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 This paper presents a modified Social Force Model (SFM) for navigation 

control of a soccer robot application. We modified the way of determining the 

parameter value of the gain factor, 𝑘, of the SFM using the Fuzzy Inference 

System (FIS), so that the value of the gain factor, 𝑘, is adaptive. The purpose 

of the gain factor adaptation is that the robot can move responsively but not 

over-reactive when it encounters an obstacle at high speed, which is a 

weakness of SFM with fixed parameters. Modification of SFM parameters 

using FIS is hereinafter referred to as the Fuzzy-based Social Force Model (F-

SFM). We used this technique on a soccer robot with an omnidirectional drive 

platform with three motors. As experiments, several modifications to the FIS 

rules were made and compared to the SFM with fixed parameters. The 

simulation-based experimental results show that the proposed method 

outperforms the SFM method with fixed-parameters, and the computation time 

does not differ significantly so that it can be applied for real implementation. 
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Nomenclature  

𝑉𝑥= the robot’s velocity in x-direction 𝑓𝑠
𝑜= the social force caused by the closest obstacle 

𝑉𝑦= the robot’s velocity in y-direction 𝑓𝑝
𝑜= the physical force caused by the closest obstacle 

𝑉𝜃= the robot's angular velocity to control its heading  𝑚= the robot’s mass 

𝑣𝑥
𝑖 = the speed of i-th motor in the x-axis direction of 

the wheel rotation 

𝜏= the amount of time the system needs to update the 

robot's speed, 𝑣𝑡 

𝐹𝑛= the navigation force 𝑣𝑜= the maximum speed of the robot 

𝐹𝑔= the attractive force towards the desired goal 𝑣𝑡= the present speed of the robot 

𝐹𝑗
𝑜= the repulsive force concerning obstacle j-th 𝑎= the difference between 𝑣0 and 𝑣𝑡 

𝑘= the gain factor of the repulsive force, 𝐹𝑗
𝑜 𝛼= the direction of the navigation force, 𝐹𝑛 

𝑟𝑖𝑗= the sum of the robot's i-th radius and the obstacle's j-

th radius 

𝛽= the direction of the target location relative to the 

robot 

𝑑 = 𝑑𝑜𝑏𝑠 = 𝑑𝑖𝑗= the relative distance between the robot 

i-th and the obstacle j-th 

𝜃= the direction of the actual robot heading 

𝜎= the effective range within which the system will begin 

to respond to the stimuli 

𝛾= 𝑒𝑖𝑗⃗⃗ ⃗⃗  = the direction of the obstacle force 
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1. INTRODUCTION  

Over the most recent ten years, robot soccer competition has become a stage for the improvement of 

different sorts of innovation to answer the undeniably significant level of challenges. One of the individual 

capacities of a soccer robot that is still fascinating and challenging to develop is the robot's capacity to navigate at 

high speed. Navigating at high speed greatly impacts the responsiveness of the robot when it encounters an 

obstacle. Controlling the robot at high speed requires a reliable and fast control system. 

A few past investigations in the field of mobile robot soccer have utilized a lot of potential field methods 

and their modifications to plan robot navigations. The potential field method is widely used even though there are 

weaknesses in that it is often trapped in local optima [1]. Improvements were made by adding several techniques 

such as Simulated Annealing [2] and evolutionary algorithm like Genetic Algorithm (GA) [3]. However, the use 

of GA for optimizing the path is time consuming. Navigation problems are also often solved with the path and 

motion planning approach. Albab et.al. [4] used Genetic Algorithm (GA) to choose the best path for robot 

movements. While Afakh et.al. [5] utilized a pre-defined path to guide the robot's movement. Rodriguez et.al. [6] 

and Rahman et.al. [7] used the Rapidly-Exploring Random Tree (RRT) to find a path between the position of the 

robot and the target goal. RRT is very effective, but it will take a long time to find the best path for the robot. 

Abiyev et.al. [8] also used a tree combined with Fuzzy Logic Control (FLC) to control robot navigation. However, 

the processing time is still quite high at 0.9 seconds. Renardi et.al. [9] proposed the obstacle avoidance using 

subtargets. This method looks quite effective and good for avoiding dynamic obstacles, however, unfortunately, 

it is still tested at low robot speeds (below 1 m/sec). 

The social force model (SFM) [10] is one of the many popular local motion planning methods that 

commonly used to investigate an agent motion and interaction in a small scale social environment. It uses the 

concept of calculating the resultant navigational force of the obstacle repulsion force and the destination attraction 

force. When it comes to robot soccer, the movement of a robot is very much determined by certain goals and 

purposes, such as avoiding an obstacle [11], pursuing the ball [12] or dribbling. When navigating, the behavior of 

soccer robots is very much different from robots for other social-context based applications, for example guiding 

[13], following a target person [14], accompanying [15], and so on. The responsiveness is the main key for the 

robot to successfully finish its task. It is determined by how swiftly the robot moves to respond to the stimulus it 

receives, i.e. the distance and orientation of the obstacle. Therefore, the robot's ability to adjust its control 

parameters will affect how much response will be generated. Two parameters, 𝑘 and 𝜎, are commonly predefined 

in the SFM framework. The level of responsiveness of the robot in mobile robot soccer is substantially governed 

by the value of 𝑘. 

Research related to determining the value of SFM parameters has been reported by previous researchers. 

The use of fixed SFM parameters strategies were demonstrated by Ferrer [15], Zanlungo [16], and Luber [17]. 

The SFM parameters were globally optimized by using the Genetic Algorithm (GA) [18]. The main demerits of 

the global optimization is that their approach cannot be generally implemented in different space conditions, for 

example, indoor and outdoor, wide and narrow spaces. Dewantara [19] proposed a strategy for adaptively changing 

the SFM parameter values by using Reinforcement Learning (RL) [20]. It was solved the generalization problem, 

however, the RL state-action pair was still determined manually and the sensor reading area needs to be discretized 

to reduce the number of states. This makes the robot responses using same action for a little bit of changing in 

sensor readings. Other research on SFM modification was conducted by Sent et.al. [21] which involved Fuzzy 

Logic Control (FLC) to modify pedestrian behavior to make it better interpretable. The FLC modifies several types 

of forces by involving as many as 22 Fuzzy rules. The proposed method was successful enough to be tested using 

a pedestrian simulation, but the time required to run the FLC when modifying the SFM output increased by 10% 

to 50% compared to using SFM alone. Besides that, the difficult tuning process has to be done with several 

revisions to get the FLC results that are assumed to be the best. 

We introduced the Fuzzy-based Social Force Model (F-SFM) in this study, in which the Fuzzy Inference 

System (FIS) [22] is used to determine the value of 𝑘 using the pair of input stimulus, 𝑑 and 𝛾, between the obstacle 

and the robot. Both inputs will be processed using FIS to produce an appropriate value of 𝑘, which is suitable so 

that the level of responsiveness of the robot matches the stimulus received. In this study, we show the following 

contributions: 

• This strategy provides a quick way to design a robot soccer's level of responsiveness. 
• The determination of the gain factor, 𝑘, is easy and always proportional to all of possible distances and 

directions of the obstacle relative to the robot. 
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2. RESEARCH METHOD

2.1. Omnidirectional drive mobile robot 

The mobile robot soccer model we use is a three-wheeled omnidirectional drive platform from Festo, 

called as Robotino [23]. Figure 1 shows a configuration of our robot model. Referred to Figure 1, the kinematic 

and inverse kinematic formulations of the robot are expressed as follows: 

Figure 1. The three-wheels layout of the omnidirectional drive mobile robot platform 
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The speeds of wheel i-th in the x-axis and y-axis of wheel i-th workspace are 𝑣𝑥
𝑖  and 𝑣𝑦

𝑖 , respectively. However, 

only the speed of each motor in the x-axis direction of the wheel rotation, 𝑣𝑥
𝑖 , is used in kinematic and inverse 

kinematic calculations. 

2.2. Fuzzy-Social Force Model 

2.2.1. Social Force Model 

Social Force Model (SFM) [10] was widely used to model how people interact each other in the case of 

pedestrian dynamics by utilizing the concept of attractive and repulsive forces. When applied to a robot to imitate 

the human-human interaction, at that point, the robot navigates by taking into account the idea of SFM as shown 

in Figure 2 and is expressed in Eq. 3. Eq. 4 depicts the formulation of 𝐹𝑔.

𝐹𝑛 = 𝐹𝑔 + Σ𝑗=0
𝑀 𝐹𝑗

𝑜, (3) 

𝐹𝑔 = 𝑚. 𝑎 =
𝑚.𝑑(𝑣0−𝑣𝑡)

𝜏
, (4) 

From Figure 2, the goal, 𝐺(𝑥, 𝑦), can be the position of the balls or goals on the field. The obstacle, 𝑂(𝑥, 
𝑦), is the position of the obstacle or opposing robot. 𝑅(𝑥, 𝑦) is the current position of our robot. Then, the 

obstacles themselves can be static or dynamic. Eq. 5 – Eq. 7 are formulas for the forces created by obstacles. The 

spesification of the SFM parameters are shown in Table 1. 

𝐹𝑜 = 𝑓𝑠
𝑜 + 𝑓𝑝

𝑜, (5) 

𝑓𝑠
𝑜 = 𝑘. 𝑒𝑥𝑝 (

𝑟𝑖𝑗−𝑑𝑖𝑗

𝜎
) 𝑒𝑖𝑗⃗⃗ ⃗⃗ , (6) 

𝑓𝑝
𝑜 = 𝑘. (𝑟𝑖𝑗 − 𝑑𝑖𝑗)𝑒𝑖𝑗⃗⃗ ⃗⃗ , (7) 
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Figure 2. Forces that work within the SFM framework and their causes. The star sign is the goal position. The circle 

around the robot is the proxemic distance that is used as a limit on when the SFM should respond. 

Table 1. The SFM parameters 
Parameters Value 

Robot mass, 𝑚 20 kg 

Updating time, 𝜏 0.1 sec 

Max. speed, 𝑣0 2 m/sec 

Proxemic type circle 

Proxemic radius, 𝑟 0.5 m 

Effective range, 𝜎 0.5 m 

 

2.2.2. Fuzzy Inference System 

The Fuzzy Inference System (FIS) is utilized to respond proportionally to the obstacle's stimuli, 𝑑 and 𝛾, 

and to provide an effective gain factor, 𝑘, of the obstacle's forces. Fuzzification and membership function, 

inference engine and rule base, and defuzzification are the three steps in the FIS process. Because a proportional 

ratio between the input and output pair is required, we selected a triangular shape for the membership functions. 

The following formula is used to calculate the degree of the triangular shape-based membership function. 

 

𝜇 = {

𝑥−𝑢

𝑣−𝑢
𝑤−𝑥

𝑤−𝑣

0

𝑖𝑓 𝑢 < 𝑥 ≤ 𝑣
𝑖𝑓 𝑣 < 𝑥 ≤ 𝑤

𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑠
 ,        (8) 

 

Where 𝜇 is the membership function's degree, 𝑥 is the crisp input, 𝑢 is the membership function's left boundary, 

𝑣 is the membership function's center, and 𝑤 is the membership function's right boundary. Figure 3 shows how 

each input's membership function is handled. To follow Hall's proposed proxemic distance [24], the relative 

distance is separated into four segments. We also divided the relative direction into four segments to make the 

calculation easier. 

From Figure 3, we have two different forms of memberships, 𝜇𝑑 and 𝜇𝛾, which reflect the degree of 

membership function of the relative distance, 𝑑, and the relative angle, 𝛾, between the robot and the obstacles, 

respectively. The inference value can be calculated using the following formula. 

 

𝑩 = [𝜇𝑚
𝑑 𝜇𝑚

𝛾
]
𝑚=1,2,….,𝑀

,        (9) 

 

where 𝑩 is the T-norms between 𝜇𝑚
𝑑  and 𝜇𝑚

𝛾
. There are 𝑀-memberships for each relative distance and relative 

direction, giving us a total of 𝑀2 dimensions for which a Fuzzy rule R must be defined. Here, we define 𝑅 =



IJEEI  ISSN: 2089-3272  

 

Responsive motion control for robot soccer navigation under adaptive…… (Bima Sena Bayu Dewantara et al) 

693 

{𝑉𝐻,𝐻, 𝐻, 𝐻;𝐻, 𝐻,𝑀, 𝐿;𝑀,𝑀, 𝐿, 𝐿; 𝐿, 𝐿, 𝐿, 𝑉𝐿}, where VH means Very high Risk, H means High Risk, M means 

Medium, L means Low Risk, and VL means Very Low Risk. Figure 4 shows the design of our Fuzzy's rule. 

 

   
(a)                      (b) 

Figure 3. The Fuzzy Membership Functions (MF) using triangular shape type. (a) MF of 𝑑 and (b) MF of 𝛾. 

 

 

 
Figure 4. Fuzzy’s rule 

 

Finally, defuzzification is accomplished by turning the inference engine's fuzzy output to a crisp using the 

Center of Area (CoA) method as follows. 

 

𝑘 =
∑ 𝐵𝑛𝑅𝑛

𝑁
𝑛=1

∑ 𝐵𝑛
𝑁
𝑛=1

,         (10) 

 

where 𝑘 is the expected gain value, and 𝑛 = 1,2, . . . , 𝑁 is the number of inferences 𝑩 as well as the number of 𝑹. 

 

2.3. System design 

Our proposed system design is presented in Figure 5. The FIS is utilized to reasoning the correlation 

between the pair of 𝑑 and 𝛾, of the obstacle to the robot with a proportional value of 𝑘. The 𝑘-value, 𝑑, 𝛾, and 𝛽, 

were then fed into the SFM. The combination of all parameters will result in a pair of driving speeds, 𝑣𝑡, and its 

direction, 𝛼. Figure 6 illustrates a schematic of a match when all components are on the soccer field. Parameter 

measurements that apply to each component can be calculated by the following formula. 

 

𝑑𝑔𝑜𝑎𝑙 = √(𝐺𝑥 − 𝑅𝑥)
2 + (𝐺𝑦 − 𝑅𝑦)

2
      (11) 

𝑑 = 𝑑𝑜𝑏𝑠 = √(𝑂𝑥 − 𝑅𝑥)
2 + (𝑂𝑦 − 𝑅𝑦)

2
      (12) 

𝛽 = tan−1(
𝐺𝑦−𝑅𝑦

𝐺𝑥−𝑅𝑥
)        (13) 

𝛾 = tan−1(
𝑂𝑦−𝑅𝑦

𝑂𝑥−𝑅𝑥
)         (14) 

 

2.4. Controlling robot heading direction 

It's not easy to control the heading direction of an omnidirectional based mobile robot. Comparing the 

direction of the actual robot heading, 𝜃, with the direction of the target location relative to the robot, 𝛽, is one way 

of controlling the robot heading. The following are the equations related to the orientation of the goal location for 

regulating the robot heading error. 

 

𝑒𝑟𝑟(𝑡) = 𝛽(𝑡) − 𝜃(𝑡),        (15) 

𝑉𝜃(𝑡) = 𝑘𝑝. 𝑒𝑟𝑟(𝑡) + 𝑘𝑖 . ∑ 𝑒𝑟𝑟(𝑡) + 𝑘𝑑. (𝑒𝑟𝑟(𝑡) − 𝑒𝑟𝑟(𝑡 − 1)),   (16) 
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Figure 5. Our proposed system design 

 

 
Figure 6. Illustration of a competition scheme where all components are on a soccer field. 

 

where 𝑒𝑟𝑟(𝑡) is the difference between 𝜃 and 𝛽, at time t. In real conditions, 𝜃 is obtained from the Inertial 

Measurement Unit (IMU) sensor readings. However, in this simulation, the value of 𝜃 is obtained directly from 

the V-Rep application. The rotating speed of the robot is 𝑉𝜃(𝑡), and the proportional, integral, and derevative 

parameters of the PID controller are 𝑘𝑝, 𝑘𝑖, and 𝑘𝑑, respectively. In this experiment, the values of 𝑘𝑝 = 20, 𝑘𝑖 =

0.05, and 𝑘𝑑 = 50 are set by trial-and-error technique. 

 

2.5. The relationship between Social Force Model and mobile robot kinematics 

A mobile robot with an omnidirectional drive platform, as discussed in section 2.1, requires three motor 

speed outputs: 𝑣𝑥
1, 𝑣𝑥

2, and 𝑣𝑥
3. The three outputs are the outcomes of calculating three inputs, namely 𝑉𝑥, 𝑉𝑦, and 

𝑉𝜃, according to the robot's inverse kinematics formulation. The following is how we express the relationship 

between SFM and the robot's inverse kinematic. 

 

𝑣𝑡 =
𝐹𝑛.𝑡

𝑚
,        (17) 

𝛼 = tan−1 𝐹𝑔𝑠𝑖𝑛(𝛽)+𝐹𝑜𝑠𝑖𝑛(𝛾)

𝐹𝑔𝑐𝑜𝑠(𝛽)+𝐹𝑜𝑐𝑜𝑠(𝛾)
,      (18) 

𝑉𝑥 = 𝑣𝑡 . 𝑐𝑜𝑠(𝛼),        (19) 

𝑉𝑦 = 𝑣𝑡 . 𝑠𝑖𝑛(𝛼),        (20) 

where 𝜏 is set to 0.1 sec. Meanwhile, using the PID formulation in section 2.4, 𝑉𝜃 is determined separately. 
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3. RESULTS AND DISCUSSION  

3.1. Experimental setup 

The experiments were carried out in a simulation on a computer with the specifications shown in Table 

2. These experiments focused on the response of the individual movement control of the soccer robot when 

pursuing the ball by avoiding obstacles that represent the opponent's robot. The scenario of the opponent's robot 

movement is divided into three, namely standing still, moving to cut off the movement of our robot, and moving 

to pursue the ball. We also compared the performance of F-SFM with other methods such as classical SFM and 

Artificial Potential Field (APF) [1]. The goal of these experiments is to see how responsive and safe the robot is 

at avoiding obstacles and achieving the goals. The number of iterations required by the robot when navigating to 

escape the opponent robot reflects its responsiveness. The fewer the iterations, the more precise the robot can 

avoid and the less control it requires. While the robot's movement is said to be safe when the robot does not collide 

the opponent's robot. The fewer colisions with the opposing robot, the better and safe the control the robot does. 

 

Table 2. The specifications of hardware and software used 

Hardware/Software Specifications 

CPU Intel Core i7-8550U @1.8 GHz 
RAM 16 GB 

Graphics/GPU NVidia GeForce 940MX 

Operating System Windows 10 Home 64-bit 
Developer Microsoft Visual C++ 2010 Express 

Library OpenCV 2.4.9 

Simulator V-Rep 3.6.2 [25] 

 

3.2.  Responsiveness and safety 

In this section, we investigated the robot responsiveness while avoiding static and dynamic obstacles 

using SFM with fixed 𝑘-value, APF with fixed 𝜁-value, and SFM with adaptive 𝑘-value methods. In this 

experiment, we evaluated the responsiveness of the robot by varying the value of the constant gain factor, 𝑘, for 

the SFM with fixed 𝑘-value method, 𝜁, for the APF with fixed 𝜁-value method and varying the value of the Fuzzy 

output sets for the adaptive 𝑘-value method as shown in Table 3. Each experiment was repeated 10 times. 

 

Table 3. The experimental schemes for fixed 𝑘-value and adaptive 𝑘-value 
SFM APF [1] F-SFM (ours) 

Scheme 
𝒌-

values 
Scheme 

𝜻-

values  
Scheme 

Fuzzy output sets 

VH H M L VL 

Fixed 𝒌-

value 

#1 100 Fixed 𝜻-

value 

#3 100 Adaptive 

𝒌-value 

#5 200 150 100 50 25 

#2 300 #4 300 #6 600 450 300 150 75 

 

3.2.1. Avoiding static obstacles 

We examined the performance of the robot using the SFM framework to move from the starting position 

to the target position with the task of avoiding two static obstacles between the start and target positions. 

Experiments were carried out using APF with fixed 𝜁-value, SFM with fixed 𝑘-value and SFM with adaptive 𝑘-

value methods. The results of the comparison of the three methods are shown in Figure 7. The experimental results 

for each scheme are presented in Table 4. 

From the Figure 7(a), we show the soccer robot equipped with APF with fixed 𝜁-value attempted to avoid 

two static obstacles between the start position and the target position. The robot’s responsiveness is represented 

by the number of iterations of 80 in average that needed by the robot to reach the target position for two schemes 

(#3 and #4). The robot demonstrated safely navigations by achieving only 55% of success rate. On the other hand, 

Figure 7(b) shows an experiment using SFM with fixed 𝑘-value, where the average of free collision or safe 

navigation is 18 out of 20 trials. This means that the robot successfully avoids the collision about 90%. This 

method also obtains lower number of iterations which means that the robot moves more responsive compared to 

the APF. Figure 7(c) shows the robot performances to avoid two static obstacles by using SFM with adaptive 𝑘- 

 

Table 4. The experimental schemes for static obstacles 

Scheme 
Static Obstacles 

Avg. Num. of Iterations Avg. All Num. of Free Collision Percentage of safe navigation 

#1 61 
64 

8 of 10 18 of 20 

90 % #2 67 10 of 10 

#3 84 
80 

3 of 10 11 of 20 

55 % #4 76 8 of 10 

#5 63 
60 

10 of 10 20 of 20 
100 % #6 57 10 of 10 
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value based on FIS. The robot can reach the goal by achieving 60 iterations in average for scheme #5 and #6. By 

using adaptive 𝑘-value, the average of free collision or safe navigation is 20 out of 20 trials. This means that the 

robot successfully avoids the collision about 100%. 

 

 
Figure 7. Examples of the robot’s responsiveness when avoiding static obstacles. (a) using APF with fixed 𝜁-

value for scheme 3. (b) using SFM with fixed 𝑘-value for scheme 1. (c) using SFM with adaptive 𝑘-value for 

scheme 5. The yellow curve is the trajectory made by our robot 
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3.2.2. Avoiding dynamic obstacles 

We examined the performance of the robot using the SFM framework to move from the starting position 

to the target position with the task of avoiding two dynamic obstacles between the start and target positions. We 

deliberately made two schemes, namely the dynamic obstacles movement cut our robot movement from two sides, 

namely left and right and the dynamic obstacles disturb our robot when pursuing the target position. The speed of 

the two dynamic obstacles is set at 1 m/s. Experiments were carried out using APF with fixed 𝜁-value, SFM with 

fixed 𝑘-value and SFM with adaptive 𝑘-value methods. The results of the comparison of the experiments are 

shown in Figure 8 and Figure 9. The experimental results are shown in Table 5 and Table 6. 

 

Table 5. The experimental schemes for dynamic obstacles where the opponent robots block our robot movement 

Scheme 
Dynamic Obstacles 

Avg. Num. of Iterations Avg. All Num. of Free Collision Percentage of safe navigation 

#1 52 
49 

7 of 10 17 of 20 
85 % #2 46 10 of 10 

#3 61 
64 

1 of 10 5 of 20 

25 % #4 67 4 of 10 

#5 46 
47 

8 of 10 18 of 20 

90 % #6 48 10 of 10 

 

From Tabel 5 and Figure 8(b), we show the robot tried to avoid two dynamic obstacles between the start 

position and the target position by performing obstacle avoidance abilities for different fixed 𝑘-values. The robot 

can reach the target by achieving 49 iterations in average for two schemes (#1 and #2). By using fixed 𝑘-value, 

the average of free collision or safe navigation is 17 out of 20 trials. This means that the robot successfully avoids 

the collision about 85%. Meanwhile, Figure 8(a) shows the robot performances to avoid two dynamic obstacles 

by using APF with fixed 𝜁-value. The robot can reach the target by achieving 64 iterations in average for two 

schemes (#3 and #4). By using APF with fixed 𝜁-value, the average of free collision or safe navigation is 5 out of 

20 trials. This means that the robot experiences more failures by crashing into dynamic obstacles. The percentage 

of safe navigation is only 25%. Figure 8(c) presents our robot performances to avoid two dynamic obstacles by 

using SFM with adaptive 𝑘-value. The robot can reach the target by achieving 47 iterations in average for two 

schemes (#5 and #6). By using SFM with adaptive 𝑘-value, the average of free collision or safe navigation is 18 

out of 20 trials. The percentage of safe navigation is the highest with an achievement about 90%. In these 

experiments, the results were worse that the experiment using static obstacle, because we deliberately direct the 

dynamic obstacle to block our robot movement by cutting the path right in front of it. Some collisions with obstacle 

were also caused by the characteristic of the robot dynamic which is very inert when used at high speed. 

From Table 6 and Figure 9(b), we show the robot tried to avoid two dynamic obstacles who are moving 

together towards the same target position by performing obstacle avoidance abilities for different fixed 𝑘-values. 

The robot can reach the target by achieving 36 iterations in average for two schemes (#1 and #2). By using fixed 

𝑘-value, the average of free collision or safe navigation is 19 out of 20 trials. This means that the robot successfully 

avoids the collision about 95%. Meanwhile, Figure 8(a) shows the robot performances to avoid two dynamic 

obstacles by using APF with fixed 𝜁-value. The robot can reach the target by achieving 45 iterations in average 

for two schemes (#3 and #4). By using APF with fixed 𝜁-value, the average of free collision or safe navigation is 

9 out of 20 trials. This means that the robot experiences more failures by grazing into dynamic obstacles. The 

percentage of safe navigation is about 45%. Figure 8(c) presents our robot performances to avoid two dynamic 

obstacles by using SFM with adaptive 𝑘-value. The robot can reach the target by achieving 38 iterations in average 

for two schemes (#5 and #6). By using SFM with adaptive 𝑘-value, the average of free collision or safe navigation 

is 19 out of 20 trials. The percentage of safe navigation is the highest with an achievement about 95%.  

In these experiments, the performance of the SFM-based navigation system is still much better than the 

APF when used to move at high speeds. The responsiveness and security shown by the SFM method are also much 

better than APF. However, based on both dynamic tests, SFM with adaptive 𝑘-value provides superior 

performance than SFM with fixed 𝑘-value and APF with fixed 𝜁-value. 

 

Table 6. The experimental schemes for dynamic obstacles where all robots pursue the same target location 

Scheme 
Dynamic Obstacles 

Avg. Num. of Iterations Avg. All Num. of Free Collision Percentage of safe navigation 

#1 37 
36 

9 of 10 19 of 20 

95 % #2 35 10 of 10 

#3 43 
45 

4 of 10 9 of 20 

45 % #4 47 5 of 10 

#5 40 
38 

9 of 10 19 of 20 

95 % #6 36 10 of 10 
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Figure 8. Examples of the robot’s responsiveness when avoiding dynamic obstacles who are cutting our robot 

movement. (a) using APF with fixed 𝜁-value for scheme 3. (b) using SFM with fixed 𝑘-value for scheme 1. (c) 

using SFM with adaptive 𝑘-value for scheme 5. The blue lines are the trajectories made by the dynamic 

obstacles or opponent’s robots, while the yellow one is the trajectory made by our robot. 

 

3.3.  Computation time 

We conduct computational time testing for each iteration in addition to testing the responsiveness of our 

robot navigations. Each iteration time was calculated by reading some functions from the procedure, such as 

defining goal interaction space, robot interaction space, obstacle interaction space, computing forces, and 
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providing control data to the simulator. When using the fixed k-value approach, each iteration takes an average of 

32.34 msec to complete. The average execution time for FIS to adaptively adjust the k-value is 35.27 msec. This 

suggests that employing FIS results in a 9.05% increase in processing time. 

 

 
Figure 9. Examples of the robot’s responsiveness when avoiding dynamic obstacles who are moving towards the 

same target position. (a) using APF with fixed 𝜁-value for scheme 3. (b) using SFM with fixed 𝑘-value for 

scheme 1. (c) using SFM with adaptive 𝑘-value for scheme 5. The blue lines are the trajectories made by the 

dynamic obstacles or opponent’s robots, while the yellow one is the trajectory made by our robot. 
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4. CONCLUSION  

Using a Fuzzy Inference System (FIS) method, we created a novel strategy for adapting the Social Force 

Model (SFM) parameter. Because the robot must deal with responsiveness while also avoiding obstacles in the 

field, some modification is required. We assessed and compared our proposed technique to the SFM with fixed 𝑘-

value method and APF with 𝜁-value method in this paper to show that our proposed method outperforms the 

others. Experiments have shown and stressed that adjusting the gain factor, 𝑘, adaptively is a very effective way 

to control the robot's response. For trials with static and dynamic obstacles, the percentage of safe navigation using 

the proposed method reaches 100%, 90% and 95%, respectively. The average number of sampling times for static 

and dynamic obstacles is 60 iterations for static obstacles, while it achieves 47 iterations and 38 iterations for two 

schemes of dynamic obstacle. The addition of the FIS only adds 9.05% to the computation time. In the future, we 

will also use Robotic Operating Systems (ROS) or Open Robotic Tool Middleware (OpenRTM) to implement this 

strategy in our real robot soccer game, allowing the system to run in real time despite the fact that many operations 

must be handled by the CPU. 

 

ACKNOWLEDGMENTS  

The first author was financially supported by the Research and Community Service Unit (P3M) of the 

Politeknik Elektronika Negeri Surabaya. 

 

REFERENCES  
[1] B. Damas et.al., “A modified potential fields method for robot navigation applied to dribbling in robotic soccer”, 

Lecture Notes in Computer Science, pp. 65-77, 2003. 

[2] P. Zhang et.al., “Soccer robot path planning based on the artificial potential field approach with Simulated Annealing”, 

Robotica, vol. 22, pp. 563-566, 2004.  

[3] Q. Zhang Q et.al., “An obstacle avoidance method of soccer robot based on evolutionary artificial potential field”, 

Energy Procedia vol. 16, pp. 1792-1798, 2012.  

[4] R. T. U. Albab et.al., “Path planning for mobile robot soccer using Genetic Algorithm”, The 19 th International 

Electronics Symposium on Engineering Technology and Applications (IES-ETA), pp. 276-280, 2017. 

[5] M. L. Afakh et.al., “Bicycle path planning on omnidirectional mobile robot using Fuzzy Logic Controller”, The 10 th 

International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 237-241, 2018. 

[6] S. Rodriguez et.al., “Fast path planning algorithm for the robocup small size league”, Lecture Notes in Computer 

Science 8992, 2015.  

[7] F. Rahman et.al., “Real-time kinodynamic motion planning for omnidirectional mobile robot soccer using rapidly-

exploring random tree in dynamic environment with moving obstacles”, Computer Science – Robotics, 2020. 

[8] R. H. Abiyev et.al., “Robot soccer control using behaviour trees and fuzzy logic”, The 12th International Conference 

on Application of Fuzzy Systems and Soft Computing (ICAFS), pp. 477-484, 2016. 

[9] R. A. Priambudi et.al., “Dynamic obstacle avoidance on middle size league robot soccer ERSOW using subtargets”, 

The 3rd International Conference on Applied Science and Technology (iCAST), 2020. 

[10] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics”, Physical Review, vol. E 51, pp. 4282-4286, 

1995. 

[11] B. S. B. Dewantara at.al., “Fuzzy social force model for robot soccer navigation: a preliminary report”, The 12th 

International Conference on Information Technology and Electrical Engineering (ICITEE), 2020. 

[12] I. K. Wibowo et.al., “Ball detection using local binary pattern in middle size robot soccer (ERSOW)”, IEEE 

International Conference of Computer and Informatics Engineering (IC2IE), pp. 29-32, 2019.  

[13] B. S. B. Dewantara and J. Miura, “Generation of a socially aware behavior of a guide robot using reinforcement 

learning”, IEEE International Electronic Symposium (IES), pp. 105-110, 2016.  

[14] C. Yang et.al., “Socially-aware navigation of omnidirectional mobile robot with extended social force model in multi-

human environment”, IEEE International Conference on Systems, Man and Cybernetics, pp. 1963-1968, 2019. 

[15] G. Ferrer et.al., “Robot companion: a social-force based approach with human awareness-navigation in crowded 

environments”, IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1688-1694, 2013.  

[16] F. Zanlungo et.al., “Social force model with explicit collision prediction”, EPL (Europhysics Letters), vol. 93, pp. 

68005-p1-68005-p6, 2011. 

[17] M. Luber et.al., “People tracking with human motion predictions from social forces”, IEEE International Conference 

on Robotics and Automation, pp. 464-469, 2010. 

[18] J. Holland, “Genetics algorithm”, Scientific American, vol. 267, pp. 66-73, 1992.  

[19] B. S. B. Dewantara, “Building a socially acceptable navigation and behavior of a mobile robot using Q-learning”, IEEE 

International Conference on Knowledge Creation and Intelligence Computing (KCIC), pp. 88-93, 2016.  

[20] R. S. Sutton and A. G. Barto, "Reinforcement Learning: An Introduction", The MIT Press, 2012.  



IJEEI  ISSN: 2089-3272  

 

Responsive motion control for robot soccer navigation under adaptive…… (Bima Sena Bayu Dewantara et al) 

701 

[21] A. Sent et.al., “Simulation of crowd behavior using fuzzy social force model”, Proceedings of the 2015 Winter 

Simulation Conference, pp. 3901-3912, 2015. 

[22] E. Mamdani, “Application of fuzzy logic to approximate reasoning using linguistic synthesis”, IEEE Transactions on 

Computer C, vol. 26, pp. 1182-1191, 1977. 

[23] M. Bliesener et.al., “Robotino”, Festo Workbook, 2011. 

[24] E. Hall et.al., “Proxemics”, Current Anthrophology, vol. 9, pp. 83-108, 1974.  

[25] http://www.coppeliarobotics.com, “Vrep: Virtual robot experimentation platform”, 2019. 

 

BIOGRAPHY OF AUTHORS 

 

Bima Sena Bayu Dewantara received the B.Eng. degree in Information Technology 

from Politeknik Elektronika Negeri Surabaya, Indonesia, and the M.Eng. degree in 

Electrical Engineering from Sepuluh Nopember Institute of Technology, Indonesia, 

in 2004 and 2010, respectively. He obtained the Dr.Eng. degree from Toyohashi 

University of Technology, Japan, in 2016. In 2005, he joined the Department of 

Electronic Engineering at Politeknik Elektronika Negeri Surabaya, Indonesia, as a 

lecturer. He moved to the Department of Informatics and Computer Science in 2007. 

Currently, he is an Assistant Professor in the major field of autonomous intelligent 

systems which covers pattern recognition, computer vision, machine learning, 

robotics system, and human-machine interactions. He received The Best 

Achievement Award from Toyohashi University of Technology, Japan, in 2016 and 

also received some Best Paper Awards in 2016, 2018, 2019 and 2020. 

 

 

Bagus Nugraha Deby Ariyadi received his B.Eng. degree in Electronic Engineering 

from Politeknik Elektronika Negeri Surabaya, Indonesia in 2018. Currently, he is 

pursuing an applied master's degree at Politeknik Elektronika Negeri Surabaya, 

Indonesia. His research area is robotics. 

 

 

 

 

 

 

Hary Oktavianto recieved his B.E., M.E., and Ph.D. degrees from the Department of 

Electrical Engineering of Institut Teknologi Sepuluh Nopember, Surabaya, 

Indonesia, in 2001, from the Department of Electrical Engineering of National 

Taiwan University of Science and Technology, Taipei, Taiwan, in 2010, and from 

the Department of Electrical and Electronic Information Engineering of Toyohashi 

Technology, Toyohashi, Japan, in 2017, respectively. Since 2002, he has been with 

the Department of Electrical Engineering of Politeknik Elektronika Negeri Surabaya, 

Indonesia, as a lecturer. His research interests include embedded systems, computer 

vision, smart sensor, and optoelectronic integrated circuits. 

 




