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 One of the biggest concerns associated with incorporating a large amount of 

renewable energy into power systems is the need to cope with significant 

ramps in renewable power output. Power system operators need to have 

statistical information on the power ramping features of renewable generation, 

load, and net-load that can be used to mitigate ramping events in the case of a 

large forecast error to ensure the power system's flexibility and reliability; on 

the other hand, for economic considerations. So far, there is no consensus on 

a precise definition for the ramp event and so far there are hardly any metrics 

describing the ramping features of a power system. The paper introduces new 

metrics describing the power ramping features in a power system. The new 

metrics are ramp regularity factor (RRF), ramp intensity factor (RIF), and 

maximum ramp ratio (MRR). In addition, the coefficient of variation (CV) is 

used to characterize the average value of power ramps. The new ramp metrics 

are applied to the output power of Belgium's aggregated wind farms in 2017 

and 2018. The results obtained by comparing the two years demonstrate that 

the two years have the same ramping behavior, although the average installed 

wind capacity has been increased. The new metrics can also be applied to other 

renewable sources (PV, tidal power, etc.), load, and net-load at any stage of 

operation. 
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1. NOMENCLATURE 
𝑪𝑽𝒅  The coefficient of variation of daily 

power ramps 

𝑪𝑽𝒕  The coefficient of variation of power 

ramps at an observation time 𝑡 

𝑪𝑽𝒕+/−  The coefficient of variation of upward or 

downward power ramps at an observation 

time 𝑡 

𝒅𝒏 The total number of days  

h The length of the power curve time series. 

𝒉𝒊𝒔 𝜟𝒑𝒂𝒗𝒈𝒅 The average value of power ramps over a 
certain number of days 

𝒉𝒊𝒔𝝈𝒅 The standard deviation of power ramps 

over a certain number of days 

𝒉𝒊𝒔 ∆𝒑𝒎𝒂𝒙𝒅+/− The maximum upward and downward 

value of historical daily power ramps  

𝑴𝑹𝑹𝒅  The maximum ramp ratio of daily power 

ramps 

𝑴𝑹𝑹𝒕  The maximum ramp ratio of power ramps 

at an observation time t 

n, N A counter for historical readings and the 
total number of historical readings 

𝒏+/−,𝑵+/− A counter for upward and downward 

ramps in historical readings and the total 
number 

𝑷𝑴𝒂𝒙 The maximum load (or net-load) value 

P(𝑵+/−) Probability of occurrence of a ramp event 

with a certain direction 

𝑷𝑹 Rated power of the case study considered 

𝑷𝑹𝑹𝒗𝒂𝒍 the power ramp rate threshold value  
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P(t) The output power at time 𝑡 from wind/PV  

𝑷𝒗𝒂𝒍 The threshold value of the power ramp 

𝑷𝑾(𝒐𝒓 𝑺) The installed wind (solar) capacity 

𝑹𝑰𝑭𝒅 The ramp intensity factor of daily power 
ramps 

𝑹𝑰𝑭𝒕 The ramp intensity factor of power ramps 

at observation time 𝑡 

𝑹𝑹𝑭𝒅 The ramp regularity factor for daily 

power ramps 

𝑹𝑹𝑭𝒕 The ramp regularity factor of power 

ramps at an observation time 𝑡 

t The observation time 

∆𝒑 The power ramp in a studied time interval 

Δt  

∆𝒑𝒂𝒗𝒈𝒅, ∆𝒑𝒂𝒗𝒈𝒕 The average value of power ramps in a 

studied day and at an observation time 𝑡 

∆𝒑𝒂𝒗𝒈𝒅+/−  The average value of upward and 

downward power ramps of a studied day  

∆𝒑𝒂𝒗𝒈𝒕+/− The average value of upward and 
downward power ramps at an observation 

time 𝑡 

∆𝒑𝒎𝒂𝒙𝒅+/− The maximum value of upward and 

downward power ramps of a studied day  

∆𝒑𝒎𝒂𝒙𝒕+/− The maximum value of upward and 

downward power ramps at an observation 

time 𝑡. 

𝜟𝒑 𝒏 The historical readings of power ramps at 

a selected observation time 𝑡. 

Δt The studied time interval. 

𝝁 The average value of the population 

𝝈 𝒅, 𝝈 𝒕 The standard deviation of power ramps in 
a studied day and at a selected 

observation time 𝑡 

𝝈 𝒅+/−, 𝝈 𝒕+/− The standard deviation of upward and 

downward power ramps in a studied day 

and at a selected observation time 𝑡 

  

2. INTRODUCTION 

The power systems are gradually increasing renewable generation (RG) as clean, plentiful, low-cost, 

and permanent sources of energy compared to fossil fuels. Moreover, the utilities need diverse generation 

resources to enhance system reliability and flexibility. As a result, RG in 2019 represented about 72% of the 

overall capacity additions, with wind and solar generation accounting for 90% of this percentage, as shown in 

Figure 1[1]. RG, on the other hand, increases the variability and uncertainty in the power system because its 

output depends on environmental conditions, leading to a modification in the planning studies to find flexible 

energy sources that can cover fluctuations in RG instead of just finding generation to cover consumption [2]. 

 

 
Figure 1. The renewable generation share of annual generation capacity expansion 

 

Power system operators may find it difficult to deal with this variability of power. In [3], the ramp 

rates of three uncorrelated RGs (wind, solar, and in-stream tidal) were studied besides the average, minimum, 

and maximum power production to get the optimal combination of their generating capacities. The authors of 

[4] proposed the intra-hour variability score metric to represent the sum of the absolute values of 1-min 

variation in both plane of array irradiance and AC power production, they displayed values for different sites 

measured for each hour of the day. The authors of [5] proposed a variability index to quantify irradiance, which 

was formulated as the ratio of the measured irradiance to the reference clear sky irradiance. The results were 

shown on a daily rather than hourly basis. On clear-sky days, the variability index will be close to one, while 

it will be low on rainy or overcast days. However, clear days may have low variability index values like rainy 

and overcast days with low irradiance all day. In addition, the mean annual value of the variability index 

decreased with an increase in the time interval studied. In [6], universal and natural variability indexes were 

used for quantifying variations in solar irradiance and PV power output over multiple timescales, the authors 

illustrated that although PV production is largely dependent on solar irradiance, variations in irradiance cannot 

fully represent the variability of power. There are many irradiance variability metrics, such as the daily 

aggregate ramp rate, the variability score, and the standard deviation of irradiance [7]. However, the irradiance 

variability metrics are based on horizontal irradiance variability, whereas the PV modules are tilted surfaces 
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and the irradiance variability on the inclined planes is higher than on the horizontal planes [8]. The author of 

[9] used the Lorenz curve that is traditionally used in economics for measuring the variability of incomes, to 

show the variability of PV plant output power. However, the results just presented the Gini coefficient for daily 

and monthly power variations rather than short-term fluctuations and did not quantify the magnitude and 

direction of such variations. The authors define the relative output variability of a PV fleet in [10] as the ratio 

of a PV fleet's output variability to the output variability of the same fleet but concentrated at a single location. 

The results showed a reduction in relative variability by dispersing the fleet over a wide area. In [11], an 

analysis of the instantaneous output power at 4-second intervals of four PV plants was performed. The results 

of the variability study showed that over 95% of the time, these very short-term output changes were within a 

1 MW fluctuation. Although the effect of PV variability was limited by low PV penetration, the variability of 

the combined PV output showed an increase in the frequency of higher magnitude variability. Thus, at the 

higher penetration levels, larger ramping events can be expected from the aggregate PV generation. 

The power system operators and planners should have information about the ramping events that occur 

in the system. In [12], the authors concluded that future research should include the ramp forecasting of variable 

renewable generation (VRG) into power system operation and planning. However, the forecasting error 

percentage is still relatively high [13][14], impacting the generation-demand balance and electricity prices [15]. 

All of the predictive schemes used in [16] forecasted only a small number of ramp events, and work to improve 

forecasting approaches are still ongoing [17][18]. In [19], just a binary count was done to determine the number 

of days with a ramp event during a certain period of the day. In [20] based on historical wind power data, the 

duty ratio of wind power ramp was proposed to quantify intermittency, the results demonstrated that wind 

power is more intermittent than wind speed, which was also illustrated in [21] by calculating the duty ratio of 

wind speed. The author concluded in [22] that the predictions of changes in wind speed are uncertain, and the 

variations in power associated with these predictions are less than the observed variability. In [23], the authors 

introduced a variability index as the standard deviation of a band-limited signal in a moving window of six 

hours, this index was insensitive to rapid fluctuations. The authors stated that a high proportion of wind power 

variability could not be explained by wind speed alone. 

In [24], the authors proposed a probabilistic metric that depends on the risk preference of the decision-

makers, to quantify the ranges of wind power output based on the minimum and maximum generation levels 

at a certain time interval. However, when the dynamic uncertainty intervals produced by the proposed metric 

were compared to the static one formed by a fixed forecast error of 20%, the results were approximately equal. 

In addition, the authors only used 3-month data to generate dynamic ranges, while wind power output 

variability varies with months, seasons, and time of day, so more data will include more information and may 

generate different ranges of wind power. In [25], the authors proposed the ultra-diurnal variation metric to 

estimate the portion of ultra-diurnal frequencies of variation, which can be used in selecting the locations of 

new wind farms. In [26], the authors proposed a metric for sizing the boundary of wind power variability in a 

studied time interval, which does not depend on the level of forecast error but depends on the statistical analysis. 

However, the metric did not determine the ramp rate of the power ramps and the three standard deviation rule 

did not cover 99.7% of power ramps, because the distribution of power ramps is not normal. In [27], the authors 

presented a metric for quantifying the cost of the variability of wind power. In [28], the authors illustrated that 

the higher temporal resolution of wind power captured more variability and led to better estimation of total 

energy costs. In [29], the authors demonstrated the importance of the mean distance between wind farms and 

the capacity factor in clarifying the variations in wind generation which increased by raising the capacity factor. 

In [30], the variability of various renewable energy sources (wind, solar, and wave power) was quantified 

through the measurement of reserve requirements. While in [31] the authors proposed metrics to examine the 

variability difference between the independent and combined generation of three RGs (wind, solar, and 

hydropower). The power systems will need to investigate the effect of increasing shares of VRG on the power 

ramping behavior. In [32], the ramp characteristic indicators have been proposed for comparing the ramping 

behavior of VRG in different years. These indicators can be utilized also for comparing the ramping behavior 

between the power systems in different countries. Statistical analysis of historical data can be used to obtain 

the ramping characteristics of a variable energy source [33][34]. This paper discusses the different ramp 

definitions and when the ramp is classified as a ramp event besides the meteorological processes related to 

ramp events. The main contribution of the paper is the introduction of new metrics that characterize ramping 

behavior in a power system. These metrics will assist both power system planners and operators in selecting or 

committing the correct generation. Moreover, based on these metrics, system operators will take appropriate 

necessary precautions, enabling them to avoid large prediction errors and so improve both the power system 

flexibility and reliability. 
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3.  POWER RAMPS 

3.1. CHARACTERISTICS FOR RAMP DEFINITIONS 

In [35], the authors stated that the ramp event definition mainly contains two points, a small time 

scale, and a sharp power change. Several characteristics have been outlined to define, characterize, and identify 

ramps. In [36], three key characteristics which are direction, magnitude, and duration should be determined to 

define a ramp. The direction of power ramps may be upward or downward. In [19][37], the ramp event whether 

it is upward or downward is characterized by a rapid increase or decrease in power output. The ramp event 

magnitude is user-defined [38], hence a ramp that is a ramp event on one system might not be a ramp event on 

another. For wind generation, the ramp event magnitude is usually defined as a percentage of the nominal 

capacity installed or as a megawatt value. The ramp duration is a user-defined parameter that defines the time 

interval (Δt) considered for identifying the ramp in minutes or hours. Different ramp durations have been 

considered; for example, the author in [19] studied ramp events at time intervals ranging from 5 minutes to 1 

hour. The authors in [39][40] related the ramp duration to the magnitude and direction of the identified ramps. 

For studying the ramp phenomena, the difference between the insignificant ramp and ramp event should be 

known, a ramp event occurs when the power change for a relatively short period has a large enough magnitude 

[36][41]. The ramp event may cause severe problems in grid management in the next few hours or days [42]. 

The insignificant ramp is defined as an upward or downward ramp of a smaller magnitude and can be managed 

easily. 

 

3.2. RAMP EVENT DEFINITIONS 

There are several definitions for the ramp event [43][44][45] that may differ according to whether the 

ramp event is in load or RG (wind or solar). The various definitions of the ramp event are presented below:  

• Definition 1: At the start of an interval, the ramp event occurs if the absolute change in the power signal at 

time Δt ahead of the interval is more than a predefined threshold value [19][46]. 
|P(t + Δt)– P(t)| > 𝑃𝑣𝑎𝑙  (1) 

The definition takes only the values on the points of start and end of the interval, while it ignores the ramp 

events that may occur in between, so the author in [19] extended the previous definition as follows. 

• Definition 2: A ramp event occurs in a time interval Δt if the difference between the maximum value of 

power and the minimum in that interval is more than a threshold value: 

Max (P [t, t+Δt ])-Min (P [t, t+ Δt])> 𝑃𝑣𝑎𝑙  (2) 

The definition does not consider the speed of power change. In [19], the analysis demonstrated that the two 

definitions have the same results.  

• Definition 3: A ramp event occurs if the ramp rate is more than a predefined power ramp rate threshold 

value that is measured by MW/min. Definition 3 is more accurate than definitions 1 and 2 because it takes 

into consideration the slope of the curve or the speed of power change [44].  
|P(t + Δt)– P(t)|

Δt
> 𝑃𝑅𝑅𝑣𝑎𝑙  (3) 

In [47], the authors presented four definitions that determine the threshold values of ramp events in 

load or net-load power signals as a percentage of the maximum load as follows. 

 

a. Definitions of ramp events in load or net-load 

The load and net-load power signals are somewhat stable when compared with solar and wind power 

signals; therefore load and net-load ramp events are defined with lower threshold values than wind and solar 

ramp events. Four definitions are presented below for load and net-load ramp events, see Figure 2: 

• Definition 1: A ramp event occurs when the change in power of total load (or net-load) is greater than 5% 

of the maximum value of load (or net-load); 

• Definition 2: As the previous definition but within a period that is less than or equal to four hours; 

• Definition 3: A ramp event occurs when the rate of change in total load (or net-load) is greater than 3% of 

the maximum value of load (or net-load);  
∆P

Δt
> 0.03𝑃𝑀𝑎𝑥  (4) 

• Definition 4: Since the management of upward ramps is more difficult than downward ramps, the upward 

and downward ramp events have different threshold values. The upward ramp event is defined as definition 

2; while the downward ramp is defined when the change is greater than 7% of the maximum value of load 

(or net-load) within a period that is less than or equal to four hours. 
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Figure 2. Net-load ramp events[47] 

 

b. Definitions of ramp events in RG (wind or solar power) 

In [36][16], the ramp event in wind power is defined as the change in the output power of a wind farm 

that is not less than 50% of the installed capacity within a period that is less than or equal to four hours, as 

shown in Figure 3. 

 

 

Figure 3. Illustration of wind power ramp events, as defined in [36][48] 

 

In [45], four definitions for wind power ramp events were presented, which determine ramp threshold 

values as a percentage of the installed wind capacity, which can also be applied to solar power.  

• Definition 1: A ramp event occurs when the change in wind power is greater than 20% of the installed 

capacity without constraining the ramping duration; 

• Definition 2: As the previous definition but within a period that is less than or equal to four hours; 

P(t + Δt)– P(t) >  0.2𝑃𝑊(𝑜𝑟 𝑆) ; Δt ≤ 4ℎ (5) 

• Definition 3: A ramp event occurs when the change rate in wind power is greater than 3% of the installed 

capacity; 
∆P

Δt
> 0.03𝑃𝑊(𝑜𝑟 𝑆) 

(6) 

• Definition 4: The upward ramp event is defined as definition 2; while the downward ramp is defined when 

the change in wind power is greater than 15% of the installed capacity within a period that is less than or 

equal to four hours. From the grid operators' point of view, the downward ramps in wind (or solar) power 

are more difficult to be managed than upward ramps because the upward ramps can be managed by adjusting 

other generators' schedules, or by curtailing wind (or solar) generation if necessary. Whereas if downward 

ramps occur, the grid operators have to compensate for the shortage of wind (or solar) generation by 

increasing generation from other generators or by finding other generations to compensate for this deficit 

and keep the load balanced. Therefore, the percentage of difference threshold for the downward ramps was 

selected lower than that of upward in definition 4.  

For the solar generation, the diurnal upward power ramping that is expected to occur from sunrise to 

noon and also downward power ramping that is expected to occur from noon to sunset should not be defined 

as ramp events [47], see Figure 4. 
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Figure 4. Solar power ramp events[47] 

 

In [49], the collective ramp event describes a scenario in which the majority of solar PV systems 

concurrently experience a positive or negative ramp event within a given time step. Critical collective ramp 

events are those that exceed 60% of the clear-sky potential in one hour. There is no agreement on an accepted 

formal definition for the ramp event. Table 1 summarizes the different ramp event definitions in wind, solar, 

net-load, and load power, in which the ramp magnitude threshold varies between 1-75% from the rated power 

(𝑷𝑹), while the ramp duration threshold ranges from 5 minutes to 6 hours. This great divergence in defining 

the ramp event is due to the difference between the power systems in the capabilities and the flexibility available 

to meet these ramp events [50][51]. The threshold value could be either a system-dependent or a percentage of 

the installed nameplate capacity, which is chosen to reflect the amount of power that is difficult to be handled 

in the given time interval to keep the system balanced. In practice, it is selected based on input from the system 

operators. It could be different for different regions and could vary over the years to match the changes in load 

demand and the generation mix. 

 

Table 1. Different ramp event definitions 
Author 𝜟𝒑𝟎 𝜟𝒕𝒓 Type 

Ramp event definition as a percentage of the rated power 

N. Cutler [41] 

 

75% 3h Wind 

 65% 1h 

C. W. Potter [39] 10% 1h Wind 
B. Greaves [36] 50% 4h Wind 

A. J. Deppe [16] 50% ≤4h Wind 

K. T. Bradford [42] 20% 1h Wind 
A. Bossavy [52] 50% n/a Wind 

C. Kamath [53] 10-12% 30 min Wind 

C. Kamath [53] 15-20% 1h Wind 
C. Gallego [54] 𝜎𝑔𝒑𝑹 1h Wind 

H. Zareipour [55] 50% 10 min portfolio 

R. Girard [56] 30% n/a Wind 

Q. Yang [57] 15% 1h Wind 
A. Fernandez [58] 25% 3h Wind 

A. Suzuki [59] 15% 6h Wind 

P. P. Revheim [60] 30% 3h Wind 
J. Heckenbergerova 

[61] 

50% 5h Wind 

S. J. Wellby [49] 60% 1h Solar 

M. Abuella [62] 40% 1h Solar 

D. Gan [63] 40% Upward n/a Wind 

30% Downward n/a 

G. Ren [20] 1% 5 min Wind 
3% 15 min 

7% 30 min 

15% 1 h 

M. Cui[47] 20% Upward 4h Wind 

(Solar) 15% Downward 

5% Upward 4h Load 

(net-
load) 

7% Downward 

Ramp event definition as a megawatt value 

N. Cutler [64] 

 

200 30 min Wind 

150 Downward 5 min 

150 30 min 

75 30 min 
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3.3. RAMP EVENTS AND METEOROLOGICAL PHENOMENA 

The relation between the occurrence of ramp events and meteorological processes was studied to 

understand the meteorological phenomena that create ramp events. The authors in [49] explained that the 

occurrence of critical ramp events in a region is connected to repeatable meteorological phenomena, so the 

solar zenith angle (SZA) was studied to determine the angles at which critical collective ramp events occurred. 

SZA provides a reference point for understanding ramping behavior in terms of the location of the sun, see 

Figure 5(a, b). The authors claimed that by analyzing the frequency of the collective ramp events that occur at 

a particular SZA range, it would be possible to estimate periods of the day where collective ramp events are 

most likely to occur. However, relating ramp events by meteorological phenomena is extremely a case-

dependent problem [65]. In [66], the authors found that the wind ramp events are associated with a local 

meteorological phenomenon is known as the Föhn wind event and the power ramps varied considerably with 

season. The authors in [67] distinguished between the meteorological processes that produce upward ramp 

events and downward ramp events. The meteorological processes related to ramp-up events were defined as 

the thunderstorm outflow, cold front, sea breezes, and onset of mountain wave events, while those related to 

ramp-down events were defined as the warm front, boundary stabilization, and relaxation after the cold front. 

In [68], the major phenomena related to the ramp events such as cross-mountain flows, shallow cold 

air, and cold surge events were described. The authors stated that the ramp-up events are happening mostly 

from May to July and ramp-down events in the period from August to January. Whereas it was found in [19] 

that both upward and downward ramp events occurred mostly in the afternoon than in the morning and occurred 

mostly in months from March to August. In [16], only 34% of ramp events were caused by frontal passages 

and thunderstorms phenomena, while a high percentage of ramp events could not be explained. 

  

 

(a) 

 

(b) 

Figure 5(a, b). Figure (5 a) Schematic illustration of SZA and Viewing Zenith Angle (VZA) for observations 

from the satellite-based instrument, Figure (5 b) Solar Zenith, azimuth, and elevation Angles 

 

3.4. RAMP METRICS 

So far, there is no consensus on an accurate definition for the ramp event and so far, there are hardly 

any metrics describing the ramping features in a power system. In this section, new ramp metrics will be 

presented to describe the power ramping behavior in the system. These metrics can provide power system 

planners and operators with a description and awareness of system power ramps that occurred during the 

studied interval, which can be used to commit or dispatch the appropriate generation for these ramp events in 

the event of a large forecasting error, thereby increasing system flexibility and reliability. The new metrics are 

ramp regularity factor (RRF), ramp intensity factor (RIF), and maximum ramp ratio (MRR). Also, the 

coefficient of variation (CV) will be reused in describing the average value of power ramps. The new metrics 

can be used to analyze the ramping features in load, net-load, PV, and wind power signals. In each metric, the 

analysis of power signal time series will take two directions as follows: 

1. Vertical analysis direction of power signal time series: In which the ramp metrics are calculated for each 

observation time t in the power signal time series, where the historical readings are used to calculate the 

power ramps that occurred at a certain observation time t during a studied time interval 𝚫𝐭. After that, the 

power ramps are analyzed to calculate the ramp metrics then moving to the next observation time.  

2. Horizontal analysis direction of power signal time series: In which the ramp metrics are calculated by 

analyzing the historic daily ramp readings during the studied time interval 𝚫𝐭 over a certain week, month, 

season, or year. 
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The studied time interval 𝚫𝐭 is chosen by the power system operator to analyze the ramping behavior in a power 

system according to the studied operating stage.  

 

a. The coefficient of variation (CV): 

The CV was used to measure the spread of a set of data. It is defined as the ratio of the standard 

deviation (𝜎) to the mean (μ). The CV was proposed to compare the variability in different distributions to 

show the extent of variability in relation to the mean of the population [69][70]. The value of CV that is less 

than one indicates low variance, while the CV value that is more than one indicates high variance. 

𝐶𝑉 =
𝜎

𝜇
 (7) 

In power systems, the coefficient of variation can be reused to describe the ramping behavior in the 

power signal. The coefficient of variation informs the power system operators or planners about to what extent 

they can rely on the average value of power ramps within the studied time interval ∆𝑡. If the value of 𝑪𝑽 within 

a studied time interval is less than one, the average value well describes the power ramps in that time interval. 

While if the value of CV is more than one, the average value does not describe correctly the power change in 

that time interval, indicating a high level of variation in ramp readings. The CV can be used also in comparing 

the variability of different power systems. According to the two directions of analysis explained before, the 

values of CV will be calculated for each direction as follows. 

1. The coefficient of variation of power ramps at an observation time t (𝑪𝑽𝒕 ) i.e. Vertical analysis 

direction: It is the ratio between the standard deviation (𝝈𝒕 ) and the average (∆𝒑𝒂𝒗𝒈𝒕) of historical power 

ramps within the studied time interval (𝚫𝐭) at an observation time t, which can be expressed as follows: 

𝐶𝑉𝑡 =
𝜎 𝑡 

∆𝑝𝑎𝑣𝑔𝑡

 (8) 

Where the average value and the standard deviation are calculated as follows: 

The historical readings of power are used to calculate the power ramps (𝜟𝒑𝒏) that occurred within a 

selected time interval (Δt) at a selected observation time t as in "9". 

ΔP𝑛=P(𝑡𝑛 + Δt)– P(tn), n = (1,..., N) (9) 

Where n is a counter for the number of historical readings and N is its total number that may be taken 

for a month, season, or year. In "9", both t and 𝚫𝐭 are fixed and n is changed until finishing all the studied 

historical readings, then moving to the next observation time (t+ 𝚫𝐭). If 𝜟𝒑𝒏 is positive, it refers to power 

ramp-up (𝜟𝒑𝒏+). Conversely, if 𝜟𝒑𝒏 is negative, it refers to power ramp-down (𝜟𝒑𝒏−). 

If,             𝛥𝑝𝑛 > 0→ 𝛥𝑝𝑛+ (Ramp-up), 
(10) 

and if,      𝛥𝑝𝑛 < 0→ 𝛥𝑝𝑛− (Ramp-down) 

The average value of power ramps at an observation time (t) is given by: 

𝛥𝑝𝑎𝑣𝑔𝑡 =
1

𝑁
∑ 𝛥𝑝𝑛

𝑁

𝑛=1

 (11) 

The positive average value indicates that the upward ramp is the most common at the observation time 

t, whereas the negative average means that the ramp-down type is the most occurrence ramp type.  

The standard deviation of power ramps at the observation time t is given by: 

𝜎𝑡  = √
1

𝑁−1
∑ (Δp𝑛 − Δpavgt)2𝑁

𝑛=1  (12) 

The coefficient of variation of upward and downward power ramps within the selected time interval (Δt) 

at an observation time t is calculated as follows: 

The average value of the upward and downward power ramps at the studied observation time t is given by: 

𝛥𝑝𝑎𝑣𝑔𝑡+ =
1

𝑁+
∑ 𝛥𝑝 𝑛+

𝑁+
𝑛+=1   ,   𝑛+= (1, .., 𝑁+) (13) 

𝛥𝑝𝑎𝑣𝑔𝑡− =
1

𝑁−
∑ 𝛥𝑝 𝑛−

𝑁−
𝑛−=1   ,  𝑛−= (1, .., 𝑁−) (14) 

The standard deviation of upward and downward power ramps at the studied observation time t is given by: 

𝜎𝑡+ =√
1

𝑁+−1
∑ (𝛥𝑝𝑛+

− 𝛥𝑝𝑎𝑣𝑔𝑡+
𝑁+
𝑛+=1 )2 (15) 

𝜎𝑡− =√
1

𝑁−−1
∑ (𝛥𝑝𝑛−

− 𝛥𝑝𝑎𝑣𝑔𝑡−)
2𝑁−

𝑛−=1  (16) 

The coefficient of variation of upward power ramps at the observation time t is given by: 
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𝐶𝑉𝑡+ =
𝜎 𝑡+ 

∆𝑝𝑎𝑣𝑔𝑡+

 (17) 

The coefficient of variation of downward power ramps at the observation time t is given by: 

𝐶𝑉𝑡− =
𝜎𝑡− 

∆𝑝𝑎𝑣𝑔𝑡−

 (18) 

2. The coefficient of variation for daily power ramps (Horizontal analysis direction): It is the ratio 

between the standard deviation (ℎ𝑖𝑠𝝈𝒅 ) and the average (ℎ𝑖𝑠∆𝒑𝒂𝒗𝒈𝒅) of historical power ramps that occurred 

within the studied time interval (𝚫𝐭) over a certain number of days, which can be expressed as follows: 

 𝐶𝑉𝑑 =
ℎ𝑖𝑠 𝜎𝑑 

ℎ𝑖𝑠 𝛥𝑝𝑎𝑣𝑔𝑑

 (19) 

The daily historical readings of power are studied to measure the ramping behavior in certain weeks, 

months, seasons, or years within the studied time interval ∆𝒕. The power ramps time series in a studied day can 

be obtained by fixing 𝚫𝐭 and changing t as follows: 

𝛥𝑝𝑡 =𝑃(𝑡 + 𝛥𝑡)– 𝑃(𝑡), t = (1,..., h) (20) 

𝛥𝑝𝑡 > 0→ 𝛥𝑝𝑛+ Ramp-up 
 

𝛥𝑝𝑡 < 0→ 𝛥𝑝𝑛−  Ramp-down 

The average value of power ramps ( 𝚫𝐩𝐚𝐯𝐠𝐝) within the selected time interval 𝚫𝐭 during the studied 

day and the standard deviation (𝝈𝒅) is given by “(21)”, “(22)”: 

𝛥𝑝𝑎𝑣𝑔𝑑 =
1

ℎ
∑ 𝛥𝑝𝑡

ℎ

𝑡=1

 (21) 

𝜎𝑑= √
1

ℎ−1
∑ (𝛥𝑝𝑡 − 𝛥𝑝𝑎𝑣𝑔𝑑)2ℎ

𝑡=1  (22) 

The average value and the standard deviation of power ramps over a certain number of days can be 

obtained as in “(23)”: 

ℎ𝑖𝑠𝛥𝑝𝑎𝑣𝑔𝑑 =
1

𝑑𝑛

∑ 𝛥𝑝𝑎𝑣𝑔𝑑

𝑑𝑛

𝑑1

 

(23) 

ℎ𝑖𝑠𝜎𝑑= |𝑑𝑛
𝑑1

√
1

ℎ−1
∑ (𝛥𝑝𝑡 − ℎ𝑖𝑠𝛥𝑝𝑎𝑣𝑔𝑑)2ℎ

𝑡=1  

For a week, month, and year, 𝑑𝑛=7, 30, and 365 respectively. 

The coefficient of variation of upward and downward power ramps is calculated as follows: 

The average value and the standard deviation of upward and downward power ramps within the 

selected time interval 𝚫𝐭 during the studied day is given by: 

𝛥𝑝𝑎𝑣𝑔𝑑+ =
1

𝑁+
∑ 𝛥𝑝 𝑛+

𝑁+
𝑛+=1 ,    𝑛+ = (1, .., 𝑁+) (24) 

𝛥𝑝𝑎𝑣𝑔𝑑− =
1

𝑁−
∑ 𝛥𝑝 𝑛−

𝑁−
𝑛−=1 ,    𝑛− = (1, .., 𝑁−) (25) 

𝜎𝑑+ =√
1

𝑁+−1
∑ (𝛥𝑝 𝑛+

− 𝛥𝑝𝑎𝑣𝑔𝑑+
𝑁+
𝑛+=1 )2 

(26) 

𝜎𝑑− =√
1

𝑁−−1
∑ (𝛥𝑝 𝑛−

− 𝛥𝑝𝑎𝑣𝑔𝑑−)
2𝑁−

𝑛−=1  
(27) 

The average value and the standard deviation of upward and downward power ramps over a certain 

number of days can be obtained as in “(28)”: 

ℎ𝑖𝑠𝛥𝑝𝑎𝑣𝑔𝑑+/− =
1

𝑑𝑛

∑ 𝛥𝑝𝑎𝑣𝑔𝑑+/−

𝑑𝑛

𝑑1

 

(28) 

ℎ𝑖𝑠𝜎𝑑+/−= |𝑑𝑛
𝑑1

√
1

ℎ−1
∑ (𝛥𝑝𝑛+/− − ℎ𝑖𝑠𝛥𝑝𝑎𝑣𝑔𝑑+/−)2ℎ

𝑡=1  

The coefficient of variation of upward and downward power ramps over a certain number of days is 

given by: 

 𝐶𝑉𝑑+/− =
ℎ𝑖𝑠 𝜎𝑑+/− 

ℎ𝑖𝑠 𝛥𝑝𝑎𝑣𝑔𝑑+/−

 (29) 
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b. The Ramp Regularity Factor (RRF): 

It is defined as the ratio between the average (∆𝒑𝒂𝒗𝒈) and the maximum value (∆𝒑𝒎𝒂𝒙) of historical 

power ramps of the same type within the studied time interval ∆𝒕, which can be expressed as follows: 

𝑅𝑅𝐹 =
∆𝑝𝑎𝑣𝑔

∆𝑝𝑚𝑎𝑥

  , 0˂𝑅𝑅𝐹˂1 (30) 

The values of RRF close to 1 show that the power changes are largely steady, indicating that the 

average and maximum ramps are about equal, and the average ramp value better represents the power ramps 

for that period and the system ramps are about equal. While the values of RRF close to zero show that the 

average value does not accurately describe the power ramps in that time interval, and unexpected high ramp 

occurrence is likely in that period, so the power system operators should take the necessary precautions.  

1. The ramp regularity factor for an observation time t (𝑹𝑹𝑭𝒕 ): It is the ratio between the average and 

the maximum value of historical power ramps of the same type within the studied time interval (𝚫𝐭) at the 

observation time t, which can be expressed as follows: 

𝑅𝑅𝐹𝑡+/− =
∆𝑝𝑎𝑣𝑔𝑡+/−

∆𝑝𝑚𝑎𝑥𝑡+/−

, 0˂𝑅𝑅𝐹˂1 (31) 

Where the maximum value of historical power ramps at the observation time t during the studied time 

interval 𝚫𝐭 can be obtained from “(9)” as follows: 

∆𝑝𝑚𝑎𝑥𝑡+ = 𝑚𝑎𝑥Δp 𝑛 
(32) 

∆𝑝𝑚𝑎𝑥𝑡− = 𝑚𝑖𝑛Δp 𝑛 

  

2. The ramp regularity factor for daily power ramps (𝑹𝑹𝑭𝒅): It is the ratio between the average and the 

maximum value of historical power ramps of the same type that occurred within the studied time interval (𝚫𝐭) 

over a certain number of days, which can be expressed as follows: 

𝑅𝑅𝐹𝑑+/− =
ℎ𝑖𝑠∆𝑝𝑎𝑣𝑔𝑑+/−

ℎ𝑖𝑠∆𝑝𝑚𝑎𝑥𝑑+/−

 , 0˂𝑅𝑅𝐹˂1 (33) 

The maximum value of upward and downward power ramps in a studied day within the studied time 

interval 𝚫𝐭 can be obtained from “(20)” as follows: 

∆𝑝𝑚𝑎𝑥𝑑+ = 𝑚𝑎𝑥𝛥𝑝 𝑡 (34) 

∆𝑝𝑚𝑎𝑥𝑑− = 𝑚𝑖𝑛 𝛥𝑝 𝑡 , t = (1, ..., h) (35) 

The maximum value of upward and downward power ramps over a certain number of days can be 

obtained as in “(36, 37)”: 

ℎ𝑖𝑠∆𝑝𝑚𝑎𝑥𝑑+ = 𝑚𝑎𝑥 |
𝑑𝑛

𝑑1

∆𝑝𝑚𝑎𝑥𝑑+ (36) 

ℎ𝑖𝑠∆𝑝𝑚𝑎𝑥𝑑− = 𝑚𝑖𝑛 |
𝑑𝑛

𝑑1

∆𝑝𝑚𝑎𝑥𝑑− (37) 

 

c. The ramp intensity factor (RIF): 

It is the ratio between the power ramp in a studied time interval to the maximum value of historical 

power ramps of the same type at that time interval. The RIF is a time-dependent factor that depends on the 

studied interval Δt. The power system operator can use this factor to measure the intensity of the power ramp. 

The values of RIF close to zero represent very small ramps that can be neglected, while the values close to one 

refer to high power ramps. Therefore, this factor can be used in classifying the power ramps. 

𝑅𝐼𝐹 (𝑡, Δt) =
∆𝑝(𝑡)

∆𝑝𝑚𝑎𝑥

, 0 ≤ 𝑅𝐹 ≤ 1 (38) 

1. RIF for power ramps at an observation time t: It is the ratio between the power ramp that occurred 

within the studied time interval Δt at an observation time t and the maximum value of historical power ramps 

of the same type within the same time interval at that observation time. Therefore, the ramp intensity factor 

depends on the selected observation time t and the time interval Δt. The metric can be used in classifying the 

power ramps at each observation time t, where the classification of power ramps at an observation time t will 

depend on the local maximum value of historical power ramps at that observation time.  

𝑅𝐼𝐹𝑡+/− =
𝛥𝑝 𝑡+/− 

∆𝑝𝑚𝑎𝑥𝑡+/−

,   0 ≤ 𝑅𝐹 ≤ 1 (39) 

2. RIF for daily power ramps: It is the ratio between the power ramp that occurred in a studied day within 

the studied time interval Δt and the maximum value of historical power ramps of the same type for that time 

interval. Where the intensity of the power ramp at a certain time interval Δt is measured with respect to the 

global maximum value of historical power ramps at the same time interval. 
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𝑅𝐼𝐹𝑑+/− =
𝛥𝑝 𝑡+/− 

ℎ𝑖𝑠 ∆𝑝𝑚𝑎𝑥𝑑+/−

, 0 ≤ 𝑅𝐹 ≤ 1 (40) 

This factor can also be used to measure the intensity of the local maximum value of power ramps at 

observation time t to the global maximum value of the same ramp type at the same time interval. 

𝑅𝐼𝐹𝑑+/− =
∆𝑝𝑚𝑎𝑥𝑡+/−

ℎ𝑖𝑠 ∆𝑝𝑚𝑎𝑥𝑑+/−

, 0 ≤ 𝑅𝐹 ≤ 1 (41) 

 

d. The maximum ramp ratio (MRR): 

It is defined as the ratio between the maximum downward value to the maximum upward value of 

historical power ramps within the studied time interval Δt, which can be expressed as follows: 

MRR =
∆𝑝𝑚𝑎𝑥−

∆𝑝𝑚𝑎𝑥+

 (42) 

From the power system operators' point of view, the downward ramps in the wind or solar power are 

more difficult to be managed than upward ramps, whereas the upward ramps in load or net-load are more 

difficult to be managed than downward, therefore the MRR compares their maximum values at the studied time 

interval. The MRR can be used to calculate the followings: 

1. MRR at an observation time t: It is defined as the ratio between the maximum downward value to the 

maximum upward value of historical power ramps within the studied time interval Δt at an observation time t. 

𝑀𝑅𝑅𝑡 =
𝛥𝑝 𝑚𝑎𝑥𝑡− 

∆𝑝𝑚𝑎𝑥𝑡+

  
(43) 

  

2. MRR for daily power ramps: It is defined as the ratio between the maximum downward value to the 

maximum upward value of historical power ramps within the studied time interval Δt. 

𝑀𝑅𝑅𝑑 =
ℎ𝑖𝑠 ∆𝑝𝑚𝑎𝑥𝑑−

ℎ𝑖𝑠 ∆𝑝𝑚𝑎𝑥𝑑+

 
(44) 

 

3.5. CASE STUDY 

Nuclear power in Belgium, which accounts for 50% of the total electricity generated, is planned to be 

phased out over the next five years. As a result, Belgium's share of RG is expected to double in 2030 compared 

to that in 2017, where RG in 2017 represented around 17% of the total electricity consumption. Therefore, 

wind capacity is increasing continuously. Using the analytical methodologies described above, the ramp 

metrics are applied to the output power of Belgium's aggregated wind farms (onshore and offshore) recorded 

every 15 min in 2017 and 2018 [71]. The maximum installed wind capacity in 2017 was 2621.924 MW, and 

the average installed wind capacity throughout the year was 2439.074 MW. Whereas in 2018, the maximum 

installed wind capacity was 3157.185 MW, and the average installed wind capacity throughout the year was 

2922.08 MW. The variations in wind power are calculated within the time interval of 15 min. 

 

4. Results and Discussion 

 

4.1. Vertical analysis results and discussion  

Table 2 summarizes the range and the average value of ramp metrics for upward and downward power 

ramps that occurred within a time interval of 15 min across all observation times in 2017 and 2018. 

In Figure 6, the comparison between the coefficients of variation of upward power ramps within a 

time interval of 15 min at each observation time in 2017 and 2018 is shown. The CV values of the two years 

are approximately equal for most observation times, the CV values in the period from 5:00 AM to 9:00 AM 

and from 16:15 to 20:45 are lower than those in the other periods. The average values of CV for the two years 

are approximately equal and greater than one, as the average values of CV in 2017 and 2018 are equal to 1.15 

and 1.16 respectively. The CV values range from 0.93 to 1.7 in 2017, and range in 2018 from 0.88 to 1.85.  

In Figure 7, the comparison between the coefficients of variation of downward power ramps within a 

time interval of 15 min at each observation time in 2017 and 2018 is shown. The CV values of the two years 

are approximately equal for most observation times. The average values of CV in the two years are 

approximately equal and more than one, as the average values of CV in 2017 and 2018 are equal to 1.18 and 

1.14 respectively. The CV values range from 0.95 to 2 in 2017, and range in 2018 from 0.88 to 1.5. Therefore 

for upward and downward power ramps, the range and the average of CV values in the two years are 

approximately equal, thus the CV can describe accurately the variation of both types of power ramps in wind 

generation in the two years. For most observation times, the CV values are more than one, indicating that the 

average value does not describe correctly the power ramps in these observation times. 
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Figure 6. Comparison of the coefficients of variation of upward power ramps within a time interval of 15 min 

at each observation time in 2017 and 2018 

 

 
Figure 7. Comparison of the coefficients of variation of downward power ramps within a time interval of 15 

min at each observation time in 2017 and 2018 

 

In Figure 8, the comparison between the ramp regularity factors of upward power ramps within a time 

interval of 15 min at each observation time in 2017 and 2018 is shown. The range and the average value of 

RRF in the two years are equal, as the values of RRF range from 0.06 to 0.26 in 2017, and range in 2018 from 

0.04 to 0.25. While the average value of RRF is equal to 0.14 in the two years.  

In Figure 9, the comparison between the ramp regularity factors of downward power ramps within a 

time interval of 15 min at each observation time in 2017 and 2018 is shown. For most observation times, the 

values of RRFs in the two years are close to each other, so the range and the average value of RRFs in the two 

years are equal, as the values of RRF range from 0.04 to 0.23 in 2017, while in 2018 range from 0.07 to 0.26. 

The average values of RRF in 2017 and 2018 are equal to 0.13 and 0.14 respectively. Therefore, for upward 

and downward power ramps, the range and the average value of RRFs in the two years are equal, so the RRF 

describes accurately both types of power ramps in wind generation in the two years. The low values of RRF 

which are close to zero show the high occurrence probability of unexpected high power ramps of both types. 

Besides, the high variability in wind generation so the average value of power ramps does not represent the 

actual variation.  

 

 
Figure 8. Comparison of the ramp regularity factors of upward power ramps within a time interval of 15 min 

at each observation time in 2017 and 2018 
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Figure 9. Comparison of the ramp regularity factors of downward power ramps within a time interval of 15 

min at each observation time in 2017 and 2018 

 

In Figures 10, 11, the RIFs illustrate the intensity difference of the local maximum value of power 

ramps of both types at each observation time. In Figure 10, the comparison between the RIFs of maximum 

upward power ramps within a time interval of 15 min at each observation time in 2017 and 2018 is shown. The 

ranges of the RIFs in the two years are approximately equal, as the RIFs in 2017 range from 0.17 to 1, while 

in 2018 range from 0.14 to 1. The average value of RIFs in 2018 is to some extent less than that in 2017, as the 

average value of RIFs in 2018 is 0.3 compared to 0.42 in 2017. In Figure 11, the comparison between the RIFs 

of maximum downward power ramps within a time interval of 15 min at each observation time in 2017 and 

2018 is shown. The values of RIFs in 2017 range from 0.14 to 1, while in 2018 range from 0.23 to 1. The 

average value of RIFs in 2018 is higher than in 2017; the average value of RIFs in 2018 is 0.46, compared to 

0.3 in 2017.  

 

 
Figure 10. Comparison of the RIFs of maximum upward power ramps within a time interval of 15 min at 

each observation time in 2017 and 2018 

 

 
Figure 11. Comparison of the RIFs of maximum downward power ramps within a time interval of 15 min at 

each observation time in 2017 and 2018 

 

In Figure 12, the comparison between the MRR of power ramps within a time interval of 15 min at 

each observation time in 2017 and 2018 is shown. For most observation times, the values of MRR in the two 

years are close to each other, but the range is different, as the values of MRR in 2017 range from 0.27 to 4.73, 

while in 2018 range from 0.18 to 2.7. However, the average values of MRR in the two years are approximately 

equal and greater than 1, with 1.07 in 2018 and 1.19 in 2017, indicating that the maximum values of downward 

power ramps are to some extent greater than that of upward power ramps. 
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Figure 12. Comparison of the MRR of power ramps within a time interval of 15 min at each observation time 

in 2017 and 2018 

 

Table 2. The range and the average value of ramp metrics for upward and downward power ramps that 

occurred within a time interval of 15 min across all observation times in 2017 and 2018 
Ramp 

Metrics 
UPWARD POWER RAMPS 

2017 2018 

Range Avg. 

2017 

Range Avg. 

2018 From To From To 

CV 0.93 1.7 1.15 0.88 1.85 1.16 

RRF 0.06 0.26 0.14 0.04 0.25 0.14 

RIF 0.17 1 0.42 0.14 1 0.3 

 DOWNWARD POWER RAMPS 

CV 0.95 2 1.18 0.88 1.5 1.14 

RRF 0.04 0.23 0.13 0.07 0.26 0.14 

RIF 0.14 1 0.3 0.23 1 0.46 

MRR 0.27 4.73 1.19 0.18 2.7 1.07 

 

4.2. Horizontal analysis results and discussion  

Table 3 summarizes the range and the average value of ramp metrics for upward and downward power 

ramps that occurred within a time interval of 15 min across all months in 2017 and 2018. 

In Figure 13, the comparison between the coefficients of variation of upward power ramps within a 

time interval of 15 min for each month in 2017 and 2018 is shown. The CV values of the two years are 

approximately equal for all months except July. The average values of CV in the two years are equal and more 

than one, as the average values of CV in the two years are equal to 1.16. 

In Figure 14, the comparison between the coefficients of variation of downward power ramps within 

a time interval of 15 min for each month in 2017 and 2018 is shown. For most months, the CV values of the 

two years are approximately equal. The average values of CV in the two years are approximately equal and 

more than one, as the average values of CV in 2017 and 2018 are equal to 1.2 and 1.13 respectively. The range 

of CV in the two years is equal, as the values of CV range from 0.99 to 1.4 in the two years. Therefore for 

upward and downward power ramps, the range and the average of CV values in the two years are equal, thus 

the CV can describe accurately the variation of both types of power ramps in wind generation in the two years. 

For most months, the CV values are more than one, indicating that the average value does not describe correctly 

the power ramps in these months. 

 

 
Figure 13. Comparison of the coefficients of variation of upward power ramps within a time interval of 15 

min for each month in 2017 and 2018 
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Figure 14. Comparison of the coefficients of variation of downward power ramps within a time interval of 15 

min for each month in 2017 and 2018 

 

In Figure 15, the comparison between the ramp regularity factors of upward power ramps within a 

time interval of 15 min for each month in 2017 and 2018 is shown. The range and the average of RRF in the 

two years are equal, the values of RRF range from 0.06 to 0.14 with an average value of 0.09 in 2017. While 

in 2018, they range from 0.03 to 0.15, with an average value of 0.1. In Figure 16, the comparison between the 

ramp regularity factors of downward power ramps within a time interval of 15 min for each month in 2017 and 

2018 is shown. The range and the average of RRF in the two years are equal, the values of RRF range from 

0.03 to 0.12 with an average value of 0.08 in 2017. While in 2018, they range from 0.06 to 0.13 with an average 

value of 0.09. Therefore, for upward and downward power ramps, the range and the average of RRFs in the 

two years are equal, so the RRF describes accurately both types of power ramps in wind generation in the two 

years. The low values of the ramp regularity factor which are close to zero show the high occurrence probability 

of unexpected high power ramps of both types. In addition, the high variability in wind generation so the 

average value of power ramps does not represent the actual variation.  

 

 
Figure 15. Comparison of the ramp regularity factors of upward power ramps within a time interval of 15 min 

for each month in 2017 and 2018 

 

 
Figure 16. Comparison of the ramp regularity factors of downward power ramps within a time interval of 15 

min for each month in 2017 and 2018 

 

In Figures 17, 18, the RIFs illustrate the intensity difference of the local value of maximum power 

ramps of both types for each month. In Figure 17, the comparison between RIFs of maximum upward power 

ramps within a time interval of 15 min for each month in 2017 and 2018 is shown. The RIFs in 2017 range 

from 0.38 to 1, while in 2018 range from 0.26 to 1. The average value of RIFs in 2018 is to some extent less 
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than that in 2017, with an average value of 0.47 compared to 0.65 in 2017. In Figure 18, the comparison 

between RIFs of maximum downward power ramps within a time interval of 15 min for each month in 2017 

and 2018 is shown. The range of RIFs in the two years is approximately equal, as RIFs in 2017 range from 

0.34 to 1, while in 2018 range from 0.37 to 1. The average value of RIFs in 2018 is more than that in 2017, as 

the average value of RIFs in 2018 is 0.69 while in 2017 it is 0.5.  

 

 
Figure 17. Comparison of the RIFs of upward power ramps within a time interval of 15 min for each month 

in 2017 and 2018 

 

 
Figure 18. Comparison of the RIFs of downward power ramps within a time interval of 15 min for each 

month in 2017 and 2018 

 

In Figure 19, the comparison between MRR of power ramps within a time interval of 15 min for each 

month in 2017 and 2018 is shown. The range and the average values of MMR in the two years are 

approximately equal, as the MRR in 2017 ranges from 0.51 to 2.08, and in 2018 ranges from 0.46 to 1.46. 

While the average values of MRR in 2017 and 2018 are greater than one, recording 1.17 and 1.03, respectively, 

this indicates that the maximum values of downward power ramps are to some extent more than those of upward 

power ramps. 

 

 
Figure 19. Comparison of MRR of power ramps within a time interval of 15 min for each month in 2017 and 

2018 
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Table 3. The range and the average value of ramp metrics for upward and downward power ramps that 

occurred within a time interval of 15 min across all months in 2017 and 2018 
Ramp 

Metrics 
UPWARD POWER RAMPS 

2017 2018 

Range Avg. 

2107 

Range Avg. 

2018 From To From To 

CV 0.94 1.4 1.16 0.97 1.76 1.16 

RRF 0.06 0.14 0.09 0.03 0.15 0.1 

RIF 0.38 1 0.65 0.26 1 0.47 

 DOWNWARD POWER RAMPS 

CV 0.99 1.44 1.2 0.99 1.42 1.13 

RRF 0.03 0.12 0.08 0.06 0.13 0.09 

RIF 0.34 1 0.5 0.37 1 0.69 

MRR 0.51 2.08 1.17 0.46 1.46 1.03 

 

5. CONCLUSION 

The increasing penetration level of VRG has led to more netload fluctuations and ramp events, so it 

is desirable for the power system operators to gain a deeper understanding of the aggregated ramping behavior 

scale, as well as the periods where the collective ramp events are most likely to occur. The paper has presented 

different definitions for solar, wind, load, and net-load ramp event, in which the percentage threshold of ramp 

event magnitude ranges from 1%𝑷𝑹 to 75%𝑷𝑹 and the threshold of ramp event duration extends from 5 min 

to 6 h. This great distinction in defining the ramp events is due to the difference between power systems utilities 

in both characteristics and flexibility available to meet these ramp events. 

The relation between the occurrence of ramp events and meteorological processes has been discussed 

to understand the meteorological phenomena that produce large ramp events. However, relating ramp events 

to meteorological phenomena is extremely a case-dependent problem. Moreover, a high percentage of ramp 

events could not be explained. The paper introduced new ramp metrics that can describe the power ramping 

features whether they are in RG, load, or net-load. Therefore, these metrics can be applied to any power system. 

The time resolution used for quantifying the variability is chosen by the power system operators from one 

second to several hours depending on the stage of operation (regulation, load following, and unit commitment). 

These metrics are based on extracting information from the power system databases to be utilized in the power 

system operation. The new metrics are ramp regularity factor (RRF), ramp intensity factor (RIF), and 

maximum ramp ratio (MRR). In addition, the coefficient of variation (CV), which was proposed to measure 

the degree of variability in relation to the mean of the data set, has been re-used to describe ramping behavior. 

The value of RRF is from 0 to 1. A high RRF means that the power ramps are relatively constant and 

the average value of power ramps properly represents the system ramps for the studied period, while a low 

RRF shows that an unexpected high ramp is likely to occur during that period, and to service this ramp, 

additional capacity is sitting idle for long periods, which increases costs. RIF is a time-dependent factor that 

can be used to measure the intensity of the ramp event. The RIF takes values from 0 to 1, where values close 

to zero represent very small ramps that can be neglected, while values close to 1 refer to high power ramps. 

Therefore, this factor can be used in classifying the power ramps. MRR measures the ratio between the 

maximum downward value of historical power ramps within the studied time interval Δt to that of upward 

power ramps. From the power system operators' point of view, the downward ramps in the wind or solar power 

are more difficult to be managed than upward ramps, whereas the upward ramps in load or net-load are more 

difficult to be managed than downward. Therefore, the MRR compares their maximum values at the studied 

time interval. CV shows the scale of variability in relation to the average value of power ramps. If the value of 

CV within a studied time interval is less than one, the average value well describes the power ramps in that 

time interval. While if the value of CV is more than one, the average value does not describe correctly the 

power ramps in that time interval, indicating a high level of variation in ramp readings. The CV can be used 

also in comparing the variability of different power systems. 

The new ramp metrics have been applied to the output power of Belgium's aggregated wind farms in 

2017 and 2018; the obtained results demonstrate that the two years are showing nearly the same ramping 

behavior, although the average installed wind capacity has been increased.  
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