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Abstract. Cholera is a disease that continues to be a threat to public health 

globally and is an indicator of inequity and lack of social development in 

countries. For this reason, strategies for its control need to be investigated. In this 

work, an optimal control problem related to cholera disease was formulated by 

introducing personal protection, drug treatment and water sanitation as control 

strategies. First, the existence and characterization of controls to minimize the 

performance index or cost function was proved by using classic control theory. 

Then, the theoretical results were validated with numerical experiments by using 

data reported in the literature. Finally, the effectiveness and efficiency of the 

proposed controls were determined through a cost-effectiveness analysis. The 

results showed that the use of the three controls simultaneously is the cheapest 

and most effective strategy to control the disease. 

Keywords: control campaign; drug treatment; personal protection; Vibrio cholerae; 

water sanitation. 

1. Introduction 

Cholera is an intense diarrhoeal infection. It is caused by the ingestion of 

contaminated food or water containing bacteria of the genus Vibrio cholerae. It 

is estimated that each year 2.9 million cases of cholera appear all around the 

world, causing 95,000 deaths. This malady is normally moderate but can 

sometimes be severe. Approximately 10% of affected people have severe 

infection, showing excessive diarrhea, vomiting and leg cramps. They may 

suffer rapid loss of body fluids, leading to dehydration and without treatment 

death can occur within hours [1].  

Transmission of cholera disease is related to inappropriate access to safe 

drinking water and lack of healthy living conditions. Regions that include peri-

urban ghettos and camps are at high risk of catching the disease because people 

do not have clean water and proper sanitation facilities there. The consequences 

of a humanitarian crisis can increase the risk of cholera transmission due to the 
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exposure to cholera bacteria. Infected bodies as the source of an epidemic have 

never been reported [2]. According to WHO, cholera cases have continuously 

been increasing for several years. For instance, during 2017, almost 1,227,391 

cases were reported from 34 countries, including 5,654 deaths [2]. 

The dynamics of cholera transmission include interactions such as human to 

host and pathogen to environment interactions. These contribute to horizontal 

transmission (human-human) and indirect (environment-human) transmission 

pathways. An individual may become infected with cholera through drinking 

water or eating food that is infected with cholera bacteria. The source of 

contamination during a cholera epidemic are usually water and food polluted by 

the excretions of infected people. Rapid spread of the disease occurs in areas in 

which sewage treatment and clean water supply are inadequate. Casual contact 

of an infected person with others does not spread the disease [3]. 

Even though cholera is a severe infection, it can be controlled by supplying 

clean water with satisfactory sterilization, proper treatment of patients and an 

adequate oral cholera vaccine [4]. In 2010, WHO urged the use of cholera 

vaccines in endemic environments and presumably during epidemics and 

emergency situations. The disease can usually be treated through oral 

rehydration salts and WHO has formally endorsed the use of these salts (sugar, 

salt and clean water), resulting in the prevention of 40 million deaths, as this 

strategy can reduce mortality rates below 1% when properly executed [5]. 

The cholera disease problem has been studied through different approaches. In 

mathematical modeling, in particular qualitative analysis of dynamical systems 

has been used for the understanding and prediction of infection behavior. Over 

time, numerous mathematical models describing the dynamics of cholera have 

been proposed and analyzed, see for instance [6]-[13]. Recently, some 

mathematical models have been formulated under the assumption of coinfection 

with other diseases, such as schistosomiasis [14], HIV [15] and malaria [16]. 

Additionally, optimal control theory has been an efficient tool for better 

understanding the complex dynamical system and its control. The most recent 

works can be found in references [17]-[19]. Regarding the control problem for 

cholera disease, we highlight the works reported in references [20]-[26].  

In this work, we intended to comprehend the impacts of some control efforts 

coupled with different transmission pathways of cholera. We applied three 

control campaigns and analyzed the best combination of them. Furthermore, we 

determined the most cost-effective campaign for control by using the 

Incremental Cost-Effectiveness Rate (ICER). This attempt provided us with 

valuable rules for effective mitigation and intervention strategies against cholera 

epidemics. More specifically, we modified the model given in [20] by including 
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three sorts of controls: personal protection, drug treatment (hydration therapy, 

antibiotics and others), and water sanitation as functions of time. Then, we 

formulated a state-adjoint framework and inferred the essential conditions for 

the optimal control strategies. Numerical simulations were performed to analyze 

single and multiple controls. This analysis is expected to help planners plan 

efforts that must be made to avoid an increase in cholera cases. 

2. Optimal Control Problem 

Here, we propose the compartmental mathematical model of interaction 

between humans and cholera bacteria shown in Figure 1. With this model, we 

survey the effects of personal protection, drug treatment and water sanitation as 

control measures. The human population N(t) at time t is partitioned into seven 

compartments: susceptible 𝑆(𝑡), educated 𝐸(𝑡), vaccinated 𝑉(𝑡), infectious 

𝐼(𝑡), quarantined 𝑄(𝑡), treated 𝑇(𝑡), and recovered 𝑅(𝑡), Thus 𝑁(𝑡) = 𝑆(𝑡) +
𝐸(𝑡) + 𝑉(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑇(𝑡) + 𝑅(𝑡), while the cholera bacteria in the 

aquatic reservoir population at time t is represented by the term B(t). We 

suppose that the human population is recruited at a rate Λ and dies naturally at a 

rate µ and both infected and treated individuals die due to infection at rates 𝜎1 

and 𝜎2, respectively, with 𝜎1 ≥ 𝜎2. Therefore, the ordinary differential equation 

(ODE), which represents the evolution of human population over time, is: 

            
𝑑𝑁(𝑡)

𝑑𝑡
=∧ −𝜇𝑁(𝑡) − 𝜎1𝐼(𝑡) − 𝜎2𝑇(𝑡). (1) 

We also assume that the cholera bacteria population is recruited in the 

environment by logistic growth rate 𝑛 (1 −
𝐵

𝐾𝐵
), where n is the per capita 

development rate and 𝐾𝐵 is the carrying capacity of the environment. Each 

Figure 1 Compartmental diagram of interaction between humans and cholera 

bacteria. 
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infected individual contributes (cells/L-per day) to Vibro cholerae in the aquatic 

population with a fixed rate, e. Thus, the ODE representing the evolution of the 

bacteria population over time is: 

            
𝑑𝐵(𝑡)

𝑑𝑡
= 𝑛 (1 −

𝐵(𝑡)

𝐾𝐵
)𝐵(𝑡) + 𝑒𝐼(𝑡). (2) 

Note that Eq. (1) and Eq. (2) are coupled. Now, we define the force of infection 

for susceptible, educated and vaccinated humans as 
𝛽𝐵

𝐻+𝐵
, where 𝛽 represents the 

ingestion rate of Vibrio cholerae from contaminated sources and H is the 

concentration of vibrios in contaminated water. Then 
𝛽𝐵

𝐻+𝐵
𝑆 represents the 

number of susceptible individuals that become infected, 𝑞(1 − 𝜏)
𝛽𝐵

𝐻+𝐵
E is the 

number of educated individuals that become quarantined, where q is the failure 

of education rate, and 𝜏 ∈ [0,1] is the efficacy of quarantine rate, and 𝑝
𝛽𝐵

𝐻+𝐵
𝑉 

represents the number of vaccinated individuals that become infected, where p 

is the reduction of susceptibility rate due to vaccination. Other parameters 

involved in the model are specified in Table 1.  

Table 1 Parameters Involved on Model Given on Eq. (3): Description, Units and 

Values Parameter. 

Symbol Description Dimension Value Reference 

Λ 
Recruitment rate of 

humans 

 

Hum x 𝐷𝑎𝑦−1 15.18535 [20] 

 
Vaccine effectiveness 

loss rate 

 

𝐷𝑎𝑦−1 0.003 [20] 

 
Not taking precautions 

rate 

 

𝐷𝑎𝑦−1 0.003 [20] 

𝑎 
Temporary immunity loss 

rate 

 

𝐷𝑎𝑦−1 0.003 [20] 

𝜓 Education rate 𝐷𝑎𝑦−1 0.008 [20] 

 Vaccination rate 𝐷𝑎𝑦−1 0.07 [20] 

 
Infection rate for infected 

water consumption 

 

𝐷𝑎𝑦−1 0.2143 [27] 

 
Infection rate of educated 

individuals 

 

𝐷𝑎𝑦−1 0.005 [20] 

 Inefficacy of vaccine Dimensionless 0.15 [28] 

𝜎1 
Infection death rate of 

infected individuals 

 

𝐷𝑎𝑦−1 0.015 [27] 

q Failure rate of education Dimensionless 0.002 [20] 

 
Transition rate from 

quarantined 

to susceptible 

 

𝐷𝑎𝑦−1 0.005 [20] 
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 
Recovery rate due to 

treatment 

 

𝐷𝑎𝑦−1 0.2 [20] 

𝜎2 
Infection death rate of 

treated individuals 

 

𝐷𝑎𝑦−1 0.0001 [20] 

𝜍2 
Efficacy of control by 

treatment 

 

𝐷𝑎𝑦−1 0.34 Assumed 

ℏ 
Bacterial reproduction 

rate 

 

𝐷𝑎𝑦−1 0.73 [29] 

𝐾𝐵 
Environmental carrying 

capacity 

 

Bacteria 107 [30] 

𝑒 
Contribution of infected 

individuals to the 

V.Cholera rate 

 

𝐷𝑎𝑦−1 100 [30] 

𝜍3 
Efficacy of control by 

water sanitation 

 

Dimensionless 0.54 Assumed 

 Natural death rate 𝐷𝑎𝑦−1 0.0185 Assumed 

 
Treatment rate of infected 

individuals 

 

𝐷𝑎𝑦−1 0.005 [20] 

In order to reduce the burden of infection, we introduce the following control 

campaigns as functions depending on time (bang-bang controls [31]): 𝑢1(𝑡) 
represents control by personal protection through the use of clean water, 𝑢2(𝑡) 
is control by drug treatment of infected individuals including hydration therapy, 

and 𝑢3(𝑡) represents control by water sanitation, which leads to the death of 

bacteria. The expression (1 − 𝑢1(𝑡))
𝛽𝐵

𝐻+𝐵
 indicates a kind of resistance to 

infection, where 𝑢1(𝑡) = 1 if the control by personal protection is 100% 

effective, i.e. there is no infection, while 𝑢1(𝑡) = 0 if the control is not effective. 

Similarly, the expressions 𝜉
2
𝑢2(𝑡)𝐼 and 𝜉

3
𝑢3(𝑡)𝐵 represent the number of 

infected individuals and bacteria reduced by the controls, where parameters 𝜉
𝑖
∈

[0,1] with i = 1, 2 are the efficacy rates of the controls. The control variables 

𝑢𝑖(𝑡), with i = 1, 2, 3 are in the set մ of Lebesgue measurable functions on [0, 

1]. 

We can represent our control problem in terms of the following system of 

nonlinear ODEs: 
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𝑚𝑖𝑛𝑈 ∈ մ 𝐽[𝑈] = ∫ (𝐴1𝐼 + 𝐴2𝐵 +
1

2
(𝐵1𝑢1

2 + 𝐵2𝑢2
2 + 𝐵3𝑢3

2))𝑑𝑡
𝑇

0
  

𝑑𝑆

𝑑𝑡
= ∧ +𝜔𝑉 + 𝜀𝐸 + 𝑎𝑅 − (𝜇 + 𝜓 + 𝜙 + (1 − 𝑢1(𝑡))

𝛽𝐵

𝐻+𝐵
)𝑆  

𝑑𝐸

𝑑𝑡
= 𝜓𝑆 − (𝜇 + 𝜀 + 𝛾 + (1 − 𝑢1(𝑡))

𝑞𝛽(1−𝜏)𝐵

𝐻+𝐵
)𝐸  

𝑑𝑉

𝑑𝑡
= 𝜙𝑆 − (𝜔 + 𝜇 + (1 − 𝑢1(𝑡))

𝑝𝛽𝐵

𝐻+𝐵
)𝑉  

𝑑𝐼

𝑑𝑡
= 𝜃𝑄 + 𝛾𝐸 + ((1 − 𝑢1)

𝛽𝐵

𝐻+𝐵
) 𝑆 + ((1 − 𝑢1)

𝑝𝛽𝐵

𝐻+𝐵
)𝑉 − (𝜉2𝑢2 +

𝛿 + 𝜇 + 𝜎1) 𝐼  

𝑑𝑄

𝑑𝑡
= (1 − 𝑢1(𝑡))

𝑞𝛽(1−𝜏)𝐵

𝐻+𝐵
𝐸 − (𝜃 + 𝜇)𝑄  

𝑑𝑇

𝑑𝑡
= 𝜉2𝑢2𝐼 + 𝛿𝐼 − (𝜇 + 𝛼 + 𝜎2)𝑇  

𝑑𝑅

𝑑𝑡
= 𝛼𝑇 − (𝑎 + 𝜇)𝑅  

𝑑𝐵

𝑑𝑡
= (𝑛 (1 −

𝐵

𝐾𝐵
) − 𝑚)𝐵 + 𝑒𝐼 − 𝜉3𝑢3𝐵  

𝑋(0) = (𝑆(0), 𝐸(0), 𝑉(0), 𝐼(0), 𝑄(0), 𝑇(0), 𝑅(0), 𝐵(0), ) = 𝑋0 

𝑋(𝑇) = (𝑆∗, 𝐸∗, 𝑉∗, 𝐼∗, 𝑄∗, 𝑇∗, 𝑅∗, 𝐵∗) = 𝑋1 .  

(3) 

In the above optimal control problem, 𝑋0 represents the disease-free equilibrium 

(DFE) of the state equations, 𝑋1 is the endemic equilibrium of the state equation 

and 𝑈(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡))  is the vector of controls, which is subjected to 

the performance index (or cost function) J[U]. In the expression for J we have 

that 𝐴1 and 𝐴2 express the social costs depending on the number of individuals 

infected with cholera; 𝐵1, 𝐵2 and 𝐵3 represent absolute costs generated with the 

implementation of the controls; and T is the time of implementation of the 

control campaign. 

Our main goal was to determine the necessary conditions for the existence of an 

optimal control  𝑈∗ to reduce the number of infected individuals with the 

minimum cost. Our second objective was to validate the theoretical results with 

numerical experiments using data from the literature. 
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3. Theoretical Results 

In this section, we use the classical results given in [32] and [33] to prove the 

existence of optimal controls. We should check that the following hypotheses 

are satisfied: 

1. The set consisting of controls and corresponding described variables is 

non-empty and the set where the control U takes its values from is convex 

and closed. 
2. The system of the state equations is bounded through a linear function in 

the state and control. 

3. The integrand of the performance index J is convex on U and is also 

bounded below by 𝑐1(∑ |𝑢𝑖|
3
𝑖=1 )

𝛽

2 − 𝑐2, where 𝑐1, 𝑐2 > 0 and β > 1. 

Hypotheses (1) and (2) are obviously satisfied. The last condition is also 

satisfied. In fact, 

              𝐴1𝐼 + 𝐴2𝐵 +
1

2
(𝐵1𝑢1

2 + 𝐵2𝑢2
2 + 𝐵3𝑢3

2) ≥ 𝑐1(|𝑢1|
2 + |𝑢2|

2)
𝛽

2 − 𝑐2, 

where, β > 1 and A1, A2, B1, B2, B3, c1, c2 > 0. Thus, we have the following 

theorem: 

Theorem 3.1 There is an optimal control 𝑈∗ = (𝑢1
∗ , 𝑢2

∗ , 𝑢3
∗) that satisfies 

Problem (3). 

The optimal solution can be through the Lagrangian and Hamiltonian for the 

control problem (3). The Lagrangian is defined as: 

𝐿(𝐼, 𝐵, 𝑢1, 𝑢2, 𝑢3) = 𝐴1𝐼 + 𝐴2𝐵 +
1

2
𝐵1𝑢1

2 +
1

2
𝐵2𝑢2

2 +
1

2
𝐵3𝑢3

2. 

We have to find the minimal value of the Lagrangian. For this end, we define 

the Hamiltonian H for the control problem as: 

𝐻(𝑋, 𝑈, 𝜆)  =  𝐴1𝐼 + 𝐴2𝐵 +
𝐵1

2
𝑢1
2 +

𝐵2

2
𝑢2
2 +

𝐵3

2
𝑢3
2 + 𝜆1 (𝛬 + 𝜔𝑉 +

𝜀𝐸 + 𝑎𝑅 − (𝜇 + 𝜓 + 𝜙 + (1 − 𝑢1)
𝛽𝐵

𝐻+𝐵
) 𝑆) +

𝜆2 (𝜓𝑆 − (𝜇 + 𝜀 + 𝛾 + (1 − 𝑢1)
𝑞𝛽(1−𝜏)𝐵

𝐻+𝐵
)𝐸) +

𝜆3 (𝜙𝑆 − (𝜔 + 𝜇 + (1 − 𝑢1)
𝑝𝛽𝐵

𝐻+𝐵
)𝑉) + 𝜆4 (𝜃𝑄 +

𝛾𝐸 + ((1 − 𝑢1)
𝛽𝐵

𝐻+𝐵
) 𝑆 + ((1 − 𝑢1)

𝑝𝛽𝐵

𝐻+𝐵
)𝑉 −

(𝜉2𝑢2 + 𝛿 + 𝜇 + 𝜎1)𝐼)     + 𝜆5 ((1 − 𝑢1)
𝑞𝛽(1−𝜏)𝐵

𝐻+𝐵
𝐸 −
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(𝜃 + 𝜇)𝑄) + 𝜆6(𝜉2𝑢2𝐼 + 𝛿𝐼 − (𝜇 + 𝛼 + 𝜎2)𝑇) +

𝜆7(𝛼𝑇 − (𝑎 + 𝜇)𝑅) + 𝜆8 ((𝑛(1 −
𝐵

𝐾𝐵
) − 𝑚)𝐵 + 𝑒𝐼 −

𝜉3𝑢3𝐵), 

where X = (S, E, V, I, Q, T, R, B) and 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆8) is the vector of adjoint 

variables. We can summarize the main result of this section in the following 

theorem: 

Theorem 3.2 There is an optimal solution, denoted by 𝑋∗(𝑡), which minimizes J 

in [0, T], and a vector of adjoint variables 𝜆 such that 

{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

  

 

𝑑𝜆1

𝑑𝑡
= 𝜆1𝜇 + (𝜆1 − 𝜆2)𝜓 + (𝜆1 − 𝜆3)𝜙 + (𝜆1 − 𝜆4) ((1 − 𝑢1)

𝛽𝐵

𝐻+𝐵
)  

𝑑𝜆2

𝑑𝑡
= −𝜆1𝜀 + 𝜆2𝜇 + 𝜆2𝜀 + (𝜆2 − 𝜆4)𝛾 + (𝜆2 − 𝜆5) ((1 −

𝑢1)
𝑞𝛽(1−𝜏)𝐵

𝐻+𝐵
)  

𝑑𝜆3

𝑑𝑡
= (𝜆3 − 𝜆1) 𝜔 + 𝜆3𝜇 + (𝜆3 − 𝜆4) ((1 − 𝑢1)

𝑝𝛽𝐵

𝐻+𝐵
)  

𝑑𝜆4

𝑑𝑡
= −𝐴1 + (𝜆4 − 𝜆6) 𝜉2 𝑢2 +  (𝜆4 − 𝜆6)𝛿 +  𝜆4(𝜇 + 𝜎1) − 𝜆8𝑒  

𝑑𝜆5

𝑑𝑡
= (𝜆5 − 𝜆4)𝜃 + 𝜆5𝜇  

𝑑𝜆6

𝑑𝑡
= (𝜆6 − 𝜆7)𝑎 + 𝜆6(𝜇 + 𝜎2)  

𝑑𝜆7

𝑑𝑡
= (𝜆7 − 𝜆1)𝑎 + 𝜆7𝜇  

𝑑𝜆8

𝑑𝑡
= −𝐴2 + (𝜆1 − 𝜆4) ((1 − 𝑢1)

𝐵𝐻

(𝐵+𝐻)2
)  𝑆 + (𝜆2 − 𝜆5) ((1 −

𝑢1)
𝑞𝛽(1−𝜏)𝐻

(𝐵+𝐻)2
𝐸) + (𝜆3 − 𝜆4) ((1 − 𝑢1)

𝑝𝐵𝐻

(𝐵+𝐻)2
)𝑉 −

𝜆8(𝑛 − 𝑚 − 2
𝑛𝐵

𝐾𝐵
− 𝜉3𝑢3),  

(4) 

with transversality condition 𝜆(𝑇) = 0, which satisfies 

𝑢1
∗ =  𝑚𝑎𝑥 {𝑚𝑖𝑛 {,

1

𝐵1
 ((𝜆4 − 𝜆1)

𝛽𝐵

𝐻 + 𝐵
𝑆 + (𝜆5

− 𝜆2) (
𝑞𝛽(1 − 𝜏)𝐵

𝐻 + 𝐵
𝐸)   + (𝜆4 − 𝜆3)

𝑝𝛽𝐵

𝐻 + 𝐵
𝑉)} , 0} 

(5) 
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𝑢2
∗ = {{1,

1

𝐵2
((𝜆4 − 𝜆6)𝜉2𝐼)} ,0}  

𝑢3
∗ = {{1,

1

𝐵3
(𝜆8𝜉3𝐵)} ,0} . 

Proof 1 The Pontryagin principle given on reference [34] guarantees the 

existence of an adjoint variables vector 𝜆  that satisfies 

𝜆̇𝑖 =
𝑑𝜆𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝑋
  

𝜆𝑖(𝑇)  =  0,         𝑖 = 1,2,… ,8 

𝐻(𝑋, 𝑈∗, 𝜆, 𝑡) = 𝑚𝑎𝑥 𝐻(𝑋, 𝑈∗, 𝜆, 𝑡),    𝑈 ∈ մ. 

(6) 

or equivalently 

 𝜆̇1 = −
𝜕𝐻

𝜕𝑆
 ,    𝜆1(𝑇) = 0                             𝜆̇5 = −

𝜕𝐻

𝜕𝑆
 ,     𝜆5(𝑇) = 0 

 𝜆̇2 = −
𝜕𝐻

𝜕𝐸
 ,    𝜆2(𝑇) = 0                             𝜆̇6 = −

𝜕𝐻

𝜕𝑆
 ,     𝜆6(𝑇) = 0 

 𝜆̇3 = −
𝜕𝐻

𝜕𝑉
 ,     𝜆3(𝑇) = 0                             𝜆̇7 = −

𝜕𝐻

𝜕𝑆
 ,    𝜆7(𝑇) = 0 

 𝜆̇4 = −
𝜕𝐻

𝜕𝐼
 ,     𝜆4(𝑇) = 0                             𝜆̇8 = −

𝜕𝐻

𝜕𝑆
 ,    𝜆8(𝑇) = 0. 

Putting the derivatives of H with respect to X in the above equations we get 

system given on Eq. (4). Finally, from the optimality conditions for the 

Hamiltonian, which are given by 
𝜕𝐻

𝜕𝑈∗
= 0, we obtain the characterization of 

controls given on Eq. (5). 

4. Numerical Experiments 

Now, we carry out some numerical experiments in order to show how the 

controls affect the solutions of our control problem. The forward fourth-order 

Runge Kutta method is used to solve the state equations for the initial 

conditions, whereas the backward fourth-order Runge-Kutta method is applied 

to solve the adjoint system given on Eq. (4), given that we have final values. 

For the control variables we use an initial guess. We assume that the control 

campaign is conducted for 120 days. We propose four different controls 

campaigns: 

1. Campaign 1: personal protection and hydration therapy, simultaneously. 
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2. Campaign 2: personal protection and water sanitation, simultaneously. 
3. Campaign 3: hydration therapy and water sanitation, simultaneously. 
4. Campaign 4: the combination of the three controls, simultaneously. 

 
Table 2 shows the values that we have assigned to the relative weights 

associated with the controls. 

4.1 Campaign 1: Numerical Simulations (𝒖𝟏 ≠ 𝟎 and 𝒖𝟐 ≠ 𝟎) 

Here we use two controls: personal protection and hydration therapy, 

simultaneously. It is observed from Figure 2(a) that the number of infected 

individuals decreases to zero after 20 days, but they start to appear again after 

70 days. From Figure 2(b) we can infer that we have to apply hydration therapy 

for 120 days with full effort, and personal protection can be done to some 

extent.  

Table 2 Parameter Values Associated with the Control Problem. 

 Parameter Value Reference 

Relative weight 
𝐴1 

𝐴2 

1 

5 

Assumed 

Assumed 

Social costs 

𝐵1 

𝐵2 

𝐵3 

5 

7 

9 

Assumed 

Assumed 

Assumed 

Effectiveness 
𝜁2 

𝜁3 

0.34 

0.54 

Assumed 

Assumed 

4.2 Campaign 2: Numerical Simulations (𝒖𝟏 ≠ 𝟎 and 𝒖𝟑 ≠ 𝟎)  

Personal protection combined with water sanitation seems an excellent control 

campaign at first glance, as can be seen from Figure 3(a), but after 70 days it is 

Figure 2 Trend of the number of infected humans under the 

implementation of Campaign 1 for (a) Infected individuals (left graph) 

and (b) Controls (right graph). 
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insufficient because infections start to appear again after this period. Figure 3(b) 

shows that water sanitation should be maintained for 120 days with full effort, 

however, personal protection may be decreased slowly.  

4.3 Campaign 3: Numerical Simulations (𝒖𝟐 ≠ 𝟎 and 𝒖𝟑 ≠ 𝟎) 

When we use hydration therapy and water sanitation, we can see numerically 

that the effect starts to appear from the first day, because the number of infected 

individuals decreases and approaches to zero in 20 days, as shown by Figure 

4(a). Figure 4(b) shows that these controls have to be fully applied for 120 days. 

4.4 Campaign 4: Numerical Simulations (𝒖𝟏 ≠ 𝟎,  𝒖𝟐 ≠ 𝟎 and 

𝒖𝟑 ≠ 𝟎)  

In this campaign, we apply three controls: personal protection, hydration 

therapy and water sanitation. It can be observed from Figure 5(a) that the effect 

appears instantly as there is a high decrease in the number of infectious humans. 

After 15 days, the infection is eradicated completely. Figure 5(b) shows that we 

have to make a full effort for 120 days.  

Figure 3 Trend of the number of infected humans under the 

implementation of Campaign 2 for (a) Infected individuals (left graph) and 

(b) Controls (right graph). 

Figure 4 Trend of the number of infected humans under the implementation 

of Campaign 3 for (a) Infected individuals (left graph) and (b) Controls 

(right graph). 
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5. Cost-Effectiveness Analysis 

In this section, we make an economic analysis of the control campaigns given in 

the previous section, in order to determine which is the most cost-effective 

campaign in controlling the cholera disease. Thus, we use the incremental cost-

effectiveness index (ICER), which is expressed in the following equation:  

 𝐼𝐶𝐸𝑅 =
𝛥𝐶𝑜𝑠𝑡

𝛥𝐸𝑓𝑓𝑒𝑐𝑡
. (7) 

On the other hand, we want to quantify the cost-effectiveness of the control 

campaigns, for which we use the idea used in [35]. The ratio between number of 

Infections Avoided (IE) and Successful Recoveries (RE) is called the Index of 

Infections Avoided (IAR). It is defined as follows: 

 𝐼𝐴𝑅 =
𝐼𝐸

𝑅𝐸
⋅ (8) 

In the previous equation, the numerator represents the difference between the 

Campaign 1                        Campaign 2                          Campaign 3                        Campaign 4

0

2

4

14

12

10

8

6

0.3
0.5

0.1

11.9

Figure 6 Comparison of the IAR of each control campaign. 

Figure 5 Trend of the number of infected humans under the implementation 

of Campaign 4 for (a) Infected individuals (left graph) and (b) Controls 

(right graph). 
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total number of infectious individuals obtained by simulation without controls 

and the total number of infectious individuals obtained through simulations with 

controls. The calculation of the ICER values for each control campaign was 

done by means of Eq. (7). In Table 3 we show the highest IAR value for each 

control campaign. 

Table 3 Index of Infections Avoided (IAR) 

 Campaign 1 Campaign 2 Campaign 3 Campaign 4 

IE 

RE 

40 

70 

0.01 

0.01 

10 

40 

700 

60 

IAR 0.571 1 0.25 11.66 

From the above table we can conclude that the most cost-effective campaign in 

terms of IAR and total cost of intervention, is Campaign 4 (see Figure 6). 

Nevertheless, for more clarity, we examine the ICERs of each campaign. In 

Table 4, we show the classification of control campaigns defined by Eq. (3) in 

increasing order of effectiveness. 

Table 4 ICER Comparison between Campaigns 2 and 3 

Campaign 
Total avoided 

infections 
Total cost ICER 

Campaign 2 

Campaign 3 

Campaign 1 

Campaign 4 

0.01 

10 

40 

700 

2.3 

3.1 

2.5 

1.9 

230 

0.08 

-2.395 

-1.896 

The ICERs in Table 4 were computed as follows: 

 𝐼𝐶𝐸𝑅(𝐼𝐼) =
2.3

0.01
= 230 

 𝐼𝐶𝐸𝑅(𝐼𝐼𝐼) =
3.1−2.3

10−0.01
= 0.08 

 𝐼𝐶𝐸𝑅(𝐼𝐼) =
2.5−3.1

40−10
= −2.396 

 𝐼𝐶𝐸𝑅(𝐼𝑉) =
1.9−2.5

700−40
= −1.896 
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From Table 4 it can be concluded that Campaign 3 is 0.08 times less expensive 

than Campaign 2. Given that the ICER of Campaign 3 is smaller than that of 

Campaign 2, we can conclude that Campaign 2 is more expensive and less 

effective than Campaign 3. Therefore, we exclude it from the set of campaigns. 

Now, we recalculate the ICER indices of the remaining campaigns, as shown in 

Table 5. 

Table 5 ICER Comparison between Campaigns 3 and 1 

Campaign 
Total Avoided 

Infections 
Total Cost ICER 

Campaign 3 

Campaign 1 

Campaign 4 

10 

40 

700 

3.1 

2.5 

1.9 

0.31 

-2.396 

-1.896 

From Table 5 and using an analogous reasoning to the previous one, we exclude 

Campaign 3 and recalculate the indices for a comparison between Campaigns 1 

and 4. The results are shown in Table 6. 

Table 6 ICER Comparison Between Campaigns 1 and 4 

Campaign 
Total Avoided 

Infections 
Total Cost ICER 

Campaign 1 

Campaign 4 

40 

700 

2.5 

1.9 

-0.0624 

-1.896 

The results summarized in Table 6 coincide with the results given in Figure 6, 

where Campaign 4 has the highest IAR value because it has the lowest ICER 

value. 

6. Conclusions 

In this work, we approached cholera disease by mathematical modeling using 

ODEs, including some control strategies to understand the human bacteria 

transmission dynamics of the disease related to public health. We considered 

three sorts of controls in the form of personal protection, hydration therapy and 

water sanitation strategies. We used the previous control variables to formulate 

the optimal control problem in Eq. (3). Based on the three control variables we 

defined four control campaigns. The theoretical and numerical results showed 

that cholera disease can be controlled using any of these three campaigns. A 
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cost-effectiveness analysis with data from the literature was carried out to 

determine the most cost-effective campaign. 

It may be thought that applying three controls simultaneously could be very 

expensive and that it would be best to apply a single control or at most two of 

them simultaneously. However, the analysis evidenced that Campaign 3 

(personal protection and water sanitation) and Campaign 4 (personal protection, 

hydration therapy, and water sanitation) were the cheapest options (at 2.3 and 

1.9 units of cost, respectively). Additionally, these campaigns were the most 

effective in terms of the time required to reduce the incidence of cholera, with 

IAR indices of 1 and 11.66, respectively. Also, the differences between cost and 

health effects of the control campaigns were compared through ICER indices. 

For Campaign 4 we obtained the lowest index (-1.896), thus Campaign 4 is the 

most cost-effective campaign in controlling the cholera disease. 

Although at present personal protection, hydration therapy and water sanitation 

should be guaranteed to all people, in some countries the desired conditions are 

not present. Some of the factors that influence the incidence and prevalence of 

cholera are lack of drinking water, lack of knowledge about the disease, and a 

high index of unsatisfied basic needs. 
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