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Abstract- High voltage transmission lines are the fundamental element in order to transfer electricity from the power plant/grid 

to consumers. The frequency, current and voltage are the key figures to sustain the absolute quality of the power transmission, 

and maintaining such high performance requires smart solutions and equipment like Current Transformer (CT) & Potential 

Transformer (PT). This proposed work enlightens an inception to monitor current in the high voltage transmission lines by 

using pyro-sensors, machine learning (ML) techniques and artificial intelligence (AI). Using pyro-sensors around the 

transmission/distribution lines, data can be gathered in the form of heat waves (infrared waves) that are generated by the 

electric current in the transmission/distribution line. The proposed methodology uses this data to be processed by neural 

network based artificial intelligent algorithm to evaluate the amount of current in the transmission line. The claim about the 

authenticity of the proposed technique is tested and verified by MATLAB simulation neural network toolbox. The simulation 

results are the reminiscence of predicted current with actual, promulgating the potential of replacing existing current measuring 

technique of CT at the grid station.  
 

Index Terms—Pyro-sensors, Machine learning, Artificial Intelligence, Current transformer, Potential transformer 

 

I. INTRODUCTION 

The ever-growing demand of electric power supply for the 

community is demanding strenuous efforts to keep the grid 

stations running round the clock. The frequency, current, and 

phase of high-voltage power lines are important measures of the 

quality of the power transmission. So, it is highly significant to 

continuously produce and transmit these parameters through high 

power transmission lines. Also it is very important to gage the 

real time quality of transmitted power through high power 

transmission lines far away from power plants and substations. 

Currently there is no smart technology available to measure the 

power line quality on any remote location [1-2].  

The conventional measuring method includes contact current 

transformer (CT) at the end of a transmission line [3], but CT 

cannot measure power quality or other parameters at a certain 

location in high voltage transmission lines. Moreover, contact 

measurement method have several problems regarding safety and 

electronic damage due to the electromagnetic fields induced on the 

conductors. In order to measure current, voltage and frequency of 

high power lines, noncontact measuring techniques are in practice 

and when there is a discussion of noncontact measurement 

phenomena, the temperature measurement techniques seems 

highly dependable as these methods are widely used in several 

applications nowadays (e.g., gas thermometry, diode 

thermometers, capacitance and noise thermometers, IR 

thermography) [4-6]. Several temperature measurement techniques 

are discussed as follows. 

The most common and important physical measured entity is 

temperature. As a result, sensor utilization has a vast range of 

applications and covers a large amount of sensor market by volume 

[4]. Multiple physical entities which are being sensed and 

measured (e.g., humidity, pressure, motion, body temperature, 

flow, stress and gas concentration) revolves around temperature 

fluctuations therefore, temperature alterations required to be 

reimbursed [5]. Based on vibrant physical phenomenon, several 

temperature sensing techniques are in practice like thermal 

expansion [6], thermoelectricity [7], fluorescence [8], etc. The 

relative position of the sensor and the environment, distinguishes 

the temperature measurement techniques into three categories [6]:  

i) Invasive: When sensor is in direct contact with the medium of 

interest (e.g.: thermocouple in a gas stream), ii) Semi-Invasive: In 

some systems, the medium of interest behaves to produce remote 

outputs (e.g., surface coatings whose color changes with 

temperature), iii) Non-Invasive: The medium of interest is 

monitored remotely (e.g., IR thermography). Since a non-contact 

(non-invasive) temperature measurement method uses an IR sensor 

so it is important to discuss the remote monitoring IR technology 

before proceeding further. 

Ever since the invisible spectrum was discovered, use of IR sensors 

has been sky rocketed. The invisible spectrum is not visible to 

human eye, but it still demonstrate its presence with the amount of 

heat released by the light. In order to visualize and articulate this 

invisible spectrum thermal sensors/IR thermometers are becoming 

a basic need nowadays. Radiation thermometers measure thermal 

radiation emitted from the surface of a material. The infrared ray is 

the electromagnetic wave having a longer wavelength. The infrared 

has a wavelength between 0.75μm~1μm [9]. Every matter emits 

thermal radiations or heat energy comparing to their absolute 

temperature ratings [10]. The known electromagnetic spectrum 
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stretches from gamma rays towards microwaves having 

wavelengths from 10-12m to hundreds of meters including x rays, 

UV rays, visible spectrum and IR waves in between two extremes. 

Such pivotal details are important in order to apprehend the driving 

force to replace existing voltage measuring technology PTs with 

the IR temperature sensor. But first let us look at some of the 

drawbacks of using PTs at grids stations.   

Overhead transmission lines are needed to be monitored for 

constant power availability over long distances. Fault occurrence 

is a likely event in the overhead transmission lines which could 

cause abrupt variations in voltage and amplitude of the frequency 

[11]. Also some renewable energy source could cause power 

fluctuations and voltage disturbances [12]. In addition, sectional 

monitoring is imperative for these high power transmission lines 

because these lines covers a large geographical area and exposed 

to the variant environment. If an incident occur at a certain 

location, for example, corrective measures such as disconnection 

and reclosing should be taken timely in order to mitigate the 

cause. Large frequency bandwidth should also be addressed as it 

is a basic need of the newly deployed high-voltage DC (HVDC) 

transmission grids [13]. Furthermore, conventional potential 

transformers (PT) unfortunately cannot meet these measurement 

requirements [14] as magnetic core issues of PTs limits the 

frequency bandwidth in the range from tens of Hz to kHz. 

Considering about the expensive ferromagnetic material of PTs’ 

and the necessary galvanical connection to the high-voltage live 

wires, PTs are highly unlikely to be deployable to cover large 

geographical areas for realizing sectional monitoring. 

To find an economical and efficient solution, researchers are 

trying to find new avenues of current and voltage measurements 

such as:  

 Several scholarly efforts are made to develop a smart 

solution to monitor the power for overhead transmission 

lines at any remote location [10].  

 One research is shown in the literature [15] which 

highlights the functionality of microprocessors for data 

collection and processing based on hall sensing theory.  

 In literature [16], CT voltage sensor and wireless 

transmission technology are adopted to design a non-

contact measurement system.  

 Another articulation discussed in [17] about the 

capacitive coupling and magnetic field sensing assisted 

techniques to measure non-contact voltages of overhead 

transmission lines which covers large terrestrial area.  

II. PROPOSED SYSTEM METHODOLOGY 

The blue-print of the proposed study comprises of a PIR (pyro-

electric infrared) detection module, which is a back bone of the 

proposed system, attached with close proximity of high power 

transmission line above. This module contains a non-contact IR 

temperature sensor encapsulated within an insulating material, 

aluminium for example, for minimizing the external heat content 

due to harsh weather environment. This temperature sensor is 

used to measure heat waves from the overhead power lines. The 

ideal distance of IR sensor from the measuring object depends 

upon the specification of the IR temperature sensor used. This 

measured data will then be transmitted to an analog to digital 

converter in order to transmit digital output to an artificial 

intelligent network for the purpose of displaying measured 

current or voltage and to train the neural network for future 

voltage/current predictions on several remote locations as well as 

at several smart grids. The proposed heat wave measuring system 

is shown in the Fig. 1 and the detail of components is elaborated 

below.  

 

 
 

FIGURE 1: Main structure of the proposed heat wave measuring system. 

 

A. Thermal Radiation or Heat Waves 

It is a common phenomenon that all type of matter emit radiation 

at non-zero temperature out of which some are in visible 

spectrum and some are invisible spectrum like ultraviolet UV 

rays, infrared IR. Thermal radiation of heat waves emitted by all 

matter at zero temperature are in the wavelength range of 0.1 µm 

to 100 µm. Different regions of electromagnetic spectrum along 

with the ranges of each region are mentioned in below Fig. 2. 

 
FIGURE 2: Electromagnetic Spectrum (GR gamma rays; XR X-rays; UV 

ultraviolet; VI visible; IR infrared; TR thermal radiation; MW microwaves), 

adopted from [16] 

 

The phenomenon of emitting radiation from the matter lies in the 

fact of collisions of electrons of the matter, thus releasing energy. 

The propagation properties of electromagnetic waves can be 

applied on thermal radiations, since these radiations are also 

electromagnetic [18-20]. The relation for frequency and 

wavelength of thermal radiations can be related through λ=c/v, 

where c is he speed of light c= 2.998×108 m/s.  

The emitted thermal radiations are not directional and can be 

transmitted to all directions of the conductor. Here an infrared 

temperature sensor can be placed to record and analyze the 

emitted radiations from the high power transmission lines in 

order to measure current, voltage and frequency. The IR 

temperature sensor is discussed as below.  

B. Design of Temperature Measurement System 

Heat wave measurement system comprises of two main 

components, one is infrared thermometer and other is a non-
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conducting shell in which this pyro-sensor is placed for achieving 

a non-contact system [19]. To choose the thermometer, three 

criteria were available including spot size, cost and most 

importantly the temperature range. The minimum distance should 

be around 1cm, considering the length of the insulators typically 

attached to the tower and the spot size at that distance should not 

be bigger than 3 cm considering the size of the attached sphere.  

Minimum temperature for the transmission conductor depends 

upon the type of the conductor material used, but it is common to 

specify the temperature range of conductor from 50 ◦C or 70 ◦C 

as the maximum operating temperature so the required 

temperature range could vary from few degrees Celsius to nearly 

one hundred Celsius depending upon the weather conditions, hot 

or cold. Cost was also a considerable and critical aspect while 

designing and implementing this proposal in order to develop a 

realistic alternative to the existing contact temperature 

measurement systems, which are available in several hundred or 

thousand dollars. A brief block diagram of non-contact 

temperature measuring sensor is shown in Fig. 3.  

Temperature of power line depends upon the amount of heat 

being released from that high power transmission line. At 

ambient temperature, there would be very less number of photons 

being emitted from the surface of transmission line and the 

emitted photos will remain less until the temperature of the 

surface reaches a certain threshold value. Once the surface of the 

conductor is hot enough to breach the threshold point, amount of 

photons would release in abundance from the conductor, 

providing a detectable amount of heat waves for the IR sensor.  

Since heat is a form of energy (E) and suppose conductor current, 

resistance and the amount of time the current flowing through the 

conductor is known, then the amount of heat can be calculated 

using; 

𝑃 = 𝑊/𝑡 =>  𝐸/𝑡 (1) 

𝐸 =  𝑃𝑡 => 𝐼2𝑅𝑡 (2) 

𝐻 =  𝐼2𝑅𝑡  (3) 

Now, for elaboration of proposed current measurement technique 

the important parts of the heat wave measuring system are 

presented in detailed as follows:  

 

i). 81101 Thermopile Sensor 

The infrared sensor chosen for this study is a non-contact 

temperature sensor 81101. It can not only be used to measure 

component temperatures but can also be used for measuring body 

temperature, surface temperature, heat ventilation and much 

more. The temperature range of this IR sensor is −40 ◦C and 125 

◦C with a spectral range of 8 µm to 14 µm and measurement 

resolution of 0.02°C.  

This non-contact temperature measuring sensor works on 

thermocouple principle where heat waves are measured from the 

high power transmission lines and converted to electrical signals 

for further processing. The thermopile sensors are fabricated with 

different polysilicon technologies [20-22], Bi-Sb-Te [23] and 

AlGaAs-GaAs [24].  

 

             
 

FIGURE 3: Block diagram of temperature sensor 

 

ii). Amplifier 
The purpose is to amplify the signal, received from the IR sensor 

that in actual could be very weak. As mentioned above, thermal 

radiation emitted by hot surfaces can be described by Plank’s law, 

which shows that radiance increases exponentially with 

(absolute) temperature. In order to achieve maximum gain of the 

recorded heat wave signal, an amplifier with band-pass 

characteristic could be used that could provide a total gain of 

1000. Furthermore, the amplifier must be fast (high bandwidth), 

low-noise, linear and able to perform over a high dynamic range 

[24, 25]. The amplified signal then fed to A/D converter.  

iii). A/D Converter 

Three basic steps for converting analog signal into a digital signal 

involves sampling, quantization and coding. The nature of the 

signal is changed after passing through A/D converter as our 

ultimate goal is further digital signal processing at neural 

networks end to have estimation of the current and voltage values 

of the high power transmission lines. A state machine controls the 

operation of the temperature sensor which controls the 

measurement and calculates the ambient temperature of the 

object. This post processing of the measure temperature is then 

output from PWM. A brief description of the temperature sensor 

components is as follows. 

 

C. Artificial Neural Network   

The breakaway discovery of a neuron in a human brain during 

19th century had opened new horizons for the scientists and 

researchers to study the phenomena. This biological discovery 

had also revolutionized the electronics industry and this study of 

artificial neural network (ANN) is a complete reminiscent of 

human neurons. It is to believe that a human brain has 

approximately 85 billion neurons [26] and ANN works in quite 

similar manner as a human brain does. In ANN network, different 

neurons are connected to each other through weights (a form of 

network coefficients). ANN networks have astounding abilities 

to predict or estimation values of the system and can learn and 

highlight the correspondence among system’s parameters. 

Detailed working of ANN is promulgated in literature [27].  

A typical ANN network architecture comprises of different layers 

and nodes. There can be a single layer or multilayer ANN systems 

depending upon the requirement of the operation. The nodes, that 

imitates biological neurons, are the element which can collect 

information and perform simple operations. This result is passed 

to different neurons/nodes. The output of each node is called 

activation value. A single layer ANN system with different nodes 

is shown in Fig. 4.  
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FIGURE 4: Single layer ANN network architecture 

 

For single layer ANN network, having three inputs (x1, x2 & x3) 

and three weights (w1, w2 & w3) with a bias (b) that is associated 

with storage of information the equation to calculate output can 

be seen in Fig. 5.  

 

 
 

FIGURE 5: Single neural network node 

 

𝜈 =  (𝑤1 ∗  𝑥1)  +  (𝑤2 ∗  𝑥2)  +  (𝑤3 ∗  𝑥3)  +  𝑏  (4) 

 

From (4), w = [w1 w2 w3] and x = [x1 x2 x3] and φ is an 

activation function so the output of a node of a neural network 

can be represent as:   

𝑦 =  𝜑 (𝜈)  =  𝜑 (𝑤𝑥 +  𝑏)  (5) 
where ν = (wx + b) and φ is a typical step or linear function, called 

activation function for ANN system which determines the 

behavior of a node. Based on input and output layers this transfer 

function also represents the expected output of the system. 

Whereas, bias (b) is an offset of threshold value for a neuron and 

often envisaged as a property of activation function.   

Two types of activation functions are used one is linear and other 

is sigmoid. The linear activation function is easier to understand, 

but it can work for a single layer neural network only as ꝋ (x) = 

x as shown in Fig. 6 (a) as all the hidden layers become 

ineffective for this function. The bias value is a reference point 

for the inputs to be compared with, so that output could be 

produced. If the input values are smaller than biased value, then 

by using sigmoid function. Whereas the sigmoid function is a 

smooth limiting function [29] in Fig. 6 (b) with mathematical 

representation as:  

𝒇(𝒙)  =  𝟏/(𝟏 − 𝒆𝒙𝒑 − 𝒙)  (6) 

                  

(a)    (b)   

FIGURE 6: Various Activation Function for a unit, adopted from [30] 

 

In order to simulate the heat wave measuring network, a single 

layer ANN network is used to have efficient predictions. The 

neural network is trained by using four different set of data 

samples, including temperature, noise and voltage of overhead 

transmission lines and trained results are compared to have 

appropriate prediction results that are reminiscent to actual 

current values flowing through conductor. In order to train a 

neural network different types of algorithms are used, these 

algorithms are articulated in the paper [28].   

 

III. SIMULATION RESULTS 

For the training of a neural network for the incoming data to 

predict for an approximated output, a fast forward back 

propagation (FFBP) type is used. Training of neural network is 

based on dividing the data (voltage or current waves from PWM) 

into three sets: the training set, the validation set and the testing 

set which assess the performance of neural networks. Such 

dynamic artificial neural network can be turned to an open loop 

or closed loop network using open loop and closed loop functions 

in MATLAB Neural Network toolbox [29]. The block diagram 

of the system is shown in Fig. 7.  

 

FIGURE 7: Open loop neural network 

From MATLAB Neural Network Toolbox [29] Levenberg-

Marquardt backpropagation algorithm was used to train the 

neural network. Although it uses more memory compared to 

other algorithms (e.g: Bayesian Regulation and 
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FIGURE 8: The results of training and prediction of ampacity of the power transmission line 

 

Scaled Conjugate Radiant) this algorithm has good performance 

and is fast for training. The data samples are divided using 

dividerand parameter of training function. Therefore, 70% of the 

data samples are used for training, 15% are used for validation 

and remaining 15% are used for testing the output of the trained 

neural network with the actual output values. Results of the 

predictions are in close proximity with the original data acquired 

of the power lines. 

Figure 8 shows the training performance and results of prediction 

of N=100 samples using MATLAB. Tab. I is the corroboration 

from where the data was predicted for N=100 samples having 20 

neurons. Four input values are used of Max temperature of 

conductor, Min temperature of conductor, Noise or external 

atmospheric temperature and output voltage. Figure 8 (a) shows 

the best validation performance (6.689) is achieved after 6 epochs 

only, Fig. 8 (b) shows the regression values, showing how well 

the neural network is trained as Training R value is approximately 

equals to 1. Figure 8 (c) shows the overlapping signals of actual 

and predicted data, which corroborated through Fig. 8 (d) 

showing the error signal between the original and predicted data 

which is very low, advocating about the efficiency of the system 

to produce predicted output. 
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Table I:  Actual vs. Predicted current ratings for overhead transmission lines 

 
 

IV. CONCLUSION 

In this study a methodology for current estimation in the high 

voltage transmission lines by using pyro-sensors, machine 

learning (ML) techniques and artificial intelligence (AI) is 

proposed. Simulations using MATLAB software are conducted 

on the retrieved data from high voltage power transmission lines 

and estimation of current is being calculated using an artificial 

intelligent network algorithm. The efficacy of proposed 

methodology is verified by MATLAB simulation neural network 

toolbox. By tracing down existing power quality parameters of 

high voltage power lines, current estimation can be done in any 

remote location by using pyro sensors and ANN network.  

The encouraging results regarding estimated current values are 

promisingly close to actual current values, thus making the 

system reliable to use in future that can be a replacement of using 

CTs & PTs and can be used at any remote location on high power 

transmission lines for measuring current.  
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Temp. of 

Conductor 

C (Max)

Temp. of 

Conductor 

C (Min)

Noise 

(db)

 Voltage 

from heat 

waves (V)

Current (I) 

(Actual)

Current (I) 

(Predicted)

28.9 14 2.13 0.43 4.69 3.06

28.1 13 4.23 0.69 5.79 6.40

25.6 12 4.41 0.67 5.99 7.16

25 11 4.45 0.99 10 8.55

26.7 8 4.38 1.11 10.29 10.32

30.9 18.4 1.46 0.29 3.17 2.51

29.5 9 1.78 0.17 2.78 -2.04

34.6 21.3 1.8 0.43 3.46 4.90

34 20.4 1.67 0.99 10.5 11.75

33.5 23.9 2.7 0.78 7.92 7.82

26.4 9.8 2.69 0.92 8.87 9.66

29.1 8.7 3.4 0.87 8.01 9.78

25.7 10.7 1.11 0.01 1.24 8.80

26.8 12.3 1.23 0.61 6.44 6.27

31.9 20.1 3.21 0.81 8.09 7.91

34.2 23.5 2.31 0.66 6.27 6.20

32 21 4.41 0.44 4.57 2.76

27.3 13.8 4.45 0.57 5.09 5.17

28.1 8.3 4.38 0.76 5.98 8.92

29.5 10.4 1.46 0.24 2.64 -3.24

30.4 17.6 1.78 0.43 3.46 4.23

30.9 19.4 1.23 0.99 10.5 9.96

25.3 14 1.43 0.81 8.09 10.08

26.7 8 1.78 0.66 6.27 4.50

25.4 10 3.52 0.49 5.01 5.87

29.2 11 3.47 0.12 1.97 0.54

33.2 22.1 2.7 0.76 5.98 7.51

32.3 23 2.69 0.24 2.64 3.66

34.9 21.9 3.4 0.37 4.01 0.76

31.6 18.5 1.11 0.58 5.09 5.08


