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depends on a non-perturbative tunneling exponent depending on the quantum parameter

and the particle mass. In the above-threshold case, we find that when the quantum param-
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In modelling the fall-off of a quasi-constant-crossed magnetic field, we calculate probabili-

ties beyond the constant limit and investigate when the decay probability can be regarded
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1 Introduction

“Naturalness” seems incompatible with the Standard Model (SM) when one considers

the “strong-CP” problem, which asks why charge-parity (CP) conjugation invariance is

violated so little in the strong sector even though the CP-violating term in the QCD

Lagrangian would induce a large but unobserved neutron electric dipole moment. An

attractive solution is the Peccei-Quinn (PQ) mechanism which promotes the CP-violating

term to be a dynamical parameter that can relax to zero and predicts the existence of

a pseudoscalar Nambu-Goldstone boson called the axion [1], which has a weak coupling

to photons and electrons, as well as other SM particles. Other beyond-the-Standard-

Model scenarios predict the existence of light bosonic states that couple weakly to photons

and electrons, which are referred to collectively as Axion-Like-Particles (ALPs). They

have subsequently been suggested to explain various astrophysical phenomena such as the

transparency of the universe to high energy gamma-rays [2–5], and the 3.55 keV galaxy

cluster emission line [6–8].

A promising route to detecting ALPs is through their coupling to SM particles in the

electromagnetic sector. The coupling of ALPs to the electromagnetic field is exploited in

Light-Shining-through-the-Wall (LSW) experiments (for a review see [9]) to convert laser

photons in a magnetic background into ALPs, which then propagate through a “wall” and

into a low-noise detection region with a background magnetic field. ALPs in the presence

of this background field are then reconverted into photons, which provide the experimen-

tal signal. The current state-of-the-art LSW experiment is the ALPS I experiment [10],

however upgrades to this set-up and other more advanced LSW experiments are planned
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for the future [11, 12]. Helioscope experiments, i.e. CAST [13] and the proposed IAXO

experiment [14], also use a similar detection set-up, but since the generation stage occurs in

complex astrophysical environments such as in the sun, both production via the di-photon

coupling in e.g. the Primakoff process, and production via the electron-ALP coupling in

e.g. axionic-Compton emission [15], is being measured. This means that the signal in he-

lioscope experiments, unlike LSW, is also sensitive to the coupling of ALPs to electrons,

and a bound on this coupling has been derived by the CAST collaboration [16].

In the current paper we study the process of an ALP decaying to an electron-positron

pair in a high-intensity electromagnetic field via a direct coupling of the ALP to electrons.

The motivation for our work is: i) to consider the decay of ALPs in a plane-wave back-

ground; ii) to look at the effect of the pulse-shape on the background on detection of these

ALPs; iii) learn something about field-dressed processes in strong-field QED (SFQED), of

which there are very few results in the literature. This study adds to the overall discussion

on altering particle decay properties using external electromagnetic (EM) fields and could

be of interest for future lab-based ALP searches. In addition to the decay of photons in

magnetic [17, 18] and plane-wave [19–21] fields, the decay lifetime of a muon has also been

investigated, and shown to be only slightly changed in an EM background in [22, 23], (more

recent speculations to the contrary were criticised in the literature [24]). Depending on the

set-up of background fields, a magnetic field may enhance or suppress particle production.

For example, for constant homogeneous parallel electric and magnetic fields in QED [25]

and scalar QED [26], a weak magnetic field has been found to slightly enhance the decay

of the vacuum into electron-positron pairs (more details can be found in the review [27]),

but for parallel Sauter type electric and magnetic fields [28] and for the decay of a neutral

scalar to two charged scalars in a thermal bath [29], to suppress particle production. Also,

the effect of a constant magnetic field on the neutral and charged pion masses and decay

form factors has recently been investigated [30]. When studying neutral pion decay, it was

found (first by Ritus [22, 31]) that a CCF can accelerate the decay into a muon but slow

down the decay into an electron (see also [32]). Whilst we note some similarities between

ours and Ritus’ results for pion decay in a plane-wave background, these are rather limited

and of a general nature. Moreover, the processes studied by Ritus do not have the same

kinematics of the process as the process φ → e+e−, for axions φ, which we are studying

here. In [33], the decay of W± vector bosons in a CCF was investigated, where it was

found that the partial width of the decay W → lνl (for lepton l and corresponding an-

tineutrino νl), was a nonmonotonic function of the quantum nonlinearity parameter χ for

χ < 1. In [34] the decay Z0 → ll were calculated, where it was found that in the limit of

large quantum nonlinearity parameter χ ≥ 10, a sizeable contribution of the decay width

originates from Z0 → tt, which is forbidden in vacuum. Our work complements these

studies, as we see that axion decay to a pair is most closely related kinematically to the

previous Z0 and pion decay studies. We will derive the process in a plane wave of arbitrary

pulse form, hence extending the treatment of the background beyond the CCF of previous

works. We will use this arbitrary form to model the edge of a magnetic field, and show

that decay can occur outside of the field, which is not a result that is obtainable using the

locally-constant-field approximation (LCFA). This result will be shown to be due to the
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fact that the contribution from outside the field is vanishing at small interference phase,

and therefore the usual Taylor expansion of the LCFA misses this phenomenon. We also

study axion decay in a CCF, and find an analogous oscillatory dependence of the decay

rate on the quantum nonlinearity parameter for weak fields as well as a monotonic “strong-

field” region for large quantum parameter, just as was found in [34] for Z0 decay. ([34] also

studies the angular dependence of the decay process, which is beyond our current analysis

for axions.) One new feature introduced by studying axion decay, is that the mass is a

free parameter. Therefore, in a CCF, we were able to identify an exponentially-suppressed

tunneling region for axions lighter than the pair rest mass and the transition to a oscillatory

dependency on the axion mass for axions heavier than the pair rest mass.

The production of ALPs via their coupling to photons in a circularly-polarised laser

beam has been studied in [35]. The production of ALPs in the interactions between elec-

trons and high-intensity electromagnetic fields has been studied previously in [36–39], with

ALP-seeded electron-positron pair production in a monochromatic laser background also

being considered in [37]. These papers demonstrated how lab-based experiments using

high-intensity lasers and electrons may provide lab-based bounds on the ALP electron cou-

pling, complementary to those derived from helioscope experiments. The current paper

extends this work by considering the decay of ALPs to electron-positron pairs in quasi-

constant magnetic fields, derived as a limit of the case in which the process occurs in a

plane-wave electromagnetic background.

This process is relevant for both terrestrial experiments utilising strong magnetic fields

for ALP conversion and searches for extraterrestrial ALPs from strongly-magnetised ob-

jects [40].

To perform calculations in strong electromagnetic backgrounds, we employ the Furry

picture [41]. Solutions to the Dirac equation in a plane-wave electromagnetic background,

so-called “Volkov” states, represent the fermions “dressed” in the external electromagnetic

field [42]. As such, the derivation of ALP decay rates in quasi-constant electromagnetic

fields has much in common with high-intensity QED (reviews can be found in [31, 43–46]),

with the decay of photons in a laser background being measured experimentally in the

E144 experiment [47, 48]. Due to the immense number of laser photon “probe” particles,

most interest in extensions of high-intensity QED has been in the ALP-diphoton coupling.

This can manifest itself in the polarisation properties of a photon probe [49–51] or through

parametric excitation [52]. Recent calculations have begun exploring the possibility of using

the collision of electron bunches with laser pulses to measure the ALP-electron coupling,

for example using weak [38], strong [38] and intermediate many-cycle [37] laser pulses, or

leveraging collective effects such as coherent emission [39].

The paper is structured as follows. In section 2, we present an example derivation of

ALP decay in a plane-wave electromagnetic background with finite support (e.g. a laser

pulse), focusing on the decay of a massive pseudoscalar to an electron-positron pair. Deriva-

tions for a scalar and a vector boson follow a very similar format and final results for these

cases are presented. We then perform a local expansion of the probability and obtain

what is often referred to as the “locally-constant-field-approximation” (LCFA) [53–56]. In

section 3 we analyse the constant crossed field (CCF) result, which is integrated over the
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Figure 1. Feynman diagram for pseudoscalar-seeded electron-positron pair production.

non-constant background to form the LCFA. Asymptotic and perturbative limits for below-

and above-threshold decay are presented, as is a description of how the non-perturbative

pair-creation tunneling and oscillation exponents depend upon the ALP mass, particle en-

ergy and field strength. In section 4 we consider the effect of the detector’s magnetic field

beyond the LCFA and show how large field gradients at the detector edge change the in-

terpretation of a local production of pairs and can influence the total yield. In section 5 we

consider two experimental scenarios involving a magnetic field and a laser pulse in the de-

tection region respectively, and take the upcoming LUXE experiment at DESY to provide

typical experimental parameters. In section 6 we discuss the results and conclude.

2 Derivation of pseudoscalar decay probability in a plane-wave pulse

We begin by considering a pseudoscalar particle, φ, with four-momentum k and mass mφ,

decaying to an electron-positron pair in a plane-wave electromagnetic background. The

scaled vector potential aµ = eAµ(ϕ), where e is the charge of a positron and Aµ the vector

potential, depends on a single variable, the phase ϕ = κ ·x of the background. The lightlike

wavevector of the background κ is transverse to the vector potential, κ · a = 0, and we

represent aµ(ϕ) = mξ(ϕ)εµ, where ξ(ϕ) = ξg(ϕ) is the local classical intensity parameter,

g(ϕ) is the pulse envelope (|g(ϕ)| ≤ 1), εµ = (0, εεε⊥, 0)µ is the polarisation and m is the

electron mass. We choose a system of co-ordinates in which κ = (κ+/2)(1, 0, 0, 1) so that

ϕ = κ+x−/2 = κ0x−, and use lightfront co-ordinates: x± = x0 ± x3, x⊥ = (0, x1, x2, 0),

x± = x∓/2, x⊥ = −x⊥. We will define the seed particle’s mass parameter δ, through

δ2 = k2/m2.

To calculate the probability of decay in the electromagnetic background, we assume

the produced fermions are solutions to the Dirac equation in a plane-wave electromagnetic

background (Volkov states). This is depicted by the double fermion line in figure 1. The

scattering-matrix element for a pseudoscalar is then

Sfi = igφe

∫
d4x φ ψpγ5ψ

+
q , (2.1)

where gφe is the electron-pseudoscalar coupling, with Volkov states:

ψp = Ep(ϕ)
ur(p)√
2p0V

eip·x+iSp(ϕ), ψ+
q = E−q(ϕ)

vr′(q)√
2q0V

eiq·x+iS−q(ϕ), (2.2)

Ep(ϕ) = 14 +
/κ/a(ϕ)

2κ · p
, Sp(ϕ) =

∫ ϕ 2p · a(ψ)− a2(ψ)

2κ · p
dψ,

where we assume that the pseudoscalar is in a plane-wave state, φ = e−ik·x/
√

2k0V , has

mass mφ, and V is a normalisation volume.

– 4 –
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Integrating eq. (2.1) over the “−” and “⊥” co-ordinates we have

Sfi =
igφe(2π)3

κ0
√

8p0q0k0V 3
δ⊥,− (p+ q − k)

∫
dϕ eiϕr+iSp(ϕ)+iS−q(ϕ) ur(p)Ep(ϕ)γ5Eq(ϕ)vr′(q),

(2.3)

where a measure of the lightfront momentum absorbed from the electromagnetic back-

ground is given by

r =
p+ + q+ − k+

2κ0
.

To obtain the probability we must square the matrix element

∑
spin

tr|Sfi|2 =

[
gφe(2π)3 δ⊥,−(p+q−k)

κ0
√

8p0q0k0V 3

]2∫
dϕ dϕ′ Teir(ϕ−ϕ

′)+i[Sp(ϕ)−Sp(ϕ′)]+i[S−q(ϕ)−S−q(ϕ′)],

(2.4)

where the trace terms are included in the factor

T =
∑

r,r′,s,s′

trur(p)Ep(ϕ)γ5Eq(ϕ)vr′(q)vs′(q)Eq(ϕ
′)γ5Ep(ϕ

′)us(p).

Since the electromagnetic background is of a finite extent (disappears at the boundaries

of integration), it is more useful to consider probabilities than cross-sections (which would

be spacetime-dependent as they depend on the background field strength). The decay

probability P- (we use P- for pseudoscalar decay and P+ for scalar decay to reflect their

behaviour under parity transformation) is defined as P- = V 2
∫ ∑

spin tr |Sfi|2 d3p d3q/(2π)6,

leading to

P- =
g2φe δ

⊥,− (0)

8(κ0)2k0V

∫
d2p⊥ dp−

q−p−
θ
(
p−
)
θ
(
q−
)

(2.5)∫
dσ dθ T exp

[
i

∫ σ+θ/2

σ−θ/2

[
p · a(φ)

κ · p
− q · a(φ)

κ · q
− a2(φ)

2

κ · k
κ · p κ · q

]
dφ+ irθ

]
,

where momentum conservation is enforced via q⊥,− = k⊥,− − p⊥,− together with the on-

shell condition q2 = m2. In preparation for eventually performing a local expansion, we

have defined the average and difference phase variables

σ =
ϕ+ ϕ′

2
; θ = ϕ− ϕ′. (2.6)

The probability can be written in a much neater way by observing that

r =
k · p
κ · q

−
m2
φ

2κ · q
. (2.7)

We also note

δ⊥,−(0) = lim
l→0

δ⊥,−(l)δ+(l)

δ+(l)
=

1

(2π)3
V
∫
dt∫

dx−
=

V k0

(2π)3k−

– 5 –
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(where we note that dϕ/dτ is a constant in a plane wave, where τ is the proper time,

allowing us to cancel the integrals and introduce corresponding momentum factors).

Then we have

P- =
g2φe

4(κ0)2k0(2π)3

∫
d2p⊥ dp−

q−p−
θ
(
p−
)
θ
(
q−
) ∫

dσ dθ T e
iθ
[〈

k·Π
κ·q

〉
−
m2
φ

2κ·q

]
, (2.8)

where the classical plane-wave momentum of the electron is

Π = p− a+ κ
2a · p− a2

2κ · p
(2.9)

and we define the phase-window-average

〈f〉 :=
1

θ

∫ σ+θ/2

σ−θ/2
f(φ)dφ. (2.10)

Performing the spin-sum and the trace we find

T

4
= m2 + p · q +

[a(ϕ) + a(ϕ′)] · p
2

κ · k
κ · p

− [a(ϕ) + a(ϕ′)] · q
2

κ · k
κ · q

− a(ϕ) · a(ϕ′)

2

(κ · k)2

κ · p κ · q
.

To proceed, we wish to perform the p⊥ integrals. We note from eq. (2.5) that the

exponent is of the form of a Gaussian oscillation in these variables, but the pre-exponent

in eq. (2) also contains terms quadratic in p⊥ (in p · q). This would seem to lead to a

divergence, however, we will show that the divergent contribution can be reinterpreted as

an integral over surface terms, which must disappear.

First of all, we can remove explicit dependence on q (which only remains in the p · q
term) by using the trick:

k + λκ = p+ q, λ =
2k · p−m2

φ

2κ · q
,

where λ was found from the first equation using the on-shell condition q2 = m2. Then

making the replacement

m2 + p · q = k · pκ ·k
κ ·q
−m2

φ

κ ·p
2κ ·q

,

the pre-exponent starts to look like the exponent. Writing this explicitly as

exp [i(. . .)] = exp

{
i

[
θ

(
k ·p
κ ·q
−

m2
φ

2κ ·q

)
+

∫ σ+ θ
2

σ− θ
2

−k ·a(φ)

κ ·q
+

κ ·k
2κ ·p

(2a(φ)·p− a2(φ)) dφ

]}
,

we can make the following replacement in the pre-exponent

κ ·k k ·p
κ ·q

→ −iκ ·k∂θ +
κ ·k
2κ ·q

m2
φ +

κ ·k
κ ·q

k ·(a(φ) + a(φ′))

2

+
(κ ·k)2

2κ ·qκ ·p

[
−p · (a(φ) + a(φ′)) +

a2(φ) + a2(φ′)

2

]
, (2.11)

– 6 –
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which simplifies the pre-exponent considerably such that, in the end, we just have

T

4
ei(...) =

[
m2
φ

2
+

(κ ·k)2

2κ ·qκ ·p
[a(φ)− a(φ′)]2

2
− iκ ·k ∂θ

]
ei(...).

If we assume that there can be no contribution to the probability in the infinite past or

infinite future, we can discard the derivative term in the pre-exponent and perform the p⊥

integrals without encountering a divergence.

Let us write probabilities in the following way:

P =
g2

4π

1

ηk
I, (2.12)

where the coupling and flux prefactors have been separated from the process-dependent

integration, I. Then we define the probability P- for the decay of a pseudoscalar into an

electron-positron pair as P- = (g2/4πηk)I-. Selecting a linearly-polarised background, we

then eventually arrive at

I- =
i

4π

∫
dσ dt

dθ

θ + iε

{
δ2 +

[a(φ)− a(φ′)]2

2t(1− t)

}
e

iθµ(θ)
2ηkt(1−t)

− iθδ
2

2ηk (2.13)

where we define the Kibble mass factor

µ(θ) = 1 +
〈 a
m

〉2
−
〈( a

m

)2 〉
, (2.14)

lightfront momentum fraction t = p−/k−, and the energy parameter ηk = κ · k/m2. (The

energy parameter can be thought of as the squared ratio of the centre-of-mass energy to

the pair rest energy, for the case when the seed photon collides with a single background

photon to produce a pair.) It is possible to perform the t-integral analytically (see e.g. [57])

I- =
1

8π

∫
dσ

dθ

θ+iε

{
h(θ)δ2K1 [ih(θ)] +

[
h(θ)δ2 + i

[
a(φ)− a(φ′)

]2]
K0 [ih(θ)]

}
e
−ih(θ)− iθδ

2

2ηk ,

(2.15)

where h(θ) = −θµ(θ)/2ηk and Kn(x) is the modified Bessel function of second kind [58].

However eq. (2.13) will prove to be the more useful form of the probability for numerical

evaluation.

Without further derivation, in the spirit of eq. (2.12), we state that the probability P+

for the decay of a scalar into an electron-positron pair is proportional to the integral:

I+ =
i

4π

∫
dσ dt

dθ

θ + iε

{
4− δ2 +

[a(φ)− a(φ′)]2

2t(1− t)

}
e

iθµ(θ)
2ηkt(1−t)

− iθδ
2

2ηk , (2.16)

and the probability Pγ for the decay of an unpolarised massive U(1) boson is proportional

to the integral:

Iγ =
i

4π

∫
dσ dt

dθ

θ + iε

{
2

(
1− δ2

2(1−t)

)
−
[
a(ϕ)− a(ϕ′)

]2(
1− 1

2t(1−t)

)}
e

iθµ(θ)
2ηkt(1−t)

− iθδ
2

2ηk .

(2.17)

– 7 –
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3 Constant fields

The Locally Constant Field Approximation (LCFA) allows one to calculate probabilities for

processes in non-trivial plane-wave electromagnetic backgrounds by performing a local field

expansion of the background, and integrating the resulting constant field result over the

non-trivial form of the plane-wave. It has been shown to be a good approximation [53, 59]

when the intensity parameter of the background ξ, satisfies ξ � 1, where ξ2 = 〈p · T (ϕ) ·
p〉ϕ/m2 (κ · p)2, for massive seed particle four-momentum p, stress-energy tensor Tµν =

(F 2)µν−ηµνtrF 2/4, F is the Faraday tensor and 〈·〉ϕ implies a cycle-average over the phase

ϕ [60]. (However, recent analyses of nonlinear Compton scattering hint that the infra-red

behaviour is badly approximated by the LCFA [55, 61].) (The LCFA is sometimes explained

by reference to when a massive seed particle is highly relativistic, the electromagnetic field

in the particle’s rest-frame is approximately that of a constant-crossed field [31].)

One can acquire the LCFA result from the probability for a process in a plane-wave

pulse, such as eq. (2.13), by expanding the exponent in θ up to O(θ3) which corresponds

to the highest power contributing to the constant field case. This amounts to making the

replacements

θµ → θ +
f2(σ)

12
θ3

(
a(φ)− a(φ′)

)2 → −θ2f2(σ), (3.1)

where f(σ) = ξ′(σ) and the linearly-polarised background can be written a = −ε(a · ε) and

−ε · a′(σ) = mf(σ). Using the results:∫ ∞
−∞

dθ

θ + iε
ei(rθ+c3θ

3) = −2πiAi1

[
r

(3c3)1/3

]
;∫ ∞

−∞
dθ θei(rθ+c3θ

3) = − 2πi

(3c3)2/3
Ai′
[

r

(3c3)1/3

]
, (3.2)

for c3 ∈ R, we then find

ILCFA
- =

∫
dσ dt

{
δ2

2
Ai1(z)− χk(σ)

√
z0 Ai′(z)

}
, (3.3)

where we define

z0 =

(
χk(σ)

χp(σ)χq(σ)

)2/3

; z = z0 −
δ2

χk(σ)
√
z0
, (3.4)

χk(σ) = f(σ)ηk. (Applying the above procedure to the U(1) case eq. (2.17) and taking

the massless limit δ2 → 0, leads exactly to the QED expression for photon-seeded pair-

creation [62]. Furthermore the mass-dependent part of the Airy argument has the same

form as expected from e.g. the second step of electron-seeded pair-creation, given explicitly

in [63].)

Typically, we are interested in lab-based detection of ALPs using constant magnetic

fields. Clearly, a constant magnetic field, which can be written a(ϕ) ∼ ϕ for spacelike

(κ2 < 0) wavevector, is relativistically inequivalent to a constant crossed field (CCF),

– 8 –
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which has equal magnitude electric and magnetic fields. However, if we restrict our analysis

to highly relativistic seed particles, i.e. with k−/m � 1, then from their rest frame, a

constant magnetic field will appear to be well-approximated by a CCF [64]. This fact,

which underlies the Weizsäcker-Williams approximation [65, 66], was recently explicitly

shown to hold for nonlinear Thomson scattering in a constant magnetic field [67]. The

constant-field limit a(ϕ) ∼ ϕ for lightlike wavevector is then the constant crossed field limit.

To approximate the probability in a constant magnetic field using a CCF, we can relate

the scaled vector potential, a, to the field-strength F by first writing F as

F (ϕ) = ∂tA
1(ϕ) =

1

e

∂ϕ

∂t
a1 ′(ϕ),

where we pick the background to be polarised in the 1-direction without loss of generality.

To proceed in evaluating ∂ϕ/∂t, we use the same reasoning as in eq. (2), then we see that

the non-trivial component of the reduced vector potential, a1(ϕ), can be written

a1(ϕ) = mξ(ϕ)→ m
k0

k−
L

λC

F0

FQ

ϕ, (3.5)

where we have introduced a nominal “frequency” of the constant field κ0 to be κ0 = 2π/L

with L being the longitudinal spatial extent of the constant field (formally infinite in the

CCF limit), λC = 2π/m is the Compton wavelength, F0 is the amplitude of the field

strength, and FQ = m2/e is the Schwinger limit. Other quantities can then be written

independent of any external field frequency:

χk(σ)→ χk = fηk =
F

FQ

k−

m
;

1

ηk

∫
dσ → m

k−
L

λ̄
.

Then we see:

PCCF
- =

g2

4π

m

k−
L

λ̄
RCCF

- (χk, δ
2), (3.6)

where all the non-trivial dependency on experimental parameters is contained within the

function RCCF
- , which is the rate per unit detector length (measured in units of the reduced

Compton wavelength).

In relation to the ALP mass and the field strength we can identify three distinct regimes

for creation of electron-positron pairs: i) below threshold, δ2 < 4, where the process is

forbidden in the limit of zero field and hence is field-induced ; ii) above threshold, δ2 > 4,

where the process is field-assisted and can proceed in the zero-field limit, and iii) strong

field χ � 1, where decay is so likely, there is no threshold behaviour anymore. Plotting

the dependency of RCCF
- on χk in figure 2 for different axion mass parameter, δ2, one can

clearly see where these three regions occur.

3.1 Below threshold decay

Below-threshold, pair creation can only occur as a tunneling process and hence is ex-

ponentially suppressed. This situation is very similar to studies on photon-seeded pair-

creation [59, 68], and so we will not analyse it in great detail. However, we highlight the
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Figure 2. Plots of RCCF
- for various seed-particle masses. a) the effect of the threshold when χk � 1

— exponential suppression below the threshold and an oscillatory dependence on δ2 above it. b)

for small χk, when the decay is above-threshold, the probability oscillates about the vacuum values

(shown as grey horizontal lines) and in the below-threshold regime, the probability is exponentially

suppressed. For large χk, the distinction between above- and below- threshold is lost and the

dependence on particle mass disappears. In b), black solid lines are the asymptotic results, which

become more accurate for heavier masses and smaller χk.

difference that a massive seed particle brings, by calculating the asymptotic and perturba-

tive limits of RCCF
- .

In a CCF, the exponent in eq. (2.13) (and eqs. (2.16) and (2.17)), can be written, with

a change of variable to make the dependency on χk manifest, θ → 2ϑ/ξ, as:

exp

[
iϑ

χt(1− t)

(
1 +

ϑ2

3
− δ2t(1− t)

)]
. (3.7)

In the subthreshold case, δ2 < 4, we note that 1 − δ2t(1 − t) > 0. Then in this case, the

turning points of the exponent always lie on the imaginary axis. Rotating the integration

contour with ϑ→ iϑ, yields a real exponent of the form ∼ ϑ− cϑ3, allowing us to use the

Laplace method. There are two turning points and one is subdominant.

We then find for δ2 < 4 and χk � 1:

RCCF
- ∼ χk

√
3

4
√

2

(
1 +

δ2

8

)−1/2(
1 +

χk
2

δ2

4− δ2

)
e
− 8

3χk

(
1− δ

2

4

)3/2

. (3.8)

We notice the familiar −8/3χk tunneling exponent has been shifted by the seed parti-

cle mass, where the tunneling behaviour clearly disappears as the mass approaches the

threshold δ2 → 4. We can understand this in an intuitive way by using arguments

based on energy-momentum conservation [69], recently applied to high-intensity laser-based

QED [70]. The energy of the produced electron is:

Ep(t) =

√
(p− eA)2 +m2 =

√
p2 +m2 + e2F 2t2, (3.9)
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where in the last equality, we have used the fact that the background field is constant.

Assuming all particles involved in the decay are highly relativistic, we can see that the

energy change is:

∆E(t) = Ep(t) + Ek−p(t)− Ek ≈
2m2

k

{[
1 +

(eF t)2

m2

]
k2

4p(k − p)
− δ2

4

}
. (3.10)

We can approximate the form of the rate for the process to occur using the WKB

method [71]:

dP

dt
∼ exp

[
i

∫ t

0
∆E(t′)dt′

]
∼ RCCF

- . (3.11)

For a tunneling process, we can approximate this integral by using the saddle-point method,

and integrating to t∗ where t = t∗ is the shortest time for which ∆E(it) = 0. The smallest

energy difference corresponds to an equal distribution of the initial energy and momentum

p = k/2, from which it follows that the tunneling time is:

t∗ =
m

eF

√
1− δ2

4
,

and using eq. (3.11), we indeed find that:

RCCF
- ∼ exp

[
− 8

3χk

(
1− δ2

4

)3/2
]
.

Therefore, we can be somewhat confident that we have the correct tunneling exponent.

3.2 Above threshold decay

Above threshold, δ2 > 4, a region of the t-integration exists where 1− δ2t(1− t) < 0. Then

in this case, two turning points of the exponent eq. (3.7) appear, with opposite sign, on

the real ϑ axis.

Then applying the method of stationary-phase in ϑ, we acquire a final integral in t, with

an oscillating exponent which also has turning points on the real axis. Of those, two turning

points conspire to produce a cosine, and the third turning point gives a constant term,

which is where the zero-field contribution originates. Altogether we find when χk � 1,

δ2 > 4, that:

RCCF
- ∼ −χk

√
3

8

(
1 +

δ2

8

)−1/2(
4 +

δ2

δ2 − 4

)
cos

[
8

3χk

(
−1 +

δ2

4

)3/2
]

+
1

2

√
δ2 (δ2 − 4).

(3.12)

We see that in this low-χk limit, the probability for decay oscillates as the field-strength

is varied. This is demonstrated for various axion masses in figure 2a, where we plot this

transition, and the dependency of RCCF
- on ALP mass parameter, δ2, where the threshold

effect can clearly be seen.
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The zero-field result in eq. (3.12) must, of course, be independent of the form of the

background field. By taking the limit a → 0 in eq. (2.13), we find the same result, which

can be written as:

P-(ξ → 0)→ g2

4π

mT

2

√
δ2(δ2 − 4),

where T =
∫
dt.

3.3 Strong fields, χk � 1

In this parameter region, one can simply perturbatively expand eq. (3.3) in the small

parameter 1/χk since the Airy argument is given by:

z =
1

χ
2/3
k

(
1

t(1− t)

)2/3 [
1− δ2t(1− t)

]
.

At a given χk � 1, this perturbative expansion decreases in accuracy for increasing δ2.

Suppose δ2 � 1, then z ∼ δ2/χ2/3
k . So in the perturbative limit, we must also assume that

χ
2/3
k � δ2.

After a straightforward integration in t, we find:

RCCF
- (χk, δ

2) ≈
24/3πχ

2/3
k

31/3Γ(16)Γ(76)
+O(χ0

k); O(χ0
k) =

δ2

3
+O(χ

−2/3
k ). (3.13)

We have included the next-to-leading-order term in χ
2/3
k to show that, in the limit χ

2/3
k �

δ2, the mass of the seed particle ceases to play a role, and in general, the concept of a

threshold disappears as χk increases towards χk � 1.

Again, the functional dependence of eq. (3.13) can be understood by using intuitive

methods [69, 70]. In this case, the process is above-threshold and so the rate is simply

proportional to g2 (because one vertex) and 1/tq (because of dimensions), where tq is the

quantum time fulfilling tq = 1/∆E(tq) from the uncertainty relation. (Since the process

is quantum, the classical timescale tcl given by eF (tcl)tcl = m should not be significant.)

Using eq. (3.10) generates a cubic in tq, and the one real root leads to the relation:

RCCF
- ∼ χ2/3

k +O(χ0
k); O(χ0

k) ∼
[
1− δ2

4

]
+O(χ

−2/3
k ). (3.14)

Also here, we include the next-to-leading order, to show the dependency on the mass.

Although the pseudoscalar mass term in our result eq. (3.13) depends on the mass as ∼ δ2

and not ∼ (1 − δ2/4) as in the intuitive method, it is not entirely surprising that this

term differs since it originates from the parity-dependent term in the trace, which takes

a different form whether dealing with e.g. a photon, scalar or pseudoscalar and nowhere

have we inserted the fact that we are dealing with a pseudoscalar in this intuitive picture.

(Indeed from eq. (2.16) the scalar mass term is ∼ −(1− δ2/4).)
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Figure 3. Magnetic part of a constant crossed field, scaled so the maximum is unity. For highly-

relativistic axions, the crossed field produces an equivalent effect to entering a constant homogeneous

magnetic field. The limit Φ→ 0 gives the top-hat function.

4 Edge effects of static constant fields

We recall that we are working in the highly-relativistic regime, where processes are well-

approximated by replacing a constant field with a CCF. Therefore, to represent the edge

of a quasi-constant magnetic field, we choose a field of plane-wave form:

B(ϕ) =
F0

1 + tanh(−ϕ0/Φ) tanh(ϕ1/Φ)

[
1 + tanh

(
ϕ− ϕ0

Φ

)
tanh

(
ϕ1 − ϕ

Φ

)]
, (4.1)

where ϕ = ϕ0,1 (and ϕ1 > ϕ0) are the phase positions of the two “edges” of the field and Φ

is a sharpness parameter. We choose, without loss of generality, ϕ0 = −0.5, ϕ1 = 0.5, and

exhibit the form of B for various sharpness parameters in figure 3. The potential is then de-

rived from this form of the field numerically by solving a′(ϕ) = m(k0/k−)(L/λC)B(ϕ)/FQ,

which reduces to eq. (3.5) in the constant-field limit.

To apply the result for the probability for axion decay in a plane-wave field eq. (2.13)

to a quasi-static magnetic field in the highly-relativistic regime, we use eq. (3.5), whence

it follows ξ = (L/λ̄)(F0/FQ). For a magnetic field of F0 = 1 T and length L = 1 m,

ξ ∼ O(102), however the frequency scale κ0/m = 2πλ̄/L � 1, so in this case ηk � 1 and

hence χk = ξηk � 1. Therefore, following from the results in figure 2, for a terrestrial

magnetic field, we expect the pair-decay to only occur for axions with a mass that is close

to, or already above threshold. Still, we will begin by analysing the below-the-threshold

case as it gives a clearer demonstration of the effect of field gradients introduced by having

a rapid drop-off at the end of the magnetic field.

In this case, the numerical evaluation of eq. (2.13) is non-trivial, because the constant-

field part is not absolutely convergent. We found it was sufficient to integrate by parts

once in θ and to numerically evaluate the resulting, absolutely convergent integral.

Upon comparison with the LCFA, we expect that when ξΦ 6� 1, there may be a

discrepancy.
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Figure 4. Plots of I− for a field when δ2 = 0, ξ = 10, ηk = 0.1, for three cases: Φ = 0.2, Φ = 0.05

and Φ = 0.01 respectively from left to right. The dashed line is the LCFA, the dotted line is the

mean numerical result and the gray area marks out one standard deviation from the mean. The

numerics were run five times for each plot, and each numerical evaluation randomly allocated 1000

points in θ between 0 and 1, which were distributed with a cubic weighting towards θ = 0.

We can justify the LCFA by applying the substitution θ → y/ξ in eq. (2.13) to give:

I- =
i

4π

∫
dσ dt

dy

y

δ2 +

[
a
(
σ + y

2ξ

)
− a

(
σ − y

2ξ

)]2
2t(1− t)

 e
iy

2χk

[
µ(
y
ξ

)

t(1−t)−δ
2

]
. (4.2)

Then if ξ � 1, we expect a Taylor expansion of functions in y/ξ — for example the

dimensionless Kibble Mass, µ — to be the basis of a good approximation. The conditions

that powers of y higher than y3 can be discarded — and hence the LCFA used — include

such inequalities as [(y/ξ)(a′′(σ)/a′(σ))]2 � 1, [(y/ξ)2(a′′′(σ)/a′(σ)) � 1, and for these

terms to make a difference, the probability must not be already vanishingly small when

these inequalities are violated. It then follows that (ξΦ)−2 � 1 for the LCFA to be valid.

For these parameters, where we have chosen to associate the external-field frequency κ0

with 2π/L, if the ALP collides head-on with the wavevector of the magnetic field, Φ then

represents some length or duration, ∆, over which the field falls off at its edges. Then

LCFA is valid when: (
1

ξ

L

∆

)2

� 1;

(
λC

∆

FQ

F0

)2

� 1, (4.3)

where λC is the Compton wavelength of an electron. Therefore, the weaker the field, the

more important its shape. This is somehow intuitive: a weaker field has a lower intensity

and so the approximation that it is locally constant should be worse. For a 1 T magnet,

this corresponds to a field edge of approximately ∆2 � 10−4 m2.

We demonstrate the effect of the sharpness of the field in figure 4 for ξ = 10, ηk = 0.1

(a much higher value than from an ALP in a homogeneous magnetic field in the lab,

which would require a 100 TeV ALP in a 1 T magnet), so that χk = 1 and pair-creation is

appreciable.

The numerical curves in figure 4 are also seen to oscillate around zero outside of the

magnetic field. It is known [55] that ∂P/∂σ (we recall the definition of σ in eq. (2.6) as the

seed particle’s average phase position) does not have to be positive, as long as the total
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Figure 5. a) Example integrand to be integrated over to calculate ∂I−/∂σ. b) The corresponding

cumulative distribution function.

probability, which is defined for asymptotic states, is positive. Therefore in general, ∂P/∂σ

cannot be interpreted as a rate. In figure 4, we note that the introduction of strong field

gradients through a sharper magnetic field edge, allows for an increase in the amplitude

of ∂P/∂σ near this edge. One way this can be understood is by considering the Fourier

transform of the limit Φ → 0, which would give a frequency spectrum ∼ sinc(rκ0L),

where r is a real number. The opposite limit Φ → ∞ makes the field formally constant

resulting in a delta frequency spectrum at the origin. Thus, the higher the field gradient,

the larger the contribution from higher frequencies, which can bridge the gap to the 2m

pair-creation threshold, thereby reducing the necessary tunneling time and increasing the

probability. This is similar to the situation of pair-creation by a photon in the background

of a plane-wave laser pulse, where shorter pulses were found to drastically increase pair-

creation probabilities [20, 21]. Although homogeneous magnetic field strengths are limited

to around O(1−10)T in the lab, there is increasing interest in the quasi-static fields of the

order of ∼ 105 T that are generated in intense laser-plasma collisions [72].

To demonstrate the numerical integration in θ, we plot in figure 5a how the integrand

in eq. (4.2) depends on θ, with the same parameters as the central plot in figure 4 (δ2 = 0,

Φ = 0.05, ξ = 10, ηk = 0.1) evaluated at σ = 0.3 (as the problem is symmetric around θ = 0,

we have simply calculated points in the region θ ≥ 0). The convergence of the integral is

indicated in figure 5b where the cumulative distribution function C(σ, θ), given by

C(σ, θ) =

∫ θ

0

∂2I−(σ, y)

∂σ∂y
dy,

is plotted and tends towards a constant as the upper integration bound in θ is increased.

Figure 5 shows the major contribution to the θ-integral originates from θ � 1 and how

the frequency of oscillation increases with θ. It is instructive to compare figure 5 with a

point outside the sharp edges (at σ = ±0.5) of the magnetic field, to illustrate differences

between the full result and the LCFA. Consider the sharper magnetic field in the right-hand

plot of figure 4 (where δ2 = 0, Φ = 0.01, ξ = 10, ηk = 0.1) for σ = 0.575. According to the
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Figure 6. a) A plot of ∂2I−/∂σ∂θ at σ = 0.575 for the magnetic field with ξ = 10, ηk = 0.1 and

Φ = 0.01. b) The corresponding cumulative distribution function. The vertical line in the plots is

at θ/2 = σ − 0.5, i.e. the distance away from the edge of the magnetic field.

LCFA, there is no contribution here, but as is clear from figure 4, the full probability does

actually contribute. Plotting ∂P/∂σ in figure 6, we see that indeed in the full probability

there is zero contribution around θ = 0, however, at precisely the value that σ− θ/2 < 0.5,

the integral begins to contribute with increasing θ (recall that the Kibble mass in eq. (2.14)

is defined using a window average eq. (2.10) evaluated for phases between σ ± θ/2).

The LCFA is an expansion in small θ and therefore at σ = 0.575 it is not sensitive to

contributions from the field at σ = 0.5, even if the field changes a substantial amount at

this point.

Finally in figure 7, we give some examples of the LCFA probability for pair-creation

in a magnetic field in the above-threshold case. We choose Φ = 0.2, as this was where the

numerics and LCFA agreed well for the massless case.

In figure 7a we note that, as the axion mass is increased, the effect of the magnetic

field is one from increasing axion decay (δ2 ≤ 4), to the point where the magnetic field only

slightly modifies the probability, and in fact in some regions of parameter space suppresses

it. In figure 7b, we see that as the energy parameter is increased for a typical above-the-

threshold scenario (δ2 = 4.1), the effect of the magnetic field enhances pair decay. As the

axion impinges from the vacuum in the magnetic field, the transition in the probability from

vacuum decay to field-assisted decay is nontrivial, and depending on the axion’s energy,

can also lead to a suppression of the decay probability.

5 Example experimental scenarios

The results of the previous section can be used to provide an estimate for exclusion bounds

that could be measured at typical upcoming experiments. One example is the LUXE

experiment at DESY [73], which will combine the 17.5 GeV electron beam that drives the

European XFEL laser, with a thin-foil target to produce Bremsstrahlung, which can be

used as a probe in photon-laser collisions [74]. The set-up we envisage is a variation of
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Figure 7. Plots for ILCFA
- edges for the first case in figure 4, with ηk = 0.1, ξ = 10, Φ = 0.2,

δ2 = 4.1 (unless these parameters are varied in the plot). Left: the transition from below- to

above-the-threshold behaviour. Right: the role of the energy parameter in increasing decay in

the magnetic field region. (The colours represent the vertical axis height as denoted by the scale

alongside each plot.)

a typical LSW experiment, where the generation mechanism is axionic bremsstrahlung in

the thin-foil target, and regeneration of the axions occurs behind some thick shielding, a

distance away.

In the first scenario, we consider the regeneration to occur in a magnetic field. If we

take as parameters for the magnet, those using in the ALPs experiment at DESY [10], of

B = 5 T and L = 4.21 m then using eq. (4.3), as long as the field decays over a distance

greater than 2 mm, which we will assume, the LCFA can be used.

We assume the collision is head-on with the magnetic field wavevector. To estimate

the regeneration rate of axions, we take the thin-target approximation to bremsstrahlung

from [74], and multiply by g2/e2 to acquire an approximate rate of axionic bremsstrahlung:

k−
dN(k−)

dk−
≈ g2

e2
X

X0

[
4

3
− 4

3

k−

p−
+

(
k−

p−

)2
]
.

The number of axions regenerated is then:

Nφ = NeNshots

(
g2

4π

)2
X

X0

1

2γe

L

λ̄

∫ 1

0

dx

x2

(
4

3
− 4

3
x+ x2

)∫ 1

0
dt
∂RCCF
− (χk, δ

2, t)

∂t

∣∣∣∣∣
χk=2γe

B
BQ

x

(5.1)

where γe ≈ 3.5 × 104 is the relativistic gamma factor of the electrons hitting the foil, an

X/X0 is the average number of radiation lengths undergone in the foil (we take X/X0 =

0.1). For the number of shots, we assume 24 hours of continuous operation and a frequency

of 1 Hz for collisions, and take the number of electrons to be Ne = 109. For values of δ ≥ 2,

the rate of regeneration is almost identical to that without a magnetic field. For δ < 2, there

is a small region of parameter space where the magnetic field field can cause regeneration to
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Figure 8. Projected exclusion bounds for gφe in the magnetic set-up (left) and laser set-up (right).

occur where it is forbidden by vacuum (see the left-hand plot of figure 8). So with this set-

up, although the detection region is always “on”, pair-creation is exponentially suppressed

unless the axion is above-threshold. This set-up is more suitable for axion regeneration via

the di-photon coupling.

In the second scenario, we take the regeneration to occur in an intense laser pulse,

which is synchronised with the firing of the electron beam such that the pulse of generated

axions arrives at the centre of the laser pulse. Assuming a plane-wave laser pulse of intensity

parameter ξ = 10 and pulse duration Φ = 50, using a similar analysis, we find the exclusion

bounds in the right-hand plot of figure 8.

6 Summary

The decay of a massive ALP into an electron-positron pair in a high intensity EM back-

ground field has been investigated. An example derivation for the case of massive axions

was presented, and the results for massive scalars and vector bosons were also given. Al-

though the pre-exponents of scalars and vectors are different to the pseudoscalar case, the

nonpertubative exponential dependency and kinematics are identical and so we expect our

results to have significance for these cases as well. A constant crossed field was chosen as

an example background to investigate how the decay depends on experimental and axion

parameters. Three distinct regions were identified: i) below threshold decay, where the rate

of decay was via tunneling through the background field; ii) above threshold decay which

can proceed in the absence of a background field; iii) strong-field limit, where the concept

of a threshold disappears. With interest in lab measurement in a constant magnetic field,

we calculated the decay probability in a quasi-constant crossed field of finite spatial extent.

This is expected to be a good approximation to decay in a constant magnetic field for

highly-relativistic seed ALP particles. Using a phenomenological model, the effect of field

“edges” and hence strong field gradients was investigated.

In below-threshold decay, a new mass-dependent tunneling exponent was identified,

which shows how the gap to the threshold pair-creation energy of 2m is partially bridged

by the mass of the axion. This is reminiscent of Schwinger pair production catalysis [75]
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by a second, higher-frequency background overlaid on a constant background, where here,

the ALP mass plays the role of the higher-frequency background. The same expression for

the tunnelling exponent was arrived at independently by using simple energy-momentum

arguments in [69, 70].

The case of above-threshold decay shows an interplay between the two channels of: i)

vacuum decay and ii) field-stimulated decay through a nonperturbative dependence on χk
(a combination of external-field and ALP particle parameters). The field was found to both

increase and decrease the probability for ALP decay, due to it inducing an oscillation in

the probability around the vacuum value. This oscillation is in the ALP mass parameter,

but also in χk and hence the field strength and ALP lightfront momentum. An asymptotic

formula for the oscillations was found using a stationary phase analysis, and so, even if

the background is not a constant crossed field, it is expected that such oscillations are a

general characteristic of the above-threshold decay of ALPs into electron-positron pairs in

plane-wave fields.

In the strong-field regime, χk � 1, which would be challenging to arrive at in the

lab, but may have significance in some astrophysical scenarios, the concept of a threshold

disappears, and the nonperturbative asymptotic result depends only on the field. This is

to be expected — eventually if the field is strong enough, the vacuum decay channel is

negligibly small, and so loses meaning.

To investigate a quasi-constant crossed field of finite spatial extent in the lab, we intro-

duced a field with dimensionless “sharpness” parameter, Φ, parametrising the departure

from a top-hat shape at Φ = 0. We found that the sharper the field, the worse the ap-

proximation of taking the probability rate for a constant field and integrating it over the

field shape (the so-called locally-constant field approximation). In particular, there are

still contributions from outside of the field, which we found to be traceable to interference

over the trajectory of the seed particle, which are absent from the simple approximation.

Finally, identifying a region where the locally constant field approximation was valid, we

presented the nontrivial dependency of the decay probability in a magnetic field with edge,

as the mass of the decaying particle crosses the vacuum decay threshold.
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[21] T. Nousch, D. Seipt, B. Kämpfer and A.I. Titov, Pair production in short laser pulses near

threshold, Phys. Lett. B 715 (2012) 246 [INSPIRE].

[22] V.I. Ritus, Effect of an electromagnetic field on decays of elementary particles, Zh. Eksp.

Teor. Fiz. 56 (1969) 986.

[23] W. Becker et al., A note on total cross sections and decay rates in the presence of a laser

field, Phys. Lett. A 94 (1983) 131.

[24] N.B. Narozhny and A.M. Fedotov, Comment on ‘Laser-Assisted Muon Decay’, Phys. Rev.

Lett. 100 (2008) 219101 [INSPIRE].

[25] F.V. Bunkin and I.I. Tugov, Possibility of Creating Electron-Positron Pairs in a Vacuum by

the Focusing of Laser Radiation, Sov. Phys. Dokl. 14 (1970) 678.

[26] V.S. Popov, Pair production in a variable and homogeneous electric field as an oscillator

problem, Sov. Phys. JETP 35 (1972) 659.

[27] G.V. Dunne, Heisenberg-Euler effective Lagrangians: Basics and extensions, in From fields to

strings: Circumnavigating theoretical physics. Ian Kogan memorial collection (3 volume set),

M. Shifman, A. Vainshtein and J. Wheater eds., World Scientific, New York U.S.A. (2004),

pg. 445 [hep-th/0406216] [INSPIRE].

[28] K. Sogut, H. Yanar and A. Havare, Production of Dirac Particles in External

Electromagnetic Fields, Acta Phys. Polon. B 48 (2017) 1493 [arXiv:1703.07776] [INSPIRE].

[29] G. Piccinelli and A. Sanchez, Magnetic Field Effect on Charged Scalar Pair Creation at

Finite Temperature, Phys. Rev. D 96 (2017) 076014 [arXiv:1707.08257] [INSPIRE].

[30] M. Coppola, D. Gomez Dumm, S. Noguera and N.N. Scoccola, Neutral and charged pion

properties under strong magnetic fields in the NJLS model, Phys. Rev. D 100 (2019) 054014

[arXiv:1907.05840] [INSPIRE].

[31] V.I. Ritus, Quantum effects of the interaction of elementary particles with an intense

electromagnetic field, J. Russ. Laser Res. 6 (1985) 497.

[32] Yu.I. Klimenko, O.S. Pavlova and E.Yu. Klimenko, τ -Lepton decay in an arbitrary

plane-wave electromagnetic field, Sov. Phys. J. 28 (1985) 972.

[33] A.V. Kurilin, Leptonic decays of the W boson in a strong electromagnetic field, Phys. Atom.

Nucl. 67 (2004) 2095 [arXiv:0709.0335] [INSPIRE].

[34] A.V. Kurilin, Z0-boson decays in a strong electromagnetic field, Phys. Atom. Nucl. 72 (2009)

1034 [arXiv:1309.2780] [INSPIRE].
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