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Abstract. In this study, we proposed and analyzed the optimal control and cost-

effectiveness strategies for malaria epidemics model with impact of temperature 

variability. Temperature variability strongly determines the transmission of 

malaria. Firstly, we proved that all solutions of the model are positive and bounded 

within a certain set with initial conditions. Using the next-generation matrix 

method, the basic reproductive number at the present malaria-free equilibrium 

point was computed. The local stability and global stability of the malaria-free 

equilibrium were depicted applying the Jacobian matrix and Lyapunov function 

respectively when the basic reproductive number is smaller than one. However, 

the positive endemic equilibrium occurs when the basic reproductive number is 

greater than unity. A sensitivity analysis of the parameters was conducted; the 

model showed forward and backward bifurcation. Secondly, using Pontryagin’s 

maximum principle, optimal control interventions for malaria disease reduction 

are described involving three control measures, namely use of insecticide-treated 

bed nets, treatment of infected humans using anti-malarial drugs, and indoor 

residual insecticide spraying. An analysis of cost-effectiveness was also 

conducted. Finally, based on the simulation of different control strategies, the 

combination of treatment of infected humans and insecticide spraying was proved 

to be the most efficient and least costly strategy to eradicate the disease. 

Keywords: cost-effectiveness analysis; malaria disease; optimal control; SIRS model; 

temperature variability. 

1 Introduction 

Malaria is a life-threatening disease caused by a protozoan pathogen. The parasite 

is known as plasmodium and is transmitted to humans by Anopheles mosquitoes. 

The parasite can enter the human body when an infected female mosquito in 

search of a meal bites a susceptible person. For 2018, 228 million cases and 

405,000 deaths have been reported globally; the African region accounts for 93% 

of all cases according to the latest world malaria report from December 2019 [1]. 
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The three main vectors that transmit malaria in tropical Africa are Anopheles 

gambiae, Anopheles arabiensis and Anopheles funestus [2]. Temperature 

variability strongly determines the ability of mosquitoes to transmit the disease 

through the population effectively. It is highest within the range of 16 °C to 

28 °C, which creates conditions that are favorable to the breeding rate of 

mosquitoes [3]. The most common strategies to eradicate malaria are using 

insecticide-treated bed nets, treatment of infected humans with anti-malarial 

drugs, and indoor residual insecticide spraying [4]. 

Mathematical modeling of the transmission of malaria parasites was started by 

Ronald Ross [5]. He developed an SIS-SI model for human and malaria 

populations. According to Ross, the number of mosquitoes should be reduced to 

below a certain threshold to control malaria. Later, several models based on 

Ross’s work have been proposed by scholars who extended his model by 

considering various impacts such as the existing period of infection (exposure 

time) for humans and mosquitoes [6-8] and the role of temperature variability on 

the death rate and birth rate of mosquitoes [9-11]. 

A number of scholars have formulated malaria models as an optimal control 

problem to assess the impact of control measures on disease transmission. For 

instance, Olaniyi et al. [12] investigated a malaria model of the spread of the 

disease with optimal control and conducted an analysis of cost-effectiveness 

using three control measures. The authors suggest that a combination of using 

bed nets, treatment with drugs and insecticide spraying is the most efficient and 

least costly intervention strategy. Makinde & Okosun [13] presented a 

transmission model for malaria with optimal control using three controls. The 

authors concluded that the most effective strategies to control malaria 

transmission are a combination of screening, treatment of infected humans with 

anti-malarial drugs and indoor insecticide spraying. Okosun et al. [14] proposed 

the SEIRS-SEI model for malaria transmission with optimal control and analysis 

of cost-effectiveness, applying combinations of three malaria-control measures, 

i.e. using treated bed nets, treatment of infected humans with drugs and spraying 

of indoor insecticide. They stated that the most cost-effective controls to prevent 

the spread of malaria is treatment of infected humans with drugs and indoor 

insecticide spraying. Otieno et al. [15] presented a SEIRS-SEI model for malaria 

transmission using four time-dependent control measures in Kenya. The authors 

concluded that the combination of treated bed nets and treatment of infected 

humans with anti-malarial drugs is the most efficient strategy to minimize the 

disease. Gashew et al. [16] presented an SIRS model for the human population 

and a climate-dependent SI model for malaria transmission that incorporates three 

controls. The authors suggest that the combination of the three controls (treated 

bed nets, treatment of infected humans with anti-malarial drugs and indoor 

insecticide spraying) is the best strategy to eliminate the disease. Similarly, notice 
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that optimal control modeling and cost-effectiveness analysis model have been 

applied in recent malaria models [17-23]. 

However, in these papers the influence of temperature variation on malaria 

epidemics using optimal control and cost-effectiveness analysis of using a logistic 

model for temperature variation with respect to mosquito breeding and contact 

rate was not considered. In this study, we considered a SIRS-SI model for malaria 

transmission with optimal control and analysis of cost-effectiveness in the 

presence of a logistic model for temperature variation with respect to the breeding 

rate and contact rate of mosquitoes. 

This manuscript is organized as follows: in Section 2 we propose our model, 

which illustrates the impact of temperature variation on malaria epidemics. 

Section 3 provides the mathematical explanation of the model. Section 4 

describes the sensitivity analysis of the parameters used in the model. In Section 

5, the optimal control in malaria modeling is mathematically analyzed using 

Pontryagin’s maximum principle. In Section 6, we present a simulation of the 

analytical results. In Section 7, the cost-effectiveness analysis is discussed. In 

Section 8 the conclusions of the work are given. 

2 Model Description and Formulation 

In this section, we formulate the SIRS-SI malaria transmission model, where the 

SIRS model represents the human population and the SI model the population 

represents the mosquito population. The total human population at time (𝑡), 
denoted by 𝑁ℎ(𝑡), is divided into three sub-populations based on their disease 

status: susceptible humans, 𝑆ℎ(𝑡), that is: (1) those who are at risk of developing 

a malarial infection; (2) infected humans, 𝐼ℎ(𝑡), i.e. those who are showing 

symptoms of the disease and can transmit the disease to mosquitoes; and (3) 

recovered humans, 𝑅ℎ(𝑡), i.e. those who have temporary immunity and have 

recovered from the disease. Hence, the total human population is given by:  

 𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡) 

We assumed that all parameters in the system are positive. Individuals are born 

or migrate to the susceptible human population at rate 𝛹. Susceptible humans 

become infected when they have contact with an infected mosquito at rate 𝛽ℎ(𝑇), 
which is dependent on temperature. 𝛽0ℎ is the human-to-mosquito contact rate 

when there is no temperature variation and 𝛽1ℎ is the increase of the contact rate 

due to temperature variation. Humans leave the total population at death rate 𝜇ℎ 

and the malaria-induced death rate 𝛿. Infected humans recover due to treatment 

using anti-malarial drugs at rate 𝛾ℎ. The recovered population of humans whose 

immunity is not permanent can become susceptible to re-infection at rate 𝜔ℎ. The 



 Optimal Control and Cost Effectiveness Analysis of SIRS 137 

 

total vector population given by 𝑁𝑚(𝑡) at time (t) is sub-grouped into susceptible 

mosquitoes 𝑆𝑚(𝑡) and infected mosquitoes 𝐼𝑚(𝑡). Hence, the total vector 

population is given by 𝑁𝑚(𝑡) = 𝑆𝑚(𝑡) + 𝐼𝑚(𝑡). The vector population 

recruitment rate 𝛷(𝑇) is dependent on temperature, while 𝛷0 is the vector birth 

rate when there is no temperature variation and 𝛷1𝑚 is the increasing vector birth 

rate due to temperature variation. A mosquito gets infected when it has contact 

with an infected human at rate 𝛽𝑚(𝑇), which is dependent on temperature, and 

𝛽0𝑚 is the vector-to-human contact rate when there is no temperature variation 

and 𝛽1𝑚 is the increasing vector-to-human contact rate due to temperature 

variation. The vectors’ natural death rate is 𝜇𝑚. Mosquitoes do not die or recover 

from malaria infection. The temperature increase rate is denoted by r; 𝑇𝑚𝑎𝑥 is the 

maximum temperature, when the vector is most active, whereas the minimum 

temperature, when the vector is least active, is denoted by 𝑇0. Figure 1 shows a 

diagram of the transmission of malaria. 

 

Figure 1 Malaria transmission diagram. 

Using the flow chart described in Fig. 1, the model that governs the transmission 

of the disease is depicted by the following system of ordinary differential 

equations: 
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{
 
 
 
 

 
 
 
 
𝑑𝑆ℎ

𝑑𝑡
= 𝛹 − 𝛽ℎ(𝑇)𝑆ℎ𝐼𝑚 − 𝜇ℎ𝑆ℎ +𝜔ℎ𝑆ℎ,

𝑑𝐼ℎ

𝑑𝑡
= 𝛽ℎ(𝑇)𝑆ℎ𝐼𝑚 − (𝜇ℎ + 𝛿 + 𝛾ℎ)𝐼ℎ,     

𝑑𝑅ℎ

𝑑𝑡
= 𝛾ℎ𝐼ℎ − (𝜇ℎ +𝜔ℎ)𝑅ℎ,                      

𝑑𝑆𝑚

𝑑𝑡
= 𝛷(𝑇) − 𝛽𝑚(𝑇)𝑆𝑚𝐼ℎ − 𝜇𝑚𝑆𝑚,        

𝑑𝐼𝑚

𝑑𝑡
= 𝛽𝑚(𝑇)𝑆𝑚𝐼ℎ − 𝜇𝑚𝐼𝑚,                        

𝑑𝑇

𝑑𝑡
= 𝑟 (1 −

𝑇

𝑇𝑚𝑎𝑥
) (𝑇 − 𝑇0)                    

 (1) 

where 𝛽ℎ(𝑇) = 𝛽0ℎ + 𝛽1ℎ (
𝑇−𝑇0

𝑇𝑚𝑎𝑥
), 𝛽𝑚(𝑇) = 𝛽0𝑚 + 𝛽1𝑚 (

𝑇−𝑇0

𝑇𝑚𝑎𝑥
), and 𝛷(𝑇) =

𝛷0 +𝛷1𝑚 (
𝑇−𝑇0

𝑇𝑚𝑎𝑥
). 

with 

 𝑆ℎ(0) = 𝑆ℎ0, 𝐼ℎ(0) = 𝐼ℎ0, 

 𝑅ℎ(0) = 𝑅ℎ0, 𝑆𝑚(0) = 𝑆𝑚0,  (2) 

 𝐼𝑚(0) = 𝐼𝑚0, 𝑇(0) = 𝑇𝑚0 . 

Table 1 Description of parameters used in Eq. 1. 

Parameters Parameter descriptions 

𝛹 The rate at which new humans enter the population 

𝛷0 Mosquito population recruitment rate 

𝛾ℎ Recovery rate of infected humans 

𝜇ℎ Natural death rate of the human population 

𝛿 Induced death rate of the human population 

𝜇𝑚 Natural death rate of the mosquito population 

𝜔ℎ Immunity loss rate of the human population 

𝛽0ℎ Contact rate between humans and the mosquito population 

𝛷1𝑚 Increase of vector breeding rate 

𝛽0𝑚 Contact rate between mosquitoes and the human population 

𝛽1𝑚 Increase of vector contact rate 

𝛽1ℎ Increase of human contact rate 

𝑟 Increase rate of the temperature 

𝑇0 Minimum temperature when the vector is least active 

𝑇𝑚𝑎𝑥  Maximum temperature when the vector is most active 
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3 Mathematical Analysis of the Model 

3.1 Invariant Region 

To obtain the bounded region for model (1), first we consider the total human 

population given by  𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡), differentiating both sides 

with respect to time. Then adding the first three equations from Eq. 1, we get 

 
𝑑

𝑑𝑡
(𝑆ℎ + 𝐼ℎ + 𝑅ℎ) = 𝛹 − 𝜇ℎ𝑁ℎ − 𝛿𝐼ℎ.      (3) 

This implies that Eq. 3 becomes 

 
𝑑

𝑑𝑡
(𝑆ℎ + 𝐼ℎ + 𝑅ℎ) ≤ 𝛹 − 𝜇ℎ𝑁ℎ.      (4) 

Integrating both sides of Eq. 4 and simplifying the expression, we obtain: 

 𝛹 − 𝜇ℎ𝑁ℎ ≥ 𝑃𝑒
−𝜇ℎ𝑡, (5) 

where 𝑃 is a constant. Applying the initial conditions in Eq. 5 and rearranging the 

equation we get: 

 𝑁ℎ ≤
𝛹

𝜇ℎ
− (

𝛹−𝜇ℎ𝑁ℎ0

𝜇ℎ
) 𝑒−𝜇ℎ𝑡,   (6) 

From Eq. 6, the size of the human population 𝑁ℎ →
𝛹

𝜇ℎ
 as 𝑡 → ∞, which shows 

that 0 < 𝑁ℎ ≤
𝛹

𝜇ℎ
. Thus, the invariant region of Eq. 1 for the human population is 

a positive invariant given by: 

 𝛺ℎ = {(𝑆ℎ, 𝐼ℎ, 𝑅ℎ) ∈ 𝑅+
3 : 0 < 𝑆ℎ + 𝐼ℎ + 𝑅ℎ ≤

𝛹

𝜇ℎ
} (7) 

Secondly, the total number of the mosquito population from Eq. 1 is given as: 

 𝑁𝑚(𝑡) = 𝑆𝑚(𝑡) + 𝐼𝑚(𝑡).   (8) 

Thus, the partial derivative of 𝑁𝑚(𝑡) with respect to time 𝑡 is given by the 

following equation: 

 
𝑑

𝑑𝑡
(𝑆𝑚 + 𝐼𝑚) = 𝛷(𝑇

∗) − 𝜇𝑚𝑁𝑚.      (9) 

By solving Eq. 9, we obtain 0 < 𝑁𝑚 ≤
𝛷(𝑇∗)

𝜇𝑚
. Hence, the invariant region of Eq. 

1 for the mosquito population, given by 

 𝛺𝑚 = {(𝑆𝑚, 𝐼𝑚) ∈ 𝑅+
2 : 0 < 𝑆𝑚 + 𝐼𝑚 ≤

𝛷(𝑇∗)

𝜇𝑚
},       (10) 
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is positively invariant. Consequently, the dynamics of Eq. 1 were studied in the 

invariant region of the form. 

 𝛺 = 𝛺ℎ × 𝛺𝑚 = {(𝑆ℎ , 𝐼ℎ, 𝑅ℎ , 𝑆𝑚, 𝐼𝑚) ∈ 𝑅+
5 :𝑁ℎ ≤

𝛹

𝜇ℎ
, 𝑁𝑚 ≤

𝛷(𝑇∗)

𝜇𝑚
} (11) 

is a positive invariant set under the flow induced by the solution set of Eq. 1. 

3.2 Positivity of the Solution 

For Eq. 1 we will show that all solutions of the system with positive initial data 

will remain positive for all times 𝑡 ≥  0. 

Theorem 1. If 𝑆ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0), 𝑆𝑚(0), and 𝐼𝑚(0) are non-negative, then the 

solution 𝑆ℎ(𝑡),  𝐼ℎ(𝑡), 𝑅ℎ(𝑡), 𝑆𝑚(𝑡), and 𝐼𝑚(𝑡) of Eq. 1 are non-negative for 𝑡 ≥
 0. 

Proof. Take the first equation from Eq. 1 with 𝑇∗ ∈ {𝑇0, 𝑇𝑚𝑎𝑥}: 

 
𝑑𝑆ℎ

𝑑𝑡
= 𝛹 − 𝛽ℎ(𝑇

∗)𝑆ℎ𝐼𝑚 − 𝜇ℎ𝑁ℎ +𝜔ℎ𝑅ℎ 

 
𝑑𝑆ℎ

𝑑𝑡
≥ −(𝛽ℎ(𝑇

∗)𝐼𝑚 + 𝜇ℎ)𝑆ℎ            (12) 

Integrating Eq. 12 with respect to time and using the method of variable 

separation while applying the initial conditions, we obtain: 

 𝑆ℎ(𝑡) ≥ 𝑆ℎ(0)𝑒
−(𝛽ℎ(𝑇

∗)𝐼𝑚+𝜇ℎ)𝑡 ≥ 0 (13) 

With the same procedure for other state variables, it can be shown that: 

 

𝐼ℎ(𝑡) ≥ 𝐼ℎ(0)𝑒
−(𝜇ℎ+𝛿+𝛾ℎ)𝑡 ≥ 0,           

𝑅ℎ(𝑡) ≥ 𝑅ℎ(0)𝑒
−(𝜇ℎ+𝜔ℎ)𝑡 ≥ 0,             

𝑆𝑚(𝑡) ≥ 𝑆𝑚(0)𝑒
−(𝛽𝑚(𝑇

∗)𝐼ℎ+𝜇𝑚)𝑡 ≥ 0,

𝐼𝑚(𝑡) ≥ 𝐼𝑚(0)𝑒
−𝜇𝑚𝑡 ≥ 0.                      

 (14) 

This shows that all solutions of Eq. 1 are non-negative for all 𝑡 ≥  0. Therefore, 

the proposed malaria disease transmission model stated in Eq. 1 is both 

epidemiologically meaningful and mathematically well posed in feasible region 

𝛺. 

3.3 Disease Free Equilibrium (DFE) 

The malaria free-equilibrium is the steady-state solution of Eq. 1 when there is 

no malaria disease. In order to get the disease-free equilibrium (DFE), we equate 
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all equations of Eq. 1 to zero with  𝐼ℎ = 0, 𝑅ℎ = 0, 𝐼𝑚 = 0 and the obtained 

malaria-free equilibrium in Eq. 1 is denoted by 𝐸1 or 𝐸2, where: 

 𝐸1 = (
𝛹

𝜇ℎ
, 0,0,

𝛷(𝑇0)

𝜇𝑚
, 0, 𝑇0) or 𝐸2 = (

𝛹

𝜇ℎ
, 0,0,

𝛷(𝑇𝑚𝑎𝑥)

𝜇𝑚
, 0, 𝑇𝑚𝑎𝑥) (15) 

3.4 Basic Reproduction Number  

A basic reproductive number is described as the average amount of secondary 

infections caused by a primary infection in a given period [24]. It can be obtained 

using the next-generation matrix approach, i.e. the dominant eigenvalue of the 

next generation matrix. For Eq. 1, to obtain the 𝑅01 and 𝑅02 we rewrite Eq. 1 

beginning with newly infective classes of humans and mosquito, given as: 

 

𝑑𝐼ℎ

𝑑𝑡
= 𝛽ℎ(𝑇

∗)𝑆ℎ𝐼𝑚 − (𝜇ℎ + 𝛿 + 𝛾ℎ)𝐼ℎ
𝑑𝐼𝑚

𝑑𝑡
= 𝛽𝑚(𝑇

∗)𝑆𝑚𝐼ℎ − 𝜇𝑚𝐼𝑚                  
 (16) 

Then, the right-hand side of Eq. 16 can be written in the form 𝑓 − 𝑣, where 

 𝑓 = (
𝛽ℎ(𝑇

∗)𝑆ℎ𝐼𝑚
𝛽𝑚(𝑇

∗)𝑆𝑚𝐼ℎ
)   and  𝑣 = (

(𝜇ℎ + 𝛿 + 𝛾ℎ)𝐼ℎ
𝜇𝑚𝐼𝑚

) (17) 

The partial derivatives of 𝑓 and 𝑣 at the disease-free equilibrium give the matrices 

𝐹 and 𝑉, respectively, where 

 𝐹 = (
0 𝛽ℎ(𝑇

∗)
𝛹

𝜇ℎ

𝛽𝑚(𝑇
∗)
𝛷(𝑇∗)

𝜇𝑚
0

)  and 𝑉 = (
𝜇ℎ + 𝛿 + 𝛾ℎ 0 

0 𝜇𝑚
) (18) 

Hence, the basic reproduction number 𝑅0 = 𝜌(𝐹𝑉
−1), where 𝜌 is the largest 

eigenvalue of the product 𝐹𝑉−1 and the 𝑅0 at disease free-equilibrium points 𝐸1 

and 𝐸2 are given by Eq. 19 and Eq. 20, respectively, as follows: 

  𝑅01 = √
𝛽0ℎ𝛹𝛽0𝑚𝛷0

𝜇ℎ𝜇𝑚
2 (𝜇ℎ+𝛿+𝛾ℎ)

                                    (19) 

and 

  𝑅02 = √
(𝛽0ℎ+𝛽2ℎ)𝛹(𝛽0𝑚+𝛽2𝑚)(𝛷0+𝛷2𝑚)

𝜇ℎ𝜇𝑚
2 (𝜇ℎ+𝛿+𝛾ℎ)

           (20) 

where 𝛽2ℎ = 𝛽1ℎ𝑘, 𝛽2𝑚 = 𝛽1𝑚𝑘,𝛷2𝑚 = 𝛷1𝑚𝑘 and 𝑘 = (
𝑇𝑚𝑎𝑥−𝑇0

𝑇𝑚𝑎𝑥
). 
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Obviously, the basic reproduction number at maximum temperature (𝑇𝑚𝑎𝑥) 
interim of 𝑅01 is obtained as: 

 𝑅02 = √𝑅01
2 +

𝛷0𝛽0ℎ𝛽2𝑚+𝛹(𝛽0𝑚+𝛽2𝑚)[𝛽2ℎ(𝛷0+𝛷2𝑚)+𝛷2𝑚𝛽0ℎ]

𝜇ℎ𝜇𝑚
2 (𝜇ℎ+𝛿+𝛾ℎ)

   (21) 

where 𝑅01 is the basic reproduction number at  𝑇0, when the mosquitoes are least 

active in breeding. 

3.5 Local Stability of Disease-Free Equilibrium 

Theorem 2. The disease-free equilibrium point of Eq. 1 is locally asymptotically 

stable in 𝛺 if 𝑅01 < 𝑅02 < 1.  

Proof. We start by finding the Jacobian matrix of Eq. 1, given by: 

𝐽(𝐸∗) =

(

 
 

−𝛽ℎ(𝑇
∗)𝐼ℎ − 𝜇ℎ 0 𝜔ℎ 0 −𝛽ℎ(𝑇

∗)𝑆ℎ
𝛽ℎ(𝑇

∗)𝐼𝑚 −(𝜇ℎ + 𝛿 + 𝛾ℎ) 0 0 𝛽ℎ(𝑇
∗)𝑆ℎ

0 𝛾ℎ 𝐽33 0 0

0 −𝛽𝑚(𝑇
∗)𝑆𝑚 0 𝐽44 0

0 𝛽𝑚(𝑇
∗)𝑆𝑚 0 𝛽𝑚(𝑇

∗)𝐼ℎ 𝐽55 )

 
 

 (22) 

where 𝐽33 = −(𝜇ℎ +𝜔ℎ), 𝐽44 = −𝛽𝑚(𝑇
∗)𝐼ℎ − 𝜇𝑚, 𝐽55 = −𝜇𝑚 and 𝑇∗ = 𝑇0 or 

𝑇𝑚𝑎𝑥. 

The result of the Jacobian matrix of Eq. 22 at the disease-free equilibrium is given 

by: 

𝐽(𝐸∗) =

(

 
 
 
 
 

−𝜇ℎ 0 𝜔ℎ 0 −𝛽ℎ(𝑇
∗)

𝛹

𝜇ℎ

0 −(𝜇ℎ + 𝛿 + 𝛾ℎ) 0 0 𝛽ℎ(𝑇
∗)

𝛹

𝜇ℎ

0 𝛾ℎ −(𝜇ℎ +𝜔ℎ) 0 0

0 −𝛽𝑚(𝑇
∗)
𝛷(𝑇∗)

𝜇𝑚
0 −𝜇𝑚 0

0 𝛽𝑚(𝑇
∗)
𝛷(𝑇∗)

𝜇𝑚
0 0 −𝜇𝑚 )

 
 
 
 
 

, (23) 

From Eq. 23, the Jacobian matrix is obtained as the polynomial function given 

by: 

 (−𝜆 − 𝜇ℎ)(−𝜆 − 𝜇𝑚)(−𝜆 − (𝜇ℎ +𝜔ℎ))(𝜆
2 + 𝑐1𝜆 + 𝑐2) = 0 (24) 

where 



 Optimal Control and Cost Effectiveness Analysis of SIRS 143 

 

 
𝑐1 = 𝜇𝑚 + 𝜇ℎ + 𝛿 + 𝛾ℎ ,                                            

𝑐2 = 𝜇𝑚𝛾ℎ + 𝜇𝑚𝛿 + 𝜇𝑚𝜇ℎ −
𝛽ℎ(𝑇

∗)𝛹𝛽𝑚(𝑇
∗)𝛷(𝑇∗)

𝜇𝑚𝜇ℎ

 (25) 

From Eq. 24 we get that 

 𝜆1 = −𝜇ℎ < 0, 𝜆2 = −𝜇𝑚 < 0, 𝜆3 = −(𝜇ℎ +𝜔ℎ) < 0 (26) 

and, again, from the last characteristic Eq. (24) we get, 

 𝜆2 + 𝑐1𝜆 + 𝑐2 = 0 (27) 

By using the Routh-Hurwitz criteria [25], Eq. 27 has a real root that is negative 

if 𝑐1 > 0 and 𝑐2 > 0. Hence, we can observe that 𝑐1 > 0, since it is the sum of 

non-negative parameters and the value of  𝑐2 at 𝑇∗ = 𝑇𝑚𝑎𝑥 is given by: 

 𝐶2 = 𝜇𝑚𝛾ℎ + 𝜇𝑚𝛿 + 𝜇𝑚𝜇ℎ −
(𝛽0ℎ+𝛽2ℎ)𝛹(𝛽0𝑚+𝛽2𝑚)(𝛷0+𝛷2𝑚)

𝜇𝑚𝜇ℎ
 

 = 1 − 𝑅02
2 > 0 

However, when 𝑐2 is non-negative 1 − 𝑅02
2  could be positive, which implies that 

𝑅02 < 1. Since 𝑅01 < 𝑅02, the disease-free equilibrium is locally asymptotically 

stable if 𝑅01 < 𝑅02 < 1. 

3.6 Global Stability of Disease Free-Equilibrium 

Theorem 3. If 𝑅01 < 𝑅02 < 1, then the disease free-equilibrium point(s) of Eq. 

1 are globally asymptotically stable in 𝛺. 

Proof. To establish the stability, we use a technique implementing the Lyapunov 

theorem [26]. First, the Lyapunov function is developed, defined as: 

 𝑉 =
𝜇𝑚

𝛽ℎ(𝑇
∗)
𝐼ℎ + 𝐼𝑚.  (28) 

By differentiating the Lyapunov function with respect to time (t) the following 

result is obtained: 

 
𝑑𝑉

𝑑𝑡
=

𝜇𝑚

𝛽ℎ(𝑇
∗)

𝑑𝐼ℎ

𝑑𝑡
+
𝑑𝐼𝑚

𝑑𝑡
 

 =
𝜇𝑚

𝛽ℎ(𝑇
∗)
(𝛽ℎ(𝑇)𝑆ℎ𝐼𝑚 − (𝜇ℎ + 𝛿 + 𝛾ℎ)𝐼ℎ) + 𝛽𝑚(𝑇)𝑆𝑚𝐼ℎ − 𝜇𝑚𝐼𝑚 

 = 𝜇𝑚𝑆ℎ𝐼𝑚 −
𝜇𝑚

𝛽ℎ(𝑇
∗)
(𝜇ℎ + 𝛿 + 𝛾ℎ)𝐼ℎ + 𝛽𝑚(𝑇)𝑆𝑚𝐼ℎ − 𝜇𝑚𝐼𝑚 

 = (𝛽𝑚(𝑇)𝑆𝑚 −
𝜇𝑚

𝛽ℎ(𝑇
∗)
(𝜇ℎ + 𝛿 + 𝛾ℎ)) 𝐼ℎ − 𝜇𝑚(1 − 𝑆ℎ)𝐼𝑚 
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 ≤ (𝛽𝑚(𝑇)𝑆𝑚 −
𝜇𝑚

𝛽ℎ(𝑇
∗)
(𝜇ℎ + 𝛿 + 𝛾ℎ)) 𝐼ℎ 

 = (𝛽𝑚(𝑇)
𝛷(𝑇∗)

𝜇𝑚
−

𝜇𝑚

𝛽ℎ(𝑇
∗)
(𝜇ℎ + 𝛿 + 𝛾ℎ)) 𝐼ℎ 

 =
𝜇𝑚(𝜇ℎ+𝛿+𝛾ℎ)

(𝛽0ℎ+𝛽2ℎ)
(
𝜇ℎ

𝛹
𝑅02
2 − 1) 𝐼ℎ, (29) 

Consequently, we obtain 
𝑑𝑉

𝑑𝑡
< 0 if 𝑅02 < 1 and 

𝑑𝑉

𝑑𝑡
= 0 iff 𝐼ℎ = 0, 𝐼𝑚 = 0. Thus, 

the dominant bounded invariant set in {(𝑆ℎ , 𝐼ℎ, 𝑅ℎ , 𝑆𝑚, 𝐼𝑚) ∈ 𝛺: 
𝑑𝑉

𝑑𝑡
= 0 } is the 

singleton set DFE in 𝛺. Therefore, from LaSalle’s invariant principle [27], every 

solution that begins in the domain approaches the DFE, as time tends to infinity 

and  𝑅01 < 𝑅02; the DFE is globally asymptotically stable in 𝛺 if 𝑅01 < 𝑅02 <
1. 

3.7 Malaria Present Equilibrium 

The malaria present equilibrium point is the situation where the malaria disease 

is found in the human population. The malaria present equilibrium point 𝐸∗ =
(𝑆ℎ

∗, 𝐼ℎ
∗ , 𝑅ℎ

∗ , 𝑆𝑚
∗ , 𝐼𝑚

∗ , 𝑇∗) can be obtained by equating all the model equations in Eq. 

1 to zero. Thus, from Eq. 1, the malaria present equilibrium point at 𝑇∗ = 𝑇0 is 

given by: 

  

{
 
 
 

 
 
 𝑆ℎ

∗ =
𝛹+𝜔ℎ𝑅ℎ

∗

𝛽0ℎ𝐼𝑚
∗ +𝜇ℎ

,

𝑅ℎ
∗ =

𝛾ℎ𝐼ℎ
∗

𝜔ℎ+𝜇ℎ
,      

𝑆𝑚
∗ =

𝛷0

𝛽0𝑚𝐼ℎ
∗+𝜇𝑚

,

𝐼𝑚
∗ =

𝛽0𝑚𝑆ℎ
∗𝐼ℎ
∗

𝜇𝑚
 .      

 (30) 

From Eq. 30, the endemic equilibrium easily satisfies the following polynomial 

and 𝐼ℎ
∗ is computed with the following equation: 

 𝐵1(𝐼ℎ
∗)2 + 𝐵2(𝐼ℎ

∗) = 0, (31) 

where 

𝐵1 = 𝛽0𝑚(𝛽0ℎ𝛷0(𝜔ℎ𝛿 + 𝜇ℎ(𝛾ℎ +𝜔ℎ + 𝛿 + 𝜇ℎ))

+ 𝜇ℎ(𝜔ℎ + 𝜇ℎ)(𝛾ℎ + 𝛿 + 𝜇ℎ)𝜇𝑚), 
(32) 

𝐵2 = (𝜔ℎ + 𝜇ℎ)[𝜇ℎ𝜇𝑚
2 (𝜇ℎ + 𝛿 + 𝛾ℎ)(1 − 𝑅01

2 )].    
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Hence, 𝐵1 > 0 and 𝐵2 ≥ 0 whenever 𝑅01 ≥ 1 solves 𝐼ℎ
∗, we have that 𝐼ℎ

∗ = −
𝐵2

𝐵1
. 

Thus, the model has no non-negative malaria present equilibrium whenever 

𝑅01 < 1. This illustrates that backward bifurcation does not exist in the model if 

𝑅01 < 1. 

Similarly, the endemic equilibrium points at 𝑇∗ = 𝑇𝑚𝑎𝑥 and solving for 𝐼ℎ
∗ as 

parameter expressions we obtain: 

 

{
 
 
 

 
 
 𝑆ℎ

∗ =
𝛹+𝜔ℎ𝑅ℎ

∗

(𝛽0ℎ+𝛽2ℎ)𝐼𝑚
∗ +𝜇ℎ

,

𝑅ℎ
∗ =

𝛾ℎ𝐼ℎ
∗

𝜔ℎ+𝜇ℎ
,                     

𝑆𝑚
∗ =

(𝛷0+𝛷2𝑚)

(𝛽0𝑚+𝛽2𝑚)𝐼ℎ
∗+𝜇𝑚

,

𝐼𝑚
∗ =

(𝛽0𝑚+𝛽2𝑚)𝑆ℎ
∗𝐼ℎ
∗

𝜇𝑚
 ,   

 (33) 

where 𝛽2ℎ = 𝛽1𝑘 , 𝛽2𝑚 = 𝛽1𝑘 , 𝛷2𝑚 = 𝛷1𝑘 and 𝑘 =
𝑇−𝑇0

𝑇𝑚𝑎𝑥
. 

From Eq. 33, the endemic equilibrium satisfies the following polynomial and 𝐼ℎ
∗  is 

computed with the following equation: 

 𝐷1(𝐼ℎ
∗)2 + 𝐷2(𝐼ℎ

∗) = 0, (34) 

where 

𝐷1 = 𝛽3𝑚(𝛽3ℎ𝛷2𝑚(𝜔ℎ𝛿 + 𝜇ℎ(𝛾ℎ +𝜔ℎ + 𝛿 + 𝜇ℎ))

+ 𝜇ℎ(𝜔ℎ + 𝜇ℎ)(𝛾ℎ + 𝛿 + 𝜇ℎ)𝜇𝑚) (35) 

𝐷2 = (𝜔ℎ + 𝜇ℎ)[𝜇ℎ𝜇𝑚
2 (𝜇ℎ + 𝛿 + 𝛾ℎ)(1 − 𝑅02

2 )]. 

where 𝛽3ℎ = 𝛽0ℎ + 𝛽2ℎ, 𝛽3𝑚 = 𝛽0𝑚 + 𝛽2𝑚 and  𝛷3𝑚 = 𝛷0 +𝛷2𝑚. 

This implies that from Eq. 21, if 𝑅02 < 1 it is immediately implied that 𝑅01 < 1 

and a DFE exists for both 𝑅01 and 𝑅02. However, 𝑅01 < 1 does not immediately 

imply 𝑅02 < 1, as the value of 𝑅02 will be larger than unity, which shows that 

while 𝑅01 presents a DFE, 𝑅02 may create an endemic situation or show 

backward bifurcation, whereas 𝑅01 only presents forward bifurcation. 

4 Sensitivity Analysis 

Basically, by applying the normalized sensitivity index of the basic reproduction 

number to the given basic parameters we can express the robustness of the 

system’s parameter value predictions, because the parameters can increase or 
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decrease the basic reproduction number if their values increase or decrease and 

vice versa. This approach requires us to identify the parameters that have the most 

influence on the basic reproduction number (𝑅02) in order to design the best 

control strategies for the disease. To conduct the sensitivity analysis, we followed 

the technique outlined in [13,28], which is defined as follows: 

Definition 4.1: The forward sensitivity index of 𝑅0, which is differentiable with 

respect to a given basic parameter 𝐷 (see [13,28]), is defined as: 

 𝜏𝐷
𝑅0 =

𝜕𝑅0

𝜕𝐷
×

𝐷

𝑅0
. (36) 

The sensitivity index of 𝑅01 in Eq. 1 with respect to parameter 𝛽0ℎ, for instance, 

is obtained as follows: 

 𝜏𝛽0ℎ
𝑅01 =

𝜕𝑅01

𝜕𝛽0ℎ
×
𝛽0ℎ

𝑅01
  

 =
1

2√
𝛽0ℎ𝛹𝛽0𝑚𝛷0

𝜇ℎ𝜇𝑚
2 (𝜇ℎ+𝛿+𝛾ℎ)

×
𝛹𝛽0𝑚𝛷0

𝜇ℎ𝜇𝑚
2 (𝜇ℎ+𝛿+𝛾ℎ)

×
𝛽0ℎ

𝑅01
  (37) 

 =
1

2
> 0.  

Using the same approach with respect to the remaining parameters, 𝜏𝛽0𝑚
𝑅01 , 𝜏𝛹

𝑅01, 

𝜏𝛷0
𝑅01, 𝜏𝜇ℎ

𝑅01, 𝜏𝜇𝑚
𝑅01, 𝜏𝛿

𝑅01, 𝜏𝛾ℎ
𝑅01 are computed and the sensitivity indices are obtained 

as described in Table 2. 

Table 2 Parameter of sensitivity indices. 

Parameter Sensitivity index 

𝛹 0.5 

𝛷0 0.5 

𝛽0ℎ 0.5 

𝛽0𝑚 0.5 

𝜇𝑚 1 

𝜇ℎ −0.092541 

𝛿 −0.475258 

𝛾ℎ −0.024461 

By the same procedure, the sensitivity index of 𝑅02 from Eq. 1 with respect to 𝛹 

is given as: 

𝛱𝛹
𝑅02 =

𝜕𝑅02

𝜕𝛹
×

𝛹

𝑅02
  (38) 
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 =
1

2√
(𝛽0ℎ+𝛽2ℎ)𝛹(𝛽0𝑚+𝛽2𝑚)(𝛷0+𝛷2𝑚)

𝜇ℎ𝜇𝑚
2 (𝜇ℎ+𝛿+𝛾ℎ)

  

×
(𝛽0ℎ+𝛽2ℎ)(𝛽0𝑚+𝛽2𝑚)(𝛷0+𝛷2𝑚)

𝜇ℎ𝜇𝑚
2 (𝜇ℎ+𝛿+𝛾ℎ)

×
𝛹

𝑅02
  

 =
1

2
> 0  

Similarly, with respect to the other basic parameters, 

𝛱𝛽0ℎ
𝑅02 ,  𝛱𝛽0𝑚

𝑅02 ,  𝛱𝛹
𝑅02 , 𝛱𝛷0

𝑅02 , 𝛱𝛽1𝑚
𝑅02 , 𝛱𝛷1𝑚

𝑅02 , 𝛱𝜇ℎ
𝑅02 , 𝛱𝜇𝑚

𝑅02 , 𝛱𝛿
𝑅02 , 𝛱𝛾ℎ

𝑅02 are computed and 

the sensitivity indices are described in Table 3. 

Table 3 Parameter of sensitivity indices. 

Parameter Sensitivity index 

𝛹 0.5 
𝛷0 0.072438 
𝛽0ℎ 0.291659 
𝛽0𝑚 0.285714 
𝛷1𝑚 0.069169 
𝛽1ℎ 0.208341 
𝛽1𝑚 0.214286 
𝜇𝑚 −1 
𝜇ℎ −0.092541 
𝛿 −0.475258 
𝛾ℎ −0.024461 

4.1 Interpretation of the Sensitivity Indices 

In Table 2 we give the sensitivity indices of 𝑅01 with respect to the basic 

parameters. This result shows that the parameters 𝛹,𝛷0, 𝛽0ℎ, and 𝛽0𝑚 have 

positive sensitivity indeces and the value of 𝑅01 increase when their values are 

increased while the other parameters stay constant. The parameters 𝜇𝑚, 𝜇ℎ , 𝛿 and 

𝛾ℎ have negative indices and the value of 𝑅01 increase if their values are increased 

while the other parameters stay constant. Similarly, in Table 3, the sensitivity 

indices of 𝑅02 with respect to the basic parameters are shown. The basic 

parameters having a positive sensitivity index could have an impact on the 

transmission of malaria in the population as their value increases. The basic 

parameters whose sensitivity indices are negative increase the malaria disease if 

their values decrease while the other parameters stay constant. For instance, 

𝛱𝛹
𝑅02 = 0.5, shows that decreasing (increasing) the rate of human recruitment by 

10% decreases (increases) the basic reproduction number 𝑅02 by 5%. Similarly, 

𝛱𝜇𝑚
𝑅02 = −1 indicates that decreasing (increasing) the mosquito death rate by 10% 

increases (decreases) the basic reproduction number 𝑅02 by 10%. 
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Table 4 Parameter descriptions and values used for Eq. 1. 

Parameters Parameters’ description Values References 

𝛾ℎ Infected human recovery rate 0.0035 [25] 

𝛹 Human population recruitment rate 0.071 [29] 

𝛷0 Mosquito population recruitment rate 0.041 [28] 

𝜇𝑚 Mosquito population natural death rate 0.05 [25] 

𝜇ℎ Human population natural death rate 0.00004 [13] 

𝛿 Human population induced death rate 0.068 [30] 

𝜔ℎ Immunity loss rate of human population 0.09 [31] 

𝛽1𝑚 Increase of vector breeding rate 0.07 [31] 

𝛽1ℎ Increase of human contact rate 0.05 [31] 

𝛷1𝑚 Increase of vector contact rate 0.09 [31] 

𝛽0ℎ Human-to-mosquito contact rate 0.03 [32] 

𝛽0𝑚 Mosquito-to-humans contact rate 0.04 [13] 

𝑟 Temperature growth rate 0.007 [31] 

𝑇0 Minimum temperature 16 ℃ [11] 

𝑇𝑚𝑎𝑥  Maximum temperature 28 ℃ [33] 

5 Extension of The Model into Optimal Control 

In this study, we extended the basic malaria model in Eq. 1 to an optimal control 

problem involving a mathematical model of the biological situation [34]. Using 

this approach, we want to find the optimal strategy for prevention of the disease. 

After incorporating the controls into the basic malaria model in Eq. 1, the state 

equations obtained is: 

 

{
 
 
 
 

 
 
 
 

𝑑𝑆ℎ

𝑑𝑡
=  𝛹 − (1 − 𝑢1)𝛽ℎ(𝑇)𝑆ℎ𝐼𝑚 − µℎ 𝑆ℎ +𝜔ℎ𝑅ℎ ,

    
𝑑𝐼ℎ

𝑑𝑡
= (1 − 𝑢1)𝛽ℎ(𝑇)𝑆ℎ𝐼𝑚 − (µℎ + 𝛿 + 𝛾ℎ + 𝑢2)𝐼ℎ,

𝑑𝑅

𝑑𝑡
= (𝛾ℎ + 𝑢2)𝐼ℎ − (µℎ +𝜔ℎ)𝑅ℎ ,                             

    
𝑑𝑆𝑚

𝑑𝑡
= ф(𝑇) − (1 − 𝑢1)𝛽𝑚(𝑇)𝑆𝑚𝐼ℎ − (µ𝑚 + 𝑢3)𝑆𝑚,

 
𝑑𝐼𝑚

𝑑𝑡
= (1 − 𝑢1)𝛽𝑚(𝑇)𝑆𝑚𝐼ℎ − (µ𝑚 + 𝑢3)𝐼𝑚,               

𝑑𝑇

𝑑𝑡
= 𝑟 (1 −

𝑇

𝑇𝑚𝑎𝑥
) (𝑇 − 𝑇0),                                          

                   

 (39)                           

where, 𝛽ℎ(𝑇) = 𝛽0ℎ + 𝛽1ℎ(
𝑇−𝑇0

𝑇𝑚𝑎𝑥
), 𝛽𝑚(𝑇) = 𝛽0𝑚 + 𝛽1𝑚(

𝑇−𝑇0

𝑇𝑚𝑎𝑥
) and ф(𝑇) =

ф0 +ф1𝑚(
𝑇−𝑇0

𝑇𝑚𝑎𝑥
). 

The control functions denote that 𝑢1(𝑡) is the use of treated bed nets; 𝑢2(𝑡) 
denotes treatment of infected humans with anti-malarial drugs; and 𝑢3(𝑡) denotes 
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indoor residual insecticide spraying to kill mosquitoes. The objective functional 

we formulated for Eq. 39 is given by: 

𝐽(𝑢1, 𝑢2, 𝑢3) = 𝑚𝑖𝑛 ∫ [𝐴1𝐼ℎ + 𝐴2𝐼𝑚 +
1

2

𝑡𝑓
0

(𝐵1𝑢1
2 + 𝐵2𝑢2

2 + 𝐵3𝑢3
2)]𝑑𝑡 (40) 

where 𝑡𝑓 denotes the final time, 𝐴1 and 𝐴2 are constants given for infectious 

humans and infectious mosquitoes respectively, while 𝐵1, 𝐵2 and 𝐵3 are weight 

constants for each control, respectively. The expression 
1

2
𝐵𝑖𝑢𝑖

2 stands for the cost 

function that corresponds to the controls 𝑢𝑖(𝑡), which is quadratic in accordance 

with the literature [22,23,35,36]. The aim of the objective function Eq. 40 is to 

reduce the total amount of infectious humans  𝐼ℎ(𝑡), infectious mosquitoes 𝐼𝑚(𝑡), 
and the costs associated with controls 𝑢𝑖(𝑡). The main goal is to compute a triple 

optimal control 𝑢1
∗, 𝑢2

∗  and 𝑢3
∗  such that 

 𝐽(𝑢1
∗ , 𝑢2

∗  , 𝑢3
∗) = 𝑚𝑖𝑛{𝐽(𝑢1,𝑢2, 𝑢3): 𝑢1, 𝑢2, 𝑢3  ∈  𝜗} (41) 

where 𝜗 = (𝑢1, 𝑢2,  𝑢3):𝑢𝑖(𝑡) such that 𝑢1, 𝑢2 and  𝑢3 are Lebesgue measurable 

on 𝑡 ∈  [0, 𝑡𝑓] with 0 𝑤𝑢𝑖(𝑡) ≤ 1 as the control set. To obtain the necessary 

conditions for optimal control model Eq. 39, we apply Pontryagin’s maximum 

principle [37]. The defined Hamiltonian (H) function of the optimal control 

problem that consists of Eq. 39 and Eq. 40 is represented as 

𝐻 = [𝐴1𝐼ℎ + 𝐴2𝐼𝑚 +
1

2
∑ 𝐵𝑖
3
𝑖=1 𝑢𝑖

2] + 𝜆1
𝑑𝑆ℎ
𝑑𝑡
 + 𝜆2

𝑑𝐼ℎ
𝑑𝑡
    

(42) 

+𝜆3
𝑑𝑅ℎ
𝑑𝑡
 + 𝜆4

𝑑𝑆𝑚
𝑑𝑡

  + 𝜆5
𝑑𝐼𝑚
𝑑𝑡
 + 𝜆6

𝑑𝑇

𝑑𝑡
  .  

It follows that the system of Eq. 39 and Eq. 40 are substituted into a minimized 

Hamiltonian function with respect to 𝑢1,𝑢2, 𝑢3 as given by: 

𝐻 = [𝐴1𝐼ℎ + 𝐴2𝐼𝑚 +
1

2
𝐵1𝑢1

2 + 𝐵2𝑢2
2 + 𝐵3𝑢3

2]  

(43) 

 +𝜆1 (𝛹−(1−𝑢1)𝛽ℎ(𝑇)𝑆ℎ𝐼𝑚−µℎ 𝑆ℎ+𝜔ℎ𝑅ℎ )  

 +𝜆2( (1−𝑢1)𝛽ℎ(𝑇) 𝑆ℎ𝐼𝑚−(µℎ  + 𝛿 +  𝛾ℎ+𝑢2)𝐼ℎ )  

 +𝜆3 ((𝛾ℎ+𝑢2)𝐼ℎ−(µℎ+𝜔ℎ)𝑅ℎ  )  

 +𝜆4( ф(𝑇)−(1−𝑢1)𝛽𝑚(𝑇)𝑆𝑚𝐼ℎ−(µ𝑚+𝑢3)𝑆𝑚) 

 +𝜆5( (1−𝑢1)𝛽𝑚(𝑇)𝑆𝑚𝐼ℎ−(µ𝑚+𝑢3)𝐼𝑚 )  

 +𝜆6 𝑟(1−
𝑇

𝑇𝑚𝑎𝑥
)(𝑇−𝑇0) ,  

where 𝜆1,  𝜆2,  𝜆3, 𝜆4, 𝜆5 and 𝜆6 are adjoint variables. Next to obtaining the co-

state variables by using Pontryagin’s maximum principle [37], with the existence 

result from [38], the following theorem is stated: 
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Theorem 6. For given optimal control triples 𝑢1
∗ , 𝑢2

∗  , 𝑢3
∗ and a solution 

𝑆ℎ
∗, 𝐼ℎ

∗ , 𝑅ℎ
∗ , 𝑆𝑚

∗ , 𝐼𝑚
∗ , 𝑇∗ of the corresponding state system that minimizes 

J(𝑢1,𝑢2, 𝑢3) over 𝜗 subject to Eq 39, adjoint variables 𝜆1,  𝜆2,  𝜆3, 𝜆4, 𝜆5 and 𝜆6 

are found, holding the adjoint system 

{
 
 
 
 
 

 
 
 
 
 

 

𝑑𝜆1

𝑑𝑡
=  −((1 − 𝑢1)𝛽ℎ(𝑇)𝐼𝑚(𝜆2 − 𝜆1)) + µℎ 𝜆1,  

(44) 

𝑑𝜆2

𝑑𝑡
=  −((1 − 𝑢1)𝛽ℎ(𝑇)𝑆𝑚(𝜆5 − 𝜆4)) + 𝜆2(µℎ + 𝛿 + 𝛾ℎ + 𝑢2)  

−𝜆3(𝛾ℎ + 𝑢2) − 𝐴1,  

 𝑑𝜆3

𝑑𝑡
= −𝜔ℎ𝜆1 + 𝜆3(µℎ + 𝜔ℎ),  

𝑑𝜆4

𝑑𝑡
= −((1 − 𝑢1)𝛽𝑚(𝑇)𝐼ℎ(𝜆5 − 𝜆4)) + 𝜆4(µ𝑚 + 𝑢3),  

𝑑𝜆5

𝑑𝑡
= −((1 − 𝑢1)𝛽𝑚(𝑇)𝑆ℎ(𝜆2 − 𝜆1)) + 𝜆4(µ𝑚 + 𝑢3) − 𝐴2,  

𝑑𝜆6

𝑑𝑡
= 𝑟 𝜆6 −  𝑟 𝜆6 (

𝑇0
𝑇𝑚𝑎𝑥

− 𝑇

𝑇𝑚𝑎𝑥
),  

with transversality conditions 

 𝜆1(𝑡𝑓) = 𝜆2(𝑡𝑓) = 𝜆3(𝑡𝑓) = 𝜆4(𝑡𝑓) = 𝜆5(𝑡𝑓) = 𝜆6(𝑡𝑓) = 0 (45) 

Furthermore, the optimal controls 𝑢1
∗ , 𝑢2

∗  , 𝑢3
∗  are represented by: 

 𝑢1
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {1,

(𝜆2−𝜆1)𝛽ℎ(𝑇)𝑆ℎ
∗𝐼𝑚
∗ +(𝜆5−𝜆4)𝛽𝑚(𝑇)𝑆𝑚

∗ 𝐼ℎ
∗

𝐵1
}}, 

 𝑢2
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {1,

(𝜆2−𝜆3)𝐼ℎ
∗

𝐵2
}} , (46) 

 𝑢3
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {1,

𝜆4𝑆𝑚
∗ +𝜆5𝐼𝑚

∗

𝐵3
}}. 

Proof. To obtain the form of the co-state equations we compute the derivative of 

the Hamiltonian function (H), Eq. 42, with respect to 𝑆ℎ , 𝐼ℎ, 𝑅ℎ , 𝑆𝑚, 𝐼𝑚 and 𝑇 

respectively. Then the adjoint or co-state equations obtained are given by: 

{
 
 
 
 
 

 
 
 
 
 

 

𝑑𝜆1

𝑑𝑡
=  𝜕𝐻

𝜕𝑆ℎ
= −((1 − 𝑢1)𝛽ℎ(𝑇)𝐼𝑚(𝜆2 − 𝜆1)) + µℎ 𝜆1,  

(47) 

𝑑𝜆2

𝑑𝑡
= 𝜕𝐻

𝜕𝐼ℎ
= −((1 − 𝑢1)𝛽ℎ(𝑇)𝑆𝑚(𝜆5 − 𝜆4))  

 +𝜆2(µℎ + 𝛿 + 𝛾ℎ + 𝑢2) − 𝜆3(𝛾ℎ + 𝑢2) − 𝐴1,  
 𝑑𝜆3

𝑑𝑡
= 𝜕𝐻

𝜕𝑅ℎ
= −𝜔ℎ𝜆1 + 𝜆3(µℎ + 𝜔ℎ),  

𝑑𝜆4

𝑑𝑡
= 𝜕𝐻

𝜕𝑆𝑚
= −((1 − 𝑢1)𝛽𝑚(𝑇)𝐼ℎ(𝜆5 − 𝜆4)) + 𝜆4(µ𝑚 + 𝑢3),  

𝑑𝜆5

𝑑𝑡
= 𝜕𝐻

𝜕𝐼𝑚
= −((1 − 𝑢1)𝛽𝑚(𝑇)𝑆ℎ(𝜆2 − 𝜆1))  

 +𝜆4(µ𝑚 + 𝑢3) − 𝐴2,  
𝑑𝜆6

𝑑𝑡
= 𝜕𝐻

𝜕𝑇
= 𝑟 𝜆6 −  𝑟 𝜆6 (

𝑇0
𝑇𝑚𝑎𝑥

− 𝑇

𝑇𝑚𝑎𝑥
),  
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with transversality conditions 

 𝜆1(𝑡𝑓) = 𝜆2(𝑡𝑓) = 𝜆3(𝑡𝑓) = 𝜆4(𝑡𝑓) = 𝜆5(𝑡𝑓) = 𝜆6(𝑡𝑓) = 0 (48) 

To obtain the control values, we compute the partial derivative of the 

Hamiltonian, given by: 

 
𝜕𝐻

𝜕𝑢𝑖
= 0  for  𝑖 = 1,2,3. (49) 

Obviously, after derivation of function (H), Eq. 42, with respect to the controls, 

the result becomes: 

 0 =
𝜕𝐻

𝜕𝑢1
= (𝜆1 − 𝜆2)𝛽ℎ(𝑇)𝑆ℎ

∗𝐼𝑚
∗ + (𝜆4 − 𝜆5)𝛽𝑚(𝑇)𝑆𝑚

∗ 𝐼ℎ
∗ + 𝑢1𝐵1, 

 0 =
𝜕𝐻

𝜕𝑢2
= 𝜆3𝐼ℎ

∗ − 𝜆2𝐼ℎ
∗ + 𝑢2𝐵2,         (50) 

 0 =
𝜕𝐻

𝜕𝑢3
= −(𝜆4𝑆𝑚

∗ + 𝜆5𝐼𝑚
∗ ) + 𝑢3𝐵3. 

Moreover, solving for the control variables from Eq. 50 we obtain: 

 𝑢1
∗ =

(𝜆2−𝜆1)𝛽ℎ(𝑇)𝑆ℎ
∗𝐼𝑚
∗ +(𝜆5−𝜆4)𝛽𝑚(𝑇)𝑆𝑚

∗ 𝐼ℎ
∗

𝐵1
, 

 𝑢2
∗ =

(𝜆2−𝜆3)𝐼ℎ
∗

 𝐵2
  (51) 

  𝑢3
∗ =

𝜆4𝑆𝑚
∗ +𝜆5𝐼𝑚

∗

𝐵3
 . 

Rearranging the solution of Eq. 51 with the boundary condition of each control, 

we get: 

 𝑢1
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {1,

(𝜆2−𝜆1)𝛽ℎ(𝑇)𝑆ℎ
∗𝐼𝑚
∗ +(𝜆5−𝜆4)𝛽𝑚(𝑇)𝑆𝑚

∗ 𝐼ℎ
∗

𝐵1
}}, 

 𝑢2
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {1,

(𝜆2−𝜆3)𝐼ℎ
∗

𝐵2
}}  (52) 

 𝑢3
∗ = 𝑚𝑎𝑥 {0,𝑚𝑖𝑛 {1,

𝜆4𝑆𝑚
∗ +𝜆5𝐼𝑚

∗

𝐵3
}}. 

Next, we investigated a simulation of the optimal control problem to identify the 

optimal strategy, which is the most effective in preventing malaria disease 

transmission. 
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Figure 2 Simulations showing the use of treated bed nets (𝑢1) and treatment of 

and treatment of infectious with drugs (𝑢2). 

6 Numerical Simulation 

In this study, to get the optimal strategy we solved an optimality system that 

contained two systems, i.e. six ordinary differential systems from the state 

equations and six from the adjoint equations. To solve the state system and the 

adjoint system, the forward-backward sweep method was used. In solving state 

equations Eq. 39, due to the initial value of the state variables, the forward fourth 

order Runge-Kutta was used. We solved the adjoint equations using the backward 

fourth order Runge Kutta due to the transversality condition in Eq. 45, holding 

the state equations solution and optimal controls values. Then the controls were 

updated, applying a convex combination of the controls existing before and the 

optimality condition values of Eq. 46. This situation can continue until two 

consecutive iterations are very close to each other [34].  For numerical simulation 

of the optimality system, the initial condition that we used was: 𝑆ℎ(0) = 100,
𝐼ℎ(0) = 10, 𝑅ℎ(0) = 0, 𝑆𝑚(0) = 300,  𝐼𝑚(0) = 30, T(0) = 16 °C and the 



 Optimal Control and Cost Effectiveness Analysis of SIRS 153 

 

parameter values from Table 4 were used, where  𝑅01 = 33.14  and 𝑅02 = 78.87  
are basic reproduction numbers. The weight constant values chosen for the state 

and controls that we used were: 𝐴1 = 60, 𝐴2 = 80,𝐵1 = 40,  𝐵2 = 100 

and 𝐵3 = 60. Also, we propose the following four strategies with different 

combinations of more than one control at the same time to show the impact of the 

controls on reducing disease transmission. 

 

Figure 3 Simulations showing the use of infected humans (𝑢1) and indoor 

insecticide spraying (𝑢3) as controls. 

6.1 Strategy A: Combination of Use of Treated Bed Nets (𝒖𝟏) and 

Treatment of Infected (𝒖𝟐) 

Under this strategy, the objective function Eq. 40 is optimized, with treated bed 

nets as control 𝑢1 and the treatment of infected humans as control  𝑢2 and the 

value of indoor insecticide spraying as control  𝑢3 set to zero. From Fig. 2(a) we 

can see that when the number of infected humans  𝐼ℎ  decreased, it tended towards 

its lowest point, whereas the number of infected humans increased when no 

control was used. Similarly, in Fig. 2(b) we can see that the number of infected 

mosquitoes 𝐼𝑚 decreased when the control strategy was used and tended towards 

its lowest point, whereas when no control was used, the number of infected 
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mosquitoes increased. The control profiles with this strategy, as shown in Fig. 

2(c), suggest that the control of using treated bed nets  𝑢1 maintained its 

maximum level (100%) until the end of the implementation while the control of 

the treatment of infected humans 𝑢2 retained its highest bound for 5 days and then 

declined until it reached its minimum value after the 80th day. 

 

Figure 4 Numerical simulations showing treatment of infected humans ( 𝑢2) and 

indoor insecticide spraying (𝑢3) as controls. 

6.2 Strategy B: Combination of the Use of Treated Bed Nets (𝒖𝟏) 

and Insecticide Spraying (𝒖𝟑) 

This strategy combines the control of treated bed nets  𝑢2 and the control of 

indoor insecticide spraying  𝑢3 to reduce the total infected population and the 

associated costs, without treatment of infected humans  𝑢2. In Fig. 3(a) we can 

see that the number of infected humans 𝐼ℎ decreased to its lowest point. In 

contrast, the number of infected humans increased up to a certain point when no 

controls were used. From Fig. 3(b) we can see that the number of infected 

mosquitoes 𝐼𝑚 decreased when there was a control strategy and decreased to its 

minimum point, while the number of infected mosquitoes increased for the case 

without control. The control profiles in Fig. 3(c) suggest that the control of treated 
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bed nets  𝑢1 maintained its maximum value (100%) for 170 days, whereas the 

control of insecticide spraying  𝑢3 retained its highest bound for 8 days, after 

which it reached its lowest value after the 120th day. 

 

Figure 5 Simulations result with treated bed nets (𝑢1), treatment of infected 

humans (𝑢2) and insecticide spraying (𝑢3) as controls. 

6.3 Strategy C: Combination of Treatment of Infected Humans  

(𝒖𝟐) and Insecticide Spraying (𝒖𝟑) 

In this strategy, to minimize Eq. 40 we use a combination of the control of 

treatment of infected humans  𝑢2 and the control of indoor insecticide spraying 

 𝑢3 to minimize the total infected population and reduce the costs. From Fig. 4(a) 

we can see that with this control strategy, the number of infected humans 𝐼ℎ 

became smaller with the use of this control strategy than without the use of 

controls and declined to its lowest value. The number of infected mosquitoes 𝐼𝑚 

decreased with the use of this control strategy and then dropped to its minimum 

value, whereas in the case without control and the number infected mosquitoes 

increased, as can be seen in Fig. 4(b). In Fig. 4(c), with this approach the control 

profiles show that the treatment of infected humans  𝑢2 maintained its highest 

value (100%) for 8 days, while insecticide spraying  𝑢3 maintained its maximum 

value for 6 days, then decreased and reached its lower bound after the 80th day. 
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6.4 Strategy D: Use of Treated Bed Net (𝒖𝟏), Treatment (𝒖𝟐) and 

Spray of Insecticides (𝒖𝟑). 

To minimize Eq. 40, we applied three controls: treated bed nets  𝑢1, treatment of 

infected humans 𝑢2, and indoor insecticide spraying 𝑢3. From Fig. 5(a) we can 

see that with applying these three controls, the number of infected 

humans 𝐼ℎ  decreased to the minimum level while the number of infected humans 

increased to a certain point when there was no use of any controls. It can be said 

that the population of infected mosquitoes 𝐼𝑚 decreased because of the use of this 

control strategy and decreased to its lowest bound, whereas in the absence of a 

control strategy the number of infected mosquitoes increased, as shown in Fig. 

5(b). Using this strategy, Fig. 5(c) shows that treatment of infected humans 𝑢2 

and indoor insecticide spraying 𝑢3 kept their maximum value (100%) for 8 days 

and 5 days, respectively. Then they declined and reached their lowest bound after 

80 days, while treated bed nets 𝑢1 retained its highest value (100%) for 162 days 

and then started decreasing and reached its minimum level on the 100th day. 

 

Figure 6 Human population and mosquito population with temperature variation. 

Fig. 6 describes the human population and the mosquito population against 

temperature variation. From Fig. 6(a) we can see that the susceptible human 

population decreased and then reached zero at the maximum temperature 

(𝑇𝑚𝑎𝑥 = 28°C); the recovered human population increased to a certain maximum 

point and then decreased, and the population of infected humans decreased to a 

certain point and then decreased at the maximum temperature (𝑇𝑚𝑎𝑥 = 28°C). It 

can also be seen in Fig. 6(b) that the infected mosquito population increased to a 

maximum point and then decreased, while the susceptible mosquito population 

decreased and reached zero at the maximum temperature (𝑇𝑚𝑎𝑥 = 28°C). 
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Fig. 7 shows the bifurcation diagram in which T = 𝑇0 and T = 𝑇𝑚𝑎𝑥 for the malaria 

model problem. The model exhibited forward and backward bifurcation, 

respectively. Moreover, the biological concept of this implies that from Eq. 21, 

𝑅02 < 1 immediately implies that 𝑅01 < 1 and a DFE exists for both 𝑅01 and 

𝑅02. However, 𝑅01 < 1 does not immediately imply 𝑅02 < 1, as the value of 𝑅02 

will be larger than unity, whereas 𝑅01 exhibits a DFE, 𝑅02 may create an endemic 

situation or show backward bifurcation, whereas 𝑅01 only exhibits forward 

bifurcation. 

 

Figure 7 Bifurcation diagram shows T = T0   and T = 𝑇𝑚𝑎𝑥  for the malaria model 

problem. 

7 Cost Effectiveness Analysis 

Based on the simulation result of the optimality system using the parameter 

values in Table 4, we can find the most effective and least costly strategy. To 

obtain this strategy, we applied the approach called incremental cost-

effectiveness ratio (ICER). Applying this technique we compared more-than-

unity competing strategies to compare an intervention with the next less effective 

alternative. This approach was defined as the ratio of the difference in averted 

costs between two strategies to the difference in the total number of infections 

saved [39]. From the simulation result of the optimal control problem, we 

calculated the total cost averted, the total number of infections saved.  In Table 

5, the control strategies are ordered in increasing order based on the total number 

of infections saved. The total number of infections saved was computed as the 

difference between the total number of the human population with malaria 

infection with controls and the total number of the human population with malaria 

infection without controls, whereas the cost averted of each strategy was obtained 

by using the cost function represented by  
1

2
𝐵1𝑢1

2, 
1

2
𝐵2𝑢2

2 and  
1

2
𝐵3𝑢3

2 over time 
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[39]. The total number of infections saved and the total cost of all strategies with 

their ICER is given in Table 6. However, we did not consider a strategy that 

applies only one single control, since a single control is not effective in removing 

the malaria disease completely from the human population. 

Table 5 Total number of infections saved and cost averted for all strategies. 

Strategy Description 

Total 

Infections 

Averted 

Total Cost 

($) 

A Treated bed nets and insecticide spraying 3792.797 6420.361 

C 
Treatment of infected humans and 

insecticide spraying 
4094.558 1955.467 

B 
Treated bed nets and treatment of 

infected humans 
4115.460 6474.615 

D 
Treated bed nets, treatment of infected 

humans and insecticide spraying 
4115.486 6490.286 

Having the total number of infections saved and cost averted for each strategy in 

Table 5, the value of incremental cost-effectiveness ratio (ICER) was computed 

to compare the difference between two strategies, as obtained by: 

 ICER (B) = 6420.361

3792.797
= 1.693 

 ICER (C) = 1955.467− 6420.361

4094.558− 3792.797
= −14.796 

 ICER (A) = 6474.615− 1955.467

4115.460− 4094.5584
= 216.211 

 ICER (D) = 6490.286− 6474.615

4115.486− 4115.460
= 602.725 

From the above result, the number of infections saved with ICER for the four 

different strategies is given in Table 6. 

Table 6 Total number of infections saved and cost averted used with ICER. 

Strategy 
Number of Infections 

Saved 

Total Cost 

($) 
ICER 

B 3792.797 6420.361 1.693 

C 4094.558 1955.467 -14.796 

A 4115.460 6474.615 216.211 

D 4115.486 6490.286 602.725 

In Table 6 we compare interventions B and C. It can be seen that ICER (C) was 

smaller than ICER (B). This shows that strategy B is more expensive and less 

effective at saving people. Thus, Strategy C saves more people than strategy B. 

Strategy B was omitted as a competing strategy. Then, we computed the ICER 

for the other strategies, C, A and D, as shown in Table 7. 
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As can be seen in Table 7 ICER (A) was larger than ICER (C). This shows that 

intervention C outperforms A. That is, strategy A is less effective and more costly 

than strategy C. Hence, we dropped strategy A from the group of competitors and 

re-computed ICER as shown in Table 8. 

Table 7 Total number of infections saved and cost averted used with ICER. 

Strategy 
Number of Infections 

Saved 

Total Cost 

($) 
ICER 

C 4094.558 1955.467 0.478 

A 4115.460 6474.615 216.211 

D 4115.486 6490.286 602.725 

In Table 8, the comparison between intervention strategies C and D indicates that 

ICER (D) was higher than ICER (C). This immediately shows that strategy C 

highly outperforms D. Strategy C yielded the lowest total cost and the highest 

effectivity. Based on the result of the analysis, we therefore recommend 

intervention C, which is a combination of treatment of infected humans and 

insecticide spraying, as the most effective and least costly strategy to minimize 

the spread of the malaria disease. 

Table 8 Total number of infections saved and cost averted with ICER. 

Strategy 
Number of Infections 

Saved 

Total Cost 

($) 
ICER 

C 4094.558 1955.467 0.478 

D 4115.486 6490.286 216.687 

8 Conclusion 

In this paper, deterministic mathematical modeling of the influence of 

temperature variability on malaria epidemics is described. Qualitatively, the 

model analysis showed that the model is both bounded and positive within a fixed 

domain. The reproductive number along the malaria-free equilibrium was 

estimated using the next-generation matrix technique. Applying the Jacobian 

matrix and Lyapunov method, the local and global stability of the malaria-free 

equilibrium were shown respectively. Thus, if the reproductive number is smaller 

than one, then the malaria-free equilibrium is both locally and globally 

asymptotically stable, whereas a positive endemic equilibrium occurs if the 

reproductive number is greater than unity. The analysis of the sensitivity of the 

model was described; the model exhibited forward and backward bifurcation. 

Temperature variation has an impact on the transmission of malaria. The human-

to-mosquito contact rate, the mosquito-to-human contact rate, and the mosquito 

breeding rate increased. It was observed that increasing these parameters led to 

an increase in the basic reproductive number, which makes it harder to control 
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the disease. From the analytical results of this study, we conclude that the most 

efficient way to control a malaria epidemic is to decrease the human-to-mosquito 

contact rate, increase the death rate of mosquitoes, and increase the treatment rate 

of infected humans with anti-malarial drugs. Moreover, we extended the model 

to an optimal control problem using three controls: using treated bed nets, 

treatment of infected humans using anti-malarial drugs, and indoor residual 

insecticide spraying. Pontraygin’s maximum principle was applied to compute 

the conditions for the optimal control strategy and a cost-effectiveness analysis 

was conducted using all the various combinations of the three controls considered 

in this study. From the result of a simulation with the optimality system and 

analysis of cost-effectiveness, we conclude that the combination of treatment of 

infected humans and insecticide spraying is the optimal strategy to effectively 

eradicate malaria.  
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