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ABSTRACT 
 
Killeen’s (2005a) probability of replication (prep) of an experimental result is the fiducial 
Bayesian predictive probability of finding a same-sign effect in a replication of an experiment. 
prep is now routinely reported in Psychological Science and has also begun to appear in other 
journals. However, there is little concrete, practical guidance for use of prep and the procedure has 
not received the scrutiny that it deserves. Furthermore, only a solution that assumes a known 
variance has been implemented. A practical problem with prep is identified: in many articles prep 
appears to be incorrectly computed, due to the confusion between one-tailed and two-tailed p-
values. Experimental findings reveal the risk of misinterpretations of prep as the predictive 
probability of finding a same-sign and significant effect in a replication (psrep). Conceptual and 
practical guidelines are given to avoid these pitfalls. They include the extension to the case of 
unknown variance. Moreover, other uses of fiducial Bayesian predictive probabilities, for 
analyzing, designing (“how many subjects?”) and monitoring (“when to stop?”) experiments, are 
presented. Concluding remarks emphasize the role of predictive procedures in statistical 
methodology. 

 
Keywords: Bayesian inference, fiducial inference, Killeen’s prep, p-values, predictive 
probabilities. 
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“The essence of science is replication: a scientist should always be concerned about what would 
happen if he or another scientist were to repeat his experiment” (Guttman, 1977).  

 
Killeen (2005a) defined the probability of replication (prep) of an experimental result as the 

probability of finding a same-sign effect in a replication of an experiment (for an up-to-date 
discussion, see Killeen, 2008). prep now routinely appears in Psychological Science. Moreover, it 
begins to be occasionnaly reported beyond Psychological Science. A Web of Science review 
(April 24, 2008) for articles citing Killeen (2005a) revealed that it was occasionally reported in at 
least 15 other journals in various fields. prep is essentially used in the analysis of contrasts 
between means. It is associated either with a Student’s t test (with a z test in some rare cases) or 
an ANOVA F test with one degree of freedom (df) in the numerator. So we will restrict our 
attention to this situation. Most of our points will be illustrated by means of a numerical 
example. 

 
Frequentist and Bayesian Probabilities 

Statistical inference is concerned with both known quantities – the observed data – and 
unknown quantities – the parameters and the data that have not been observed. In the frequentist 
conception traditionally perpetuated by the use of significance tests and confidence intervals, all 
the probabilities (in particular p-values and confidence levels) are sampling probabilities – that is 
frequencies – involving repetitions of the observations. They are always conditional on fixed 
parameter values. On the contrary, in the Bayesian conception, parameters can also be 
probabilized. This results in distributions of probabilities that express our uncertainty about 
parameters – before observations (prior probabilities) and after observations (posterior 
probabilities conditional on data) – and about future data (predictive probabilities: prior 
predictive probabilities before observations and posterior predictive probabilities conditional on 
data after observations). 

So the p-value of the usual frequentist t test for comparing two means is the proportion of 
repeated samples for which the t statistic exceeds the (known) value observed in the data in hand, 
if the null hypothesis is true, that is if the true difference is assumed equal to zero. In the same 
way the frequentist confidence level, say 95%, for this true difference is based on the following 
universal statement: whatever value is assumed for the true difference, in 95% of the repeated 
samples the interval that should be computed includes this value. 

On the contrary, prep is a probability conditional on the data in hand (and not on unknown 
quantities) and going to the unknown future observations (the replication). Consequently, prep is a 
Bayesian predictive expression of the statistical output of an experiment and breaks with the 
frequentist conception. It follows that for the first time a Bayesian probability is routinely 
reported in psychological journals. 

Following Killeen (2005b), prep may be justified either from Fisher’s fiducial argument or 
from a Bayesian argument assuming noninformative priors. Such priors are vague distributions 
that, a priori, do not favor any particular value. Consequently, they let the data ‘‘speak for 
themselves’’ (Box and Tiao, 1973, p. 2). We call this “noninformative” Bayesian approach 
fiducial Bayesian (Lecoutre B., 2000, 2008; Lecoutre, Lecoutre & Poitevineau, 2001), since it 
has the same incentive as Fisher’s fiducial approach to only express evidence from data in terms 
of probability about parameters. Thus the fiducial Bayesian paradigm provides reference 
methods appropriate for situations involving scientific reporting. An alternative name could be 



 4 

“objective Bayesian analysis”, which was proposed by Berger (2004, p. 3) who clearly 
denounced “the common misconception that Bayesian analysis is a subjective theory.”  

 
Exact and broad replications 

The usual frequentist definition of p-values and confidence levels involves imaginary ‘exact’ 
replications of the experiment with a fixed true difference. In this article, as usually done we will 
restrict our attention to these conventional replications. It must be acknowledged that practical 
replications are conducted “with incidental or deliberate changes to the experiment” (Cumming, 
2008, p. 288). These broad replications involve different parameter values and require an 
average over the parameter space. Consequently, what is conceptually relevant in this case is a 
joint frequentist-Bayesian principle (Bayarri & Berger, 2004, p. 60). However, making 
predictions about broad replications would require an informative prior expressing some 
knowledge and assessing the changes made to the initial experiment, and presumably would not 
be easily accepted by frequentists. 

 
Implementation and Practical Problems 

For computing prep in practice, only a solution that assumes a known variance has been 
implemented. This implies that the p-value of the t test is considered as resulting from a z test. 
More than one hundred years after Student’s famous article (Student, 1908), one can hardly be 
satisfied with this unnecessary (and generally unrealistic) assumption of known variance. 

In any case, there is little concrete, practical guidance for computations, prep being not directly 
available from the standard statistical packages. Killeen (2005a, p. 353) suggested computing prep 
from the p-value. For the known variance case, he gave the exact following Excel formula: 

prep = NORMSDIST(NORMSINV(1-p)/SQRT(2))                    (1) 
and suggested the following approximation 

prep ≈ 
13/2
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p .                    (2) 

Note that these formulae involve the one-tailed p-value. 
The following example (called CC example) will serve us for illustration throughout the 

paper. Conway and Christiansen (2006) considered the mean of the n=10 paired differences 
between an experimental group and its baseline. For the auditory modality, they reported the 
results “t(9) = 1.10, p = .30, prep = .76, d = .35”, where p is the two-tailed p-value and d is the 
standardized mean difference (Cohen’s d). From their Table 1, it can be inferred that the 
unstandardized mean difference is 5.0. We will take 5.0 and p = .30 as the exact values for 
computations (hence s = 14.3777… and t = 1.0997…). Note that we have deliberately chosen a 
nonsignificant example, because it is particularly important to alert readers to the fact that a 
nonsignificant result cannot be interpreted as “proof of no effect”, or even as “proof of a small 
effect”. 

In this example, the function NORMSINV(1-p) in the Excel formula gives the z test statistic 
associated with the p-value (here z = 1.036), so that prep is the probability that a normal variable 
does not exceed z/ 2  = .733, hence a value slightly higher than the reported value: prep = .768 
(the approximation gives the reported value .76). This assumes a known parent standard 
deviation σ = 15.26 which can be deduced from s/σ = z/t = .942. 

The fact that Killeen’s formulae (1) and (2) involve the one-tailed p-value is a possible source 
of confusion, although the author explicitly stated: “for two-tailed comparisons, halve p” 
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(Killeen, 2005a, p; 353). Indeed, a careful examination of the articles published in Psychological 
Science revealed that in many cases prep is incorrectly computed and that this seems due to the 
confusion between one-tailed and two-tailed p-values. 

 
Our Work About Fiducial Bayesian Methods 

Our previous work gives us tools that may contribute to analyze and improve statistical 
practice. For more than thirty years now, with other colleagues in France we have worked in 
order to develop routine Bayesian methods for the most familiar situations encountered in 
experimental data analysis. We have especially developed fiducial Bayesian methods based on 
noninformative priors (for an introduction, see Lecoutre, Lecoutre & Poitevineau, 2001; 
Lecoutre, 2006a, 2008). In particular, we studied the role of Bayesian predictive probabilities for 
designing (“how many subjects?”) and monitoring (“when to stop?”) experiments. For a long 
time in biostatistics, it has been recognized that “an essential aspect of the process of evaluating 
design strategies is the ability to calculate predictive probabilities of potential results” (Berry, 
1991, p. 81). Bayesian predictive probabilities can answer essential questions such as: “how 
large a future experiment needs to be to have a reasonable chance to be in some sense 
conclusive?”; “given the data in hand at an interim stage of an experiment, what is the chance 
that the final result will be conclusive, or on the contrary inconclusive?” 

 
Our Experimental Project About the Use of NHST 

In close connection with this statistical work, an experimental project was conducted about 
the use of null hypothesis significance testing (NHST) by scientific researchers and applied 
statisticians (e.g., Lecoutre, Lecoutre & Poitevineau, 2001; Poitevineau & Lecoutre, 2001; 
Lecoutre, Poitevineau & Lecoutre, 2003). In particular, we investigated statistical prediction 
situations, which for instance consisted in asking subjects to estimate the probability, given a 
significant result, that this result would be significant once again in a replication of the 
experiment. A striking finding was that prep, the predictive probability of a same-sign result, 
could be confused with psrep, the predictive probability of a same-sign and significant result, by 
at least one third of the subjects. 
 
Organization of the Paper 

The present article is divided into three parts. In the first descriptive part, we examine the 
current use of prep in Psychological Science and we report some experimental findings about 
statistical prediction situations that show the difficulties of interpretation of prep. In the second 
normative part, we develop general predictive procedures for contrasts between means. We first 
present Fisher’s interpretation of the p-value as a predictive probability of replication under the 
null hypothesis. Then we consider the procedures for computing prep and psrep in the usual case of 
unknown variance. Last, we develop other predictive procedures, about effect sizes and interval 
estimates. In the third prescriptive part, we examine the practical computation of predictive 
probabilities and their uses. Tables and computer programs are available for easy computations. 
Concluding remarks emphasize the role of predictive procedures in statistical methodology. 
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Part One: Descriptive Aspects 
 

The Current Practice in Psychological Science 
We analyzed the use of prep in all articles reporting statistical results in the October 2006 and 

October 2007 issues of Psychological Science. Results are summarized in Table 1. A large 
majority of articles (20 out of 27) reported prep. It replaced the p-value in 11 articles and was 
added to it in the 9 others. In 13 of these articles prep was reported only for significant results; in 
8 of them nonsignificant tests were reported without prep, while in the 5 other articles no 
nonsignificant test was reported. This reflects an unfortunate difference of status between 
significant and nonsignificant results. 

 
Table 1 
Use of prep in Psychological Science. Number of Articles Reporting it, in Addition (prep+p) to or 
in Place (Only prep) of the p-Value, Either for Significant (S) and Nonsignificant (NS) Tests, or 
Only for Significant Tests. The Right Column Is the Total Number of Articles Reporting prep. 

 
October 2006 issue 

15 articles 
 October 2007 issue 

12 articles 
 

27 articles 
 

Articles reporting 
prep or p prep+p only prep  prep+p only prep prep 

for S and NS tests*  3 2  1 1 7 
only for S tests 1 3  2 2 8 
for S tests** 1 2  1 1 5 
 5 7  4 4 20 

*except when t<1 or F<1 in two (2006) articles 
**in these 5 articles no nonsignificant test was reported 

 
In each article where prep was reported, there was at least one value associated with a z test, a t 

test or an F test for analyzing a contrast between means. For all the relevant cases1, we computed 
prep from the test statistic and from the p-value (if given), by using both the exact (assuming a 
known variance) and approximate Killeen’s formulae. The values reported in the articles were 
found to be in agreement with either the exact or the approximate formula in 10 articles2. In the 
other 10 articles, prep was systematically undervalued. In fact we found that for 8 of them, the 
values were in agreement with the formulae if we (erroneously) computed them with the two-
tailed p-value. For the two remaining articles we were unable to get the reported values. 

In summary, serious problems with the implementation of prep were revealed. In particular, in 
half of the articles the reported values appeared to be erroneous. In most cases, this can be 
explained by the confusion between one-tailed and two-tailed p-values. The authors who report 
prep merely add it to the test statistic and/or the p-value, in most cases without any reference and 
interpretation. Killeen’s (2005a) article was mentioned in only 6 articles and only the following 
ambiguous definitions were found in 3 articles: “indicator of replicability” (Ackerman, Shapiro, 
Neuberg, Kenrick, Vaughn Becker, Griskevicius, Maner & Schaller, 2006, p. 838; Murphy, Steele 
                                                 
1 In two articles a prep value was given for F ratios with several df in the numerator, leading to a puzzling 
interpretation. These cases were discarded. Note again that we found a few instances of prep values less than .5. They 
were associated to negative observed differences and the authors reported the probability of finding a positive 
difference in a replication, hence in fact 1-prep. 
2 In most articles reported values were not sufficiently accurate to distinguish between the two formulae. 
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& Gross, 2007, p. 882) and “the probability of replicating an effect of this size” (Dixon, 
Durrheim & Tredoux, 2007, p. 869). Consequently, we are not ensured that prep users, and their 
readers, correctly interpret it. 

 
Some Experimental Findings About the Interpretation of prep 

In an informal study, we recently asked psychological researchers to read one of the analyzed 
articles and to comment about prep. All of them stated that they were not previously informed of 
this practice, and a majority said that it was presumably the probability of finding again “the 
same” or “about the same result” in a replication, hence in the case of significance to find again a 
significant result. This fact that most people have a high degree of confidence that any two 
samples from the same population must resemble each other is well established (Kahneman, 
Slovic & Tversky, 1982). So, Cumming, Williams and Fidler (2004) investigated researchers’ 
beliefs about the chance that a replication mean would fall within an original CI and concluded 
that “responses from 263 researchers suggest that many leading researchers in the 3 disciplines 
[psychology, behavioral neuroscience, and medicine] underestimate the extent to which future 
replications will vary” (p. 299). This fact is known as the “representativeness heuristic” 
(Kahneman & Tversky, 1972). The definition of prep “the probability of replicating an effect of 
this size” found in an article (Dixon, Durrheim & Tredoux, 2007, p. 869) was in accordance with 
this heuristic. In the same way an article published in another journal defined prep as “the 
probability that the experiment can be repeated and will give the same value” (Gerits, Van Belle 
& Moens, 2007, p. 4). 

In an early study about the representativeness heuristic, Tversky and Kahneman (1971) asked 
researchers to estimate the probability, given a significant difference in a first experiment, of 
finding a significant result once again in a replication of the experiment. The probability values 
given as responses were found to be markedly higher than the reference Bayesian probability 
value (about .50). Oakes (1986) reported similar findings. This fact that most users of statistics 
overestimate the probability of replicating a significant result (psrep) was outlined by Goodman 
(2002, p. 2446): “I have found experienced researchers, and even some statisticians, to be 
extremely surprised how low this replication probability actually is.” 

This first study was refined by Lecoutre and Rouanet (1993) who asked two different 
questions, one about the sign of the difference in the replication and the other about the result of 
the significance test (see also Lecoutre M.-P., 2000). Furthermore they considered various 
situations that differed according to the results obtained in the first experiment. In particular, in a 
situation similar to that reported by Tversky and Kahneman (1971), the researchers were given 
both descriptive (raw difference +1.82) and inferential (t(19) = 2.09, p = .05) results for the first 
experiment. The two questions were respectively: “what, for you, is the probability that in the 
replication the observed difference will be positive?” and “what, for you, is the probability that 
the observed difference will be positive, and the result of Student’s t test will be at least 
significant?” They were asked to 50 psychological researchers, all with experience in processing 
and analyzing experimental data. 

The answers were compared with the probabilities of replication3. For the first question this 
was precisely Killeen’s prep, hence prep = .92. For the second question the probability of a same-

                                                 
3 It must be noted that the term “probability of replication” may be misleading in a sampling framework (Cumming, 
2005), since it could be confused with the sampling probability of replication, conditional on the parameters. It may 
also be indefinite in a Bayesian framework, since it depends on a prior probability distribution (Macdonald, 2005). 
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sign significant replication (here at two-tailed level .05) psrep, was about .50. These two values 
were computed without assuming a known variance, the way to do this being explained later in 
this paper. The striking finding was that half of the participants gave numerically close values for 
prep and psrep. About one third of the subjects even gave exactly the same answer, and thus 
completely failed to distinguish psrep from prep. Similar findings were observed in other situations 
involving different statistical results. 

Lecoutre, Poitevineau and Lecoutre (2003) studied predictions about the final outcome of an 
experiment, given various intermediate statistical results obtained after half of the participants 
have been included. One of the questions asked to 25 professional statisticians from 
pharmaceutical companies in France and 20 psychological researchers was “what would be your 
prediction of the final results, firstly for the observed difference, and secondly then for the t test 
statistic?” The conclusion of the authors was again that most participants did not differentiate 
their predictions about the significance test from those about the observed difference. 

 
 

Part Two: Normative Aspects 
 

Fisher’s Conception of the p-Value as a Predictive Probability 
Killeen (2005a), as many others, referred to Fisher for the definition of the p-value. So it is 

enlightening to read the following definition given by Fisher (1990/1970). 
If x (for example the mean of a sample) is a value normally distributed about zero, and σ 
is its true standard error, then the probability that x/σ exceeds any specified value may be 
obtained from the appropriate table of the normal distribution; but if we do not know σ, 
but in its place have s, an estimate of the value of σ, the distribution required will be that 
of s/σ and this is not normal. The true value has been divided by a factor, s/σ, which 
introduces an error. […] the distribution of s/σ is calculable, and although σ is unknown, 
we can use in its place the fiducial distribution of σ given s to find the probability of x 
exceeding a given multiple of s. (p. 118) [italics added]. 

It is a definition of the probability that the standardized mean x/s (or equivalently the t statistic) 
exceeds any specified value, hence in particular the value observed in the data in hand: the so-
called one-tailed p-value of the t test. In this definition, the observed standard deviation s is 
clearly treated as a fixed quantity and σ as a random variable. It is at odds with the commonly 
used frequentist conception, in which s is a random variable and σ a (unique) fixed quantity. 
Fisher used a fiducial argument to derive the posterior distribution of σ given s. So, for the CC 
example, we first consider the sampling probability (under H0: µ = 0) that the t statistic exceeds 
1.10 for each possible value of σ, s being fixed and equal to its observed value. This probability 
is given by the normal distribution centered on zero,  with standard deviation σ/s. Some 
examples of values are given in Table 2. Then, to obtain the one-tailed p-value of the t test, these 
sampling probabilities are averaged over σ/s values. The weights are given by the fiducial 
Bayesian distribution of s/σ (where σ is the random variable and s is fixed), which is the same 
distribution as the sampling distribution of s/σ (where s is the random variable and σ is fixed), 

                                                                                                                                                              
Here a more precise term would be “fiducial Bayesian predictive probability of replication”. “Probability of 
replication” is used as a shortcut for simplicity. 
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hence the square root of a chi-square distribution divided by its df (here 9)4. The resulting 
average value is .150, hence the two-tailed p-value .30. 

 
Table 2 
Fisher’s Derivation of the p-Value as a Predictive Probability. For the CC Example, Probability 
that t Exceeds the Observed Value 1.10 as a Function of Given s/σ. 

 
s/σ Pr(t>1.10) 
.482 .298 
.773 .198 
.904 .160 
.942 .150 
.963 .145 

1.023 .130 
1.166 .100 
1.552 .044 

Note. .942 is the known value assumed in the Killeen procedure; the other s/σ values are 
respectively the 1, 20, 40, 50, 60, 80 and 99 percent points of its fiducial Bayesian distribution. 
Pr(t>1.10) is the probability that the normal distribution centered on zero,  with standard 
deviation σ/s, exceeds 1.10. 

The result is the same as in the frequentist conception but the justification is quite different. 
Lecoutre (1985) called Fisher’s conception a “semi-Bayesian significance test”, since the 
Bayesian method is only applied to the nuisance parameter σ, the probability p being conditional 
on the value of the true mean µ specified by the null hypothesis. Bayesians have introduced the 
notion of posterior predictive p-value viewed “as the posterior mean of a classical [frequentist] p 
value, averaging over the posterior distribution of (nuisance) parameters under the null 
hypothesis.” (Meng, 1994, p. 1142). This is precisely a Bayesian extension of Fisher’s 
conception, even if this was not recognized by the Bayesian proponents. Without entering here 
into the frequentist/Bayesian debates, it must be stressed that Fisher “was in fact much closer to 
the ‘objective Bayesian’ position than that of the frequentist Neyman” (Zabell, 1992, p. 381). 

Note again that posterior predictive p-values have been generalized beyond the case of a 
simple null hypothesis and are becoming a Bayesian standard for model checking (Gelman, 
Carlin, Stern & Rubin, 2004). They can be considered in the general framework of “measures of 
surprise” used to quantify “the degree of incompatibility of data with some hypothetized model 
H0 without reference to any alternative model” (Bayarri & Berger, 1997, p. 1). Of course, since 
they are both conditional on H0, from a methodological, not conceptual, viewpoint, the same pro 
and con arguments can be addressed to frequentist and to Bayesian posterior predictive p-values. 

 
Derivation of prep and psrep for Known σ 

As is true of Fisher’s p-value, Killeen’s prep and psrep are also defined as posterior predictive 
probabilities. Assuming σ is known, let zrep denote the z test statistic in the replication and let zobs 

                                                 
4 This distribution can be justified in both the fiducial and Bayesian frameworks. In the latter case, the usual 
noninformative prior, uniform for log σ, is assumed. 
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be its observed value in the first experiment. The probability that zrep exceeds any specified value 
is also an averaged sampling probability, but the roles of µ and σ are reversed, µ being the 
random variable and σ being assumed fixed (known). 

prep, the probability of a same-sign effect in a replication, is the probability that zrep exceeds 0 
(assuming zobs > 0). psrep(α), the probability of a same-sign effect significant at two-tailed level 
α, is the probability that zrep exceeds the critical value zc(α), for instance 1.960 for α = .05. We 
now consider the sampling probability that zrep exceeds the specified value for each possible 
value of µ. This probability is given by the normal distribution centered on µ/(σ/ n ) , with unit 
standard deviation. Some examples of values for the CC example are given in Table 3.  

 
Table 3 
Derivation of prep and psrep(.05) for Known σ. For the CC Example, Pr(zrep>0) Is the Sampling 
Probability of Finding a Same Sign Effect in a Replication and Pr(zrep>1.960) Is the Sampling 
Probability of Finding a Same Sign and Significant at Two-Tailed Level .05 Effect. 

 
µ/(σ/ n ) Pr(zrep >0) Pr(zrep >1.960) 

-1.290 .099 .0006 
.195 .577 .039 
.783 .783 .120 
1.036 .850 .178 
1.290 .901 .251 
1.878 .970 .467 
3.363 .9996 .920 

Note. Pr(zrep>0) and Pr(zrep>1.960) are given by the sampling distribution N(µ/(σ/ n ),1), as a 
function of fixed µ/(σ/ n ). The µ/(σ/ n ) values are respectively the 1, 20, 40, 50, 60, 80 and 
99 percent points of its fiducial-Bayesian distribution N(1.036,1) (1.036 being the zobs value 
assumed in the Killeen procedure). 

Then, to obtain prep and psrep, these sampling probabilities are averaged over µ/(σ/ n ) values. 
The weights are given by the fiducial Bayesian distribution of µ/(σ/ n ), conditional on the 
observed value xobs=5 and the known value σ assumed to be 15.26. It is a normal distribution 
centered on zobs = xobs/(σ/ n ) = 1.036, with unit standard deviation5. The resulting average 
values are prep = .768 and psrep(.05) = .257, given by the predictive distribution of zrep, a normal 
distribution also centered on 1.036 and with standard deviation 2 . 

The fact that prep = .768 and psrep(.05) = .257 are respectively markedly smaller and larger than 
the probabilities .850 and .178 associated with µ/(σ/ n ) = 1.036, the most likely value given the 
data in hand, can be intuitively understood. For prep for instance, Table 3 shows that two 
symmetrical values around 1.036, for instance .195 and 1.878, correspond to markedly 
asymmetrical probabilities around .850, respectively .577 and .970. Since .195 and 1.878 are 
equally likely, it results that the smaller probability .577 has the same weight as .970. 

                                                 
5 This distribution can be justified in both the fiducial and Bayesian frameworks. In the latter case, the usual 
noninformative prior, uniform for µ, is assumed. 
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Derivation of prep and psrep for Unknown σ: The K-Prime Distribution 

The derivation of prep and psrep when σ is unknown is a straightforward extension of the 
known σ case, the normal distribution being replaced with new distributions. Let trep denote the t 
test statistic in the replication and let tobs be its observed value in the first experiment. In this 
case, we have to consider the probability that trep exceeds a specified value for each possible 
value of (µ,σ). 

On the one hand, the sampling distribution of trep is a noncentral t distribution with ν df (as 
the t test) and noncentrality parameter µ/(σ/ n ), noted t'(ν)(µ/(σ/ n ). This distribution is 
familiar to power analysts and confidence intervals users (see, e.g., Cumming & Finch, 2001; 
Lecoutre, 2007). On the other hand, the fiducial Bayesian distribution of µ/(σ/ n ) is a lambda-
prime distribution with ν df and noncentrality parameter equal to the observed value tobs = 1.10, 
noted Λ'(ν)(tobs). This distribution, which was considered (with no name) by Fisher (1990/1973, 
pp. 126-127) in the fiducial framework, was called lambda-prime in Lecoutre (1999) (see also 
Rouanet & Lecoutre, 1983 and Lecoutre, 2007)6. Some examples of values for the CC example 
are given in Table 4. In this case we consider the critical value tc(ν,α), here 2.262 for ν = 9 and 
α = .05. 

 
Table 4 
Derivation of prep and psrep(.05) for Unknown σ. For the CC Example, Pr(trep>0) Is the Sampling 
Probability of Finding a Same Sign Effect in a Replication and Pr(trep>2.262) Is the Sampling 
Probability of Finding a Same Sign and Significant at Two-Tailed Level .05 Effect. 

 
µ/(σ/ n ) Pr(trep >0) Pr(trep >2.262) 

-1.328 .092 .0008 
.201 .580 .038 
.808 .790 .108 
1.069 .957 .158 
1.331 .908 .221 
1.938 .974 .410 
3.474 .9997 .870 

Note. Pr(trep>0) and Pr(trep>2.262) are given by the sampling distribution t'(9)(µ/(σ/ n ), as a 
function of fixed µ/(σ/ n ). The µ/(σ/ n ) values are respectively the 1, 20, 40, 50, 60, 80 and 
99 percent points of its fiducial-Bayesian distribution Λ'(9)(1.10). 

 
The resulting average values are prep = .772 and psrep(.05) = .230. They are higher than the 

probabilities .768 and .257 obtained when σ is known. This is a consequence of the fact that for a 
given p-value tobs is larger than zobs, and thus is not really surprising. Formally, prep and psrep are 
given by the predictive distribution of trep, called a K-prime distribution in Lecoutre (1984). By 
analogy with the normal distribution, we note 

trep | tobs ~ K'(ν,ν)(tobs , 2).                    (3) 

                                                 
6 It can be justified in the Bayesian framework, assuming the usual noninformative prior, uniform for (µ,log σ). 
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The number of df ν is involved twice in the predictive distribution, since it is associated both 
with the sampling distribution and with the fiducial Bayesian distribution. Note that the K-prime 
distribution includes all the other involved distributions as particular cases (see Appendix A). In 
particular, for large values of ν the predictive distribution of trep is approximately normal, so that, 
as it can be expected, the predictive probabilities are close to the values computed assuming a 
known variance. 

A simple general formula for prep. A remarkable property of the K-prime distribution is that 
the probability that it exceeds zero is given by the usual (central) Student t distribution. If we 
assume tobs > 0, we get the general formula for a contrast between means: 

prep = Pr(trep > 0 | tobs) = Pr(t(ν) < tobs/ 2 ),                    (4) 
A general formula for psrep. Conceptually, it is no more difficult to get psrep, the t distribution 

being replaced with the K-prime distribution: 
psrep(α) = Pr(trep > tc(ν,α) | tobs) = Pr[K'(ν,ν)(tobs/ 2 ) > tc(ν,α)/ 2 ],                    (5) 

and more generally 
Pr(trep > T | tobs) = Pr[K'(ν,ν)(tobs/ 2 ) > T/ 2 ]                    (6) 

where K'(ν,ν)(tobs/ 2 ) is the standard (unscaled) K-prime distribution, with noncentrality 
parameter tobs/ 2 . 

Alternatively to psrep, we can compute a 100(1-α)% credible7 prediction interval for trep. The 
two limits of this interval are respectively 2  times the 100(α/2) lower and upper percentiles of 
the K'(ν,ν)(tobs/ 2 ) distribution. 

 
Predictions About the Magnitude of a Contrast 

In this section, we only consider predictions about Cohen’s d, for reasons of simplicity. 
Indeed, since Cohen’s d is proportional to the t test statistic, predictions about its value drep in a 
replication can be easily derived from predictions about trep. Procedures for unstandardized 
contrasts are given in Appendix B. 

Predictions about Cohen’s d. Using the fact that drep/trep = dobs/tobs (assuming dobs ≠ 0), hence 
drep = trep(dobs/tobs), we get from (6) the predictive probability that drep exceeds D: 

Pr(drep > D) = Pr[trep > (tobs/dobs)D] = Pr[K'(ν,ν)(tobs/ 2 ) > (D/dobs)tobs/ 2 ],                    (7) 
which is a general formula for a contrast between means. A prediction interval for drep can be 
deduced from the prediction interval for trep, multiplying the limits by dobs/tobs. 

Predictions about the confidence limits of Cohen’s d. Confidence intervals can be viewed as 
the set of hypothesized values that are nonsignificant. It follows that predictive probabilities 
about confidence limits for contrasts between means are also given by the K-prime distribution. 
The probability that the lower confidence limit for µ/σ in a replication exceeds a given value L is 
the predictive probability of a standardized effect larger than L and such that the null hypothesis 
H0 : µ/σ = L is rejected at one-tailed level α/2. This test is significant if trep exceeds the 
100(α/2)% upper point of the noncentral t distribution with noncentrality parameter L n , i.e. 
more generally for a standardized contrast (tobs/dobs)L, denoted by t'upp(ν,α/2)[(tobs/dobs)L]. Note that 

                                                 
7 Bayesians use “credible” instead of confidence to underline the difference in interpretation. 
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in this case we consider one-tailed level since the test involves a non-symmetrical distribution8. 
The predictive probability, given by (6), is: 

Pr[K'(ν,ν)(tobs/ 2 ) > t'upp(ν,α/2)((tobs/dobs)L)/ 2 ],                    (8) 
Of course, for L = 0 it is psrep(α) if dobs > 0, and the probability of an opposite-sign significant 
replication if dobs < 0. 

We get in the same way the predictive probability that the upper confidence limit does not 
exceed U, the upper point being replaced with the 100(α/2)% lower point: 

Pr[K'(ν,ν)(tobs/ 2 ) < t'low(ν,α/2)((tobs/dobs)U)/ 2 ]                    (9) 
 

Other Predictions 
Predictions for a future experiment with different sample sizes. We can also derive the 

predictive probabilities for a future experiment with different sample sizes. If all the cell counts 
in the first experiment are multiplied by the same constant c (resulting in ν' df in the future 
experiment), all the above formulae can be easily generalized. For instance, the predictive 
distribution of t is 

tfuture | tobs ~ K'(ν,ν')( c tobs , 1+c).                    (10) 
Note that c can be a fractional number and can be smaller than one, if this results in integer 
counts (which is not always the case, especially if cell counts are unequal). 

In particular the probability of finding again a positive t value with counts multiplied by c is 
Pr(t(ν)) < tobs )1/( cc + ,                    (11) 

so that, when c tends to infinity, it tends to Pr(tν < tobs) = 1-p/2. This result gives us another 
valuable interpretation of the one-tailed p-value as a predictive probability: it is the predictive 
probability of a different-sign result in a future extremely large data set. This fiducial Bayesian 
interpretation of the one-tailed p-value can be viewed as the counterpart of the Jones and Tukey 
(2000) frequentist view of NHST as a three alternative decision: the sign is positive, is negative, 
is not yet determined. Note again that when the cell counts tend to infinity the prediction 
intervals for standardized and unstandardized contrasts coincide with the confidence intervals for 
the corresponding parameters. 

Predictions about future experimental units. For instance, when comparing two independent 
groups, it can be of interest to consider one future observation for each group and compute the 
predictive probability that their difference will be positive. This aspect would deserve more 
considerations, but is beyond the scope of this paper. 

Predictions including the available data. An important question is to predict the final result of 
an experiment, given the available data at an interim stage. Let us suppose for the CC example 
that the experiment was planned with 20 subjects and that the data were obtained from an interim 
analysis after the inclusion of 10 subjects. The predictive distribution for the final unstandardized 
difference (given the interim data) is deduced from the predictive distribution of xrep (since the 
final difference is (xobs+xrep)/2). Other predictive distributions are generally not available in 
closed form but they can be easily obtained by simulation techniques. The principle is to 
simulate the fiducial Bayesian distribution associated with the available data and, for each 
generated value to simulate the sampling distribution of the future data. 

                                                 
8 The notation t'upp(ν,α/2) makes explicit the fact that it is a one-tailed value, by contrast with the notation tc(ν,α) for the 
two-tailed critical value involved for the (symmetrical) usual t distribution. 
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Predictions about any event. From simulation techniques, we can get the predictive 
probability of any event of interest about the future data or the whole data. 

 
 

Part Three: Prescriptive Aspects 
 

How to Compute Predictive Probabilities? 
User-friendly tools for easily computing prep, psrep, and more generally the probabilities of 

replication involving the K-prime distribution, are available on our website http://www.univ-
rouen.fr/LMRS/Persopage/Lecoutre/Eris-Prep.html or upon request to the first author. They 
include tables, an Excel worksheet, a Word macro and computer programs. We give hereafter 
some numerical illustrations for the CC example. 

 
Using Predictive Probabilities About Replications 

What is the probability of a same-sign replication (prep)? Killeen’s Excel formula (1) for 
computing prep from the one-tailed p-value in the known variance case can be generalized to9 

prep = 1-TDIST(TINV(2*p,df)/SQRT(2),df,1)                       (12) 
For more accuracy, and to avoid any confusion between two-tailed and one-tailed p-values, it is 
generally preferable to compute prep from the test statistic (Student’s t or ANOVA F with one df 
in the numerator) 

prep = 1-TDIST(ABS(t)/SQRT(2),df,1)   or   prep = 1-TDIST(SQRT(F)/SQRT(2),df,1)       (13) 
For the CC example, for t = 1.10 and df = 9, TDIST(ABS(t)/SQRT(2),df,1) gives 
Pr(t(9) > 1.10/ 2 ) = .228, hence the prep value .772 previously obtained. Consequently, prep can 
be very easily computed in the unknown variance case, the normal distribution being simply 
replaced with the t distribution. This is coherent with the fact that the predictive distribution of 
the mean difference xrep is a t distribution. 

 
Table 5 extends Cumming’s Table 1 for prep as a function of two-tailed p-value (Cumming, 

2005, p. 1004) to some df values. The good news is that for low df the probabilities exceed 
Cumming’s values, which are conservative: they underestimate the probability of replication. 
This is a consequence of the fact that for a given p-value the smaller df, the larger tobs is. 

 
Table 5 
Predictive Probabilities of Replication prep and of Significant Replication at Two-Tailed Level 
.05 psrep(.05) as a Function of Two-Tailed p-Value and Degrees of Freedom. 
 

  prep  psrep(.05) 
p/df  10 25 50 100 ∞*  10 25 50 100 ∞ 
.1.0  .500 .500 .500 .500 .500  .073 .079 .081 .082 .083 
.50  .684 .684 .683 .683 .683  .161 .173 .178 .180 .182 
.20  .823 .820 .819 .818 .818  .293 .307 .311 .313 .316 
.10  .886 .881 .879 .878 .878  .397 .406 .409 .410 .412 

                                                 
9 Note the difference in form between (1) and (12). While NORMSINV returns the cumulative distribution function, 
the TINV function returns the two-tailed probability. Consequently its argument is “2*p” (in fact the two-tailed p-
value) instead of “1-p”. Furthermore TDIST takes the final argument “1” to return the upper one-tailed probability. 
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.05  .927 .921 .919 .918 .917  .500 .500 .500 .500 .500 

.02  .960 .954 .952 .951 .950  .626 .612 .607 .605 .602 

.01  .976 .970 .968 .967 .966  .710 .685 .677 .672 .668 

.005  .985 .980 .979 .977 .976  .782 .748 .737 .731 .725 

.002  .992 .989 .987 .986 .986  .857 .817 .803 .795 .788 

.001  .996 .993 .992 .991 .990  .899 .859 .843 .835 .827 

.0001  .999 .998 .998 .997 .997  .974 .946 .931 .923 .914 
*This column is the same as Killeen’s prep assuming σ known. 

 
What is the probability of a same-sign and significant replication (psrep)? The probability of a 

same-sign and significant replication psrep(.05) is reported in Table 5 for α = .05. It is always 
substantially smaller than prep, so that the two values cannot, even approximately, be confused. 
For the CC example, we get from (5) psrep(.05) = Pr(K'(9,9)(1.10/ 2 ) > 2.262/ 2 ) = .230. In spite 
of the nonsignificant result, on the basis of the data in hand there is a 23 per cent chance of 
finding a positive difference significant at two-tailed level .05 in a replication (trep > 2.262). 
There is also a 1.6 per cent chance of finding a negative and significant difference (trep < -2.262), 
hence a 24.6 per cent chance of finding a significant result (|trep| > 2.262). 

What are prediction limits for trep? The 2.5 lower and upper percent points of the 
K'(9,9)(1.10/ 2 ) are -1.363 and 3.311. Multiplying these values by 2  we get the 95% prediction 
interval for trep [-1.93 , 4.68]. In spite of the nonsignificant result, this interval includes highly 
significant values (4.68 corresponds to a p-value of .001). 

What is the probability of a small, medium, large Cohen’s drep? Given a nonsignificant result, 
statistical users generally expect that in a replication Cohens’ d will have a small, or at least 
limited value. Multiplying the above limits for trep by dobs/tobs = .316 (1/ 10 ), we get the 95% 
prediction interval for drep. [-.61 , 1.48]. Alternatively, we can compute the predictive probability 
that |drep| does not exceed a given value, for instance Pr(|drep|<.20) = .255. Clearly, this 
contradicts the expectation of limited value. 

Such predictive inference can help understanding the respective roles of sample sizes and p-
values in statistical prediction. For illustration Figure 1 gives the predictive probabilities of 
finding |drep|<.20 as a function of two-tailed p-value and number of paired differences (n = 10, 
50, 100, 1000). It is clear that a nonsignificant result cannot be interpreted as “a proof of a small 
difference”, unless a very large sample size is used. 
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Figure 1. Examples of predictive probabilities of finding |drep|<.20 in a replication as a function 
of two-tailed p-value and number of paired differences (n = 10, 50, 100, 1000). The point 
corresponds to the CC example: n = 10, p = .30, Pr(|drep|<.20) = .255 (The CC example is drawn 
from Conway and Christiansen, 2006). 

 
What is the probability the upper confidence limit for µ/σ in a replication does not exceed a 

given value? Suppose that we are interested by the predictive probability that the upper limit of 
the 95% CI for µ/σ does not exceed 1.0. The 2.5% upper point of the noncentral t distribution 
with 9 df and noncentrality parameter 1.0 10  is 1.162, hence the predictive probability given by 

Pr[K'(9,9)(1.10/ 2 ) < 1.162/ 2 ] = .516.                (14) 
What is the probability the next replication mean will fall within the original 95% CI? 

Cumming, Williams and Fidler (2004) asked researchers to answer this question. Assuming σ 
known we find .834 (the probability that a Normal variable exceeds 1.96/ 2  in absolute value), 
which is precisely the value reported by the authors: “on average, just 5 out of 6 replication 
means (83.4%) will fall within an original 95% CI.” (page 218). For σ unknown, the predictive 
probability is .856 (the probability that a Student t variable with 9 df exceeds 2.262/ 2  in 
absolute value: see Appendix B), which depends only on the number of df. This is the value 
given by Equation 8 (page 222) of Cumming and Maillardet (2006). However these authors gave 
a frequentist justification that involves the fact that the sampling distribution of (x-xrep)/(s n/2 ) 
is a t distribution with ν df 10, hence a free parameter distribution. This distribution coincides 
with the predictive distribution in (8), but the frequentist interpretation involves repetitions 

                                                 
10 This result is given in an equivalent form in Equation 7 of Cumming and Maillardet (2006). 
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including not only a sample of a replication, but also a sample of the experiment itself (x and s 
being also treated as random variables). The frequentist answer is numerically the same as the 
Bayesian predictive one. However, it must be realized that the frequentist and Bayesian 
procedures answer two different questions. The frequentist probability is the proportion of 
repeated pairs of samples such that the mean of the replication sample falls within the 95% CI 
computed from its associated experiment sample, and not within the original CI. 

What is the probability the replication CI will contain the observed mean? This is the 
symmetrical question of the Cumming, Williams and Fidler question. As it can be expected for 
symmetry reasons the two probabilities are equal. Indeed, in this case L = xobs, so that the 
predictive distributions for both the lower and upper limits are given by the central K'(ν,ν)(0) 
distribution, which is the t distribution with ν df (see B5 and B7). 

What is the probability all the individual differences in the replication will be positive? In 
addition to the above “routine” procedures, simulation techniques allow to answer very specific 
questions. For instance, in the case of a within-subjects design, we may be interested in questions 
about individual differences. So, for the CC example, simulating 106 replicated samples, we get 
the predictive probability that the ten individual differences in the replication will be positive: 
.028. For instance, there is a probability .188 that at least 9 differences will be positive, a 
probability .819 that at least 5 differences will be positive. Etc. 
 
Using Predictive Probabilities for Designing Experiments 

The standard frequentist power approach for determining the sample size of a planned 
experiment relies on the choice of suitable values for the parameters (the effect size and the 
nuisance parameters), which implies more or less arbitrary choices. In contrast, the Bayesian 
approach is able to take into account the uncertainty about these parameters. The available 
information is expressed by a probability distribution, from which we compute in a very natural 
way the predictive probability that the future experiment will be in some sense conclusive. Some 
relevant references are: Brown, Herson, Atkinson and Rozell (1987); Lecoutre, Derzko and 
Grouin (1995); Lecoutre (2001, 2008); Spiegelhalter, Abrams and Myles (2004); Grouin, Coste, 
Bunouf and Lecoutre (2007). 

How large does a future experiment need to be? In particular the available information can be 
the data of a preliminary experiment. If the objective of the planned experiment is to get a 
statistically significant result, the required predictive probability is analogous to psrep, but is not 
restricted to a replication. By varying the future sample size, we get a predictive curve, 
expressing this probability as a function of the sample size. This curve can be used exactly as 
power curves for determining sample sizes that appear as limiting cases when the uncertainty 
about parameters vanishes. Of course, we may prefer a more interesting conclusion about effect 
sizes and consider predictive probabilities on interval estimates. For instance we can determine 
the minimal sample size needed to have a reasonable chance of obtaining a lower limit larger 
than a given relevant value. Furthermore, if available, the results of several earlier experiments 
can be combined to give the appropriate distribution about parameters. 
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Using Predictive Probabilities for Monitoring Experiments 
Using realistic procedures to determine the sample size and searching for conclusions about 

effect sizes can considerably increase the cost of an experiment, making interim analyses 
particularly desirable. The predictive approach is a very appealing method (Baum, Houghton, & 
Abrams 1989) to aid the decision to stop an experiment at an interim stage. The Bayesian 
biostatistics literature may provide psychologists with useful methodological and technical tools 
for implementing predictive probabilities. Some relevant references are: Baum, Houghton and 
Abrams (1989); Spiegelhalter, Freedman and Parmar (1994); Lecoutre, Derzko and Grouin 
(1995); Johns and Andersen (1999); Lecoutre, Mabika and Derzko (2002); Berry (2005); 
Dmitrienko and Wang (2006); Lecoutre (2008). 

When to stop? Given the available data at this stage, the predictive probabilities about the 
future planned data can be used to evaluate the chance that the final result for the whole data will 
be conclusive, or on the contrary inconclusive. On the one hand, if the predictive probability that 
it will be conclusive appears poor, it can be used as a rule to abandon the experiment. On the 
other hand, if the predictive probability is sufficiently high, this suggests we would stop the 
experiment early and conclude. 

Note that interim analyses are a special kind of missing data imputation. More generally, 
predictive probabilities are also a valuable tool for missing data imputation. 

 
 

Conclusion 
 
The predictive idea is central in experimental investigations as the essence of science is 

replication. So Killeen’s (2008, p. 120) objective “to validate observations through prediction 
and replication” appears as a desirable project. What are the pros and cons of this approach? On 
the negative side, we have identified some major problems concerning Killeen’s prep. On the 
positive side, the Bayesian notion of predictive distribution is a fundamental tool for a better 
understanding of sample fluctuations. It provides a coherent statistical methodology for planning, 
monitoring and analyzing experiments. 

 
On the Negative Side 

In many articles prep appears to be incorrectly computed, due to the confusion between one-
tailed and two-tailed p-values. No progress can be made without accepting the risk of 
computation error. Of course, this should not be used as a scientific argument to discard the use 
of a new statistical procedure. 

Experimental findings strongly suggest that a common misconception is to confuse prep, the 
predictive probability of a same-sign result, with psrep, the predictive probability of a significant 
result. Verbal explanations such as “be quite clear, however, that this [prep = .89] does not mean 
that the chance a replication will be statistically significant [psrep] is .89” (Cumming, 2005, 
p. 1004) could have no more impact on such misunderstandings than the constant warnings about 
the misinterpretations of NHSTs. A related misconception is to interpret prep  as “the probability 
that the experiment will give the same effect size.” 

Another objection is that predictive probabilities about replications engage us in an endless 
process: if prep or psrep becomes a statistical output of an experiment, why not consider a 
predictive probability about these quantities (for instance the probability that prep will be larger 
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that .80 in a replication), and so on. This reminds us that predictive probabilities of replication 
are meaningful but that they cannot be considered as an end per se. 

Last, a discouraging finding is that reporting prep seems to have little impact on the way the 
authors interpret their data. However, it must be emphasized that other changes that have been 
imposed in experimental publications, such as reporting confidence intervals, have also very 
little impact. For instance, Kotur (2006, p. 167) observed that “Indian Journal of Anaesthesia’s 
editorial instruction to authors to report CIs and not p values in their studies, 3 years back has 
been largely ineffective: very few authors or no authors are referring to CIs when presenting 
their results.” Indeed, most authors continue to focus on the statistical significance of the results, 
only wondering whether the CI includes the null hypothesis value, rather than on the full 
implications of confidence intervals. In other words, CIs are “simply used to do NHST” (Fidler, 
Thomason, Cumming, Finch & Leeman, 2004, p. 120). 

 
On the Positive Side 

Fiducial Bayesian predictive procedures provide different ways to summarize “what the data 
have to say”. They include, among others, not only Killeen’s prep for a replication, but also the 
traditional frequentist procedures when considering predictions about extremely large samples. 

Correcting misconceptions. Predictive probabilities allow researchers to be aware of 
misconceptions about the replication of experiments. The confusion between prep and psrep can be 
avoided by computing the two probabilities. This should also prevent the replicability fallacy, 
making explicit that 1-p is different from the predictive probability of a significant result in a 
replication. More generally, predictive probabilities can serve to understand how future 
replications vary and can correct misconceptions linked to the representativeness heuristic. 

Analyzing and interpreting data. The predictive approach emphasizes the need to think hard 
about the information provided by the data in hand (what would happen if the experiment were 
to be replicated?) instead of applying ready-made procedures. In actual fact, the predictive 
probability of any event of interest about future data can be computed. 

Moreover, predictive probabilities can be used to get inferences about parent parameters, with 
a more operational interpretation. This results from the fact that the parent effect size can be seen 
as the effect size that will be observed in an infinite, in practice extremely large, future sample. 
We get the fiducial Bayesian interpretation of the one-tailed p-value: 1-p is the predictive 
probability of a same-sign effect in a future extremely large data set (which is again the posterior 
probability of a same-sign effect in the population). This should prevent the misconception, 
called by Carver (1978) the replicability fallacy, which is to interpret 1-p as the predictive 
probability of a significant result in a replication. 

This Bayesian interpretation makes clear that the p-value and prep only address questions 
about the sign of the effect. These questions are of limited interest and should be completed (or 
even replaced) with questions about effect sizes (standardized or not). Predictive probabilities 
give direct answers to these questions. An important feature is the interpretation of the usual 
confidence interval in terms of Bayesian probabilities: for instance in the CC example “there is a 
95% probability of the future standardized difference in an extremely large sample (or again the 
population standardized difference) being included between the fixed bounds of the interval -.61 
and +1.48” (conditionally on the data). 

Defenders of frequentist methods should be reassured by the fact that p-values and confidence 
intervals can be used with the benefits of both the frequentist and fiducial Bayesian 
interpretations (in terms of posterior and of predictive probabilities) and without worrying about 
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the “correct justification.” Furthermore, if pre-specified regions of the effect are of interest, their 
Bayesian probabilities can be obtained. For instance, for the CC example, let us suppose that we 
adopt the conventional Cohen’s criteria about the smallness of a standardized difference. Then, 
for an extremely large sample size, the results can be summarized as follows: “there is a 28.7% 
predictive probability of a small standardized difference (less than .2 in absolute value), a 66.4% 
probability of a non small positive difference (more than +.2), and a 4.9% probability of a non 
small negative difference (less than -.2).” For a replication, these probabilities are respectively 
22.5%, 62.3% and 12.2%. Such a statement has no frequentist counterpart. 

Designing and monitoring experiments. We agree with Rozeboom (1960) that “the primary 
aim of a scientific experiment is not to precipitate decisions” (p. 420). However, we must also 
recognize that decisions are part of the scientific activity. In particular, a researcher must decide 
to replicate or not to replicate an experiment. In this perspective the probabilities of replication 
prep and psrep can serve as routine procedures to help the decision. More sophisticated predictive 
procedures are available and give a very appealing method for more precise decisions such as to 
decrease or to increase the number of observations in the future experiment, to stop an 
experiment for futility, etc. 

 
Concluding Remarks 

Killeen’s prep can be viewed as one of the many attempts to improve the habitual ways of 
analyzing and reporting experimental data. An increasingly widespread opinion is that effect size 
estimates and their confidence intervals should be reported in addition or in place of null 
hypothesis significance tests. The role of the planning of experiments (how many subjects?) is 
also stressed and power computations are often recommended. However, these attempts have not 
yet been really successful. Our analysis is that the frequentist approach is unable to provide a 
conceptually coherent statistical methodology. We argued that only the Bayesian approach can 
give researchers a real possibility of thinking sensibly about statistical inference problems and 
behaving in a more reasonable manner in the presentation and interpretation of results (Lecoutre, 
Lecoutre & Poitevineau, 2001; Lecoutre, 2006b). Since most people use “inverse probability” 
statements to interpret NHST and confidence intervals, probabilistic concepts involved in the 
Bayesian approach, in particular the Bayesian definition of probability, are already – at least 
implicitly – familiar to researchers. 

Bayesian predictive probabilities, because they relate observables between each other, are 
very intuitive and even more natural than posterior probabilities about parameters (Bernard, 
2000). They should be an important part of the statistical teaching and training of psychologists. 
We do not claim that they should replace a genuine inference about population parameters, such 
as an interval estimate ����������������	
�
��
�	���
��
����
�����
�
���	hey may wonderfully 
complement it. As emphasized by Gigerenzer (1998), “we need statistical thinking, not rituals”. 
A researcher cannot be unconcerned about “what would happen if additional subjects were to be 
included into the experiment?”, “what would be the conclusion for the data of these future 
subjects?”, “what would be the conclusion for the whole data?”, or “what would happen if this 
experiment were to be repeated?” Asking and answering such questions goes beyond the 
ritualized statistical procedures, and is likely to influence the way the authors of scientific papers 
interpret experimental findings and conduct their experiments. Predictive probabilities are an 
unavoidable part of statistical thinking and the time is come to take them seriously. 
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Appendix A: The K-Prime Distribution 
 
The K-prime distribution was studied in detail in Lecoutre (1999). It includes all the other 
involved distributions as particular cases11: 

 K'(ν1,ν2)(0) ≡ t(ν2)  (usual t) 

 K'(∞,ν2)(a) ≡ t'(ν2)(a) (noncentral t) 

 K'(ν1,∞)(a) ≡ Λ'(ν1)(a) (lambda-prime) 
 K'(∞,∞)(a) ≡ N(a,1) (normal) 

An algorithm for computing its cumulative distribution function was given in Poitevineau and 
Lecoutre (2008) and a computer program is freely available (see Section 3). 
 
 

Appendix B: Predictions for an Unstandardized Contrast 
 
The sampling distribution of the unstandardized contrast xrep in a future sample is a normal 

distribution. It follows that the resulting averaged predictive distribution (given xobs and sobs) is a 
Student t distribution. For the CC example, this distribution is centered on xobs and has a scale 
factor sobs n/2 . For large values of ν (or for σ known), it is a normal distribution with mean xobs 
and standard deviation σ n/2 . It follows that the predictive distribution of xrep given xobs and tobs 
is such that: 

(xrep-xobs)/(sobs n/2 ) ~ t(ν)                    (B1) 
A general form for an unstandardized contrast (assuming xobs ≠ 0) is: 

(xrep-xobs)/(xobs-tobs) ~ t(ν)                    (B2) 

                                                 
11 Note again that exact tests and confidence limits for the correlation coefficient ρ can be computed from the K-
prime distribution (Poitevineau & Lecoutre, 2008). 
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The predictive probability that xrep exceeds C is: 
Pr(xrep > C) = Pr[t(ν) < ((xobs-C)/xobs)tobs/ 2 ],                    (B3) 

which is a generalization of (4) and is of course prep in the particular case C=0. 
What is the probability the next replication mean will fall within the observed 95% CI? The 

100(1-α)% observed CI for µ is xobs ± (sobs/ n )tc(ν,α), hence for the CC example [-5.29,+15.29], 
computed from xobs = 5.0 and sobs = 14.38. The next replication will fall within this CI if 
|xrep-xobs|/(sobs n/2 ) < tc(ν,α) 2 . The corresponding predictive probability, derived from (B1) is 
Pr(|t(9)| > 2.262/ 2 ) = .856 (tc(9,.05) = 2.262). 

 
Prediction Interval for an Unstandardized Contrast 

It follows from (B1) that a 100(1-α)% prediction interval for the mean difference xrep is: 
xobs ± (sobs n/2 )tc(ν,α)                    (B4) 

Note the similarity with the usual 100(1-α)% CI for µ: as a general result for an unstandardized 
contrast between means, the limits are simply multiplied by 2 . For the CC example, from the 
95% CI [-5.29,+15.29] for µ, we get the 95% prediction interval for xrep: [-5.29 2  
= -9.55,15.29 2  = +19.55]. 

 
Predictions About the Confidence Limits of an Unstandardized Contrast 

The lower limit of the 100(1-α)% CI for µ in a replication is xrep – (srep/ n )tc(ν,α). The 
predictive probability that this limit exceeds a given value L is equal to the probability that 
(xrep-L)/(srep/ n ), i.e. the t statistic for testing the null hypothesis H0 : µ = L, exceeds tc(ν,α). It is 
given by 

Pr[K'(ν,ν)[[(xobs-L)/(sobs/ n )]/ 2 ] > tc(ν,α)/ 2 ].                    (B5) 
hence the general formula for a contrast between means (assuming xobs ≠ 0): 

Pr[K'(ν,ν)[(1-L/xobs)tobs/ 2 ] > tc(ν,α)/ 2 ],                    (B6) 
which is a straightforward generalization of (5). 

For L = 0, it is the probability of a same-sign significant replication psrep(α) if xobs > 0, and the 
probability of an opposite-sign significant replication if xobs < 0. More generally, it is the 
predictive probability of an unstandardized effect larger than L and such that the null hypothesis 
µ = L is rejected at two-tailed level α.  

In the same way, the predictive probability that the upper limit xrep + (srep/ n )tν(α) does not 
exceed U is given by 

Pr[K'(ν,ν)[(1-U/xobs)tobs/ 2 ] < -tc(ν,α)/ 2 ],                    (B7) 
It is the predictive probability of an unstandardized effect smaller than U and such that the null 
hypothesis H0 : µ = U is rejected at two-tailed level α. 

What is the probability the lower confidence limit for µ in a replication exceeds a given 
value? The predictive probability of a positive lower limit for the 95% CI in a replication is 
psrep(.05) = .230. Note that, by symmetry, we find that psrep(.05) is also the predictive probability 
that the upper limit does not exceed 2×5.0 = 10.0, the Rosenthal and Rubin (1994) counternull 
value of the effect size. Suppose that we are interested by the predictive probability that the 
lower limit for µ does not exceed a given value in the negative direction. For instance, the 
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probability that the limit will be greater than -5.0 (the opposite of the observed difference) is 
given by (13): Pr(K'(9,9)(2×1.10/ 2 )) > 2.262/ 2 ) = .485. 


