute
Euclidean L-2 distances with D = (ziwhere − z

j
where)

2 with an edge direction indicator di,j.
For object attributes zattr one can use any distance metric in the continuous space. For
zcat, which is the categorical variable representing categories of objects, different distance
metrics might be useful for different tasks. For example, the indicator function 1(zicat, z

i
cat)

maybe useful for logic reasoning. A customised distance matrix between each category
pair may be useful for object query tasks such as visual question answering.

Figure 5.10a illustrates the application of Discrete-AIR for edge embedding initialisation
on the Multi-Sprites dataset while Figure 5.10b illustrates interpretable node embedding
for Multi-MNIST images. The left and middle figures show samples of input data from
the dataset with each object detected and categorised (with differently coloured bounding
boxes) and reconstructed images from the Discrete-AIR model. The number at the top-left
corner shows the estimated number of objects in the scene. The right part illustrates
interpretable edge and node embeddings between each object in the scene.

5.5 Discussion

In this chapter, I developed Discrete-AIR, an unsupervised auto-encoder that learns to
model a scene of multiple objects with interpretable latent codes.
Pros of Discrete-AIR include:

• It is shown that Discrete-AIR can capture categories of each object in the scene and
disentangle attribute variables from the categorical variable. This direct interpretabil-
ity allows users of AI systems to directly understand how the DNN perceives and
reasons with the input data. Such interpretability and explainability are important
when DNN-based systems are applied on safety-critical tasks, such as autonomous
driving or robotic surgery.

• The neuro-symbolic latent representation can be used directly by rule-based sys-
tems for subsequent processing. Thus Discrete-AIR provides a potential way of

82

(a)

(b)

Figure 5.10: Input data, reconstruction, and learned latent codes from the Discrete-AIR
model for the (a) Multi-Sprites and (b) Multi-MNIST datasets. The coloured bounding
boxes show each detected object. The number at the top-left corner shows the count of
the number of objects in the image. (a) shows interpretable edge embeddings. ’CatEq’
indicates equality in category. (b) shows node embeddings. ’attr’ shows zattr value.

amalgamating neural perception front-ends with a rule-based logic backend.

Cons of Discrete-AIR include:

• The dimensions of the factorised latent distribution are treated as hyper-parameters.
Thus, search methods such as grid search are needed to determine the setting that
achieves the best performance. Currently, there is no golden rule of determining the
best dimensions for a particular dataset.

• Discrete-AIR’s reconstruction image quality is slightly worse than the original AIR
model.

While Discrete-AIR has been proven effective in the two datasets tested, it is not clear
if it can be readily scaled to more complex input types. One of the remaining future work is
to apply Discrete-AIR on various visual reasoning problems where discrete representations
are useful, such as solving Raving Progressive Matrices [5] and symbolic visual question
answering [114]. These two problem domains approach visual reasoning with supervised
learning methods where, for each object, its category, spatial parameters, and attributes are
labelled. Discrete-AIR can be used as a symbolic encoder or an unsupervised pre-trained
encoding model for subsequent reasoning tasks, thereby reducing or even completely

83

removing the requirements for labelled data. Discrete-AIR can also be used to capture the
inherent data structures of reasoning tasks like RPM, and used to generate unseen new
tasks.

In conclusion, Discrete-AIR enables Neural Diagrammatic Reasoning to learn with fewer
labelled data, and to automatically generate interpretable semi-symbolic representations
that can be readily integrated with rule-based systems, thereby providing a direction for
combining the best of both worlds.

84

Chapter 6

Generalisable Neural Network for
Relational Reasoning

While I discussed two DNN systems (EulerNet and MXGNet) that achieve human-level
performance on diagrammatic reasoning tasks in Chapter 3 and Chapter 4, such systems
only work well when the training data and the test data are from the same distribution.
In Chapter 4, for the “extrapolation” data regime where the test data distribution does
not overlap with the training data distribution for selected attributes, MXGNet, and other
DNN based systems like WReN [5], suffer from drastically decreased performance that is
only slightly better than random chance.

In fact, not only EulerNet and MXGNet but most of today’s state-of-the-art DNN
systems [80, 97, 5, 8] lack the out-of-distribution (o.o.d) generalisation ability. Here, o.o.d
generalisation is defined as the case where test data distribution only partially overlaps
(or does not overlap at all) with training data distribution. Moreover, it is observed that
the generalisation error increases as the tasks become more abstract and require more
reasoning than perception. This ranges from small drops (3% to 15%) in classification
accuracy on ImageNet [80] to accuracy that is only slightly better than random chance for
“extrapolation” data regimes in the PGM dataset [5].

In contrast, the human brain is observed to generalise better to unseen inputs [26], and
typically requires only a small number of training samples. For example, a human, when
trained to recognise that there is a progression relation of circle sizes in Figure 6.1a, can
easily recognise that the same progression relation exists for larger circles in Figure 6.1b,
even though such a size comparison has not been done between larger circles. However, to-
day’s state-of-the-art neural networks [5, 109] are not able to achieve the same. Researchers
argue [92, 15, 7, 112] that the human brain evolved to develop special inductive-biases
that adapt to the form of information processing needed for humans, thereby improving

85

(a) Small Circles

(b) Big Circles

Figure 6.1: Size Progression Rela-
tions for circles of different sizes.

Figure 6.2: Illustration of projecting object
representations onto a 1-dimensional manifold
in which size comparison can be achieved by
simply measuring the difference between two
projections.

generalisation. Examples include convolution-like cells in the visual cortex [45, 35] for
visual information processing, and grid cells [36] for spatial information processing and
relational comparison between objects [7].

In this chapter, I propose a simple yet effective inductive bias which improves gen-
eralisation for relational reasoning. This inductive-bias is inspired by neuroscience and
psychology research [23, 13, 95] showing that in the primate brain there are neurons in the
Parietal Cortex that only respond to different specific attributes of perceived entities. For
examples, certain Lateral Intraparietal Cortex (LIP) neurons fire at higher rates for larger
objects, while other neurons’ firing rate correlates with the horizontal position of objects
in the scene (left vs right) [29]. From a computational perspective, this can be viewed as
projecting object representations to low-dimensional manifolds, just as the low-dimension
projection illustration in Figure 6.2. Based on these observations [95], I hypothesise
that these selectively-firing neurons evolved to learn low-dimensional representations of
relational structure that are optimised for abstraction and generalisation, and the same
inductive bias can be readily adapted for artificial neural network to achieve similar opti-
misation for abstraction and generalisation.

I test this hypothesis by designing an inductive bias module that projects high-
dimensional object representations into low-dimensional manifolds, and makes comparisons
between different objects in these manifolds. I show that this module can be readily
amalgamated with existing architectures to improve out-of-distribution generalisation
performance for different relational reasoning tasks. Specifically, I perform experiments on
three different out-of-distribution generalisation tasks, including maximum of a set, visual
object comparison on the dSprites dataset [41] and extrapolation on Progressive Generated
Matrices [5]. I show that models with the proposed inductive-bias low-dimensional

86

comparator modules perform considerably better than baseline models on all three tasks. In
order to understand the effectiveness of comparison in low-dimensional manifolds, I analyse
the projection space and corresponding function space of the comparator. This shows
the importance of projection to low-dimensional manifolds for improving generalisation.
Finally I perform analysis relating to algorithmic alignment theory [112], and propose an
augmentation to the sample complexity criteria used by this theory to measure algorithmic
alignment to better measure algorithmic alignment with generalisation.

6.1 Related works on o.o.d generalisation

The deep neural network’s lack of o.o.d generalisation (sometimes termed domain general-
isation or extrapolation) capability has recently come under scrutiny. Different approaches
have been proposed to improve o.o.d generalisation, such as reducing superficial domain
specific statistics of training data [111, 12], adversarially learning representations that are
domain-invariant [67, 1], disentangling representations to separate functional variables
with spurious correlations [40, 32], and constructing models with innate causal inference
graphs to reduce dependence on spurious correlations [3, 9]. The work in this chapter
aligns more with the line of work on discovering inductive bias that improves generalisa-
tion. Arguably, CNN [64] is such an inductive-bias that improves generalisation on image
datasets, and Graph Neural Network is an inductive-bias that improves generalisation
on graph-structured data [7]. Trask et al. [97] proposed Neural Arithmetic Logic Units
(NALU), an inductive bias that allows neural networks to learn simple arithmetic with
improved o.o.d generalisation. Madsen et al. [71] improve NALU for faster and more
stable convergence. The low-dim comparators proposed in this chapter can be viewed as
an orthogonal work that uses inductive-bias to improve o.o.d generalisation for relational
reasoning tasks.

6.2 Low-dimensional comparators

In this section, I describe the inductive bias module developed to test my hypothesis
that the inductive bias, namely, the low-dimensional representation observed in the
Parietal Cortex can be readily adapted for artificial neural network to achieve similar
optimisation for abstraction and generalisation. The proposed module learns to project
object representations into low-dimensional manifolds and make comparisons in these
manifolds. In Section 6.2.1, I describe the module in detail. In Section 6.2.2, 6.2.3, and
6.2.4, I discuss how this module can be utilised for three different relational reasoning
tasks, which are finding the maximum of a set, visual object comparisons and Raven
Progressive Matrices (RPM) reasoning.

87

6.2.1 Comparator in low-dimensional manifolds

The inductive-bias module is comprised of low-dim projection functions p and comparators
c. Let {oi; i ∈ 1 . . . N} be the set of object representations, obtained by extracting features
from raw inputs such as applying Convolutional Neural Networks (CNN) on images.
Pairwise comparison between object pair oi and oj can be achieved with a function f

expressed as:

f(oi,oj) = g(
K

||
k=1

ck(pk(oi), pk(oj))). (6.1)

Here pk is the kth projection function that projects object representation o into the kth

low dimensional manifold, ck is the kth comparator function that compares the projected
representations, || is the concatenation symbol, and g is a function that combines the
K comparison results to make a prediction. Having K parallel projection functions pk
and comparators ck allows simultaneous comparison between objects with respect to their
different attributes. Figure 6.2 shows an example of comparing sizes of circles by projection
onto a 1-dimensional manifold. Both p and c can be implemented as feed forward neural
networks. While the comparator c, implemented as a neural network, can theoretically
learn a rich range of comparison metrics, I found that adding an additional inductive-bias
of distance measure to c for the projection, such as vector distance p(oi) − p(oj), or
absolute distance |p(oi)− p(oj)|, improves generalisation performance.

Let at(oi) be the ground truth mapping function from the ith object’s representation
oi to its tth attributes (such as colour and size for a visual object). If such ground truth
labels of object attributes exist, f(oi,oj) can be trained to directly predict the differences
in attributes by minimising the loss L(d(at(oi), at(oj)), f(oi,oj)), where d is a distance
function (e.g., at(oi) − at(oj) for continuous attributes or 1at(oi)=at(oj) for categorical
attributes). However, in real-world datasets, such ground truth attribute labels seldom
exist. Instead, in many relational reasoning tasks, learning signals for attribute comparison
are only provided implicitly in the training objective. For example, in visual question
answering tasks, an example question might be ’Is the object behind Object A smaller?’.
The learning signals for the required size and spatial position comparator is provided only
through the correctness of the answers to the given questions. Thus, the proposed module
is only useful and scalable if it can be integrated into neural architectures for relational
reasoning and still learn to compare attributes with the weaker, implicit learning signal.
Next, I describe 3 examples of such integrations for different relational reasoning tasks,
and show in Section 6.3 that the proposed module can learn relational reasoning tasks
with better generalisation capability.

88

6.2.2 Architecture: Maximum of a set

The first task considered is finding the maximum of a set of real numbers. Formally,
given a set {xi; i ∈ 1 . . . N} where xi is a real number represented as a scalar value, the
aim is to train a function hmax({xi, . . . , xN}) that gives the maximum value in the set.
Many neural architectures have been applied to this task, including Deep Sets [117] and
Set Transformer [66], but none of them test the out-of-distribution (o.o.d) generalisation
capability. In order to test o.o.d generalisation, I create the training and test dataset
in such a way that their ranges do not overlap. I sample from the range (V train

low , V train
high)

for the training set, and from the range (V test
low , V

test
high) for the test set, and restrict that

V train
high < V test

low , so that the highest training number is less than the lowest testing number.

I integrate the proposed low-dim comparator module with Set Transformer [66], a
state-of-the-art neural architecture for sets. Set Transformer first encodes each element
in the set with respect to all other elements with a Multihead Attention Block (MAB).
MAB is an attention module modified from self-attention used in language tasks [102].
MAB encodes input xi into representation ei based on other inputs in the set xj as:
ei = encode(xi) = MAB(xi, xj). MAB with parameters ω is defined as follow:

MAB(X, Y) = LayerNorm(H + rFF(H)) (6.2)

H = LayerNorm(X + MultiHead(X, Y, ω)) (6.3)

Here, LayerNorm is layer normalisation [4], and rFF is row-wise feed forward network.
The Set Transformer then uses Pooling with MultiHead Attention (PMA) to combine
all encoded elements of the set as PMA(e1, . . . , eN). While MAB uses query and key
embeddings to generate attention variables, which are then used as weights in the weight
sum of the value embeddings of elements, I swap the query-key attention mechanism with
the proposed low-dim comparator as:

ei = MLP (
N∑
j=1

f(xi, xj)) (6.4)

Here f is the low-dim comparator and MLP is a standard Multi-Layer Perceptron. Note
that the scalar input xi is directly used here as object representation oi in Equation (6.1)
since no feature extraction is needed. I then use attention-based pooling to combine
projection of xi as

∑N
i=1 a(ei)p(xi), where a outputs attention values, while p is the 1-dim

projection function. For detailed architecture configuration, please refer to Appendix D.1.

89

6.2.3 Architecture: Visual object comparison

The second task is comparing visual objects for different attributes such as size and spatial
position. For this task, two images, x1 and x2, containing single objects of randomly
sampled attributes are given, and one is asked if a specific attribute of the second object
is larger than, equal to, or smaller than the attribute of the first object. Figure 6.3a
shows an example of this task comparing sizes between two heart-shaped objects. For
implementation, I use the dSprites dataset [41], a widely used dataset for studying latent
space disentangling, to sample images of objects. To test out-of-distribution generalisation,
I sample the training set and the test set such that for the compared attribute, the training
attribute range has no overlap with the test attributes. I leave details of the dataset
construction to Appendix D.2.

Figure 6.3a shows an overview of the architecture integrated with the proposed low-
dimensional comparator. The image pair x1 and x2 is first passed through a CNN to
extract feature embeddings e1 and e2. The feature embeddings are then projected to a
low-dim manifold and compared as c(p(e1), p(e2)), where p is the projector and c is the
comparator. The comparator has 3 output units with Softmax to predict probabilities
that an attribute of the second object a(x2) is smaller than, equal to, or larger than
the attribute of the first object a(x1). The architecture is trained with cross entropy
loss with respect to ground truth labels. While I am testing the o.o.d generalisation of
relational reasoning, it is reasonable to expect that the visual perception module is exposed
to all possible scenarios of the input distribution in an unsupervised way. The same
assumption also holds for humans, whose vision system has to be sufficiently exposed to
inputs from the world after birth before they can associate objects with semantic meaning
and perform relational reasoning [75]. Thus, I initialise the CNN with the pretrained
encoder weights of Beta-VAE [41], a disentangled VAE model trained in the unsupervised
setup on the dSprites dataset. For the detailed configuration of the architecture, please
refer to Appendix D.3.

6.2.4 Architecture: visual reasoning for Raven Progressive Ma-

trices

The third task is a more complex visual reasoning task named ‘Raven Progressive Matrices’
(RPM) (introduced in Section 2.2.2), which is a popular human IQ test. In this task,
one is given 8 context diagrams with logic relations present in them, and is asked to pick
an answer that best fits with the context diagrams. In this experiment, I use the PGM
dataset [5], the largest RPM-style dataset available. In the PGM dataset, there is a special
data split called ’extrapolation’ that is designed to test for o.o.d generalisation.

90

(a) dSprites
(b) RPM

Figure 6.3: Figure (a) illustrates the architecture for comparing sizes of objects sampled
from the dSprites dataset. “P” is the projection function. Figure (b) illustrates the
architecture for logical reasoning on RPM-style tasks. “P” is the projection function and
“C” is the comparator (g in Equation 6.1). CNN used for processing different diagrams in
the same task share weights.

In the extrapolation split, colour and size values of objects in the training set are
sampled from the lower half of the range, while the same attributes in the test sets are
sampled from the upper half of the range. Thus the attribute ranges of training and test
sets are non-overlapping. For a recap of the PGM dataset, please refer to Section 2.2.2 or
Barrett et al [5].

The proposed architecture integrates the low-dim comparator with a Multi-Layer
Relation Network [50]. Figure 6.3b shows an overview of the architecture developed for
PGM tasks. I use a 2-layer relation network, with the first layer encoding pairs of diagrams
within a row/column, and the second layer encoding pairs of encoded representations
of rows or columns. Applying such prior knowledge, namely that rules only exist in
rows and columns, has been standard practice in state-of-the-art methods for RPM
reasoning [109, 121]. Following [109], each of the 8 candidate answers are filled into the
third row and column to obtain, in total, 16 answer rows and columns. At each layer of the
relation network, I use the low-dimensional comparator instead of the MLP in the original
relation network [85] for diagram comparison. Diagram xi is first passed through a CNN
to produce embedding oi. Embedding pairs (oi,oj) are then compared as eij = f(oi,oj),
where f is the low-dimensional comparator described in Equation (6.1). Comparison
results from the same rows/columns are then concatenated to form row/column embedding

91

rijk = eij||eik||ejk. The row/column embeddings are compared with the second layer
comparator. The comparison results are then concatenated and input into a reasoning
network, Rθ, to predict the correct answer. Similar to the dSprites comparison task, as
discussed in Section 6.2.3, I pre-train a CNN as the encoder of VAE, a technique that has
also been previously explored for the PGM dataset [94]. For the detailed configuration of
the architecture, please refer to Appendix D.4.

6.2.5 Algorithmic alignment and o.o.d generalisation

Xu et al [112] proposed to measure the algorithmic alignment of neural networks against
a specific task with sample complexity CA(g, ε, δ), which is the minimum sample size M
so that g, the ground truth label mapping function, is (M, ε, δ) learnable with a learning
algorithm A. This essentially says that a model is more algorithmically aligned with a
task if it can learn the task more easily with fewer samples. However, in the original
definition, both training and test data are independently and identically distributed (i.i.d)
samples drawn from the same data distribution. Thus, the algorithmic alignment theory
measures how well an NN can fit to a particular data distribution, but does not measure
how well an NN can model perform in the o.o.d scenario. For example, for the visual
object comparison task, an over-parameterised MLP can learn the following two algorithms
with low complexity: (1) m(hash(oi), hash(oj)), where hash is a hashing function and m
is a memory read/write function based on the hash index; and (2) c(p(oi), p(oj)), which
is the proposed comparator function. While both algorithms can fit well for the training
data, the first algorithm clearly does not o.o.d generalise, as the memory function does
not store unseen samples. In Section 6.3.5, I also show via experiment that algorithmic
alignment is not indicative of o.o.d generalisation.

Intuitively, a more algorithmically-aligned model should generalise better, as it better
captures the underlying algorithm of label generation. Here I propose an augmentation
to the sample complexity metric (Definition 3.3 in Xu et al [112]) in order to measure
algorithmic alignment with generalisation.

Definition 6.2.1. o.o.d metric. We first fix an error parameter ε > 0 and failure
probability δ ∈ (0, 1). Suppose {xsi , ysi }Mi=1 are i.i.d samples from distribution Ds =

T (D, β,u), where D is the full data distribution, Ds is the truncated distribution (s
denotes subset), T is a truncating function, β ∈ (0, 1) is the truncation ratio, and u is the
set of dimensions for truncation. Additionally, let V be the value range for each dimension
of distribution D. The truncation function T selects dimension u, and truncates D to
only keep probability mass in the range (V u

min, βV
u
min), and lastly normalise the probability

distribution. Let g be the underlying data function yi = g(xi), and f = A({xi, yi}Mi=1) be

92

the function learned with learning algorithm A. Then g is (M, ε, δ, V, β,u) − learnable
with A if:

Px∼D[||f(x)− g(x)|| < ε] ≥ 1− δ (6.5)

The sample complexity is the minimum M for g to be (M, ε, δ, V, β,u) − learnable
with A. In Section 6.3.5 I experimentally show that this metric better measures an NN’s
ability to generalise.

6.3 Evaluation

6.3.1 Maximum of a set

For the task of finding the maximum number in a set, I randomly sample number sets
of cardinality ranging from 2 to 20 for training, and 2 to 40 for testing. For number sets
for training, I uniformly sample numbers in the real value range [0, 100). For testing I
sample numbers in the range [100, 200]. In this way, I both test if the model can generalise
for sets of larger cardinality and for numbers sampled from an unseen range. 10000 sets
are sampled for training and 2000 sets for testing. For hyper-parameters of this and
subsequent experiments, please refer to Appendix D.5. Table 6.1 shows the test error
of the proposed model compared against Deep Sets [117] and Set Transformer [66], two
previous state-of-the-art architectures for sets. The proposed model achieves much lower
o.o.d generalisation error than other methods, even lower than Deep Sets with a built-in
Max-Pooling function.

Table 6.1: o.o.d generalisation test error for learning to find the maximum number in a
set of numbers (mean± std for 10 runs). M.S.E means Mean Squared Error. The high
M.S.E of Deep Sets with Mean pooling shows that architectures with mean pooling cannot
effectively learn max pooling functions.

Model Deep Sets [117](Mean) Deep Sets [117](Max) Set Transformer [66] OURS
M.S.E 73.22± 17.11 0.51± 0.29 1.62± 0.76 0.0015± 0.0008

6.3.2 Visual object comparison

For the visual object comparison task, I set three sub-tasks for comparing different
attributes of the object, including size, horizontal position, and colour intensity. For each
task I sampled visual objects with a different range for the compared attributes from the
dSprites dataset [41]. Given the compared attribute range [Vlow, Vhigh], I sample training
data from range [Vlow,

2
3
Vhigh) and test data from range [2

3
Vhigh, Vhigh]. As ground truth

attribute value is provided in the dSprites dataset, comparison labels can be built as
(1a1<a2 ,1a1=a2 ,1a1>a2). For all experiments, I sample 60000 training pairs and 20000 test

93

pairs. I test the proposed model against an MLP baseline, which directly processes the
object representations oi and oj extracted by CNN as MLP (oi, oj). I select the best MLP
by hyper-parameter search over the number of layers and layer sizes. I use 1-dimensional
projection as this is found to give the highest accuracy. Table 6.2 shows the o.o.d
generalisation test accuracies of the proposed model compared against the baseline. The
proposed model with the low-dimensional comparator significantly outperforms baselines
for all three compared attributes.

Table 6.2: o.o.d generalisation test accuracies of baseline and our proposed model for the
dSprites attribute comparison task (10 runs). X-Coord is horizontal position.

Model
Attributes Size X-Coord Colour

Baseline 79.52± 6.71% 66.14± 5.03% 78.45± 5.04%
OURS 94.05± 3.03% 79.11± 1.92% 91.39± 5.84%

6.3.3 Visual reasoning for Raven Progressive Matrices

For the RPM-style task, I use the extrapolation split of PGM dataset [5], which is already
a well-defined o.o.d generalisation task. I compare the proposed model against all previous
methods (to the best of my knowledge) that have reported results on the extrapolation
data split. I additionally include a baseline model named “MLRN-P”, which is a 2-layer
MLRN [50] with prior knowledge of the relations only present in rows/columns and
with pre-training. Table 6.3 shows the test accuracy comparison. The proposed model
outperforms all other baselines. Note here that a vanilla CNN is used as the perception
module, which is the same as in most previous methods [5, 121, 50] on RPM tasks.
Multiple-object representation learning methods [34, 62, 105], which achieve better results
for multi-object scene learning than CNN, can be investigated for potential improvement
in generalisation performance. This is left as future work.

Table 6.3: o.o.d generalisation test accuracies for the extrapolation split of the PGM
dataset.

Model WReN [5] MXGNet [109] MLRN [50] MLRN-P OURS
Accuracy 17.2% 18.9% 14.9% 18.1% 25.9%

6.3.4 Why low dimension?

While I show that a comparator in low-dimensional manifolds improves o.o.d generalisation
for a range of relational reasoning tasks, the reason behind it is still not clear. In this
section, I analyse the projection space and comparator function landscapes of the visual

94

(a) 2D projection space (b) 2D comparator function

Figure 6.4: (a) shows a scatter plot of the 2D projected distribution of objects in the
task of comparing vertical positions of objects in the image. The x-axis and y-axis are 2
dimensions of the projection manifold. Latent vertical position (ranging from 0 to 31) is
indicated by colour. The training range is [0, 19] and the test range is [20, 31]. (b) plots
the comparator’s function landscape for the output unit checking if attributes of compared
objects are equal, in the space of vector differences between 2D projections of objects.
Green circles represent vector difference sampled from the training set while triangles
represent vector difference sampled from the test set.

object comparison task to shed light on this. Figure 6.4 shows plots of projection space and
comparator function landscapes for comparing spatial positions. For plots of comparisons
of other attributes, please refer to Appendix D.6. I first state 3 observations invariant
across different sub-tasks comparing different attributes:

1. When the ground truth attribute can be represented in a 1-dimensional manifold
(such as vertical position), comparators in higher dimensions learn to project the
object representation into a 1-dimensional manifold. Figure 6.4a illustrates this with
a plot of projection distribution for the task of comparing vertical positions. It can
be observed that, even though the projection space is 2-dimensional, the projected
points cluster around a line.

2. The projection of the test data in the manifold is less clustered around the sub-manifold
of attributes than that of training data. This can be observed from Figure 6.4a,
where the points projected from the test set are more spread out than those from
the training set. There is also less order in the distribution of test points, where
points of noticeably different intensity appear next to each other.

3. The function landscape becomes less defined outside of the sub-manifold. Figure 6.4b

95

5 10 15 20 25 30
40

60

80

100

train size (in thousands)

te
st

ac
cu
ra
cy

(%
)

Test accuracies of size comparisons

comparator o.o.d
baseline o.o.d
comparator i.d
baseline i.d

(a) (b)

Figure 6.5: Figure (a) shows o.o.d and i.d. (identically distributed) test accuracy of the
baseline and comparator for different training sample sizes. (b) shows test accuracies of
the baseline and comparator for different training sample sizes and with different β-rates
for truncating training distribution.

plots the comparator function landscape for the “equal” (1a1=a2) output unit (check-
ing if attributes of compared objects are equal) over the space of vector differences
between 2D projected representation p(o2)− p(o1). Green circles and triangles repre-
sent vector differences of sampled points from the training and test sets respectively.
The equality function is well defined in the sub-manifold in which training points
(circles) lie, peaking close to the (0, 0) point. However, outside of the training points’
sub-manifold, the function is more random, with a significant region with a higher
function value than at (0, 0) point. Note that the vector differences of test points
(triangles) may be in this region.

From the above observations, I conclude that, when comparators are of higher dimension
than the intrinsic dimension of compared attributes, the projection tends to lie in a
sub-manifold of the same dimension as the attributes, resulting in the comparator function
only being well defined in that manifold. However, the projection of test data tends to
escape from this sub-manifold into the region where the comparator function is not trained,
resulting in incorrect prediction, and therefore low o.o.d generalisation performance. The
take away from these observations is that comparison in manifolds of dimensions closer to
the dimension of the latent variable will result in less test data falling into unseen space
during training, and thereby improve o.o.d generalisation.

96

6.3.5 Algorithmic alignment

Figure 6.5a shows the o.o.d and i.d (identically distributed) test accuracies for the size
comparison task of the baseline and the proposed comparator model for different training
sample sizes. It can be observed that the i.d test accuracies’ sample complexity (training
samples needed to achieve the same accuracy), which measures algorithmic alignment, is
not indicative of o.o.d test accuracies. This motivates the proposition of the augmented
algorithmic alignment theory in Section 6.2.5.

Figure 6.5b shows the size comparison of the test accuracies of the baseline and
comparator for different training sample sizes with different β rates for truncating the
training distribution along the latent dimension ’size’. This corresponds to the proposed
metric in Section 6.2.5. The new metric reflects that the model, which learns better with
truncated training distribution, is the one with better o.o.d generalisation.

6.3.6 Ablation Studies

We performed ablation studies of different hyper-parameters in our experiments. and
show the results in Table 6.4, Table 6.5, and Table 6.6. Table 6.4 shows the test accuracy
of architectures with different numbers of projection functions for the PGM task. The
number of projection functions is indeed another hyper-parameter to tune, but we think
the improved performance is definitely worth it. Table 6.5 shows the test accuracy on
the extrapolation split of the PGM dataset with different pre-training for the perception
module. We picked the hyper-parameters giving the best extrapolation test accuracy.
Table 6.6 shows the effectiveness of different comparator input types on the test accuracy
for comparing ’colour’ attributes in the visual object comparison task.

Number of Projector Functions Accuracy
128 20.1
256 24.2
512 25.9

Table 6.4: Ablation Study on Number of Projector/Comparator functions for the PGM
task.

Pre-trained Encoder Accuracy
β-VAE (β=4, dim=64) [94] 23.5
β-VAE (β=4, dim=128) 25.1

β-VAE (β=1, dim=128) (OURS) 25.9

Table 6.5: Ablation study on different pre-trained encoders for the PGM task.

We also performed an ablation study on the dimensionality of the projected embedding
space. Figure 6.6 shows the plot of test accuracy against different dimension sizes of

97

Comparator Input Type Accuracy
Vector Difference 97, 71± 2.81%
L1 Difference 69.2± 14.9%
Concatenation 91.2± 6.52%

Table 6.6: Ablation study on different input types of comparator functions for ’colour’
comparison task.

the projection functions for the visual object comparison tasks. It can be observed that
increasing dimension sizes (x-axis) reduce the test performance. This further validate that
low-dimensional embeddings are crucial in improving neural architecture’s extrapolation
performance.

1 4 8 16 32 64 128
90

92

94

96

98

100

dimension size

te
st

ac
cu
ra
cy

(%
)

Figure 6.6: Projection dimension ablation study for visual object comparison tasks.

6.4 Discussion

In this chapter, I introduced an inductive-bias module that can be readily integrated into
DNN architectures to improve the o.o.d generalisation performance of DNNs on a range
of relational reasoning tasks. The tasks range from simpler, non-visual “maximum of a
set”, to “Raven Progressive Matrices” with complex visual input.
Pros of the proposed module include:

• This module reduces the existing relational reasoning architectures’ drawback in low
performance when test data is out of training range, and thereby allows DNNs to be
more applicable to more real-world scenarios where building unbiased approximated
data distributions of real-world processes is usually very costly.

• The proposed module can be easily integrated into existing neural architectures with
negligible increase in computational complexity.

98

• I also proposed an augmented algorithmic alignment theory for better measuring
the algorithmic alignment by taking into account the o.o.d generalisation capability.
The augmented theory no longer measures how well the architecture fits the train-
ing distribution, but measures how well the architecture fits the underlying data
generating process instead.

Cons of the proposed module include:

• The number of comparators, dimensions of each comparator and the type of com-
parator functions must be searched as hyper-parameters for each dataset. This could
be a time-consuming process for large datasets and large models.

• It is not clear if the proposed module improves interpretability and explanability of
the neural architecture.

Future Directions: While the module works well in the simpler setting of finding
the maximum of a set and the visual object comparison of a single attribute, it does not
achieve the same improvement for RPM tasks, where the input diagrams are much more
complex and the comparisons are made on many different attributes in a parallel way. In
fact, the o.o.d performance gains decrease as the input gets more complex. This is most
likely because I only implemented a simple, proof-of-concept integration of low-dimensional
comparators into MLRN. There are many parts that could be improved when tackling
multi-object multi-relation reasoning tasks. I list below two potential directions for future
research:

• More generalisable perception module: While the low-dimensional comparator
is a generalisable relational reasoning module, its generalisation capability is condi-
tioned on a similar level of generalisation capability in the lower-stream perception
module. If the perception module is not able to summarise unseen input into a useful
representation, the reasoning module will not be able to function as well.

• Disentangled parallel comparison of multiple attributes: I did not investigate
how the low-dimensional comparator projects object representations when there
are multiple attributes to be compared simultaneously. An interesting question to
ask is how well the low-dimensional comparator can learn a disentangled projection
mechanism with each projector module processing a specific attribute. Research
into disentanglement and potential ways to encourage disentanglement might be a
promising direction in further improving o.o.d generalisation performances on the
multi-object, multi-relation reasoning tasks.

• Extension to other reasoning tasks: While I evaluated the module on the three
tasks above, there are many other relational reasoning tasks to tackle. For example,

99

visual question answering is an important task that is more applicable to real-world
scenarios. I plan to extend the evaluation to the “CLEVR” dataset [54], a VQA
dataset that emphasises visual relational reasoning.

100

Chapter 7

Conclusion

In this dissertation I investigated the application of Deep Neural Networks on diagrammatic
reasoning tasks. The core argument that Deep Neural Networks can successfully learn to
reason with diagrams with little human prior input, are robust to noise, and are easily
adaptable to other diagram domains has been validated throughout the chapters. I also
discussed ways of reducing the short-comings of DNN-based reasoning systems, such as
using generative modelling to reduce the need for labelled data, and new architectures
with improved o.o.d generalisation capability.

To conclude, I briefly summarise the main contributions in this dissertation, and discuss
potential future directions for improving DNN-based diagrammatic reasoning systems.

7.1 Main contributions

• In Chapters 3 and 4, I introduced two DNN-based diagrammatic reasoning systems,
namely EulerNet and MXGNet, which tackle Euler diagram syllogisms and Raven
Progressive Matrices tasks. EulerNet is one of the first DNN architectures ever
developed for diagrammatic reasoning, and achieves near perfect accuracy. As
EulerNet has the drawback of less scalability to diagrams with an arbitrary number
of entities, I also propose MXGNet, a new way of formulating objects in diagrams and
their relations into multiplex graphs that achieves performance on par with human
test takers. While I demonstrated that DNN can learn to reason with diagrams
with little human-prior input in defining diagram domain or reasoning rules, I also
showed that EulerNet can be very robust to random noise and deformations, a clear
advantage over mechanised reasoning systems.

• EulerNet and MXGNet both require large amounts of labelled training data to
achieve good accuracy. However labelled data collection is a very expensive process.
To remedy this, in Chapter 5, I introduced Discrete-AIR, a completely unsupervised

101

generative model that learns to summarise diagrams of multiple objects into a list of
neuro-symbolic representations. Discrete-AIR tackles DNN-based systems’ disadvan-
tage of requiring a large amount of labelled data by allowing the perception module of
the system to be pre-trained without any labels, thereby drastically reducing the cost
of collecting labelled data. Moreover, the neuro-symbolic representations obtained
from Discrete-AIR give direct interpretability of both the learned representations
and the potential subsequent reasoning systems. The neuro-symbolic representations
can also be readily integrated with a rule-based reasoning system to get the best of
both worlds.

• MXGNet, while achieving SOTA performance, still perform poorly when the test
data is out of the training distribution. To tackle this, in Chapter 6, I introduced a
novel inductive-bias module for improving DNN architecture’s o.o.d performance on
relational reasoning tasks. This module learns to project object representations onto
lower dimensional manifolds for more robust attribute comparison. Experiments
show that this module can be integrated into different architectures to improve
o.o.d generalisation on a range of relational reasoning tasks. I also developed
an augmented version of the algorithmic alignment theory that better measures
algorithmic alignment with consideration for generalisation performance.

7.2 Future directions

This dissertation shows that DNN systems can be successfully applied to diagrammatic
reasoning tasks, and moreover, some of the DNN diagrammatic reasoning system’s disad-
vantages (such as limited interpretability and generalisation capability) can be addressed.
There are areas that can be improved and potential directions that are worth exploring.
Here, I list four potential directions that I think will benefit the machine learning and
visual reasoning community, and suggest plausible research ideas.

7.2.1 Interpretability

While EulerNet and MXGNet perform well on diagrammatic reasoning tasks, they are not
fully interpretable. EulerNet is only interpretable in the part of the learned representations
that correlate with attributes of the input diagram. I have not yet investigated the
interpretability of MXGNet. A fully interpretable DNN reasoning system will allow
the extraction of reasoning rules from the DNN. This will have a large impact, as such
interpretable systems could be applied to any new diagrammatic or visual reasoning tasks to
automatically extract diagram-to-symbol mapping and a set of reasoning rules. Moreover,
the interpretability would also allow users to understand the mechanisms underlying the

102

reasoning, thus making it easier to debug and making users more confident in operating
these systems.

Here I point out two potential research ideas for those interested. First, Discrete-AIR
is only applied on synthetic images from the Multi-Sprites and Multi-MNIST datasets.
It is not clear if it can learn structured latent distribution for real-world images where
objects are deformable, occluded, and view-point dependent. New architectural designs
are potentially necessary for such real-world applications. Secondly, it would be interesting
to investigate how well Discrete-AIR can be used together with a traditional mechanised
reasoning system to get the best of both worlds. Such works would not only provide
direct interpretability of the whole reasoning system, but also improve generalisation as
rule-based systems have universally accurate rules in the defined system. This will be
further discussed in Section 7.2.3.

7.2.2 Generalisation

While I have made progress in improving DNN reasoning system’s generalisation perfor-
mance in Chapter 6, the results on more complex RPM tasks are still below expectation.
There is still much work to be done to further improve DNN’s generalisation performance
on reasoning tasks.

Two potential directions, also outlined in Section 6.4, are developing more generalis-
able perception module and improving comparators for parallel comparison of multiple
attributes. For the more generalisable module, I think there are two interesting directions
to explore, which are self-supervised learning and neuro-symbolic models. Self-supervised
learning allows model to learn more generalisable representations using a much larger un-
labelled dataset, while neuro-symbolic models restrict the model’s output to a pre-defined
symbolic space, and thereby reduce variance. On improving the comparator, currently
all parallel comparators are initialised using the same hyper-parameters. It is possible
that, for certain attributes, the comparator might need more layers for processing, while
for some other attributes, MLP may not be the most suitable module. Thus it would be
interesting to design a more diverse parallel comparator system.

7.2.3 Integration of neural and symbolic systems

DNN-based systems do not require human prior input, and are robust to noise. Symbolic
rule-based systems do not need labelled training data, and guarantee correctness and
interpretability. An interesting question to ask is if we can get the best of both worlds.
While a preliminary exploration of neural symbolic integration has been done for visual
question answering [114], such explorations are still much needed for other types of visual
reasoning tasks, such as RPM tasks. Discrete-AIR, introduced in Chapter 5, provides a

103

potential way of training a front-end neuro-symbolic DNN module that can be readily
integrated with rule-based systems.

7.2.4 Generative Modelling for more tasks

In Chapter 5 I applied Discrete-AIR on the Multi-MNIST and Multi-Sprites datasets. Both
datasets contain a limited number of un-occluded objects. It will be interesting to test
how Discrete-AIR will perform on more complex scenes such as RPM and visual question
answering tasks. In particular, it will be interesting to investigate what representations
can be learned for these more complex scenes, and if the generative models can be used
for generating unseen scenes.

One thing that potentially limits Discrete-AIR in scaling to more complex scenes is
the LSTM backbone. It will be interesting to see if some more recent sequential models,
such as transformers, can be applied here to improve its scalability.

104

Bibliography

[1] Isabela Albuquerque, João Monteiro, Tiago H Falk, and Ioannis Mitliagkas. Ad-
versarial target-invariant representation learning for domain generalization. arXiv
preprint arXiv:1911.00804, 2019.

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,
C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In Proceedings
of the IEEE international conference on computer vision, pages 2425–2433, 2015.

[3] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant
risk minimization. arXiv preprint arXiv:1907.02893, 2019.

[4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

[5] David Barrett, Felix Hill, Adam Santoro, Ari Morcos, and Timothy Lillicrap. Measur-
ing abstract reasoning in neural networks. In International Conference on Machine
Learning, pages 511–520, 2018.

[6] Jon Barwise and John Etchemendy. Hyperproof. CSLI Press, 1994.

[7] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph
networks. arXiv preprint arXiv:1806.01261, 2018.

[8] Yonatan Belinkov and Yonatan Bisk. Synthetic and natural noise both break neural
machine translation. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=BJ8vJebC-.

[9] Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Nan Rosemary Ke, Sebastien
Lachapelle, Olexa Bilaniuk, Anirudh Goyal, and Christopher Pal. A meta-transfer
objective for learning to disentangle causal mechanisms. In International Conference
on Learning Representations, 2020. URL https://openreview.net/forum?id=

ryxWIgBFPS.

105

https://openreview.net/forum?id=BJ8vJebC-
https://openreview.net/forum?id=ryxWIgBFPS
https://openreview.net/forum?id=ryxWIgBFPS

[10] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks
and locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[11] Nancy B Carlisle, Jason T Arita, Deborah Pardo, and Geoffrey F Woodman. At-
tentional templates in visual working memory. Journal of Neuroscience, 31(25):
9315–9322, 2011.

[12] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana
Tommasi. Domain generalization by solving jigsaw puzzles. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2229–2238,
2019.

[13] Matthew V Chafee. A scalar neural code for categories in parietal cortex: Repre-
senting cognitive variables as “more” or “less”. Neuron, 77(1):7–9, 2013.

[14] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter
Abbeel. Infogan: Interpretable representation learning by information maximizing
generative adversarial nets. In Advances in neural information processing systems,
pages 2172–2180, 2016.

[15] François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547,
2019.

[16] Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable
models for structured data. In International conference on machine learning, pages
2702–2711, 2016.

[17] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without
eigenvectors a multilevel approach. IEEE transactions on pattern analysis and
machine intelligence, 29(11):1944–1957, 2007.

[18] Emilien Dupont. Learning disentangled joint continuous and discrete representations.
In Advances in Neural Information Processing Systems, pages 708–718, 2018.

[19] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Tim-
othy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks
on graphs for learning molecular fingerprints. In Advances in neural information
processing systems, pages 2224–2232, 2015.

[20] David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored represen-
tations in a deep mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

106

[21] SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari,
Geoffrey E Hinton, et al. Attend, infer, repeat: Fast scene understanding with
generative models. In Advances in Neural Information Processing Systems, pages
3225–3233, 2016.

[22] Leonhard Euler. Lettres à une princesse d’Allemagne: sur divers sujets de physique
& de philosophie. PPUR presses polytechniques, 2003.

[23] Jamie K Fitzgerald, David J Freedman, Alessandra Fanini, Sharath Bennur, Joshua I
Gold, and John A Assad. Biased associative representations in parietal cortex.
Neuron, 77(1):180–191, 2013.

[24] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4):193–202, 1980.

[25] Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Ali Eslami, and Oriol Vinyals.
Synthesizing programs for images using reinforced adversarial learning. In Interna-
tional Conference on Machine Learning, pages 1666–1675, 2018.

[26] Robert Geirhos, Carlos RM Temme, Jonas Rauber, Heiko H Schütt, Matthias Bethge,
and Felix A Wichmann. Generalisation in humans and deep neural networks. In
Advances in Neural Information Processing Systems, pages 7538–7550, 2018.

[27] Joseph Diaz Gergonne. Essai de dialectique rationelle. Annuales de Mathematiques
pures et appliqukes, 7:189–228, 1817.

[28] Ben Goertzel and Cassio Pennachin. Artificial general intelligence, volume 2. Springer,
2007.

[29] Mengyuan Gong and Taosheng Liu. Biased neural coding of feature-based attention
in human brain. bioRxiv, page 688226, 2019.

[30] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Advances in neural information processing systems, pages 2672–2680, 2014.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[32] Sven Gowal, Chongli Qin, Po-Sen Huang, Taylan Cemgil, Krishnamurthy Dvijotham,
Timothy Mann, and Pushmeet Kohli. Achieving robustness in the wild via adver-
sarial mixing with disentangled representations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1211–1220, 2020.

107

[33] Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Neural expectation
maximization. In Advances in Neural Information Processing Systems, pages 6691–
6701, 2017.

[34] Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher
Burgess, Daniel Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerch-
ner. Multi-object representation learning with iterative variational inference. In
International Conference on Machine Learning, pages 2424–2433, 2019.

[35] Umut Güçlü and Marcel AJ van Gerven. Deep neural networks reveal a gradient
in the complexity of neural representations across the ventral stream. Journal of
Neuroscience, 35(27):10005–10014, 2015.

[36] Torkel Hafting, Marianne Fyhn, Sturla Molden, May-Britt Moser, and Edvard I
Moser. Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052):
801–806, 2005.

[37] Lukas Hahne, Timo Lüddecke, Florentin Wörgötter, and David Kappel. Attention
on abstract visual reasoning, 2020. URL https://openreview.net/forum?id=

Bkel1krKPS.

[38] Eric Hammer and Sun-Joo Shin. Euler’s visual logic. History and Philosophy of
Logic, 19(1):1–29, 1998.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

[40] Christina Heinze-Deml and Nicolai Meinshausen. Conditional variance penalties and
domain shift robustness. arXiv preprint arXiv:1710.11469, 2017.

[41] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic
visual concepts with a constrained variational framework. In International Conference
on Learning Representations, 2017.

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[43] Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko.
Learning to reason: End-to-end module networks for visual question answering.
In Proceedings of the IEEE International Conference on Computer Vision, pages
804–813, 2017.

108

https://openreview.net/forum?id=Bkel1krKPS
https://openreview.net/forum?id=Bkel1krKPS

[44] Ronghang Hu, Jacob Andreas, Trevor Darrell, and Kate Saenko. Explainable neural
computation via stack neural module networks. In Proceedings of the European
conference on computer vision (ECCV), pages 53–69, 2018.

[45] David H Hubel and Torsten N Wiesel. Receptive fields of single neurones in the
cat’s striate cortex. The Journal of physiology, 148(3):574–591, 1959.

[46] Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world
visual reasoning and compositional question answering. In 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 6693–6702. IEEE,
2019.

[47] Drew Arad Hudson and Christopher D. Manning. Compositional attention networks
for machine reasoning. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=S1Euwz-Rb.

[48] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International Conference on Machine
Learning, pages 448–456, 2015.

[49] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer
networks. In Advances in neural information processing systems, pages 2017–2025,
2015.

[50] Marius Jahrens and Thomas Martinetz. Solving raven’s progressive matrices with
multi-layer relation networks. arXiv preprint arXiv:2003.11608, 2020.

[51] Mateja Jamnik, Alan Bundy, and Ian Green. On automating diagrammatic proofs
of arithmetic arguments. Journal of logic, language and information, 8(3):297–321,
1999.

[52] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144, 2016.

[53] Michael Janner, Sergey Levine, William T. Freeman, Joshua B. Tenenbaum, Chelsea
Finn, and Jiajun Wu. Reasoning about physical interactions with object-centric
models. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HJx9EhC9tQ.

[54] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for com-
positional language and elementary visual reasoning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 2901–2910, 2017.

109

https://openreview.net/forum?id=S1Euwz-Rb
https://openreview.net/forum?id=HJx9EhC9tQ

[55] Ta-Chu Kao and Mason A Porter. Layer communities in multiplex networks. Journal
of Statistical Physics, 173(3-4):1286–1302, 2018.

[56] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic gradient
descent. In ICLR: International Conference on Learning Representations, 2015.

[57] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[58] Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel.
Neural relational inference for interacting systems. In International Conference on
Machine Learning, pages 2688–2697, 2018.

[59] Thomas Kipf, Elise van der Pol, and Max Welling. Contrastive learning of structured
world models. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=H1gax6VtDB.

[60] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. arXiv preprint arXiv:1609.02907, 2016.

[61] Ulrich Kortenkamp and Jürgen Richter-Gebert. Using automatic theorem proving
to improve the usability of geometry software. In Proceedings of MathUI, volume
2004, 2004.

[62] Adam Kosiorek, Sara Sabour, Yee Whye Teh, and Geoffrey E Hinton. Stacked
capsule autoencoders. In Advances in Neural Information Processing Systems, pages
15512–15522, 2019.

[63] Jill H Larkin and Herbert A Simon. Why a diagram is (sometimes) worth ten
thousand words. Cognitive science, 11(1):65–100, 1987.

[64] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[65] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[66] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye
Teh. Set transformer: A framework for attention-based permutation-invariant neural
networks. In International Conference on Machine Learning, pages 3744–3753, 2019.

[67] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and
artier domain generalization. In Proceedings of the IEEE international conference
on computer vision, pages 5542–5550, 2017.

110

https://openreview.net/forum?id=H1gax6VtDB

[68] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng
Gao, and Jiawei Han. On the variance of the adaptive learning rate and beyond.
In International Conference on Learning Representations, 2020. URL https://

openreview.net/forum?id=rkgz2aEKDr.

[69] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(Nov):2579–2605, 2008.

[70] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A
continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712,
2016.

[71] Andreas Madsen and Alexander Rosenberg Johansen. Neural arithmetic units.
In International Conference on Learning Representations, 2020. URL https://

openreview.net/forum?id=H1gNOeHKPS.

[72] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu.
The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from
natural supervision. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=rJgMlhRctm.

[73] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu.
The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from
natural supervision. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=rJgMlhRctm.

[74] Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites:
Disentanglement testing sprites dataset. https://github.com/deepmind/dsprites-
dataset/, 2017.

[75] Daphne Maurer. How the baby learns to see: Donald o. hebb award lecture, canadian
society for brain, behaviour, and cognitive science, ottawa, june 2015. Canadian
Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale,
70(3):195, 2016.

[76] Keith McGreggor and Ashok Goel. Confident reasoning on raven’s progressive
matrices tests. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, pages 380–386. AAAI Press, 2014.

[77] Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief
networks. In International Conference on Machine Learning, pages 1791–1799, 2014.

111

https://openreview.net/forum?id=rkgz2aEKDr
https://openreview.net/forum?id=rkgz2aEKDr
https://openreview.net/forum?id=H1gNOeHKPS
https://openreview.net/forum?id=H1gNOeHKPS
https://openreview.net/forum?id=rJgMlhRctm
https://openreview.net/forum?id=rJgMlhRctm

[78] Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and
effect. Basic Books, 2018.

[79] John Raven. The raven’s progressive matrices: change and stability over culture and
time. Cognitive psychology, 41(1):1–48, 2000.

[80] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do
imagenet classifiers generalize to imagenet? In International Conference on Machine
Learning, pages 5389–5400, 2019.

[81] Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring models and data for image
question answering. In Advances in neural information processing systems, pages
2953–2961, 2015.

[82] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[83] David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust
to massive label noise. arXiv preprint arXiv:1705.10694, 2017.

[84] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[85] Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan
Pascanu, Peter Battaglia, and Timothy Lillicrap. A simple neural network module
for relational reasoning. In Advances in neural information processing systems, pages
4967–4976, 2017.

[86] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How
does batch normalization help optimization? In Advances in Neural Information
Processing Systems, pages 2483–2493, 2018.

[87] Yuri Sato, Sayako Masuda, Yoshiaki Someya, Takeo Tsujii, and Shigeru Watanabe.
An fmri analysis of the efficacy of euler diagrams in logical reasoning. In 2015 IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pages
143–151. IEEE, 2015.

[88] Yuri Sato, Yuichiro Wajima, and Kazuhiro Ueda. Strategy analysis of non-
consequence inference with euler diagrams. Journal of Logic, Language and In-
formation, 27(1):61–77, 2018.

112

[89] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. Collective classification in network data. AI magazine, 29(3):
93–93, 2008.

[90] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

[91] Atsushi Shimojima. Semantic properties of diagrams and their cognitive potentials.
Center for the Study of Language & Information, 2015.

[92] Elizabeth S Spelke and Katherine D Kinzler. Core knowledge. Developmental science,
10(1):89–96, 2007.

[93] Gem Stapleton, Judith Masthoff, Jean Flower, Andrew Fish, and Jane Southern.
Automated theorem proving in euler diagram systems. Journal of Automated Rea-
soning, 39(4):431–470, Dec 2007. ISSN 1573-0670. doi: 10.1007/s10817-007-9069-y.
URL https://doi.org/10.1007/s10817-007-9069-y.

[94] Xander Steenbrugge, Sam Leroux, Tim Verbelen, and Bart Dhoedt. Improving
generalization for abstract reasoning tasks using disentangled feature representations.
arXiv preprint arXiv:1811.04784, 2018.

[95] Christopher Summerfield, Fabrice Luyckx, and Hannah Sheahan. Structure learning
and the posterior parietal cortex. Progress in neurobiology, 184:101717, 2020.

[96] Damien Teney, Lingqiao Liu, and Anton van den Hengel. Graph-structured repre-
sentations for visual question answering. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–9, 2017.

[97] Andrew Trask, Felix Hill, Scott E Reed, Jack Rae, Chris Dyer, and Phil Blunsom.
Neural arithmetic logic units. In Advances in Neural Information Processing Systems,
pages 8035–8044, 2018.

[98] M. Urbas and M. Jamnik. Heterogeneous proofs: Spider diagrams meet higher-order
provers. In M. van Eekelen, H. Geuvers, J. Schmaltz, and F. Wiedijk, editors, ITP,
volume 6898, pages 376–382. Springer, 2011.

[99] Matej Urbas, Mateja Jamnik, and Gem Stapleton. Speedith: a reasoner for spider
diagrams. Journal of Logic, Language and Information, 24(4):487–540, 2015.

[100] Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning.
In Advances in Neural Information Processing Systems, pages 6306–6315, 2017.

113

https://doi.org/10.1007/s10817-007-9069-y

[101] Sjoerd van Steenkiste, Francesco Locatello, Jürgen Schmidhuber, and Olivier Bachem.
Are disentangled representations helpful for abstract visual reasoning? In Advances
in Neural Information Processing Systems, pages 14222–14235, 2019.

[102] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

[103] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph attention networks. In International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?id=

rJXMpikCZ.

[104] Huy V Vo, Francis Bach, Minsu Cho, Kai Han, Yann LeCun, Patrick Pérez, and
Jean Ponce. Unsupervised image matching and object discovery as optimization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 8287–8296, 2019.

[105] D. Wang, M. Jamnik, and P. Lio’. Unsupervised and interpretable scene discovery
with discrete-attend-infer-repeat. In ICML workshop on Self-Supervised Learning,
page 9pp, 2019. URL https://arxiv.org/abs/1903.06581.

[106] Duo Wang, Mateja Jamnik, and Pietro Liò. Investigating diagrammatic reasoning
with deep neural networks. In Peter Chapman, Gem Stapleton, Amirouche Moktefi,
Sarah Perez-Kriz, and Francesco Bellucci, editors, International Conference on
Theory and Application of Diagrams, LNCS 10871, pages 390–398. Springer, 2018.
URL https://link.springer.com/chapter/10.1007/978-3-319-91376-6_36.

[107] Duo Wang, Mateja Jamnik, and Pietro Lio. Unsupervised extraction of interpretable
graph representations from multiple-object scenes. International Conference of
Machine Learning, Learning and Reasoning with Graph-Structured Representations
Workshop, 2019. URL https://graphreason.github.io/papers/20.pdf.

[108] Duo Wang, Mateja Jamnik, and Pietro Lio. Unsupervised and interpretable scene
discovery with discrete-attend-infer-repeat. International Conference of Machine
Learning, Self-Supervised Learning Workshop, 2019. URL https://drive.google.

com/file/d/0B4M2lUVyJzS4d29IN2pyUDR5ME8zV0RzdlJtZGdzM2xLV2Vv/view.

[109] Duo Wang, Mateja Jamnik, and Pietro Lio. Abstract diagrammatic reasoning with
multiplex graph networks. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=ByxQB1BKwH.

114

https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://arxiv.org/abs/1903.06581
https://link.springer.com/chapter/10.1007/978-3-319-91376-6_36
https://graphreason.github.io/papers/20.pdf
https://drive.google.com/file/d/0B4M2lUVyJzS4d29IN2pyUDR5ME8zV0RzdlJtZGdzM2xLV2Vv/view
https://drive.google.com/file/d/0B4M2lUVyJzS4d29IN2pyUDR5ME8zV0RzdlJtZGdzM2xLV2Vv/view
https://openreview.net/forum?id=ByxQB1BKwH

[110] Duo Wang, Mateja Jamnik, and Pietro Lio. Generalisable relational reasoning
with comparators in low-dimensional manifolds. Arxiv Preprint, 2020. URL https:

//arxiv.org/abs/2006.08698.

[111] Haohan Wang, Zexue He, and Eric P. Xing. Learning robust representations by
projecting superficial statistics out. In International Conference on Learning Repre-
sentations, 2019. URL https://openreview.net/forum?id=rJEjjoR9K7.

[112] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken ichi Kawarabayashi,
and Stefanie Jegelka. What can neural networks reason about? In International
Conference on Learning Representations, 2020. URL https://openreview.net/

forum?id=rJxbJeHFPS.

[113] Daniel LK Yamins and James J DiCarlo. Using goal-driven deep learning models to
understand sensory cortex. Nature neuroscience, 19(3):356–365, 2016.

[114] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh
Tenenbaum. Neural-symbolic vqa: Disentangling reasoning from vision and language
understanding. In Advances in Neural Information Processing Systems, pages 1031–
1042, 2018.

[115] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling. In
Advances in neural information processing systems, pages 4800–4810, 2018.

[116] Anthony M Zador. A critique of pure learning and what artificial neural networks
can learn from animal brains. Nature communications, 10(1):1–7, 2019.

[117] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R
Salakhutdinov, and Alexander J Smola. Deep sets. In Advances in neural information
processing systems, pages 3391–3401, 2017.

[118] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolu-
tional networks. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE
Conference on, pages 2528–2535. IEEE, 2010.

[119] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. Neural motifs: Scene
graph parsing with global context. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5831–5840, 2018.

[120] Chi Zhang, Feng Gao, Baoxiong Jia, Yixin Zhu, and Song-Chun Zhu. Raven: A
dataset for relational and analogical visual reasoning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5317–5327, 2019.

115

https://arxiv.org/abs/2006.08698
https://arxiv.org/abs/2006.08698
https://openreview.net/forum?id=rJEjjoR9K7
https://openreview.net/forum?id=rJxbJeHFPS
https://openreview.net/forum?id=rJxbJeHFPS

[121] Chi Zhang, Baoxiong Jia, Feng Gao, Yixin Zhu, Hongjing Lu, and Song-Chun Zhu.
Learning perceptual inference by contrasting. In Advances in Neural Information
Processing Systems, pages 1073–1085, 2019.

[122] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization. arXiv preprint
arXiv:1611.03530, 2016.

116

Appendix A

EulerNet

A.1 Architecture Configurations

In this section, I present detailed architecture configurations for reproducibility. Please
refer to Figure 3.1 for an overview of the EulerNet architecture. Table A.1 shows the
detailed configuration for Siamese CNN used in EulerNet, while Table A.2 shows the
detailed configuration for the reasoning network.

Layer Configuration
Conv-1 Kernel 3× 3× 64; Batch-Norm; Activation: ReLU
Conv-2 Kernel 3× 3× 64; Batch-Norm; Activation: ReLU
Pool-1 Max-Pooling 2× 2
Conv-3 Kernel 3× 3× 64; Batch-Norm; Activation: ReLU
Conv-4 Kernel 3× 3× 64; Batch-Norm; Activation: ReLU
Pool-2 Max-Pooling 2× 2
Conv-5 Kernel 3× 3× 32; Batch-Norm; Activation: ReLU
Conv-6 Kernel 3× 3× 32; Batch-Norm; Activation: ReLU
Pool-3 Max-Pooling 2× 2
Conv-7 Kernel 3× 3× 32; Batch-Norm; Activation: ReLU

Table A.1: Euler-Net: Siamese CNN configuration. Kernel confiugrations are in the format
Width×Height×Depth

Layer Configuration
FC-1 128 Hidden Units; BatchNorm; Activation: ReLU

Dropout-1 Dropout Rate:0.3
FC-2 64 Hidden Units; BatchNorm; Activation: ReLU

Dropout-2 Dropout Rate:0.3
FC-3 4 Output Units; Activation: Sigmoid

Table A.2: Euler-Net: Reasoning Network configuration. “FC” denotes fully connected
layers.

117

I also present detailed configurations for the GAN network used for Euler diagram
generation, as shown in Figure 3.2. Table A.3 shows the configuration of the generator
network while Table A.4 shows the configuration of the discriminator network.

Layer Configuration
ConvT-1 Kernel 4× 4× 256; Stride 4; Batch-Norm; Activation: ReLU
ConvT-2 Kernel 4× 4× 256; Stride 2; Batch-Norm; Activation: ReLU
ConvT-3 Kernel 4× 4× 128; Stride 2; Batch-Norm; Activation: ReLU
ConvT-2 Kernel 4× 4× 64; Stride 2; Batch-Norm; Activation: ReLU
ConvT-2 Kernel 4× 4× 3; Stride 2; Activation: Sigmoid

Table A.3: Euler-Net: Generator network configuration. “ConvT” means transposed
convolution.

Layer Configuration
Conv-1 Kernel 4× 4× 32; Stride 2; Batch-Norm; Activation: ReLU
Conv-2 Kernel 4× 4× 64; Stride 2; Batch-Norm; Activation: ReLU
Conv-3 Kernel 4× 4× 128; Stride 2; Batch-Norm; Activation: ReLU
Conv-4 Kernel 4× 4× 256; Stride 2; Batch-Norm; Activation: ReLU
FC1 Kernel 512 Hidden Units; Batch-Norm; Activation: ReLU
FC2 Kernel 1 Output Units; Activation: Sigmoid

Table A.4: Euler-Net: Discriminator network configuration.

A.2 Hyper-Parameters

I use Adam Optimizer to train EulerNet with TensorFlow package. I set the learning rate
as 0.001, β as (0.9, 0.999) and batch size as 128. I also add L2 regularisation of 1e−5 to all
layers. During training I additionally use the following data augmentations:

• Random vertical and horizontal flip

• Random vertical and horizontal shift equal to 10% of the image height and width.

• Random rotation in the range of (−90, 90) degrees.

118

Appendix B

MXGNet

B.1 Architecture

In this section I present exact configurations of all model variants of MXGNet. Due to
the complexity of architectures, I will describe each module in sequence. The object-level
representation has two variations which are (o1) CNN features and (o2) Spatial Attention
features. Furthermore, the models for PGM and RAVEN datasets differ in detail. Unless
otherwise stated, in all layers I apply Batch Normalisation [48] and use Rectified Linear
Unit as activation function.

B.1.1 Object-Level Representation Architecture

CNN features: The first approach applies a CNN on the input image and use each
spatial location in the final CNN feature map as the object feature vector. This type
of representation is used widely, such as in Relation Network [85] and VQ-VAE [100].
Formally, the output of a CNN is a feature map tensor of dimension H ×W ×D where
H, W and D are respectively height, width and depth of the feature map. At each H and
W location, an object vector is extracted. This type of object representation is simple
and fast, but does not guarantee that the receptive field at each feature map location fully
covers objects in the image.

We use a residual module [39] with two residual blocks to extract CNN features, as
shown in Figure B.1. This is because residual connections show better performance in
experiments. The structure of a single Residual Convolution Block is shown in Figure B.2.
Unless otherwise stated, the convolutional layers in residual blocks have a kernel size of
3×3. The output feature map processed by another residual block is treated as background
encoding because we found that convolutional background encoding gives better results
than feature vectors.

Spatial Attention features: The second approach is to use spatial attention to

119

Figure B.1: CNN feature object-level representation module. ’Conv’ is convolution layers,
’Max-Pooling’ is max-pooling layer and ’ResConv Block’ is Residual Convolutional Block.

Figure B.2: Architecture of a single Residual Convolution Block.

attend to locations of objects, and extract representations for each object attended. This
is similar to object detection models such as faster R-CNN [82], which use a Region
Proposal Network to propose bounding boxes of objects in the input image. In practice,
we use Spatial Transformer [49] as our spatial attention module. Figure B.3 shows the
architecture used for extracting object-level representation using spatial attention. A CNN
composed of 1 convolutional layer and 2 residual blocks is first applied to the input image,
and the last layer feature map is extracted. This part is the same as in the CNN grid
feature module. A spatial attention network composed of 2 convolutional layers then
processes information at each spatial location on the feature map, and outputs k numbers
of z = (zpres, zwhere), corresponding to k possible objects at each location. Here, zpres

is a binary value indicating if an object exists in this location, and zwhere is an affine
transformation matrix specifying a sampling region on the feature maps. zpres, the binary
variable, is sampled from Gumbel-Sigmoid distribution [70, 52], which approximates the
Bernoulli distribution. We set Gumbel temperature to 0.7 throughout the experiments.
For the PGM dataset, we restricted k to be 1 and zwhere to be a translation and scaling

120

Figure B.3: Spatial attention based feature object-level representation module. ’Conv’ is
convolution layers, ’Max-Pooling’ is max-pooling layer and ’ResConv Block’ is Residual
Convolutional Block. z is the spatial attention variable (zpres, zwhere). Sampler is a grid
sampler which samples a grid of points from given feature maps.

matrix as ‘shapes’ objects do not overlap and do not have affine transformation attributes
other than scaling and translation. For all zi; i ⊂ [1, H×W], if zpresi is 1, an object encoder
network samples a patch from location specified by zwherei using a grid sampler with a
fixed window size of 4× 4 pixels. More details of the grid sampler can be found in [49].
The sampled patches are then processed by a conv-layer to generate object embeddings.

B.1.2 Graph networks

Multiplex Edge Embeddings: Figure 4.2 in Chapter 4 on page 58 shows an overview of
the multiplex graph architecture. While the motivation and the overview of the architecture
are explained in Section 4.1.2, in this section we provide exact configurations for each
part of the model. Each sub-layer of the multiplex edge is embedded by a small MLP.
For the PGM dataset, we use 6 parallel layers for each multiplex edge embedding, with
each layer having 32 hidden units and 8 output units. For the RAVEN dataset, we use 4
layers with 16 hidden units and 8 output units because the RAVEN dataset contains fewer
relations types than PGM dataset. The gating function is implemented as one Sigmoid
fully connected layer with a hidden size equal to the length of concatenated aggregated
embeddings. Gating variables are element-wise multiplied with concatenated embeddings
for gating effects. Gated embeddings are then processed with a final fully connected layer
with hidden size 64.

Graph Summarisation: This module summarises all node summary embeddings
and background embeddings to produce a diagram subset embedding representing relations
present in the set of diagrams. I experimented with various approaches and found
that keeping embeddings as feature maps and processing them with residual blocks
yields the best results. Background feature map embeddings are generated with one

121

additional residual block of 48 on top of lower layer feature-extracting resnet. For
object representations obtained from CNN-grid features, node embeddings can be simply
reshaped into a feature map, and processed with additional conv-nets to generate a feature
map embedding of the same dimension to background feature map embeddings. For
object representations with spatial attention, another Spatial Transformer can be used
to write node summary embeddings to its corresponding locations on a canvas feature
map. Finally, I concatenate node summary embeddings and background embeddings and
process the concatenated embeddings with 2 residual blocks of size 64 to produce the
relation embeddings.

B.2 Training details

The architecture is implemented in Pytorch framework. During training, I used RAdam
optimizer [68] with learning rate 0.0001, β1 = 0.9,β2 = 0.999. I used batch size of 64, and
distributed the training across 2 Nvidia Geforce Titan X GPUs. I early-stop training when
validation accuracy stops increasing.

B.3 More details on search space reduction

In this section I provide a detailed architecture used for search space reduction, and present
additional experimental results.

The node embeddings are generated by applying a Conv-Net of 4 convolutional layers
(32 filters in each layer) of kernel size 3, and a fully connected layer mapping flattened
final-layer feature maps to a feature vector of size 256. Edge embeddings are generated
by a 3-layer MLP of 512− 512− 256 hidden units. Subset embeddings are generated by
a fully connected layer of 512 units. The subset embeddings are gated with the gating
variables and summed into a feature vector, which is then fed into the reasoning net, a
3-layer MLP with 256− 256− 13. The output layer contains 13 units. The first unit gives
the probability of the currently combined answer choice being true. The remaining 12
units give meta-target prediction probabilities. This is the same as in [5]. The training
loss function is:

L = Lans + βLmeta−target + λ

∥∥∥∥∥∥
∑

(i,j,k)⊂S

Gi,j,k

∥∥∥∥∥∥
L1

(B.1)

In the experiment, I tested various values of λ, and found 0.01 to be the best. This
model is trained with RAdam optimiser with a learning rate of 0.0001 and batch size of 64.
After 10 epochs of training, only gating variables of subsets that are rows and columns are
above the 0.5 threshold. The Gating variables for the three rows are 0.884, 0.812 and 0.832.

122

The gating variables for the three columns are 0.901, 0.845 and 0.854. All other gating
variables are below 0.5. Among these, the one with the highest absolute value is 0.411.
Table B.1 shows the top-16 ranked subsets, with each subset indexed by 2 connecting
edges in the subset. Figure B.4 illustrates the indexing of the subset. For example, the
first column with red inter-connecting arrows is indexed as 0-3-6. This indicates that there
are two edges, one connecting diagrams 0 and 3, and the other connecting diagram 3 and
6. Similarly, the subset connected by blue arrows is indexed as 1-2-5. Note that 1-2-5 and
2-1-5 are different because the 1-2-5 contains edges 1-2 and 2-5 while 2-1-5 contains edges
2-1 and 1-5.

Rank Diagram subsets |GatingV ariable|
1 0-3-6 0.901
2 0-1-2 0.884
3 2-5-8 0.854
4 1-4-7 0.845
5 6-7-8 0.832
6 3-4-5 0.812
7 1-2-5 0.411
8 2-1-5 0.384
9 3-6-7 0.381
10 3-7-4 0.364
11 6-3-7 0.360
12 1-5-4 0.357
13 0-4-6 0.285
14 3-4-7 0.282
15 1-3-4 0.273
16 1-4-5 0.271

Table B.1: All subsets ranked by the absolute value of their corresponding gating variables.

B.4 Ablation study

I performed ablation study experiments to test how much the multiplex edges affect
performance. I tested two model variants, one without any graph modules, and the other
model with graphs using vanilla edge embeddings produced by MLPs, on the PGM dataset.
I found that without graph modules, the model only achieved 83.2% test accuracy. While
this is lower than MXGNet’s 89.6%, it is still higher than WReN’s 76.9%. This is possibly
because the search space reduction, by trimming away non-contributing subsets, allows the
model to learn more efficiently. The graph model with vanilla edge embeddings achieves
88.3% accuracy, only slightly lower than MXGNet with multiplex edge embeddings. This
shows that while a general graph neural network is a suitable model for capturing relations

123

Figure B.4: Illustration of diagram ordering in the matrix and numbered representation of
subsets.

between objects, the multiplex edge embedding does so more efficiently by allowing parallel
relation multiplexing.

124

Appendix C

Discrete AIR

C.1 Details of architecture and training

C.1.1 Architecture

I use PyTorch package1 for Python to build the neural network model. I describe below
the details of each module in discrete-AIR.

Embedding: The embedding module embeds the difference image between the input
and the previous canvas Ct−1 into a feature vector which is input to the RNN module.
For Multi-Sprites, I use a Convolutional Neural Network as the embedding module. The
Conv-Net contains three convolutional layers with 16, 24, and 32 filters respectively. All
layers have a kernel size of 5. Batch Normalisation is used for all three layers. After each
Convolutional layer a max-pooling layer of pool size 2× 2 is applied. For Multi-MNIST
dataset, I did not use an embedding layer, as in the original AIR model, but feed the
difference image directly to RNN.

RNN: RNN module takes embedded difference image, together with latent codes at
the previous time step zt1 as input, and generates spatial attention variables ztwhere and
presence variable ztpres for the current step. The RNN is implemented as Long Short-Term
Memory (LSTM) [42]. The LSTM module has 256 recurrent units. I perform gradient
norm clipping to stabilise the training of RNN.

Read Attention: Read attention module takes the input image and the spatial
attention parameters zwhere. I use two consecutive Spatial Transformers [49], one for
scaling and translation and the other for rotation and shearing combined. For the Multi-
Sprites dataset, I did not include shearing for simplicity.

Encoder: The encoder takes the spatially attended image patch and encodes it into a
set of latent codes. This is implemented as a CNN of 3 layers with 48, 64 and 96 number
of filters of kernel size 5 respectively. Batch Normalisation is used for all three layers. I do

1https://pytorch.org/

125

https://pytorch.org/

not use a max-pooling layer, but instead set the stride of each convolutional layer to be 2.
Decoder: The decoder decodes latent codes into a reconstructed image patch. I use

additive function to combine zcat and zattr as discussed in Section 5.2.2. The detailed
architecture is shown in Table C.1. For the Multi-Sprites dataset, no attribute variable is
used.

zcat zattr

Fully Connected (128 units)
Fully Connected (1024 units)
Resize 1024 to 64× 4× 4

Transposed Conv (64 to 48) Batch-Norm
Transposed Conv (48 to 32) Batch-Norm
Transposed Conv (32 to 1)

Table C.1: Decoder architecture.

Write Attention: The Write Attention Module takes generated objects and zwhere and
write the objects onto the canvas with two Spatial transformers with inverse transformation
matrices of those in the Read Attention Module.

Canvas function: I used an additive canvas function Ct = Ct−1 +Ot ⊗ ztpres where
Ot, the generated object, is gated by the presence variable zpres.

C.1.2 Training

Optimiser: ADAM
Learning rate: 0.0001
Batch size: 64
Temperature annealing scheme: τ = max(0.5, e−rt) where t is the number of training
iterations and r is the anneal rate. I set r to be 0.005 for both experiments.
Training epochs: I trained Multi-Sprites for 300 epochs and Multi-MNIST for 420 epochs.
This is determined when the reconstruction loss is not improving for 10 consecutive epochs.

C.2 Building Multi-Sprites dataset

I built the Multi-Sprites dataset using the pseudo code in Algorithm C.1:

C.3 Analysis of failures

For the Multi-Sprites dataset, the model performs less well when objects are too small.
This is because small objects only occupy the space of tens of pixels and are thus heavily

126

Algorithm C.1 Multi-Sprites Dataset Generation
Input: num to generate N , num max objects M
for i = 1 to N do
nobj = RandomInt(M)
List of objects L initialised
for j = 1 to nobj do
Category = RandomInt(num of classes)
x = RandomUniform(xmin,xmax)
y = RandomUniform(ymin,ymax)
angle = RandomUniform(-π,π)
O = generate(Category, x, y, angle)
while Overlap(O,L) > threshold do
Repeat generation

end while
Append O in L

end for
Image = paint(L)

end for

sub-sampled in the rasterisation process. This causes the difference between different
shapes to be indistinguishable.

For the Multi-MNIST dataset, the model occasionally learns to use one category for
two similar-looking digits by encoding the difference in the attribute variable, thereby
causing a considerable drop in the correspondence rate. Figure C.1 illustrates the case
between digits 4 and 9 and digits 3 and 8.

(a) 4 and 9

(b) 3 and 8

Figure C.1: Illustration of Discrete-AIR model occasionally squeeze two digits into one
category.

C.4 Some more reconstructions

Figure C.2 shows additional samples of step-by-step reconstruction for the Multi-MNIST
dataset. Figure C.3 shows this for the Multi-Sprites dataset.

127

(a) original input

(b) 1st step recon (c) 2nd step recon

Figure C.2: Illustration of reconstruction for Multi-MNIST.

128

(a) original input (b) 1st step recon

(c) 2nd step recon (d) 3rd step recon

Figure C.3: Illustration of the reconstruction for Multi-Sprites.

129

130

Appendix D

Generalisable Relational Reasoning

D.1 Maximum of a set: architecture configurations

The architecture for the maximum of a set task has three sub-modules, namely a compara-
tor f(xi, xj), a comparison summariser ei = MLP (

∑N
j=1 f(xi, xj)) and a pooling function∑N

i=1 a(ei)p(xi). For comparator f , I set K, the number of parallel comparisons (Equa-
tion 6.1 on page 88) to be 1 because the scalar valued real numbers do not have multiple
parallel attributes. I implement the projection function p as a single feed forward layer.
I choose 1-dimensional comparison space as this gives the best result. The comparison
function c takes the projected difference p(xi)− p(xj) as input, and is implemented as a
single feed forward layer with 1 output unit. The MLP in the comparison summariser is
implemented as a 2-layer MLP of hidden-size 16− 1. In the pooling function, the attention
function a is implemented as a softmax layer which normalises ei across i ∈ 1 . . . N .

D.2 Visual object comparison: dataset generation

I now describe details of the visual object comparison dataset. I sample images from
the dSprites dataset [41] and generate comparison labels (categories include smaller than,
equal to, greater than) from ground truth latent values provided in the dataset. For each
image in the dSprites dataset, 5 ground truth attribute values are provided, which are
shape “category”, “size”, “rotation angle”, “horizontal position” and “vertical position”. I
add “colour” as the 6th attribute by randomly generating colour intensity value in the
range [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0] for each image. I multiply image pixel values
with the colour intensity, and add the colour intensity value to the ground truth latent
values.

Algorithm D.1 shows the pseudo-code for generating the visual object comparison
dataset. compare_attr indicates the object attribute to be compared for the task. I pick
three different attributes for experiments, which are “size”, “horizontal position” and “colour

131

intensity”. I set the training attribute range to be the lower 60% while the test attribute
range to be the upper 40%.

Algorithm D.1 Visual Object Comparison Dataset Generation
Input: train_size, test_size, compare_attr

train_data = EmptyList()
test_data = EmptyList()
for split in {train,test} do
for i = 1 to train_size do
attr_range, attr_idx = attr_stats(compare_attr)

if split == train then
LO, HI = 0, 0.6

else
LO, HI = 0.6, 1.0

end if
sample_range = Truncate(attr_range, LO, HI)
latent_values_A = SampleLatent(attr_idx, sample_range)
latent_values_B = SampleLatent(attr_idx, sample_range)
image_A = SampleImage(latent_values_A)
image_B = SampleImage(latent_values_B)
less_than = latent_values_A < latent_values_B

equal = latent_values_A == latent_values_B

greater_than = latent_values_A > latent_values_B

label = Concat(less_than, equal, greater_than)
if split == train then
train_data ← (image_A,image_B,label)

else
test_data ← (image_A,image_B,label)

end if
end for

end for

D.3 Visual object comparison: architecture configura-

tions

In this section, I list a detailed configuration of the architecture with low-dim comparators
and the baseline architecture. The architecture with low-dim comparator is illustrated
in Figure 6.3a on page 91. The CNN module is a 4-layer CNN of with 32, 32, 64 and 64

132

number of filters respectively, followed by a 2-layer MLP of hidden size 256− 10. Each
CNN layer has a stride value of 2 and a padding value of 1. The output of each CNN is
the object representation oi of raw image input xi. The projection module p is a single
feed-forward layer projecting to a space with dimension d. I use d = 1 for reporting results
except for the manifold analysis experiments in Section 6.3.4. The comparator takes the
projected vector difference p(oi)− p(oj) as input, and is implemented as a 2-layer MLP of
size h− 3, where h is the hidden size and 3 is the output size (corresponding to 3 different
output categories). I found that varying h in the range from 4 to 32 has little effect on
the performance. Hence I report performance with h = 4 to reduce computational costs.

The baseline architecture uses the same CNN module as the architecture with low-dim
comparators. The baseline model concatenates the CNN output oi and oj and feeds the
concatenated vector into an MLP. I performed a hyper-parameter search of the MLP with
the number of layers ranging from 1 to 4, and with hidden unit sizes from 32 to 64. I
found that 64− 64− 3 is the best performing architecture.

D.4 PGM architecture configurations

In this section, I describe the detailed configuration of the PGM architecture with low-
dim comparators, and the baseline model MLRN-P, which is an augmented version of
MLRN [50]. The descriptions here is supplementary to descriptions in Section 6.2.4 and
Figure 6.3b.

The CNN module is a 4-layer CNN with 32, 32, 64 and 64 number of filters respectively,
followed by a 2-layer MLP of hidden size 256− 128. Each CNN layer has a stride value of
2 and a padding value of 1. The output of each CNN is the object representation oi of
raw image input xi. Following [5], I attach to oi a position tag to indicate its position in
the diagram matrix. The tagged object representation is then projected onto K = 512

1-dimensional manifolds for parallel attribute comparison. Next I describe the comparator
module f (Equation 6.1). As shown in Figure 6.3b on page 91, there are two hierarchical
projection comparisons. For the first level, I found that implementing c as a simple vector
difference module achieves best results, which means c = p(oi) − p(oj). This reflects
the fact that the comparison between diagrams is directional, such as an increase in the
number of objects from one diagram to the other. I implement g in equation 6.1 as a
residual MLP of 4 layers with hidden size 2048− 2048− 2048− 796. The output from each
pairwise comparison of diagrams in a row/column is concatenated to form the relation
embedding for that row/column. For the second level I implement c as the absolute
difference, which means c = |p(oi)− p(oj)|. This works better because relation comparison
is less directional. For example, the difference between the relation of an increasing number
of objects and the relation of increasing sizes of objects should be the same when the

133

compared diagrams are swapped. For the second level, I implement g as a 3 layer MLP of
hidden sizes 1024− 512− 1, which directly outputs the predicted similarity score between
two rows/columns. For predicting the correct answer candidate, I follow [5] by applying a
Softmax function to scores produced by comparing each answer row/column with context
rows/columns to produce scores for each answer candidate. For meta-target prediction, I
sum all context row/column embeddings and process it with a 3-layer MLP of hidden size
1024− 512− 12, where 12 is the meta-target label size.

The baseline model MLRN-P is modified from MLRN [50]. I have performed three
architecture modifications for a fair comparison with my model. Firstly, I inject the
prior knowledge of relations existing only in rows/columns into the model. The first level
of Relation Networks compares diagrams within rows/columns and the second level of
Relation Networks compare row/column embeddings. Secondly, I swap MLP in the original
MLRN with residual MLP, which is shown to improve performance slightly in my model.
Thirdly I pretrained the CNN module with Beta-VAE [41] for a fair comparison with my
model.

D.5 Training details

In this section, I describe the training details for all three experiments. I use PyTorch1 for
implementation. For gradient descent optimiser, I use RAdam [68], an improved version
of the Adam optimiser. For all 3 experiments, I use the learning rate of 0.001 and the
betas (0.9,0.999). We used 2 Nvidia Geforce Titan Xp GPUs for training all models. For
“maximum of a set” and “visual object comparison”, I set the batch size to be 64. For
PGM I found a larger batch size of 512 slightly improves the results. For maximum of the
set and visual object comparison, I set training epochs to be 20. For PGM I train for 50
epochs. For visual object comparison and RPM tasks I pre-train CNN as the encoder of a
Beta-VAE [41]. I follow standard training procedures of Beta-VAE, and set the β value to
be 1.

D.6 Additional plots

In section 6.3.4 I show plots of the projected distribution and the comparator’s function
landscape for the position comparison task. Here I show the same plots for comparison
tasks for other attributes, which are sizes and colour intensity. Figure D.1 shows the plot
for size comparison while Figure D.2 shows the plot for colour intensity comparison. The
training range is the lower 60% of the colour bar while the test range is the upper 40%.
The observations stated in Section 6.3.4 also holds true for these attributes. For size and

1https://pytorch.org/

134

https://pytorch.org/

colour intensity comparison tasks, the projected distribution plots show that the test data
is more clustered than that of spatial position comparison. This shows that the size and
colour intensity attributes can be learnt better with a bespoke CNN perception module
than with the spatial position attributes. This is supported by the fact that models trained
for these two attributes achieved higher o.o.d test accuracies.

(a) 2D projection space
(b) 2D comparator function

Figure D.1: (a) shows a scatter plot of the 2D projected distribution of objects in the
task of comparing sizes of objects in the image. X-axis and Y-axis are 2 dimensions of the
projection manifold. The latent size variable (possible values are [0,1,2,3,4,5]) is indicated
by colour. (b) plots the comparator’s function landscape for “equal” output unit (before
softmax) in the space of vector differences between 2D projections of objects.

135

(a) 2D projection space
(b) 2D comparator function

Figure D.2: (a) shows a scatter plot of the 2D projected distribution of objects in the
task of comparing colour intensity of objects in the image. X-axis and Y-axis are 2
dimensions of the projection manifold. The latent colour intensity variable (possible
values are [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0]) is indicated by colour. (b) plots the
comparator’s function landscape for “equal” output unit (before softmax) in the space of
vector differences between 2D projections of objects.

136

	Introduction
	Related works
	Main Contributions
	Investigating Euler Diagram Syllogisms with Deep Neural Networks
	Abstract Diagrammatic Reasoning with Multiplex Graph Networks
	Unsupervised Diagram Summarisation with Deep Generative Models
	Generalisable Neural Network for Relational Reasoning

	Publications

	Background
	Notational framework
	Diagrammatic Reasoning
	Euler Diagrams and Syllogisms
	Raven Progressive Matrices

	Artificial Neural Networks
	Convolutional Neural Network
	Selected improvements on training DNNs
	Batch Normalisation
	Residual Networks
	Adam optimiser
	Variational Auto-Encoders

	Graph Neural Networks
	Node classification
	Graph classification and regression

	Investigating Euler Diagram Syllogism with Deep Neural Networks
	EulerNet Architecture
	EulerNet for categorical output
	EulerNet for diagram generation

	Evaluation
	Syllogism reasoning performance
	Robustness evaluation
	Decoding neural representations
	Extracting rules from reasoning networks
	Ablation studies

	Discussion
	Applicability to other types of diagrams
	Comparison with logical symbolic reasoner
	Limitations of the syllogism dataset

	Abstract Diagrammatic Reasoning with Multiplex Graph Networks
	MXGNet Architecture
	Object-Level Representation
	Multiplex Graph Network
	Reasoning network
	Training

	Experiments
	Search Space Reduction
	RPM task performances
	Generalisation evaluation for PGM
	Ablation study

	Discussion

	Unsupervised Diagram Summarisation with Deep Generative Models
	Attend Infer Repeat
	Discrete-AIR
	Sampling discrete variable
	Generative model
	Inference
	Learning

	Evaluation
	Multi-Sprites
	Multi-MNIST

	Discrete-AIR for extracting interpretable scene graphs
	Discussion

	Generalisable Neural Network for Relational Reasoning
	Related works on o.o.d generalisation
	Low-dimensional comparators
	Comparator in low-dimensional manifolds
	Architecture: Maximum of a set
	Architecture: Visual object comparison
	Architecture: visual reasoning for Raven Progressive Matrices
	Algorithmic alignment and o.o.d generalisation

	Evaluation
	Maximum of a set
	Visual object comparison
	Visual reasoning for Raven Progressive Matrices
	Why low dimension?
	Algorithmic alignment
	Ablation Studies

	Discussion

	Conclusion
	Main contributions
	Future directions
	Interpretability
	Generalisation
	Integration of neural and symbolic systems
	Generative Modelling for more tasks

	Bibliography
	EulerNet
	Architecture Configurations
	Hyper-Parameters

	MXGNet
	Architecture
	Object-Level Representation Architecture
	Graph networks

	Training details
	More details on search space reduction
	Ablation study

	Discrete AIR
	Details of architecture and training
	Architecture
	Training

	Building Multi-Sprites dataset
	Analysis of failures
	Some more reconstructions

	Generalisable Relational Reasoning
	Maximum of a set: architecture configurations
	Visual object comparison: dataset generation
	Visual object comparison: architecture configurations
	PGM architecture configurations
	Training details
	Additional plots

